Summary Notes of the CLIC/PS Meeting on 16 July 1993

1. Brief status of the CTF laser

S. Schreiber

1.1 The two-pulse mode

Sending two pulses separated by 4 ns to the train pulse generator was tried out successfully during the last run. The way it works is indicated on App. 1 and 2.

1.2 Recent laser performance

Main points : $8 \pm 2ps$ FWHH. 100 10⁻⁶ J with variations -28% and +9%, min/max., spatial energy distribution better. See App. 3, 4 and 5. The pulse width can be increased to 25 ps but this is a major undertaking requiring a couple of days at least (during the coming run we shall stay at the 8ps)

2. High-charge RF gun assemblies

2.1 Limitations due to the self field of the e⁻ bunch next to the cathode R. Bossart

See App. 6 and 7. Note that the latter concerns 144 MHz. To extract high charges: large laser spot on the cathode, high ratio self field / E0 at cathode and solenoid for focusing.

2.2 MAFIA simulations

S. Lütgert

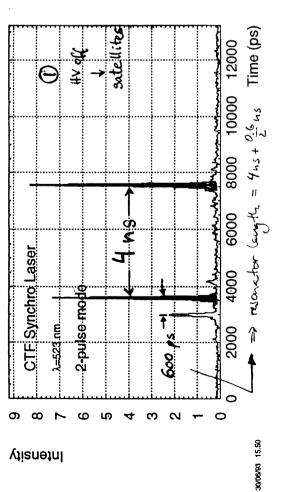
See CLIC Note 205.

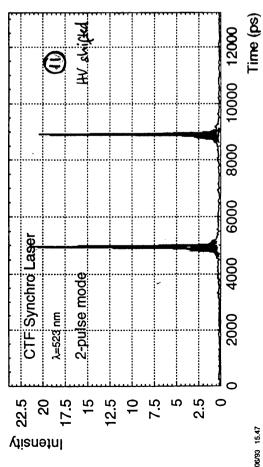
The simulations show that with the present 1 1/2 cell gun, a solenoid and a 4 cells section a bunch charge of 50 nC can be produced if the field gradient in the gun is increased to 120 MV/m and the laser spot radius to 6.0 mm. See table 1 and 2. To get a single bunch with even higher charges a modified 1 1/2 cell gun is proposed.

The iris diameter is increased from 20 to 30 mm. To reinforce the focusing the wall surrounding the cathode is made conical (21°). The cathode surface stays flat; the laser spot radius becomes 20 mm. The bunch out of the 4 cells section has a larger energy spread and there is bunch lengthening. See table 3 and fig. 1..

