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1. Introduction

A radio frequency quadrupole is a linear accelerator which focuses (transversally), bunches and 
accelerates the beam with a RF electric field. The quadrupolar field distribution is achieved via four 
electrodes placed symmetrically around the beam axis. The geometry of the electrode tips determines 
the capacitance between the electrodes and hence the resonant frequency and to some extend also the 
power losses in the structure. In this note we report the study of the variation of the capacitance vs. the 
geometry of the electrodes. We have used the SUPERFISH/POISSON group of codes [1] to solve the 
Poisson equations around the electrodes. In section 2 we give a description of the codes used, in 
section 3 we describe how to use the codes in the RFQ case and in section 4 we report the results of 
our calculations.

2. POISSON codes

The programs we have used to do the first calculations are included in the POISSON/SUPERFISH 
group of codes. These were written at Los Alamos National Laboratory and consist of two set of codes, 
one for the design of magnets (POISSON) and another set for the design of RF-Cavities 
(SUPERFISH). We1II use three programs in the POISSON group: AUTOMESH, LATTICE and 
POISSON. This codes are described in Ref.[l]:

1. AUTOMESH - prepares the input for LATTICE from geometrical data describing the problem, that 
is, it construct the “logical” mesh and generates (x,y) coordinate data for straight lines, arcs of circles 
and segments of hyperbolas.

2. LATTICE - generates an irregular triangular mesh (physical mesh) from input data for the 
“logical” and physical coordinates describing the problem, calculates “point charge” terms at each 
mesh point in regions with distributed charge density, and sets up mesh point relaxation order. 
LA1T1CE writes a binary file that is read by the equation-solving codes POISSON.

3. POISSON - solves Maxwell’s electrostatic equations for the scalar potential with non linear, 
isotropic dielectric and electric charge distribution for two-dimensional Cartesian or three- 
dimensional cylindrical symmetry. It calculates the derivatives of the potential, namely the fields and 
their gradients, calculates the stored energy, and performs harmonic analysis of the potential. The 
code uses an iterative scheme that steps successively through the mesh points. Initially it was 
conceived to solve magnetic fields caused by electric currents and soft iron. In the electrostatic case 
currents are replaced by charges.

3. Description of the problem

We will present the process to estimate the capacitance of the electrodes inside an RFQ. A section of 
the electrodes under study can be seen in Fig. 1



Figure 1 Section of the electrodes. 
Dimensions are in centimeters.

*RFQ WITH NOMINAL GEOMETRY.

&REG NREG=2,DX=0.2,XMIN=-
I0.0,XMAX=10.0,YMIN=O.,YMAX=14.0,NPOINT=4, 
xdri=9.9, ydri=9.9,icylin=0,freq=101.28,
YREG 1=0.878, YREG2=2.95 &

&PO X=0.0 , Y=0.0 &
&PO X=-9.8994949 , Y=9.8994949 &
&PO NT=2, X0=0.0, Y0=0.0, R= 14.0 , THETA=45 &
&PO X=0.0 , Y=0.0 & 

&REG M AT=O,CUR=35000,IBOUND=-I,NPOINT= 10 &
&P0 X= 1.5, Y=3.95&
&POX=1.5, Y=2.95&
&PO X=0.428, Y=1.878&
&PO X=0.428, Y=0.878 &
&PO NT=2, X0=0.0, YO=O.878, R=0.428, THETA=270 &
&PO NT=2, X0=0.0, YO=O.878, R=0.428, THETA= 180 &
&POX=-0.428, Y=1.878&
&POX=-1.5, Y=2.95&
&POX=-1.5, Y=3.95&
&PO X=1.5, Y=3.95&

Figure 2 Input file for AUTOMESH. All 
lengths are in centimeters.

Due to symmetry, only the upper quadrant will be considered. Figure 2 shows the input describing this 
quadrant. The format of this input file is also extensively described in Ref.[l].
As we can observe, the problem is divided in two regions. (NREG=2)
• The first region is bordered by the bold line in Fig. 1. In the file it is represented by four points 

where the initial and final one coincide. We can see also element three is an arc of 45o and a 
radius of 14 cm. centered in the origin. By default the program will assume cylindrical symmetry 
around the x axis. In order to indicate there is no symmetry in this plane the variable icyIin has 
been set to zero. The size of the mesh is determined by DX=0.2, the smaller the size, the higher 
the precision of the calculations and the time the program uses to do them. This size is doubled 
from x =0.878 and y=2.95. The parameters xdri and ydri denote the coordinates of the driving 
point ,i.e., where the program starts to solve the equations from.

