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We compute the spectrum of the low-lying mesonic states with vector, scalar and pseudoscalar
quantum numbers in QCD with one flavour. With three colours the fundamental and the two-index
anti-symmetric representations of the gauge group coincide. The latter is an orientifold theory that
maps into the bosonic sector of N = 1 super Yang-Mills theory in the large number of colours limit.

We employ Wilson fermions along with tree-level improvement in the gluonic and fermionic parts
of the action. In this setup the Dirac operator can develop real negative eigenvalues. We therefore
perform a detailed study in order to identify configurations where the fermion determinant is negative
and eventually reweight them. We finally compare results with effective field theory predictions valid
in the largeNC limit and find reasonably consistent values despiteNC being only three. Additionally,
the spin-one sector provides a novel window for supersymmetric dynamics.
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I. INTRODUCTION

Understanding the dynamics of strongly coupled gauge
theories, such as QCD, has motivated the construction of
several expansions complementary to the standard, per-
turbative, weak coupling expansion. One of the most

prominent examples is the large NC limit (where NC is
the number of colours), introduced by ’t Hooft in Ref. [1].
In this case one keeps quarks in the fundamental repre-
sentation of the gauge group SU(NC) and organises an
expansion in 1/NC using a diagrammatic approach. Sev-
eral properties of QCD can then be understood in a sim-
ple way, suggesting that NC = 3 is “large”. However,
since quark loops are suppressed in this expansion, the
properties of the η′-meson are not well reproduced in the
’t Hooft large NC limit. Baryons also become increas-
ingly heavy as NC grows.

Partly motivated by that, Corrigan and Ramond (CR)
introduced a different large NC expansion in Ref. [2], in
which quarks transform according to the two-index an-
tisymmetric representation of the gauge group. While
’t Hooft and CR expansions coincide for NC = 3, they are
very different in the large NC limit. Notably, in the CR
expansion, quark loops are not suppressed as NC → ∞.
A simple scaling of the dimensionality of the representa-
tions of the quark fields suggests that the CR large NC

limit may share non-trivial dynamical properties with su-
persymmetric theories. This relation has been made pre-
cise by Armoni, Shifman and Veneziano in Refs. [3, 4],
where a connection between the mesonic sectors of the
two-index (anti-)symmetric theories and of N = 1 super
Yang-Mills theory (sYM) is established. The subtle is-
sues of the confinement properties and (in)equivalences
at large NC were investigated in Ref. [5]. Further de-
veloping the correspondence, in Ref. [6] supersymmetry
inspired effective Lagrangians have been constructed for
gauge theories featuring one Dirac fermion transforming
either in the symmetric or in the anti-symmetric two-
index representation of the gauge group SU(NC) (ori-
entifold theories). At leading order in the 1/NC expan-
sion such effective theories coincide with that of super-
symmetric gluodynamics restricted to its mesonic sec-
tor. These correspondences imply that non-perturbative
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quantities computed in orientifold theories can be re-
lated, up to 1/NC effects, to the analogous ones in sYM.
By considering 1/NC supersymmetry breaking effects, in-
cluding the explicit ones due to a finite quark mass, a
number of predictions are made in Ref. [6] concerning the
spectrum of the low-lying mesonic states.1 In this work
we confront such predictions with non-perturbative re-
sults produced by means of lattice simulations. For sim-
plicity, in this first study we only consider NC = 3, which
corresponds to one-flavour QCD. This has the advantage
that available simulation packages for lattice QCD can
be used without having to develop new code for handling
representations of the fermionic fields different from the
fundamental one. Future studies will be devoted to the
extension to NC > 3. Intriguingly, by flipping the point
of view (cf. Refs. [5, 8]), we can use QCD results to
learn about the spectrum and dynamics of supersymmet-
ric theories, in particular N = 1 sYM. Analytic and nu-
merical studies can now be employed to investigate sev-
eral dynamical properties, including the theta-angle [6].

One-flavour QCD has been the object of several pre-
vious lattice studies. The qualitative behaviour of the
theory has been discussed in Ref. [9]. In Ref. [10] the
quark condensate has been computed by comparing the
density of low-lying eigenvalues of the overlap Dirac oper-
ator to predictions from Random Matrix Theory [11, 12].
The result is consistent with the prediction for the gluino
condensate in sYM obtained in Ref. [13]. Using Wilson
fermions, Ref. [14] presents a computation of the low-
lying hadronic spectrum of one-flavour QCD. We im-
prove here on that computation by considering a finer
lattice spacing, larger volumes and a tree-level improved
fermionic action. In Ref. [15] the one-flavour SU(2) vec-
tor gauge theory with the fermion in the fundamental
representation is studied as a possible composite model
for Dark Matter (DM). The Dirac operator is discretised
using Wilson’s regularisation. The fundamental repre-
sentation of SU(2) is pseudo-real making the global sym-
metries and dynamics different from three colours QCD.
In particular, the dark-matter model of Ref. [15] features
a mass-gap with vector mesons being the lightest triplet
of the enhanced SU(2) global symmetry. A similar DM
model based on SU(2) gauge theory with scalar quarks
was proposed in Ref. [16].

Finally, in Ref. [17] the single flavour SU(2) theory is
considered with the fermion in the adjoint representation.
The goal in this case is to gain insights on the emergence
of the conformal window. Again the Wilson Dirac opera-
tor is used in the numerical simulations. As is highlighted
by this brief review, one-flavour QCD is implemented on
the lattice by adopting either overlap (or more generally
Ginsparg-Wilson) or Wilson fermions. That is because in
those cases the single-flavour lattice Dirac operator can

1 A string theory dual of orientifold theories has also been used in
Ref. [7] to make predictions in the massless limit.

be rigorously defined. Wilson fermions are computation-
ally cheaper but in such regularisation the spectrum of
the Dirac operator may contain real negative eigenvalues
for positive (but small) quark masses. That might cause
a sign problem as the fermion determinant may become
negative on some configurations. Following Refs. [18–21]
we discuss in detail how we monitor such cases.2

Earlier numerical investigations of orientifold theo-
ries [23, 24] used the quenched approximation where the
sign problem is absent.

Directly simulating supersymmetric gauge theories on
the lattice has been an active research field for many
years. Since the literature is vast we refer the reader to
the recent review in Ref. [25] and references within for a
discussion of the status and open problems.

A preliminary account of the results we present in this
paper appeared in Refs. [26, 27]. The latter in particular
contains some algorithmic exploratory studies for NC =
4, 5 and 6.

The remainder of this paper is organised as follows.
In Section II we describe our computational setup and
provide algorithmic details. In Section III we investi-
gate the consequences of the sign problem in our simula-
tions. In Section IV we report on the correlation function
fits required to extract the spectrum at non-zero quark
masses, before extrapolating the meson spectrum to van-
ishing quark masses in Sec. V. Finally, in Section VI we
confront the effective field theory predictions with our
results and provide an outlook.