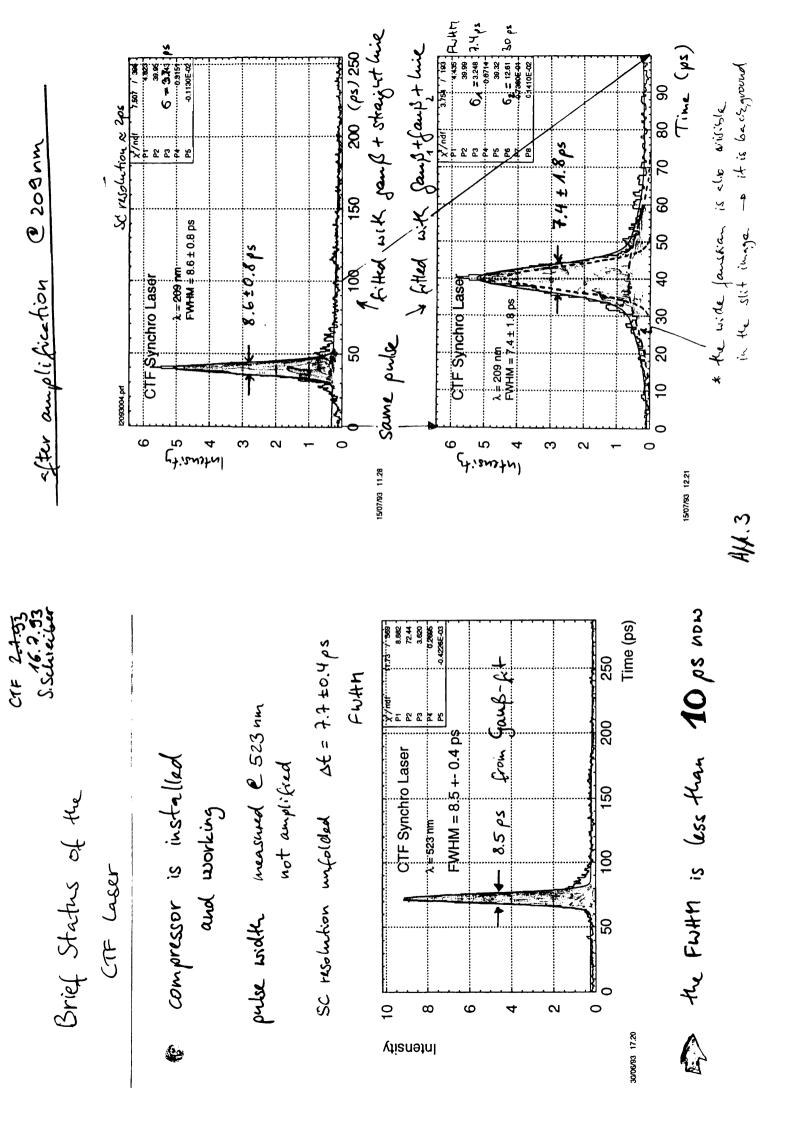
We will look if the laser clearance is still enough for a $20 \text{mm} \emptyset$ laser beam in the present layout.

Two points from the discussion :


-making a high charge RF gun is one of our objectives


- the transmission of a single bunch- high charge through TRS remains to be simulated

both pulses were amplified to about the same energy


as in normal, <u>single pulse</u> mode.

30/06/93 15.47

Looks food, no hot apots seen . How is equile V e log un shape is determind is c'a the spatiel beam profile by the doubling crystals ite Aris Frans verse over the sharts Ĩ c hot nm Intensity p-Hern' PW-4 the explains the poor energy out put + ww rbue SF the 4th harmonic BBO surface mu 602 anew BBO is already available * damage threshold ~ 10 GW / cm2 77 Considerable damage of We have < E> = 3.5 Gw / cm² 5005 harmonic generators 262 nm 560 - d 07 hot spots 1047nm extended burn tern

- 28% + 7° (min / m.x) (min /m.x) - 3% + 7% (min/max) a mersund with a molectrue pulcheter titter represented to be avered with the child is Plats diede + All score Lo to be improved Every - jitter a bit worse ken т Зо Т 1 02 ž 1 1 0K before (due to compassor) -28% + 5% Energy/ jitter (this wet.) 6-1 07 でレイ **L**CO e toot a (in low long ?) ... ય with new " AE 523 nm tot emplified K ~ Love Shets N 11 E hoys ne bde hoyt m E 262 nr. E 209 nn AE 209 m 3 3 3 رتى ٩ Time (s) Time (s) Lasing near the fluoresters lifetime 1200 100 200 300 400 500 600 700 800 900 1000 HY.S Stabilitation 800 (Elex 60-20%) Energy Stabilitation + 600 400 24-May-1993 18:00 h 27-May-1993 18:00 h , after UNA 385 UMA 385 200 afore 0 100 50 100 50 0 200 150 0 400 350 250 150 450 300 450 400 350 300 250 200 (⁻9 ^e0t) 285 AMU 01/07/93 16.28 01/07/93 15.54 (⁻9 ⁸01) 285 AMU

