An isochronous optics for EPA

Thys Risselada

1 Introduction

An experiment using very short electron bunches in the EPA ring requires the orbit length to be independent of momentum and betatron amplitudes. The modification of the ring optics should be obtained preferably using the existing machine components, as the machine will return to normal lepton production immediately after the test. Equally, beam envelopes and trajectories in the injection area should change as little as possible.

This note presents the results of the beam optics calculations carried out to prepare the experiment.

2 Modification of α

The derivative of the orbit length w.r.t. $\Delta p/p$ is equal to the ring circumference C multiplied by the momentum compaction factor α . The latter depends on the value of the dispersion function in the bending magnets. If the dispersion is modified using a set of N quadrupoles the change of α is given [1] by

$$C \Delta \alpha = - \sum_{i=1}^{N} \Delta K_i L_i D_i D_i^*$$
(1)

with :

 ΔK_i the normalized gradient increment of quadrupole *i*

 L_i the length of quadrupole number i

 D_i the *unperturbed* dispersion at quadrupole i

 D_i^* the modified dispersion at quadrupole i

Figure 1: Layout of the quadrupole families and the dispersion function with the nominal optics in one half of the EPA ring

For small gradient increments the higher order terms in ΔK may be neglected and a crude estimation of the α change can be made using the dispersion values of the *nominal* machine only:

$$C \Delta \alpha \approx - \sum_{i=1}^{N} \Delta K_i L_i D_i^2$$
 (2)

This shows why the quadrupole families QFN and QDN have little effect, as at these locations D is zero in the nominal optics (see fig. 1). The QFI quadrupoles are not shown in this figure, they are assumed to belong to the QFN family and to have the same strength. The main contribution is made by QFL ($D \approx 2 m$). QTR and QFW may be used to control the tunes, leaving the QFN and QDN families unchanged in order to perturb the injection conditions as little as possible.

The nominal and modified dispersion functions have been calculated with the MAD program (figure 2). The gradient settings for both cases are listed in table 1. A summary of the MAD results is printed in figure 9. The maximum β values (26 and 37 m) are larger than in the nominal machine ($\beta_x \approx \beta_y \approx 15$ m).

In the machine experiment it will be useful to be able to fine tune the value of α by *manual* adjustment of one single family (QFL, see table 2).

Figure 2: Dispersion functions with nominal ($\alpha = 0.03$) and modified ($\alpha = 0$) optics

3 The sensitivity of α to $\Delta p/p$ and betatron amplitudes

By adjusting the chromaticities to values close to zero the variations of α with $\Delta p/p$ could be minimized in the MAD calculation. To this end both chromaticities were first set to zero. Then the orbit length variations across the $\Delta p/p$ range between -.005 and +.005 were minimized by fine tuning the F sextupole current (XNH), yielding $Q'_x = -0.8$ and $Q'_y = +0.7$. The optimum sextupole settings are included (XNH and XNV) in table 1. The maximum length variation in this momentum range could thus be kept below 30 μm (fig. 3).

The residual length variation is of third order in $\Delta p/p$. Simulations show that by adding octupoles in EPA the variation might be further reduced to less than 1 μm .

An additional advantage of cancelling the length variations was discovered when tracking was done for particles with *finite* betatron emittances. Provisional tracking results show that this procedure made the trajectory lengths equally insensitive to the *betatron* amplitudes. Confirmation and explanation of this observation will require further study.

Figure 3: orbit length vs. momentum

4 Evolution of the bunch length

Particles were tracked without r.f. voltage, with initial conditions $\sigma_e = 2.5 \ 10^{-3}$ and $\sigma_t = 7.5 \ ps$. After 1000 turns the bunch length increases to $\sigma_t = 141 \ ps$ (fig. 4) for particles with zero initial betatron amplitude.