II. SIMULATION SETUP

For the gauge part of the action, we employ the
Symanzik improved gauge action [28] with a fixed value
for the gauge coupling of β = 4.5. As fermion ac-
tion we use one flavour of tree-level improved Wilson
fermions [29] and set the parameter of the clover term
to 1. The Wilson-Dirac operator D in clover improved
form is defined as follows

D(m0) =
1

2

3∑
ν=0

(γν(∇∗
ν + ∇ν) − a∇∗

ν∇ν)

+ acSW

3∑
ν,ρ=0

i

4
σνρF̂νρ +m0 , (2.1)

where a is the lattice spacing, m0 is the bare quark

mass and ∇(∗)
ν denotes the covariant forward (backward)

derivative. The hopping parameter κ is related to the
bare mass m0 by 1/κ = 2(am0 + 4).

2 An alternative approach relying on the Arnoldi algorithm to com-
pute the eigenvalues of the non-Hermitian Wilson Dirac operator
has been introduced in Ref. [22].
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L/a κ ML steps τMD ∆cfg [MDU] Nconfig Acceptance

12 0.1350 1,1,6 2.0 64 877 0.998
12 0.1370 1,1,6 2.0 64 778 0.997
12 0.1390 1,1,6 2.0 64 731 0.996
12 0.1400 1,1,6 2.0 64 674 0.996
16 0.1350 1,1,8 3.0 120 1512 0.999
16 0.1370 1,1,8 3.0 120 539 0.998
16 0.1390 1,1,8 3.0 120 1189 0.997
16 0.1400 1,1,8 3.0 120 959 0.994
16 0.1405 1,1,8 3.0 120 686 0.991
16 0.1410 1,1,10 3.0 120 989 0.957
20 0.1350 1,1,6 2.0 64 503 0.996
20 0.1370 1,1,6 2.0 64 180 0.993
20 0.1390 1,1,8 3.0 120 346 0.993
24 0.1350 1,1,10 2.0 64 360 0.999
24 0.1390 1,1,6 2.0 64 324 0.986
24 0.1405 1,1,6 2.0 64 286 0.966
24 0.1410 1,1,9 2.0 64 593 0.841
32 0.1390 1,1,6 2.0 64 180 0.979
32 0.1400 1,1,6 2.0 64 376 0.967

TABLE I. Overview of the lattice ensembles generated in this
study. All configurations are at a fixed gauge coupling of β =
4.5 and a fixed temporal extent of T/a = 64. The simulation
parameters were tuned to achieve a high acceptance with a
large trajectory length τMD. We refer the reader to the text
for the definitions of the parameters.

In order to map out the relevant parameter space we
generated 19 gauge field ensembles covering different hop-
ping parameters κ between 0.1350 and 0.1410 and vol-
umes ranging from 123 × 64 to 323 × 64. An overview of
the simulation parameters can be found in Table I.

We measure the topological charge Q by integrating
the Wilson flow [30] using a third-order Runge-Kutta
scheme with a step-size of ϵ = 0.01 and 1600 integration
steps. The topological charge at the largest flow time
(t/a2 = 16) is shown for all ensembles in Fig. 19 in Ap-
pendix A. The topological charge behaves as expected:
its distribution is narrower for lighter quark masses and
broader for larger volumes [11]. The Wilson flow further
allows us to estimate the lattice spacing (via the reference
flow scale t0) by studying the Yang-Mills gauge action
density as a function of flow-time [30]. Since our goal is
to determine dimensionless quantities, we only quote the
lattice spacing in order to enable qualitative comparison
with other lattice calculations. As there is no reference
scale for a single flavour (Nf = 1), we use the average
of t0 from Nf = 0 [30] and Nf = 2 [31] as an estimate
for the lattice spacing with Nf = 1. In practice, we use
a value of

√
8t0 = 0.45 fm. This allows us to obtain an

indicative value for the lattice spacing of a ≈ 0.06 fm.

All configurations are generated using the openQCD
software package [32]. Since we only simulate a single
fermion in the sea, it is necessary to use the rational hy-
brid Monte Carlo (RHMC) algorithm [33]. In the rational
approximation we adopt a Zolotarev functional of degree
10. In the absence of prior knowledge about the opti-
mal Zolotarev approximation – in particular for just one

0 20 40 60 80 100 120 140 160 1800.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

w
′

L/a= 32, = 0.1390 reweighting factors

0.0 0.6 1.2

 1.00(27)

0 50 100 150 200 250 3000.6

0.8

1.0

1.2

1.4

1.6

w
′

L/a= 24, = 0.1405 reweighting factors

0 1 2

 1.00(17)

FIG. 1. Normalised reweighting factors on two example en-
semble.

flavour – we choose a conservative range of 0.002 and 9.0
as a lower and upper bound for the position of the poles.
In comparison with Ref. [21] this is a rather loose ap-
proximation, which is relevant for the tunnelling between
regions of configuration space with positive and negative
determinants of the Dirac operator. In addition, we in-
clude frequency splitting, i.e. we factorise the Zolotarev
rational into two terms, where the first factor contains
the poles 1 to 5 and the second term the contribution
from poles 6 to 10. Throughout the entire generation,
we adopt three levels of integration schemes. The out-
ermost employs a second-order Omelyan integrator [34]
with λ = 1/6, which is used for the contributions from
poles 6 to 10. For the inner two levels we use fourth-order
Omelyan integrators, where the remaining fermion force
is calculated in the second, and the gauge forces in the
innermost level. We tune the number of fermion integra-
tion steps (ML steps) in the different levels to achieve a
high acceptance (between 84% and 99.9%, c.f. Table I).
The pseudofermion actions and forces are obtained using
a simple multi-shift conjugate gradient solver. For en-
sembles with a lighter quark mass, i.e. with larger values
of κ, we take advantage of the deflated SAP [35, 36] pre-
conditioned solver given in the openQCD framework. The
trajectory lengths of our ensembles are typically between
2 and 3 molecular dynamic (MD) units. In our analysis,
we use every 32nd (or 40th) trajectory, which implies that
configurations are at least 64 MD units apart from each
other. For each ensemble the resulting number of config-
urations Nconfig on which we perform all measurements is
listed in Table I. To increase the amount of statistics and
to utilise smaller computing resources more efficiently, we
branch our simulation stream into multiple replicas after
thermalisation is reached.