App 6

Self Field of Electron Bunch on Photocathode

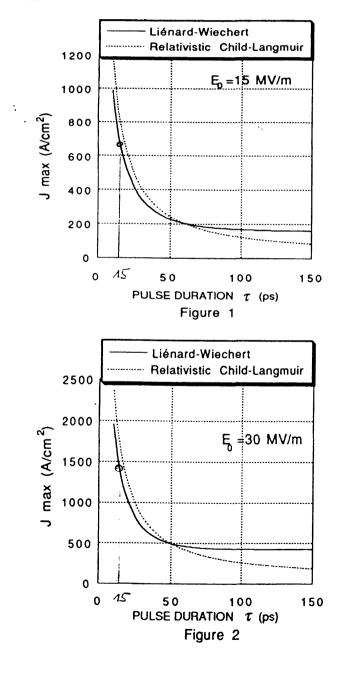
Gauss Law :
$$E_{j} = 5/E_{o}$$

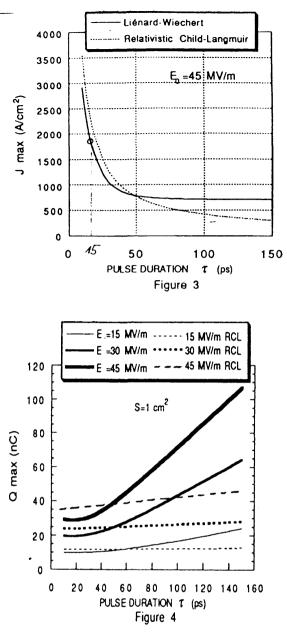
Surface charge density : $\sigma = Q/\pi r^{2}$
Bunch charge : Q
Bunch radius : r

$$\begin{aligned} \Lambda \text{ (Case CTF : } Q &= 14 \text{ mC}, r = 4 \text{ mm}, \sigma = 28 \text{ mC}/\text{cm}^2 \\ f &= 3 \text{ GH}, E_3 = \sigma/\text{E}_0 = 31 \text{ MV}/\text{m}, E_0 = 75 \text{ m} 100 \text{ MV}/\text{m} \\ \text{Natio } E_3/\text{E}_0 = 0.35 \pm 0.05 \text{ demonstrated by CTF} \end{aligned}$$

2. Case MAFIA :
$$Q = SonC$$
, $r = 6mm$, $G = 44nC/cm^2$
 $f = 3 GHz$, $E_2 = 5/E_0 = 50 MV/m$, $E_0 = 85...120 MV/m$
Ratio $E_2/E_0 = 0.60$

3. Case MAFIA:
$$Q = 150 \text{ nC}$$
, $r = 10 \text{ mm}$, $S = 48 \text{ nC}/cm^2$
 $f = 3 \text{ GHz}$, $E_3 = 5/E_0 = 54 \text{ MV}/\text{m}$, $E_0 = 60 \dots 120 \text{ MV}/\text{m}$
Ratio $E_3/E_0 = 0.90$


4. Case
$$1.6H_{3}$$
 Gun
Scaling Laws: $E_{0} = 100.4V/n \int \frac{1.6H_{3}}{3.6H_{3}} = 58 \text{ MV/m}$
 $3.6H_{3} \rightarrow 1.6H_{3}$ $r = 10 \text{ mm x } 3 = 30 \text{ mm}$
 $Q = 14 \text{ nC x} \left(\frac{30 \text{ mm}}{4 \text{ mm}}\right)^{2} \frac{38 \text{ MV/m}}{100 \text{ MV/m}} = 450 \text{ nC}$
 $E_{3}/E_{0} = 0.31$, $G = Q/\text{Tr}^{2} = 16 \text{ nC}/\text{cm}^{2}$
Large bunch radius r must be compressed
by solenoid magnet.


For smallest $\tau_{\star}J_{max}(RCL)$ is slightly greater than $J_{max}(LW)$; for greatest τ , it is smaller. These discrepancies have quite different origins.

For smallest τ , it may be explained by the limited transverse extension of the studied photoemited beam (for $\tau=20$ ps, and $E_0=30$ MV/m, the pulse length is $L(\tau)=1$ mm, while the beam radius, for S=1 cm², is 5.6 mm), which contrasts with the theoretically unlimited extension of the planar diode. $J_{max}(LW)/J_{max}(RCL) \rightarrow 1$ when $\tau \rightarrow 0$ (and $L(\tau)/R \rightarrow 0$).