The calculation of the exact contribution of the betatron amplitudes, although probably small as mentioned above, requires a more sophisticated description of the EPA bending magnet. The bunch length simulation was done with the combined function bending magnet model currently used for EPA in MAD, which has a *finite* magnetic length and may thus be used to calculate path length differences. On the other hand, this model is not sufficiently symplectic to allow tracking of transverse motion over 1000 turns and a *zero length* bend had to be used for this case. More work is required to build a model which allows simultaneous tracking in both transverse and longitudinal planes.

5 Adjustment of the revolution frequency

A +0.2 mrad kick in both bumpers BSW12 and BSW91 produces an orbit length increase of 1 mm ($\approx 8 ppm$) at the expense of an orbit distortion of only 3.4 mm. This may be useful in future tests where an adjustment of the revolution frequency is required.

Family	Normalized $[m^{-2}]$ o	d Gradient r $[m^{-3}]$		$\begin{array}{c} \text{Current} \\ [A] \end{array}$	
	Nominal	$\alpha = 0$	Nominal	$\alpha = 0$	I ^{max}
QFN QFI QDN QFW QTR QFL XNH XNV	$\begin{array}{c} 0.5659220\\ 0.5335500\\ -0.5689250\\ 1.1104300\\ -0.0521899\\ 1.3803500\\ 8.4380000\\ -6.1390000\\ \end{array}$	$\begin{array}{c} 0.565922\\ 0.533550\\ -0.568925\\ 1.180000\\ 0.280000\\ 1.610630\\ 5.511000\\ -12.866000\end{array}$	$\begin{array}{r} 33.5360\\ 28.7832\\ -33.7140\\ 51.5717\\ -3.0927\\ 74.4651\\ 28.4171\\ -20.6747\end{array}$	33.5360 28.7832 -33.7140 54.8027 16.5926 86.8879 18.5597 -43.3296	55 46 55 95 20 118 91 91
HI.QFD1 HI.QFD2	2.0250000 2.3700000	2.127000 2.381000	94.0471 110.0699	98.7843 110.5808	130 130

Table 1: Quadrupole and sextupole settings with the nominal and with the $\alpha = 0$ optics

6 Injection and envelopes

The optics in the injection area is left *locally* unchanged, as the QFN and QFD settings are not modified. This ensures that the injection bump remains closed.

The optics of the injection line is not sufficiently flexible with the present configuration of the quadrupole families. Therefore a larger betatron mismatch than usual will have to be accepted in the test.

The first-turn beam envelopes at 1 σ are shown in figures 5 and 6. Multi-turn beam envelopes are presented in figures 7 and 8. The first-turn envelopes are globally larger with the modified optics, which may result in a smaller injection efficiency. The multi-turn envelopes with the modified optics are larger only in the long straight sections, but not in the injection kickers and septa.

QFL Current [A]	$\begin{matrix} \alpha \\ [10^{-3}] \end{matrix}$
89.9 88.9 87.9	-12.0 -7.8 -3.8
86.9	0.0
85.9 84.9 83.9	$3.5 \\ 6.8 \\ 10.0$

Table 2: Fine tuning of α using one single quadrupole family

7 Conclusions

The above presented calculations show that EPA can be made isochronous across the momentum range of the incoming bunches. The 0th, 1st, 2d and 3d derivatives of the orbit length w.r.t. $\Delta p/p$ can be cancelled using respectively:

- bumpers BSW12 + 91
- quadrupoles QFL + QTR + QFW,
- sextupole XNH
- an octupole family, if this were available

The results obtained in simulation may be summarized as follows:

- $\alpha = 0$ can be obtained by adjusting 3 existing quadrupole families which do not change the injection conditions
- manual fine tuning of α is possible by adjusting the setting of one single family (QFL)
- tuning the HOR chromaticity (≈ -0.8) using the F sextupole family allows to keep α small in the entire $\Delta p/p$ range -.005 to +.005
- the residual orbit length variations are smaller than $0.030 \ mm$
- the resulting bunch length increase is of the order of 140 ps after 1000 turns

Figure 4: bunch shape at injection (left) and after 1000 turns (right)

Provisional simulation results suggest that with these settings the path length becomes equally independent of the *betatron* amplitudes. Further studies are required to confirm and explain this observation.