Since the Zolotarev approximation in the RHMC is not
exact, we correct our observables by using a reweight-
ing scheme. To achieve this, on each configuration we
compute four estimators for the reweighting factors wi

using code from the openQCD package. The correctly
reweighted gauge average of an observable O is then given
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a function of volume and quark mass.

by

⟨O⟩rew =
⟨wO⟩
⟨w⟩

= ⟨w′O⟩ , (2.2)

where we define w′ = w/ ⟨w⟩. Figure 1 shows these nor-
malised reweighting factors w′ as a function of the tra-
jectory length (excluding any thermalisation times) for
two representative ensembles (L/a = 32, κ = 0.1390 and
L/a = 24, κ = 0.1405). In Fig. 2 we show the variation of
the reweighting factors for all ensembles and observe that
the fluctuations increase with volume, but are insensitive
to the quark mass.

As the phase space of this theory in the regularisation
we have chosen is a priori unknown, we computed the
trace of the Polyakov loop. We find that the Polyakov
loop vanishes within errors on each ensemble, which in-
dicates that we are simulating in the confined phase.

III. EIGENVALUE ANALYSIS

The use of Wilson fermions for lattice QCD with
an odd number of quark flavours or with non-mass-
degenerate (light) quarks can introduce a sign problem.
This occurs because the configuration space is divided
into two sectors, one associated to a positive sign of the
fermion determinant and one to a negative sign. These
sectors are separated by a zero of the fermionic measure.
Note that the latter translates into a pole of the fermionic
force in the molecular dynamics algorithm. With exact
integration and an exact expression for the square root
function, the negative sector cannot be reached from the
positive one. In practice the algorithmic choices for the
rational approximation yield a finite (rather than infinite)
barrier between the two sectors.

In the thermodynamic and continuum limit the trajec-
tory is expected to be constrained to the positive sector.
However, at finite volume, the presence of the negative
sector has to be accounted for by sign reweighting which
requires knowledge of the sign of the fermion determi-
nant det(D). A direct computation is numerically (pro-
hibitively) expensive. Instead we follow a strategy in
which the sign of det(D) is inferred from computing a

few of the lowest eigenvalues of the Dirac operator. This
can be achieved at a cost linear in the lattice volume and
using the approach we will now sketch:

Due to γ5-Hermiticity of the Wilson-Dirac operator,
i.e.

D† = γ5Dγ5 , (3.1)

the matrix Q = γ5D is Hermitian and its spec-
trum is real. Furthermore, it holds that det(D) =
det(γ5) det(D) = det(Q) and that a zero eigenvalue of D
is also a zero eigenvalue of Q. Recalling that the eigen-
values of D come in complex conjugate pairs, for det(D)
to be negative there must be an odd number of negative
real eigenvalues of D.

Since the fermion determinant det(D) is assumed to
be positive for large quark masses, we can infer that the
determinant at the unitary mass m∗

0, used in the actual
simulation, is negative if and only if there is an odd num-
ber of eigenvalues that cross zero as the mass is decreased
from large quark masses to m∗

0. The idea is to locate
(on each gauge configuration) the largest value mt of the
quark mass such that Q(mt), and therefore D(mt), has
a zero eigenvalue. If m∗

0 is larger than this value mt then
D(m∗

0) = D(mt) + (m∗
0 − mt)I has no negative eigen-

values. Conversely, if m∗
0 < mt, we need to determine

the number of zero crossings of the lowest eigenvalue(s)
λ(m0) of Q(m0) by varying the bare mass m0 from above
mt down to m∗

0. To that end we combine the PRIMME
package with openQCD as mentioned in Ref. [21].

In practice we proceed in two steps: First we perform
a preselection to identify potential candidate configura-
tions with a negative fermion determinant and for this
subset of configurations we perform a tracking analysis
to identify the configurations that indeed display a neg-
ative fermion determinant.

We start the preselection by measuring the low-
est O(10) eigenpairs (λi, ψi)(m

∗
0) and their chiralities

χi(m
∗
0), defined by

χi(m
∗
0) = ⟨ψi| γ5ψi⟩ (m∗

0) =
dλi(m0)

dm0

∣∣∣∣
m0=m∗

0

, (3.2)

where the last equality follows from the Feynman-
Hellman theorem [20, 21]. The chirality hence corre-
sponds to the slope of the eigenvalue function. This
allows to categorise the eigenvalues of Q into those
which approach zero as m0 is increased and those which
move away from it. In Figure 3 we plot the results of
the eigenvalue-chirality analysis for the four lowest ly-
ing eigenvalues of the two L/a = 16 ensembles with
κ = 0.1405 (left) and κ = 0.1410 (right). If a data-
point falls into the north-east or south-west quadrant,
the eigenvalue moves further away from zero when the
quark mass is increased, implying that there is no zero
crossing for values larger than m∗

0. This is the case for
all configurations with κ = 0.1405. Conversely, if a data-
point falls into the north-west or south-east quadrant this
implies that the eigenvalue approaches zero as the quark
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FIG. 3. Scatter plot of the lowest four eigenvalues and chiralities for L/a = 16 and κ = 0.1405 (left) and κ = 0.1410 (right).
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FIG. 4. Tracking analysis of the lowest 20 eigenvalues on a
L/a = 16, κ = 0.1410 configuration with a negative fermion
determinant.

mass is increased and a zero crossing is possible. Config-
urations with eigenvalues which display this feature can
potentially have a negative determinant and therefore re-
quire further monitoring. As can be seen in Fig. 3, on
the κ = 0.1410 ensembles we find a small number of these
cases for which the second step, the tracking analysis, is
performed.

We find that datapoints close to the horizontal axis
but in the “safe” quadrants, tend to occur only for com-
parably large values of |λ|. Under the assumption that
the chirality changes slowly in the range of masses ex-
plored, even if the sign of χ were to change, the corre-
sponding eigenvalues are not expected to be at risk of
changing sign. This assumption is justified a posteriori
in the tracking analysis.

On the configurations that displayed datapoints in the
north-west or south-east quadrants we now measure the
lowest 20 eigenpairs for several partially quenched masses
around m∗

0. The eigenvalue functions λi(m0) and the
eigenbasis {ψi} are assumed to vary slowly and contin-
uously with m0. Assuming that the different partially
quenched masses are sufficiently close to each other it is
possible to track how a particular eigenvalue behaves as
a function of the quark mass as follows. For each set of
neighbouring masses m0 and m0 +∆m0 we construct the
matrix Mij = ⟨ψi(m0)| ψj(m0 + ∆m0)⟩ of scalar prod-
ucts between the ith eigenvector ψi(m0) at m0 and the
jth eigenvector ψj(m0 + ∆m0) at m0 + ∆m0. We de-
termine the largest entry Mij and interpret this to mean
that the eigenvalue i at m0 evolves to be the eigenvalue
j at m0 + ∆m0. We then remove row i and column
j from the matrix and iterate the procedure until each
eigenpair at m0 has been assigned a corresponding eigen-
pair at m0 + ∆m0. Figure 4 displays a configuration of
the L/a = 16 and κ = 0.1410 ensemble where a nega-
tive determinant was detected. We observe that the line
connecting the red downward facing triangles does cross
zero as the mass m0 is increased from m∗

0 (highlighted
as the vertical dashed line). Since there is only a single
eigenvalue crossing zero in the region m0 > m∗

0, we con-
clude that the fermion determinant is negative on this
particular configuration.