• The second region is the electrode and is formulated in a similar way. In this region we have 
specified the relative voltage in Volts by input CURR=35000. The variable MAT which is the 
material code is set to zero. That means all point of the region are to be omitted from the problem. 
(There is no electric field inside a conducting material thus there is no contribution to the 
capacitance).

This file is ready for the POISSON/SUPERFISH codes. In addition, to indicate LATTICE to initialize 
the constants with POISSON default values we must put a non-blank at the beginning of the file, i.e. 
first row and first column. It should be noticed that two regions have to be given in the input file. This 
is physically explained by the fact that to describe an electrostatic problem one need at least two 
different surfaces at different voltages.
Once we have the input file that we’ve called NOMINAL.RFQ we will run AUTOMESH in the 
following way:

C,.∖>> AUTOMESH NOMINAL . RFQ

AUTOMESH gives an output ASCII file called TAPE36. In Figure 3 we see the first lines of this file. 
As well as the special parameters related with each triangle in the mesh, there is a list of constants 
(for instance *2 5 means constant 2 is set to zero). This constants have been set to the defaults for 
POISSON. In case these values were not appropriate, they can be modified when running LATTICE 
or POISSON.



+---------------------------------- TAPE36-------------------------------------+
!*RFQ WITH NOMINAL GEOMETRY. 
¡C:\NOMINAL.RFQ
! 2-27-95 17:27
!POISSON
!*2 5 *109 3090 *19 0 *21 0 1 00 *36 7
!*9 1.0000 *120 2.0000000E-01 1.7560000E-01
!*6 -2 1.000000 *10 0.004000 *46 2 *81 1 *101 0
!*42 1011
! *54 0.000000 0.000000 0.000000 0.000000
*30 100000 *66 1.000000 skip

1 1 0.000000000 0.000000000 0 0 region
51 1 0.0000000 0.0000000
51 2 -0.1254286 0.1254286
50 2 -0.2508571 0.2508571
49 3 -0.3762857 0.3762857
49 4 -0.5017143 0.5017143
48 5 -0.6271429 0.6271429
47 5 -0.7525714 0.7525714

Figure 3 TAPE36. output file of AUTOMESH

After AUTOMESH we can run LATTICE by simply typing LATTICE and keeping the default input 
file name. Now we have to go from a magnetic problem into an electrostatic problem. There is only a 
parameter that must be changed to switch between magnetostatics and electrostatics. One must set 
CON(66)=0.
This can be made by typing

*66 0 s

when LATTICE asks for changes in the CON values. The character ‘s’ is typed to skip the remaining 
CON values. In a similar way, it’s possible to change the boundary conditions if they are not correct. 
They are stored in the CON values 21,22,23,24.
We can see in Fig. 4 the result of the LATTICE run. The surface is divided in triangles by 
AUTOMESH and these are re-sized and reshaped by LATTICE to adapt them to the original 
boundaries of the problem. We can also see that the size of the triangles is reduces toward the tip pole 
of the electrode where calculations have to be more accurate.

.RFQ WITH NOMINAL GEOMETRY. Cycle = 0

Figure 4 Output from LATTICE. The size of the mesh is reduced when approaching the higher fields 
to make more accurate calculations



LATTICE produces two output files called TAPE35 and OUTLAT. The former will be the POISSON 
input file while the latter is used for debugging purposes.
Finally, we can run POISSON. We will simply type POISSON and keep the default filenames and 
CON values. The program looks for a global solution of the Poisson’s equations interpolating from 
the individual solution obtained for each mesh triangle. The equipotential lines can be appreciated in 
Fig. 5 The field and voltage in each meshpoint is written in TAPE35 as well as the stored energy. 
From this stored energy we will calculate the capacitance of the electrodes using the relation:

E= 1/2 CV2
where E is the stored energy, C the electrode capacitance and V is the voltage the electrode is set at.

.RFQ WΠH NOMINAL GEOMETRY. Cycle - 250

Figure 5 Output from POISSON. It shows the equipotential lines. One can see that these satisfy the 
boundary conditions.

Figures 5 and 6 can be obtained by typing VGAPL0T which is a graphic program that uses TAPE35 
as input file
The same procedure is applicable to a general geometry. For clearness we present in the appendix a 
simpler example for a coaxial line.

