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Abstract. The volume of data processed by the Large Hadron Collider experiments demands
sophisticated selection rules typically based on machine learning algorithms. One of the
shortcomings of these approaches is their profound sensitivity to the biases in training samples.
In the case of particle identification (PID), this might lead to degradation of the efficiency
for some decays not present in the training dataset due to differences in input kinematic
distributions. In this talk, we propose a method based on the Common Specific Decomposition
that takes into account individual decays and possible misshapes in the training data by
disentangling common and decay specific components of the input feature set. We show that
the proposed approach reduces the rate of efficiency degradation for the PID algorithms for the
decays reconstructed in the LHCb detector.

1. Introduction
Particle identification (PID) plays a crucial part in many high-energy physics analysis. A

higher performance PID algorithm leads to a better background rejection and thus more precise
results. In addition, the algorithm is required to work with high efficiency in the entire available
wide range of signal topologies and kinematics and provide good discrimination for various
analyses. Machine learning (ML) algorithms have gradually become the baseline approach for
this task [1]. One large family of such algorithms is neural networks.

The PID algorithms of the LHCb experiment relies on several sub-detector systems [2].
Compared to other LHC experiments, LHCb has more information for hadron identification,
particularly the separation between charged hadrons, provided by the Ring Imaging Cherenkov
(RICH) subdetector. The muon identification is provided by the muon chambers, while the
responsibility of calorimeters is mainly leptons and photons. The LHCb experiment employs
several machine learning solutions [1] to aggregate the information for the PID. These solutions
proved to have overall high efficiency over a large volume of the phase space. In this paper, we
address one of the outstanding issues that can occur during the application of machine learning
algorithms in the real-life scenario: algorithm’s efficiency degradation in case the testing scenario
is significantly different from training.

The paper is organized as follows. The problem formulation and description of current LHCb
PID algorithms are given in Section 2. Section 3 provides a description of the Common Specific
Decomposition algorithm used for the robust PID models. Finally, the list of training and testing
samples, and the results for the different PID models are presented in Section 4.
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2. Problem statement
The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range

2 < η < 5, described in detail in Ref. [2]. Identification of various final state particles is
performed by combining together the information from the LHCb subdetectors, namely from
ring-imaging Cherenkov detectors (RICH), the electromagnetic and hadronic calorimeters, muon
chambers and tracking system, as demonstrated in Fig. 1. Apart from the physics motivated
likelihood observables based on observable subdetector responses [3], track geometry variables
and different detector flags are also used. In addition, the muon identification [4] and calorimeter
information about neutral clusters [5] are also used.
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Figure 1: Illustration of different particle type responses in the LHCb systems. Figure from [6]

The objective of the PID algorithm is to identify the charged particle type associated with a
given track. In the LHCb experiment, there are five relevant particle species: electron, muon,
pion, kaon, and proton. A sixth hypothesis corresponds to ghost tracks, which do not correspond
to a real particle that passed through the detector.

Figure 2: Distributions of transverse momentum for different decays in the simulated samples
(left) and performance of the PID models on D0 → K−π+ decay for the pion-vs-all task (right).

The classification models for this task are trained on simulated events generated for the LHCb
data taking condition for 2015-2018 data taking period with minimum bias trigger selection.
In this study, we also use dedicated simulated samples of correctly reconstructed decays as a
source of correctly reconstructed particles of a certain type. Particles in these decays might have
distribution different from the training sample as demonstrated in Fig. 2. Such differences may
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cause a quality reduction of the classification models in this regions. The aim of this research
is to make PID algorithms [1] robust to differences in the kinematic distributions between the
events used for training and events the algorithm faces in real use. The research is focused on
neural networks only.

In this work, we compare our PID algorithm with the following three models: ProbNN,
CombDLL, and DLRun2. ProbNN is a neural network with a single hidden layer. CombDLL
is a combination of differential log-likelihoods from the detector’s subsytems. DLRun2 is a deep
neural network with 3 wide hidden layers. Neural-based models are trained on minimum bias
sample. The performance of the neural-based solutions is approximately the same when tested
on the minimum bias sample.