We see from the representative example shown in Fig-
ure 4 that the assumption discussed above is indeed valid
and the derivatives of the eigenvalues change very little
in the range of masses explored. We also see that such
derivatives are either of O(1) or small. This is expected
and in agreement with the discussion in Ref. [37], where
approximate relations are derived between the eigenpairs
corresponding to small eigenvalues of Q and those of D.
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The chiralities are expected to be significantly different
from zero (and in that case close to ±1) only for eigen-
vectors corresponding to almost real eigenvalues of D.

We performed the above analysis for the two smallest
values of the quark mass corresponding to κ = 0.1405
and 0.1410 for which we each have a L/a = 16 and a
L/a = 24 ensemble. As discussed above (cf. left panel
in Fig. 3) we did not observe any cases of a negative de-
terminant for κ = 0.1405 on either of the two available
volumes. Since negative eigenvalues are expected to have
a higher likelihood to occur at small quark masses, we did
not perform this analysis for any of the remaining larger
masses. At κ = 0.1410 we found 6 configurations with a
negative determinant for each of the two volumes. Fur-
thermore, we observed that the negative sector is visited
at most for the Monte Carlo time corresponding to two
consecutive measurements. This might be related to our
choice of parameters for the rational approximation of√
D†D yielding a relatively low barrier between the two

sectors. We conclude that in our computational setup
the sign problem for Nf = 1 QCD is mild and the rel-
ative frequency of a negative determinant of the Dirac
matrix is at the sub-percent level.

IV. CORRELATOR ANALYSIS

In order to obtain the spectrum of one-flavour QCD,
we create mesonic correlation functions for states with
a variety of quantum numbers. We are particularly in-
terested in states with scalar (S), pseudoscalar (P) and
vector (I) quantum numbers. We employ the Laplacian
Heaviside (LapH) method [38, 39] which allows us to ef-
ficiently compute quark-line disconnected contributions
that appear in the computation of mesonic quantities
with a single flavour.

A. Construction of correlation functions

Following Ref. [38] and, where possible, using the same
notation we compute the Nv lowest eigenpairs (λi, vi)
of the three-dimensional gauge-covariant Laplacian using
a stout smeared gauge field. On each time slice t we
arrange these eigenvectors into a matrix Vs as

Vs(t) = (v1, v2, · · · , vNv
) (4.1)

from which we then define the Hermitian smearing ma-
trix as a function of the number of eigenpairs that were
computed as

S(Nv, t) = Vs(t)V
†
s (t). (4.2)

Using a low number of eigenpairs corresponds to a broad
smearing profile, whereas using a large number of eigen-
pairs corresponds to “less” smearing and taking the limit
of all eigenpairs recovers the identity. Quark lines Q are

0 5 10 15 20 25 30
t/a

10-4

10-3

10-2

10-1

δC
(t

)/
|C

(t
)|

PP unreweighted
PP reweighted
II unreweighted
II reweighted
SS unreweighted derivative
SS reweighted derivative

FIG. 5. Impact of the reweighting on the relative uncertainties
of the correlation functions.

computed as

Q(t0, t) = S(t)(γ4D)−1S(t0)

= Vs(t)
[
V †
s (t)(γ4D)−1Vs(t0)

]
V †
s (t0).

(4.3)

The inversion (γ4D)−1Vs(t0) is done by solving the equa-
tion

(γ4D)αβ(t0, t)y
i
β(t) = vi(t0) (4.4)

for yiβ(t). This is done for each eigenvector vi (i =

1, . . . , Nv), each spin component (α = 1, . . . , 4) and each
time slice (t0 = 0, . . . , T − 1), amounting to Nt ×Nv × 4
inversions per configuration.

In our simulation, we keep the number of eigen-
values Nv = 20 fixed for all ensembles. However,
from these inversions we can construct operators which
use fewer than 20 eigenvalues by truncating the ele-
ments of the square matrix V †

s (t)(γ4D)−1Vs(t0). Us-
ing this we compute meson correlation functions for
Nv ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 20}, which de-
scribe the same spectrum but have different smearing
functions.

In all three channels (P, S, I), we use the appropri-
ate interpolation operator (P, S, I) in the finite volume
irreducible representation. For the S–channel we addi-
tionally construct a purely gluonic operator G [40] which
induces the same quantum numbers as the S operator3.
We consider all mutual combinations of G and S in the
’scalar-glue’ system.

3 To avoid confusion we use the calligraphic notation for specific
operators and Roman letters to indicate the induced quantum
numbers.
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B. Reweighting and vacuum expectation value
subtraction

The vacuum subtracted correlation function CXY can
be derived from the un-subtracted correlation function
Craw

XY (t) and the vacuum expectation values (vevs) vX
and vY as

CXY(t) =
〈
Craw

XY (t)
〉
− ⟨vX ⟩ ⟨vY⟩ , (4.5)

where ⟨·⟩ denotes the gauge average. Whilst the vev is
exactly zero for the P operator and numerically zero for
the I operator, it is sizable for the S and G operators.
We find that the statistical signal for correlation func-
tions including G or S deteriorates when reweighting (cf.
Sec. II) is combined with the naive vacuum expectation
value subtraction defined in Eq. (4.5).

This is due to the fact that the product of the vevs is
many orders of magnitude larger than the exponentially
decaying part of the correlator and as a consequence even
the little noise introduced by the reweighting factors de-
stroys the signal for the latter almost completely.

Since the vacuum expectation value is time-
independent, an alternative way to perform the vev sub-
traction is to take the temporal derivative of the un-
subtracted correlation function. We find that this re-
sults in a significantly better signal when combined with
reweighting and are therefore utilising this.

Figure 5 displays the effect of reweighting for the exam-
ple of the Nv = 20 correlation functions on the L/a = 20,
κ = 0.1390 ensemble. The figure shows the relative un-
certainties of the correlation function for the PP (red),
II (blue) and the time derivative of the SS (cyan) oper-
ators. The dotted lines connect the un-reweighted data
points, whilst the solid lines connect the reweighted ones.
We observe that only for the earliest time slices the uncer-
tainty of the reweighted data is limited by the accuracy
of the reweighting factors.