For the greatest τ , the discrepancy is due to the retardation effects : the last emitted photoelectrons no longer experience the electromagnetic influence of the electrons located in front of the beam pulse. Beyond some pulse duration τ , the maximum current density no longer decreases at all.

At the end, Figure 4 shows the maximum fieldphotoemitted charge Q_{max} , for various E_0 , compared to $J_{max}(\text{RCL}).S.\tau$.

5. REFERENCES

- J.-M. Dolique and J.C. Coacolo, "Relativistic Acceleration and Retardation Effects on Photoemission of Intense Electron Short Pulses", in 1991 IEEE Particle Accelerator Conference Proceedings, San Francisco, USA, May 1991, pp.233-235
- [2] R. Dei-Cas, S. Joly and the FEL group, "Overview of the FEL activities at Bruyères-le-Châtel", in 1990 Int. Conf. on Free Electron Lasers, Paris, France, September 1990

$$\frac{E_{0}[MV/m]}{15} \frac{\sigma[nC/cm^{2}]}{10} \frac{\sigma/E_{0}[MV/m]}{15} \frac{10}{10} \frac{11}{10} \frac{10}{10} \frac{10$$

App.7

Q = 10 nC, ro = 3 mm, 62 = 6.38 ps, En = 100 HV/m, E2 = 70 HV/m,

4 = 30°, 92 = -60°, 30 = 0.30 T.

table 1	booster	900		olurify / sol.	olsi	ک ک	gan	
~ 2. 0	- 5.3 - 5.8	- 4.6	1 %.1	2.4	74.7	30.0	68.5	Divergence / mrad
0.4	0.4	D.4	0.4	õ. S	Q.6	D.6	2.8	4× / %
22.S	19.1	15.6	12.3	3.0	9.1	9.1	4.0	X
74.4	74.2	72.6	61.1	61.3	E.1.3	49.5	38.4	En / mrad-mm
4.9	5.3	6.6	3.7	9.1	8.8	5.8	4.1	Ybmax / mm
3.2	3.8	4.4	5.2	6.1	5.9	3.9	2.9	rb / mm
3.2	3.2	3.2	3.2	3.1	3.1	3.1	3.0	<i>l</i> _b / mm (2 δ _b)
402.6	352.7	302.7	252.9	203.1	A53.5	77.5	26.5	Z / MM

 $Q = 50 \, nC$, $T_0 = 6 \, mm$, $b_t = 6.38 \, ps$, $E_A = A20 \, MV/m$, $E_z = 70 \, MV/m$

0.357.

22.6 - 11.9 302.7 352.6 402.5 エイ み、よ 4.64V 8.89V 2.44V *ж* o O \$ \$ - 10.6 - 11.1 19.4 9.0 7 3.4 5.3 ୶ୖୄ 16.2 م م 3.4 6.3 203.1 252.9 - 9.4 113.6 126.3 13.0 N. 8 N. ы. С 7.0 7.6 92 x -70° B° = ر 3.5 3.4 14.0 6.0 イ、イ 5.7 77.5 153.4 14.2 48.6 192.4 40.7 9.2 1.7 <u>..</u> 42.0 160.8 9.e 5. 0 3.3 10.1 6.3 9 = 20 . 100.9 4.2 4.3 26.4 3.2 4.4 Divergence/mrad 105.1 4.9 En Intadrmm lb / mm (2 56) Ybmax / MM 00 MM mm d d <u>م</u> حرا 5 З

Table 2

booster

olrift / sol

nnb

Q = 150 nC, $V_0 = 10 \text{ mm}$, $\overline{b_4} = 6.38 \text{ ps}$, $E_A = 120 \text{ MV/m}$, $E_2 = 70 \text{ MV/m}$

9_= 10°, 9= -80°, B0 = 0.35T.