References

 T. Risselada, in Proceedings of the Fifth General Accelerator Physics Course, CERN 94-01, 1994, Vol. I, p.313

XENV

XENV

Figure 5: H and V first-turn envelopes at 1 σ with the nominal optics

Figure 6: H and V first-turn envelopes at 1 σ with the modified optics

Figure 7: H and V multi-turn envelopes at 1 σ with the nominal optics

Figure 8: H and V multi-turn envelopes at 1 σ with the modified optics

XENV

EPA wi Linear	th alph lattic	a = 0 e funct	tions.	SSIML		line	: EPA				"MAD" V	ersion: #S/#E	8.22/14	Run:	15/03/9	9 15.9	7.57
Delta(p) /p:	Ō	00000	symmer F		radns	r: 1		1							page	F
ы sod	LEMENT element name	SEQUEN occ. no.	CE dist I [m] I	betax [m]	alfax [1]	H O R I mux [2pi]	Z O N T x (co) [mm]	A L px(co) [.001]	×G [m]	I ×q0 I ×q0 I I I	betay [m]	alfay [1]	V E R ' muy [2pi]	Γ I C A γ(co) [mm]	L DY(co) [.001]	۲ ۲ ۲ ۲ ۲	ру 1]
									1011								
17620	SMH00D		. 208	766.7	026	004	000.	- 0000.	1.489 1.489	000	2.754	- 076	000.	000	000.	000.	000.
26	UMA03U	1	5.439	1.668	.466	.173	.000	.000	. 228	.819	14.298	294	.165	. 000	000.	000.	000
52	UMA05U	Ч	8.906	4.273	.488	.415	.000	.000	2.925	143	3.875	.467	. 234	.000	000.	.000	000.
67	UMAIIU	-	14.748	25.182	1.271	.829	.000	- 000.	2.911	.180	2.000	.085	.438	. 000	.000	.000	000.
103	KFILLU	- 1 ,	17.137	19.700	1.023	.847	000.	- 000.	2.482	.180	4.469	-1.119	.586	.000	.000	.000	000.
201	KFILLD		17.380	19.209	866. 1	.848	000.	- 000.	2.438	.180	5.042	-1.241	.594	.000	. 000	.000	000.
	DZTMSB		18.763	13.417		.861	000.	- 000.	1.963	.636	11.230	-4.004	.625	000.	.000	.000	000.
1 901	USTW2	- 1 F	18.93L	141.21	0.04.5 0.04	208.	000.	- 000.	1.856	. 636	12.613	-4.258	. 627	000.	000.	000.	000.
1 5 2 1	DETENIO	4 -	500.22 500 15	7707		160.1			8/7.	170.	8T0./5		. 649	000.	000.	000.	000.
163	VET3111		21.0 7.5 21.0 7.5	10/1 01	200.1 200.1	102.4			1.004 2004	000.	4.815	LU /	5 T T T T T T T T T T T T T T T T T T T	000.	000.	000.	000.
165 1	KFI31D	•	36.161	19.209	866	1.348	000		204.2		4.4/0 0/0	011.1-0	1.000	000.	000.	000.	000.
174	BSW32U	-	37.544	13.417	3.831	1.361	.000	000.	1.963	636	11.218	800	1 101		000.		
176	BSW32D	• -•	37.712	12.167	3.635	1.363	.000	000.	1.856	636	12.600	-4.251	1.127	000	000	000	
182 1	UMA33U	-	40.273	1.527	.407	1.474	.000	.000	.281	527	36.955	.013	1.145	000.	000.	. 000	000.
191 1	UMA41U	7	48.078	25.167	-1.271	1.742	.000	- 000.	2.910	180	2.007	078	1.355	.000	000.	.000	000.
236 1	UMA45U	-4	53.920	4.267	487	2.156	.000	.000	2.924	.143	3.847	463	1.560	.000	.000	.000	000.