C. Correlation function fits

For a given channel (P, I or S), the correlation func-
tion C of operators On

X with X ∈ {S,P, I,G} using n
eigenvalues can be approximated by the first N states
Xi as

Cn
XY(t) =

N∑
i=0

∣∣(Zn
X )∗i (Zn

Y)i
∣∣ e−mX

i t + e−mX
i (T−t)

2mX
i

,

(4.6)
where (Zn

X )i =
〈
Xi

∣∣ (On
X )†

∣∣0〉. We emphasise that the

induced masses mX
i depend on the channel X, rather

than the specific operator X , in particular all combina-
tions of S,G induce the same spectrum mS

i .
We extract the three lowest–lying states of the spec-

trum by performing simultaneous correlated fits to the
symmetrised correlation functions Cn

XY(t) for several
choices of n (between 2 and 4). We illustrate two such
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FIG. 6. Example fit for the vector two point function for
the L/a = 32, κ = 0.1400 (top) and the L/a = 16, κ =
0.1390 (bottom) ensembles. The datapoints show the effec-
tive masses of the underlying correlation functions, whilst the
correspondingly coloured bands show the effective mass ob-
tained from the results of the correlation function fits. Finally
the magenta horizontal band (dashed line) show the results
for the extracted ground (excited) state energies.

fits for the example of the vector channel in Fig. 6. We
defer the discussion on the slow approach to the ground
state for the bottom panel to Sec. V B. In order to as-
sess systematic uncertainties associated with the choice
of smearing radii, we vary which n enter into a particular
fit. In particular, for the vector and pseudoscalar chan-
nels we perform three different fits, simultaneously fitting
Nv = (20, 12, 6), (17, 10, 3) or (20, 15, 10, 5) and labelled
‘fit1’, ‘fit2’ and ‘fit3’, respectively.4 For the scalar-glue
basis we simultaneously fit Nv = (20, 3) or Nv = (17, 5)
(‘fit1’ and ‘fit2’) but jointly fitting CSS , CSG and CGG .
In all cases, we fit three states (N = 2 in (4.6)), but only
the lowest two potentially enter any subsequent analysis.
We list the numerical results for the lowest two states
(’gr’ and ’ex’, respectively) in Table II in Appendix B. In
all further steps of the analysis we consider all choices of
‘fit1’, ‘fit2’ and ‘fit3’ to propagate any systematic uncer-
tainties.

Finally, we also compute the connected correlation

4 One of the fit choices of the pseudoscalar meson on the L/a = 24,
κ = 0.1410 ensemble did not yield an invertible covariance matrix
and was therefore excluded. However, as will be discussed later
on, this ensemble does not enter the final analysis.
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function for the pseudoscalar meson, which corresponds
to a non-existent state in a Nf = 1 theory and in the fol-
lowing is therefore referred to as “fake pion”. As we will
discuss in the following section, mfake

π → 0 can be used as
a proxy for the massless limit (see also Ref. [15]). These
correlation functions are generated from standard point
sources and follow the same functional form as Eq. (4.6)
with the replacement Zn

X →
〈
π
∣∣ (q̄γ5q)

†
∣∣0〉. For these

states we perform fits with N = 0 and N = 1. We note
that for both κ = 0.1410 ensembles we expect large fi-
nite size effects as mfake

π L < 3 and therefore discard them
from the subsequent analysis.

V. ANALYSIS OF THE SPECTRUM

The goal of this section it so extrapolate the results for
the meson spectrum (mP , mI and mS) to the chiral and
infinite volume limit to provide results for ratios of these
masses.

A. Defining the chiral limit

We start by determining what the best proxy for the
quark mass is. Figure 7 shows the lowest lying state for
the pseudoscalar channel. The left panel displays this
as a function of the bare quark mass, the right panel
as a function of the fake pion mass. By comparing the
two panels, it is evident that the fake pion mass is the
more suitable choice to define the massless limit as the
bare quark mass suffers from large finite volume effects.
Those are due to discretisation effects in the computation
of the critical parameter κc entering the definition of the
bare subtracted 5 quark mass (see Ref. [41] for a discus-
sion in the case of QCD). In addition, in Ref. [15] it has
been numerically shown, for the one-flavour SU(2) gauge
theory, that the definition of the massless point from the
vanishing of the fake pion mass is consistent with the
rigorous definition from the continuum relation between
the topological susceptibility and the quark mass6. In
the following we therefore choose the fake pion mass to
define the massless limit.

5 In other words we are saying that data should be compared at
fixed bare subtracted quark mass and that differs from the bare
mass by a constant related to κc, which has, at finite lattice
spacing, a rather strong dependence on the volume [41].

6 In Ref. [11] the relation ⟨ν2⟩ = ΣV m is in fact established first
for one-flavour QCD and then for the case of several flavours. In
the equation ⟨ν2⟩ is the topological susceptibility, Σ the fermion
condensate and V the four-dimensional volume. We see from
the plot in Appendix A that our data are in good qualitative
agreement with that relation.

B. Assignment of states

To understand the behaviour of the spectrum we in-
duced by means of our chosen interpolating fields, we
investigate how the hadron masses vary as a function of
quark mass and volume. We are predominantly inter-
ested in mesonic states dominated by qq̄ contributions7.
These are expected to display a strong quark mass de-
pendence but at most a mild dependence on the volume,
whereas any glueball state should only depend weakly on
quark mass and volume. Contrary to these, states that
depend mildly on the quark mass but strongly on the
volume do not correspond to physical states and might
be interpreted to be torelon states [42, 43].

In Section V A we noted that the pseudoscalar mass is
largely volume independent, but depends smoothly and
strongly on the quark mass set by mfake

π . We therefore
identify this with the desired qq̄-state. In the case of the
scalar and vector channels, the situation is more com-
plicated. When comparing results of simulations at the
same κ but on different volumes, there are cases that dis-
play significant volume dependence on smaller volumes.

For example, the top panel of Figure 8 shows the spec-
trum as a function of the inverse spatial volume but at
fixed κ = 0.1390. We observe that the three largest vol-
umes yield very consistent ground state masses. Con-
trary, for the two smallest volumes, we see that a lighter
state is present in the spectrum, which displays a strong
volume dependence. We note that the first excited state
on these two volumes is numerically close to the ground
state mass extracted on the larger volumes. This picture
is further substantiated by investigating the behaviour of
the amplitude for the matrix element as we will illustrate
with the example of (Z20

I )i: In the bottom panel of Figure
8 we show these values for the three states we are fitting.
For the three largest volumes, which are displaying a con-
sistent ground state mass, we find that the ground state
matrix element (left three magenta circles) is of similar
size or larger than the other matrix elements. In con-
trast to this, for the smallest two volumes the situation
is reversed and we find the matrix element of the lowest
lying state (right two magenta circles) to be significantly
smaller than that of the first and second excited states.
We further note that for these two smallest volumes, the
matrix element corresponding to the first excited state
(rightmost two red diamonds) shows a qualitatively sim-
ilar behaviour to that of the ground state for the larger
volumes. In other words, for the smallest two volumes,
the correlation function couples more strongly to the first
excited state than the ground state. This is also the rea-
son for the slow approach to the plateau for example in
the case of the L/a = 16 and κ = 0.1390 ensemble (c.f.
bottom panel of Fig. 6). The strong volume dependence
and qualitatively different behaviour with respect to the