4. Results

Following the scheme of the previous section, we have calculated the capacitance of the electrodes for 
different geometry. We have computed the energy stored around an electrode when the voltage

V=O

Figure 6 Assumed state for electrostatic 
calculations



In this conditions, the electric field between the electrodes an thus the stored energy' has a maximum. 
-Future-ealculations for dissipated power and Q factor have to be àvëragéd ÔVër a R F cycle.
We have taken the boundary conditions as to make the contour of the problem an equipotential line. 
Also is in this part where we find the major contribution to the capacitance
The stored energy and capacitance are calculated per unit of length (centimeter).
As the capacitance is a geometrical factor, the shape and position of the electrodes influence directly 
its value. We have carried out two test to get a feeling for the influence of these two factors. First, we 
have kept fixed the shape of the electrodes and we have changed the distance between the electrode 
and the beam axis. The closer the electrode to the axis, the more intense the field and so the higher 
the stored energy and capacitance. For the second part, we have tested the use of two different-shape 
electrodes. In Fig. 7 are shown the two other geometry tested which we will refer as ‘reduced vanelets’ 
and ‘roundbar’. A simpler geometry will reduce the electric field outside the gap and thus the

Figure 7 Different electrode shapes. Reduced vanelets and roundbar geometry

The results can be appreciated in Table 1

Displacement 
(mm)

Stored energy 
(J/cm)

Capacitance 
(pF/cm)

Nominal geometry -2 1.50 e-03 2.456
-1.5 1.20 e-03 1.953
-1 1.03 e-03 1.689
-0.5 9.31 e-04 1.519
0 8.57 e-04 1.400
0.5 7.99 e-04 1.305
1 7.54 e-04 1.231
1.5 7.17 e-04 1.170
2 6.85 e-04 1.119

Reduced vanelets 0 8.34 e-04 1.362
Roundbar 0 5.33 e-04 0.871

Table 1 Capacitance of the electrode for different positions and shapes.

The capacitance is larger when the distance between the electrodes is decreased. This would make the 
dissipated power smaller but also modifies the maximum electric field which is directly related with 
the acceleration performance. The use of a roundbar electrode would allow a decrease of the 
dissipated power without affecting drastically the beam dynamics.

5. References

[1] Los Alamos Accelerator code group “Reference Manual for the POISSON/SUPERFISH 
Group of Codes.” LA-UR-87-126 January 1987



APPENDIX: A coaxial line

As a simple case, we have taken a coaxial capacitor whose inner conductor has a radius half the outer 
one. The voltage between the two is 35 KV. The following pictures show the layout of the line and the 
input file written for this example. We remind that it is necessary to divide the problem into two 
closed regions. The first one represents the outer line and is built with two semicircles of radius 10 
cm. The second one is also built with two semicircles with half this radius. The voltage to which the 
inner region is set is specified by setting the variable CURR to 35000 volts.

*COAXIAL LINE
&REG NREG=2,DX=0.4,XMIN=-

10.0,XMAX= 10.0, YMIN=-10.0, YM AX= 10.0,NPOINT=3, 
xdri=28.0, ydri=0.0,icylin=0,freq= 101.28 &
&PGX=10.0,Y=0.0 &
&PO NT=2, X0=0.0, Y0=0.0, R= 10.0 , THETA= 180 &
&PO NT=2, X0=0.0, Y0=0.0, R=10.0 , THETA=O &

&REG MAT=0, CUR=35OOO., IBOUND=-I, NPOINT=3 
&
&PO X=5.0 ,Y=0.0 &
&PO NT=2, X0=0.0, Y0=0.0, R=5.0 , THETA=180 &
&PO NT=2, X0=0.0, Y0=0.0, R=5.0 , THETA=O &

When running LATTICE we have to input the next line when the program ask for CON values: 
.......... *660*21 OOOOs.........
The CON value number 66 is set to zero to specify that it is is a electrostatic problem. The CON 
values 21 to 24 contain the boundary conditions of the bottom, top, left and right limits. Zero refers to 
conductor boundary conditions
The equipotencial lines calculated by POISSON can be seen below. In the output file of POISSON 
named OUTPOI we find the stored energy calculated by the program.

....... Stored energy = 4.9162E-04 Joules/cm.........

•COAXIAL LINE Cycle = 160

From the stored energy we calculate the 
capacitance as:

C = 2 Est0red I

which gives us a capacitance of 80.26 pF. 
When compared with the theoretical value 
obtained by the formula:

C = 2πεOL / log (rɪ ∕r2 )

gives us the same value.