We notice that quality of the algorithms might deteriorate in some regions. The performance
of the classifiers is tested with a sample of D0 → K−π+ signal candidates (Fig 2). As can be
seen from the Figure, DLRun2 algorithm’s quality is lower than its counterparts.

3. CSD algorithm
To address the quality degradation, we use domain adaptation techniques [7]. The idea laying

behind the method is as follows: assume that there exist common features, whose correlation
with the target is preserved in all decays, and decay-specific features, whose correlation differs
from decays to decay (Fig 3). A classifier that relies solely on common features is robust to
domain shifts.

To achieve that, CSD algorithm use a weighted combination of these three terms in
training objective: orthonormality regularizes and two cross-entropy losses between labels and
distributions computed from the common and domain-specific features.

This approach allows to compute low-rank decomposition along with a training networks
parameters in a single layer. Hence, we replace final classification layer of DLRun2 model by
CSD layer [7] as shown in Fig. 3.

Figure 3: The CSD assumption.

4. Data and results
For the experiment we use simulated minimum bias sample and pions from several decay

channels: D0 → K−π+, D∗ → (D0 → K−π+)π−, Λc → p+K−π−, and Λ0
b → p+π−. We train
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CSD model similarly to DLRun2 model on minimum bias sample. Then, we test every model
on simulated run2 sample and each decay channel. For the CSD model an additional round of
training with mixture of minimum bias sample and subset of listed above decays has been done
in order to teach model to generalize in pion domain.

In addition, we design a nearest neighbors test in the following way. For a correctly
reconstructed particle in the decay chain we choose the kinematically closest particle of minimum
bias sample for the different species. We thus mimic the misreconstruction real-life scenario.

Table 1 contains ROC AOC (i.e. Area over ROC curve) increment with respect to DLRun2
(uncertainty does not exceed 0.0008 as obtained by a bootstrap procedure). The result for
nearest neighbors test is shown in Fig. 4.

Model Ghost Electron Muon Pion Kaon Proton

DLRun2 100% 100% 100% 100% 100% 100%
ProbNN +41% +14% +418% +51% 20% +21%

CombDLL – +71% +389% +979% +89% +98%
CSD -11% -42% -47% -0.21% -10% -11%

Table 1: ROC AOCs change for different PID models for paricle-vs-all task. DLRun2 AOC is
taken as 100%.

Figure 4: ROC AUCs for nearest neighbours test, the background sample is constructed of the
best matching candidates as described in the text.

The quality on those 4 decays itself rises significantly, as it demonstrated in Table 2.
In addition to previous tests, we cross-check that the obtained solution has some

generalization power. In order to prove this, we take two decays containing muons: B+ →
K+(J/ψ → µ+µ−) and B+ → µ+µ−(K∗ → K+π0) and compare CSD and DLRun2 quality.
ROC AUC error rate for proposed method almost halved. Note, that models has never seen muon
decays outside a minimum bias sample before. Table 3 illustrates that model can generalize
well over different domains.
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Model D∗ → (D0 → K−π+)π− Λc → p+K−π− Λ0
b → p+π− D0 → K−π+

DLRun2 100% 100% 100% 100%
CSD -38% -71% -50% -15%

Table 2: ROC AOC for the pionic decays unseen by the CSD algorithm during training. DLRun2
AOC is taken as 100%.

Model B+ → K+(J/ψ → µ+µ−) B+ → µ+µ−(K∗ → K+π0)

DLRun2 100% 100%
CSD -97% -98%

Table 3: ROC AOC on muonic decays. DLRun2 AOC is taken as 100%.

5. Conclusion
The degradation of machine learning solutions quality for the PID problem in the specific

parts of the phase space is addressed. The CSD algorithm based on the separation of common
and domain-specific features has shown promising results. The algorithm is able to select
common features even for the decays that are not present in the original domains. The obtained
algorithm shows higher stability with respect to previously presented thus giving substantial
increase of solution’s quality for particular case. The method thus can be used in many high-
energy physics applications.
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