7 For the remainder of this work we refer to these as “qq̄-states.
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FIG. 7. The spectrum of the pseudoscalar meson as a function of the bare quark mass (left) and as a function of the fake pion
mass (right). Here and in the following, shown triplets (or pairs) of points correspond to the fit results of ‘fit1’, ‘fit2’, ‘fit3’,
respectively.

matrix element indicate that the lowest lying state for
the small volumes is not the qq̄-state we are interested
in. Instead, as indicated by the values of the mass and
the amplitudes we identify the first excited state with
the qq̄ state. In summary, for the vector channel at fixed
κ = 0.1390, the qq̄ state corresponds to the lowest lying
state for L/a = 32, 24, 20 and to the first excited state
for L/a = 16, 12. Corresponding analyses for the other
quark masses yield a similar picture.

Figure 9 addresses the scalar channel. The top panel
shows the mass dependence at fixed volume L/a = 16.
The lowest lying state is mass independent in the range of
masses we simulate, but the first excited state displays a
strong mass dependence. The bottom panel shows the
volume dependence at fixed κ = 0.1390. Again, for
small volumes, we find a state whose energy increases
as the volume increases (lowest state at L/a = 12, 16),
as well as a volume insensitive state (lowest state at
L/a = 32, 24, 20 and first excited state at L/a = 16, 12).
Furthermore, the latter coincides with the state that dis-
played the strong mass dependence in the top panel. In
analogy with the discussion of the vector meson, we con-
clude that those correspond to a (mass dependent, vol-
ume independent) scalar meson state and a (mass inde-
pendent, volume dependent) torelon state.

By means of similar investigations of the volume and
quark mass dependence, we categorise the two lowest ly-
ing states on each ensemble and in each channel into the
lowest quark mass dependent state (qq̄) and the remain-
ing state, which in principle can be a torelon, an excited
qq̄ or a glueball state. Figure 10 shows the state that has
been identified as the relevant qq̄ state for the vector (top)
and scalar (bottom) channels. For the large volumes,
good agreement is found for all quark masses, whereas
for light quark masses and small volumes finite size ef-

fects are sizable. We therefore exclude the L/a = 12 and
L/a = 16 from our subsequent analysis.

Summarising the discussion in this Section, the qq̄
states we are interested in are easily identified at large
volumes and small quark masses as the lowest lying states
in the respective channels. Such determinations have the
largest impact in the chiral and infinite volume extrapo-
lations we discuss next. However, especially for small vol-
umes, the identification required a more detailed study
of the volume and mass dependence of both the energy
levels and the overlap factors describing the correlation
functions. Those are important lessons we will take into
account for future studies at large values of NC .

C. Extrapolation to zero quark mass

We are interested in the spectrum at vanishing quark
mass. Since we have not performed a scale setting anal-
ysis we focus on ratios of masses in the chiral limit. As
discussed above, we will use the fake pion mass to de-
fine the zero quark mass limit. A completely model in-
dependent fit function would have to include even and
odd powers of the fake pion mass. To give a rigorous
definition of the fake pion correlator one would have to
consider a partially quenched theory constructed by in-
troducing a quark field with the same mass parameter as
the original one and quenching it away by a correspond-
ing ghost field [44]. Such a theory would be invariant (at
zero quark mass) under transformations in an extended
(graded) chiral symmetry group. Depending on whether
the symmetry is realised à la Wigner-Weyl or à la Nambu-
Goldstone, one would obtain different relations between
the fake pion mass and the quark mass. In the second
case (where the symmetry is broken spontaneously by
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FIG. 8. Volume dependence of the vector meson at fixed κ =
0.1390. The top panel shows the dependence of the spectrum,
the bottom panel the dependence of the corresponding matrix
elements for the N = 20 correlation function.

the vacuum and explicitly by the quark mass) the quark
mass would turn out to be proportional to the fake pion
mass squared. In this case a fit in terms of only even
powers of the fake pion mass would be more appropriate.

Any such Gell-Mann-Oakes-Renner-like [45] relation is
valid at low energies or very close to the massless limit
and in the same limit the fake pion and the pseudoscalar
masses should differ significantly, as the first is expected
to vanish while the second not. Since in our data we
only see small differences between such masses we cannot
claim with confidence to be in the regime where such
relations apply. We hence favour the more general fit
function including even and odd powers of the fake pion
mass for our final results.
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FIG. 9. The spectrum of the scalar meson as a function of the
quark mass at fixed volume L/a = 16 (top) and as a function
of the volume at fixed κ = 0.1390 (bottom).

The fit functions we explore for this extrapolation are

M(mfake
π , L) =

[
npow∑
i=0

ci
(
mfake

π

)i] (
1 + f0e

−mPL
)
, (5.1)

where M is either a mass (mP , mS , mI) or ratios thereof.
In line with what we discussed above, we separately con-
sider choices where i takes even and odd values or only
even values and in both cases either leaving f0 as a free
parameter or setting it to zero. In addition to varying
the fit function, we consider cuts to the data, in partic-
ular removing the smallest volumes and/or the lightest
and/or heaviest masses.

An example fit for the case of the pseudoscalar mass
(top) and the scalar mass (bottom) is shown in Figure 11.
In both of these cases we take the results obtained by
‘fit1’, keep f0 as a free parameter and choose npow = 2.
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FIG. 10. Mass dependence of the states identified as qq̄ states
for the vector (top) and the scalar (bottom).

Due to concerns about the finite volume effects, we ex-
clude the smallest volumes (L/a = 12, 16) and the light-
est quark mass (κ = 0.1410).

We repeat all extrapolations for the various choices of
the correlation function fits, whether or not f0 is kept as
a free parameter and for different choices of npow. For
the lowest order polynomial we restrict the mass range
that enters the fit. The datapoints in Fig. 12 show the
results for these variations for the pseudoscalar (top) and
the scalar (bottom). Only fits with an acceptable p-value
of p > 0.05 are shown. The green band in these plots is
derived by taking the 68th percentile of the distribution
of the underlying bootstrap samples of all the fits which
produced an acceptable p-value. We interpret this num-
ber to be a good approximation of systematic effects due
to correlator fit choices, variations of the chiral fit ansatz
and the data included in such a fit.