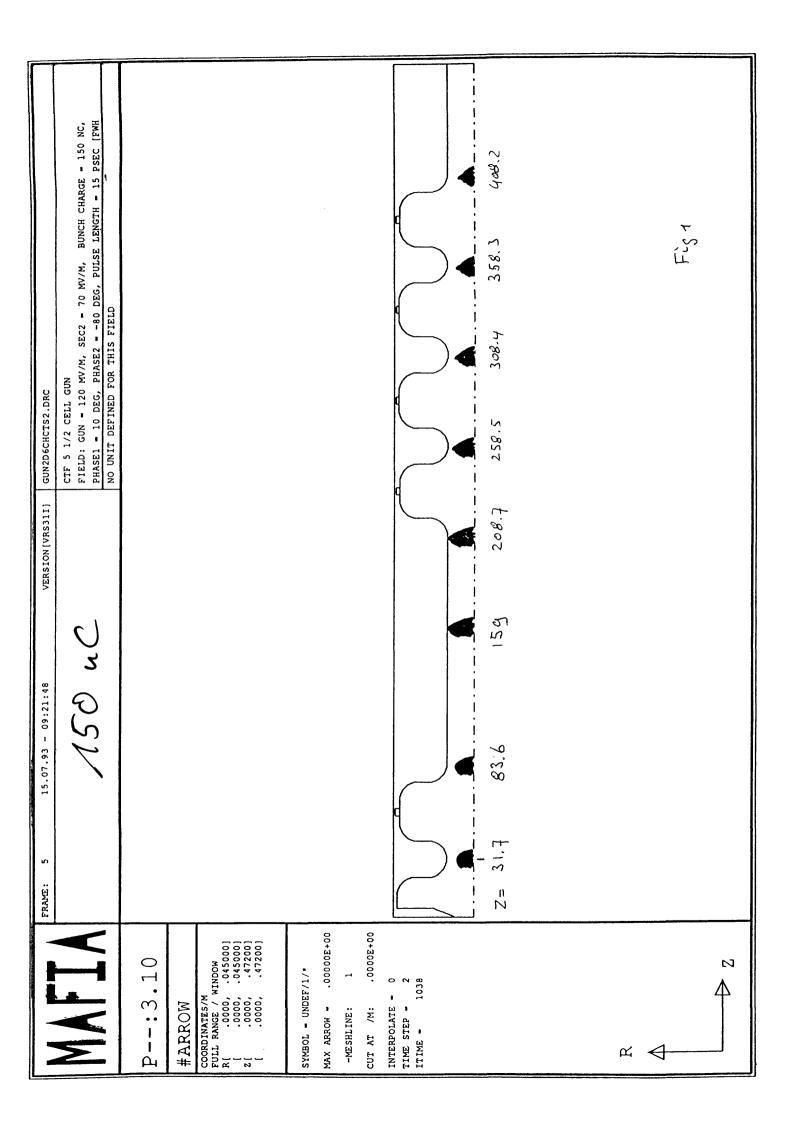

Z / MM	31.7	83.6	159.0	208.7	258.5	308.4	159.0 208.7 258.5 308.4 358.3 408.2	408.2
$l_b/mm(2F_b)$	3.9	4.2	4.4	4.5		4.5 4.6	t.C	4.6 4.6
Vb / mm	6.0	6.3	8.8	P.6	7.2	7.2 6.1	5.1	たみ
Ybmax / mm	8.9	NO.N	NY.A	r.4r	14.1 14.1 12.3 11.0	11.0	۶. <i>۴</i>	8.8
En (mrad.mm	256.8	236.1	288.0	そ.トるや	484.2	567.9	288.0 461.7 484.2 567.9 598.5 613.6	613.6
R	4.8	10.5	10.5	10.5	10.5 10.5 13.3 16.3	16.3	19.3	19.3 22.3
<u>48</u> / %	10.6	6.6	5.7	5.9	5.9 6.6	6.7		6.5 6.4
Divergence / mrad	89.6	41.0	6.8	1 9.1	- 8.2	- ع.۲	6.8 - 9.1 - 8.2 - 9.5 - 10.0 - 10.15	52.02-

Table 3

booster

drift/sol.

2 x z