262	UMA47U	-1.	57.387	1.662	- 462	2.398	000.	000.	.233	819	14.262	.289	1.629	.000	.000	.000	000.
2062	UMA490	-1	001 20	055./ ((()	770.	2002.7	000.	- 000.	1.489	000.	2.765	.064	1.784	000.	000.	000.	000.
		-1	26T.10	2777.0	777 777	100.7 1	000.	000.	- 044 0000	578.	195.01	671.	1.947	000.	000.	000.	000.
	SH2.54		012.00	1.000	777 L-	1111			, 022	7 1 2 1 A	720 LT	1.288	2000 L	000.	000.	000.	000.
344 1	JMA55U	•	71.737	4.273	488	2.986	000		100.4 100.4	200.1	000.11 728 r	070.C	1.900	000.	000.	000.	000.
389 1	JMA61U	-1	77.579	25.182	1.271	3.401	. 000	- 000.	2.911	.180	2.008	.081	2.233	000	000	000	
402 1	JMA62U		82.762	6.064	2.467	3.453	.000	- 000.	1.220	. 636	22.628	-5.764	2.430	000.	000.	000.	000.
408	JMA63U	4	85.385	1.522	403	3.668	.000	000.	.278	.527	36.955	012	2.443	000.	.000	.000	000.
417	DI/WS8	-1 -	660.68	18.421	956	3.791	0000.	000.	2.366	.180	6.122	1.441	2.483	. 000	.000	.000	000.
4 H V			107.60	10. 144		77/.0	000.	000.	965.7	081.	. 60.	1.357	2.487	000.	000.	.000	000.
121	KFT71D		800.00	110.0C	10.1-	07/.0 802	. 000	000	и. 4/1 11 1	180	4.605	05T.T	2.500	000.	000.	000.	000.
432 1	JMA73U	-	93.714	7.705	.070	3.846	000		1.669	000	4 817	108	000.3				
454 1	JMA83U		103.105	1.527	.407	4.046	000.	000.	.281	527	37.018	.018	2.939	000	000	000	
463 1	DI6WS8	-1	107.881	18.421	956	4.291	. 000	- 000.	2.366 -	180	6.124	1.444	2.983	000.	000.	000	000
465	BSW91D	-1	108.048	18.744	973	4.292	.000	- 000.	2.396 .	180	5.655	1.360	2.987	.000	. 000	. 000	000.
467	KFI91U	- i •	108.467	19.577	-1.017	4.296	000.	0000.	2.471 -	180	4.605	1.149	3.000	.000	.000	.000	000.
1 UCV	MIGUN	-1	110 010	20.0/8	-1.042	4.298	000.	- 000	2.515.5	180	4.076	1.026	3.009	000.	000	000.	000.
	UT OF CUT	• -	116 752						,	001.1	1.474 770 70	100.1	0.147	000.	000.	000.	000.
1 a 7 5			100 010	107.4	- 0 4 0 -	070 1	000.		477.7	547.	5.859 202	104. 1001	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000.	000.	000.	000.
	1100HW2	• •	125 664	1000.1						6 T O	7007 T	067.	0.44.0	000.	000.	. 000	000.
end	EPA	• ••	125.664	7.992	000.	5.143	000	- 000.	1.489	000	2.738	000	000. 000 000 000	000	000	000.	
TOTAL .	rengtn	11 1	500.C21		Š		H		77875T		20.0		H	9. 58	8022		
alfa alfa		11 1		7185.09	A A	(vem) ve		. 40	077717 07777		VY' Hotor	(,	11	1	8095		
3 + + 0		1)))	10-3049		17 (max) 13 x)	1 11	24	143247		DV (ma.	(max) v)		00.7 6	70000		
					- XO	('S 'B')	11	; -	864613			л.s.)	1 14	200	0000		
					XCO XCO	(max)	u		000000		vco (m	(XE	1	00.	0000		
					xco	(r.m.s.)	н	·	000000		Yco (r	.m.s.)	11	00.	0000		

Figure 9: MAD output for EPA with $\alpha = 0$