Ultimately we are interested in the ratio of masses in
the chiral limit. We can obtain this in two ways as we
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FIG. 11. Extrapolation to the chiral limit for a given fit ansatz
for the pseudoscalar mass (top) and the scalar mass (bottom).

will now illustrate on the example of the ratio of the
pseudoscalar to the scalar mass: We can either build the
ratio mP /mS at finite mfake

π and then extrapolate this
to the massless limit (method 1), or we can separately
extrapolate the pseudoscalar and the scalar masses and
then build their ratio (method 2). One example fit of the
former is shown in Fig. 13. We observe that part of the
mass dependence cancels in the ratios, resulting in a less
steep curve than that observed in the individual fits (cf.
Fig 11). The coloured stars in the left panel of Fig. 14
show different variations of the fit ansatz, analogous to
Fig. 12. In addition to the extrapolation of the ratio of
masses (method 1), we also show ratios of the chirally
extrapolated values (orange circles; method 2). Here we
computed all mutual combinations of acceptable fits dis-
played in Fig. 12. The green (orange) band is the result
of taking the 68th percentile of all the bootstrap samples
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for the fits of method 1 (method 2) that produced an
acceptable p-value.

In general, we notice that the ratio of separate chiral
extrapolations leads to larger variations than the extrap-
olation of the ratio of masses. This is unsurprising as,
ensemble by ensemble, the underlying datapoints are sta-
tistically correlated, and therefore statistical fluctuations
are reduced for the individual ratios of datapoints. Fur-
thermore the extrapolation of the individual datapoints
is more difficult to control since the slope with the fake
pion mass is steeper. Our preferred number is therefore
the direct extrapolation (green band in Fig. 14) whilst
the orange band provides a sanity check.

We are now in a position to compare the results of the
fits including even and odd powers of mfake

π to those only
using even powers. These two choices are compared in
the two panels of Fig. 14 for the example of the ratio of
pseudoscalar to scalar masses. The green bands of the
two panels are in ∼ 2σ agreement, lending confidence in
the results. However the errorbands of the direct and
indirect methods do not overlap for the fit of the even
powers only. This is even more pronounced for the case
of the ratio mP /mI (c.f. the bottom panel of Fig 17).
This numerical evidence further supports our preference
for the more conservative fit ansatz including even and
odd powers of mfake

π and we therefore quote results from
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FIG. 13. Example extrapolation to the chiral limit of the ratio
of pseudoscalar to scalar mass via method 1.

this choice as our final numbers.
In addition to mP , mS we have data for the vector

mass mI . An example fit for the extrapolation of the
vector mass is shown in Fig. 15 (cf. Fig. 11) whilst dif-
ferent fit variations are shown in Fig. 16 (cf. Fig. 12).
Finally, we also construct the ratios mP /mI (see Fig. 17)
and mI/mS (see Fig. 18) in the chiral limit via the two
methods described above.

VI. DISCUSSION AND OUTLOOK

We have presented a detailed study of the spectrum of
one-flavour QCD using Wilson fermions with tree-level
O(a) improvement.

Results are obtained at one single lattice spacing
(approximatively 0.06 fm) for different volumes (up to
323 × 64) and several quark masses. After extrapolating
to the massless limit we obtain

mP

mS
= 0.356(54) , (6.1)

for the pseudoscalar to scalar meson mass ratio and

mP

mI
= 0.489(49) , (6.2)

for the pseudoscalar to vector ratio. In Ref. [6] a predic-
tion using an effective field theory approach and a 1/NC

expansion was derived. In the massless limit this reads

mP

mS
= 1 − 22

9NC
− 4

9
β +O

(
1

N2
C

)
, (6.3)

where β is a positive constant of order 1/NC . The equa-
tion above therefore provides an estimate for an upper
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FIG. 16. Variations of the extrapolation of the vector mass
to the chiral limit, analogous to Fig. 12.
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FIG. 17. Variations of the extrapolation of the ratio of the
pseudoscalar and the vector mass using even and odd powers
of mfake

π (top) and only even powers of mfake
π (bottom).

bound, that for NC = 3 reads

mP

mS
≲ 0.185 , (6.4)

up to higher order effects starting at 1/N2
C .

Our results are somewhat larger than this bound, but
considering their uncertainty and terms of size O(1/N2

C),
they are reasonably close. This might indicate that 1/N2

C
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FIG. 18. Results of fits to the ratio of the vector and the
scalar mass.

corrections and the parameter β are small. Obviously
this finding needs to be corroborated by extending our
studies to larger values of NC .

Those are further motivated, firstly, by the observa-
tion about the slope in the mass for the extrapolation of
mP /mS having the opposite sign compared to the pre-
diction in Ref. [6]. Corrections to that start at O(1/NC)
and can therefore be quite large. Secondly, results at
larger values of NC will allow assessing the range of
validity of the two different theoretical predictions in
Refs. [6] and [7]. The latter predicts a value of 1/3 for
the ratio mP /mS at NC = 3 in the massless limit.

We have provided an improved estimate, concerning
cutoff effects and assessment of systematic errors, com-
pared to previous results that appeared as Proceedings in
Ref. [46] (based on Ref. [14]), where a value of 0.410(41)
was found for the pseudoscalar to scalar mass ratio.

Besides having tested the predictions made in Refs. [6,
7] for the spin-zero one flavour QCD mesonic state, we
further provided information on the vector spectrum that
can be interpreted as the leading order prediction for the
N = 1 super Yang-Mills vector states.

In order to assess the size of higher order effects we are
extending the computation considering NC = 4, 5 and 6.
A preliminary account appeared in Ref. [27].
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Appendix A: Distribution of the topological charge

In Figure 19 we show the normalised distributions of
the topological charge on all ensembles. The number N
corresponds to the number of distinct configuration on
which all measurements have been performed and which
are spaced by a minimum of 32 trajectories (cf. Sec II).
We clearly observe that the topological charge becomes
more peaked as the volume is decreased and as the quark
mass is lowered (larger values of κ) [11].

Appendix B: Results of the correlation function fits

Table II shows the relevant results obtained by fitting
the reweighted and vacuum-subtracted correlation func-
tions as described in Sec IV.

Appendix C: Determination of t0

Table III shows values obtained for t0 on each ensem-
ble. We use two different action densities to compare
systematic effects of setting the scale, i.e. the Wilson pla-
quette action (tWilson

0 ) and the Yang-Mills action (tYM
0 ).

As mentioned before, we quote these values only as refer-
ence for other lattice simulations. The quoted uncertain-
ties originate from the numerical integration scheme and
are statistical only. As an example we show the depen-
dence of tYM

0 on the fake pion mass in Fig. 20. We note
that tYM

0 displays large finite size effects for the smallest
ensembles.
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L/a κ Pseudoscalar Vector Scalar mfake
π

fit1 fit2 fit3 fit1 fit2 fit3 fit1 fit2

12
0.1350

gr 0.6503(24) 0.6468(18) 0.6497(23) 0.1944(90) 0.1800(68) 0.1884(82) 0.2248(70) 0.2189(68)
0.6457(13)

ex 0.859(20) 0.787(29) 0.859(16) 0.6929(54) 0.6856(43) 0.6936(58) 0.739(10) 0.7632(88)

0.1370
gr 0.5250(23) 0.5202(28) 0.5239(23) 0.1500(66) 0.1663(71) 0.1367(53) 0.1987(76) 0.1957(81)

0.5207(21)
ex 0.794(12) 0.737(15) 0.7796(99) 0.5998(60) 0.6041(52) 0.5842(55) 0.6215(62) 0.6236(57)

0.1390
gr 0.4246(28) 0.4238(30) 0.4262(27) 0.1237(41) 0.1110(42) 0.1115(33) 0.2117(84) 0.2113(89)

0.4229(36)
ex 0.6845(87) 0.667(11) 0.7019(71) 0.5447(76) 0.470(10) 0.5091(61) 0.4613(37) 0.4809(39)

0.1400
gr 0.4028(35) 0.4026(39) 0.4097(34) 0.1081(39) 0.1209(48) 0.1101(31) 0.272(21) 0.283(23)

0.4008(45)
ex 0.6912(91) 0.683(14) 0.7198(87) 0.503(12) 0.530(11) 0.4916(86) 0.4307(50) 0.4432(58)

16

0.1350
gr 0.6371(25) 0.6367(31) 0.64301(92) 0.540(47) 0.370(43) 0.507(39) 0.352(14) 0.350(14)

0.64189(36)
ex 0.901(31) 0.859(34) 0.832(16) 0.6765(70) 0.6734(39) 0.6809(19) 0.7858(88) 0.7848(78)

0.1370
gr 0.5046(21) 0.5023(23) 0.5036(17) 0.356(41) 0.358(29) 0.396(31) 0.340(17) 0.374(22)

0.50102(84)
ex 0.763(26) 0.786(35) 0.794(18) 0.5568(66) 0.5561(48) 0.5590(24) 0.6655(74) 0.6557(81)

0.1390
gr 0.3506(21) 0.3517(21) 0.3506(20) 0.278(12) 0.309(11) 0.2782(96) 0.314(12) 0.320(13)

0.34695(93)
ex 0.619(20) 0.618(31) 0.621(18) 0.4611(60) 0.4796(96) 0.4551(46) 0.4879(65) 0.4890(55)

0.1400
gr 0.2782(34) 0.2798(35) 0.2777(33) 0.2118(76) 0.2134(69) 0.2203(60) 0.305(11) 0.318(13)

0.2623(17)
ex 0.510(18) 0.514(25) 0.516(16) 0.4186(66) 0.4122(56) 0.4199(53) 0.4014(88) 0.3972(84)

0.1405
gr 0.2419(36) 0.2418(46) 0.2398(36) 0.1768(74) 0.1819(70) 0.1872(58) 0.2856(56) 0.2977(77)

0.2239(38)
ex 0.554(18) 0.563(32) 0.554(15) 0.3985(90) 0.4000(79) 0.4100(62) 0.3638(93) 0.368(10)

0.1410
gr 0.1856(76) 0.173(10) 0.1760(65) 0.1595(78) 0.1520(61) 0.1554(66) 0.2639(78) 0.2651(87)

0.162(12)
ex 0.468(18) 0.427(25) 0.462(14) 0.422(11) 0.4194(99) 0.4108(89) 0.310(10) 0.313(11)

20
0.1350

gr 0.6375(50) 0.6451(46) 0.6419(39) 0.6705(38) 0.6735(18) 0.6746(21) 0.484(37) 0.500(40)
0.64106(34)

ex 0.815(36) 0.802(43) 0.805(76) 0.86(11) 0.936(40) 0.854(32) 0.8011(58) 0.7992(89)

0.1370
gr 0.4978(42) 0.4990(42) 0.5006(35) 0.5442(17) 0.5400(25) 0.5430(18) 0.309(51) 0.356(68)

0.49905(77)
ex 0.783(32) 0.777(21) 0.766(24) 0.737(19) 0.722(24) 0.711(19) 0.671(11) 0.6741(64)

0.1390
gr 0.3344(13) 0.3325(15) 0.3353(14) 0.4004(10) 0.3982(14) 0.3993(10) 0.452(30) 0.466(17)

0.33608(80)
ex 0.6757(92) 0.6686(70) 0.6683(90) 0.6387(73) 0.6030(92) 0.6193(70) 0.535(28) 0.596(49)

24
0.1350

gr 0.6484(25) 0.6488(15) 0.6480(22) 0.6777(15) 0.6759(11) 0.6757(12) 0.564(92) 0.71(13)
0.64141(26)

ex 0.862(25) 0.852(36) 0.866(24) 0.861(29) 0.933(25) 0.873(24) 0.798(20) 0.834(28)

0.1390
gr 0.3437(26) 0.3445(34) 0.3428(25) 0.39849(67) 0.39851(81) 0.39934(58) 0.443(24) 0.477(15)

0.33522(45)
ex 0.601(18) 0.596(24) 0.602(18) 0.6159(68) 0.604(11) 0.6234(68) 0.530(23) 0.583(36)

0.1405
gr 0.1930(30) 0.1942(33) 0.1957(29) 0.2791(15) 0.2804(16) 0.2815(14) 0.3649(51) 0.3553(51)

0.1691(14)
ex 0.525(10) 0.513(12) 0.515(11) 0.5108(78) 0.5078(86) 0.5172(73) 0.623(42) 0.571(40)

0.1410
gr - 0.120(21) 0.117(12) 0.2466(28) 0.2423(28) 0.2451(27) 0.302(11) 0.264(18)

0.0673(57)
ex - 0.501(70) 0.468(58) 0.503(11) 0.491(13) 0.498(11) 0.598(42) 0.559(52)

32 0.1390
gr 0.3363(38) 0.3383(34) 0.3387(31) 0.40116(57) 0.4004(17) 0.40054(42) 0.475(11) 0.4933(93)

0.33484(42)
ex 0.562(24) 0.556(34) 0.592(21) 0.585(23) 0.655(69) 0.616(16) 0.640(32) 0.691(49)

0.1400
gr 0.2380(22) 0.2372(22) 0.2379(17) 0.31966(59) 0.32121(45) 0.31876(50) 0.4019(71) 0.3963(63)

0.23229(39)
ex 0.541(18) 0.549(19) 0.553(12) 0.528(13) 0.640(20) 0.5240(98) 0.571(34) 0.564(26)

TABLE II. Fit results from correlation function fits for the pseudoscalar, vector and scalar channels as well as the fake pion
mass. Only statistical uncertainties are quoted.
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