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Multiturn Injection and Stacking
of Pbions in LEAR

Fabien Motsch!
CERN Geneva, Switzerland

1. Introduction

The need of multiturn injection in LEAR for the LHC program is considered in Refs. [1] and [2]. The LHC [3}1s
planned to start operation in the year 2004-8 and will have two main physics programs : proton collisions and Pb
ion collisions. For the latter, there is a need to have high-density beams which cannot be delivered directly from
the ECR ion source used. In fact, there is a factor of 50 between the intensity outgoing from the Linac and the
intensity needed for LHC even with multiturn injection in the PS Booster. Therefore, it is necessary o accumu-
late the pulses from the linac in LEAR (after the antiproton physics program has stopped) re-baptized LEad
Accumulator Ring, or in a LEAR-like machine. A LEAR-like machine would re-use the elements from LEAR to
make a longer machine or LEAR would be slightly transformed, to move the injection section from SD1 to SD2
(see Figure 7 on page 7).

The information given in this report is quite general with respect to the simulation of injection and accumulation
in LEAR. Changing the machine simply consists in changing the lattice file. The injection scheme considered is
a multiturn injection (classical transverse injection or combined transverse-longitudinal injection) followed by
cooling with an electron cooling device, and stacking before the next pulse.

2. Multiturn Injection

Multiturn injection aims at injecting more particles than it is possible by the usual single turn injection with a
septum and kicker magnet. The simplest is the transverse multiturn injection (“classical” multiturn injection), but
to increase the efficiency one can think of using in the injection section to achieve combined longitudinal and
transverse multiturn injection.

2.1. Classical Multiturn Injection

The classical scheme [4] consists in injecting particles at many consecutive turns in an accelerator. A septum
magnet deflects the particle trajectories coming from the transfer line. The closed orbit of the machine is dis-
placed in the injection region by bumper magnets to prevent particles from touching the inner edge of the septum
after the first tumns or later. If the beam is matched to the injection section Twiss functions, it has a circular shape
and in both x and y normalized phase space planes its trajectory is a circle centred on the closed orbit. In case of
a mismatch, the trajectories remain circles in normalized coordinates but the shape of the beam becomes ellipti-
cal. In general a mismatch in the plane at injection permits a more efficient filling of the machine acceptance.

At the beginning of the injection of the first turn, the closed orbit is displaced by Ax,. During each turn, the bump
decreases by a constant value bump and at the beginning of the second turn the bump equals Ax,. The angle of
rotation of the particles during one turn is given by the tune factor Q . As a consequence, the movement of the
particles in phase space is the combination of the translation of the closed orbit (bump), and the rotation (angle
2rQ ) around the closed orbit with the new position after the first turn Ax; = Ax, - bump. The centre of the par-
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2 Lead Injection in LEAR

ticles distribution remains at a constant distance L, = i-Ax, from the stack (i is the position where the beam is
injected).

Figure 1 Mutlitum injection (end of the first tum)
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The process of translation and rotation is the same for all injected turns. It is assumed that there is no dispersion
in the injection section of the machine or that the beam has a very small constant energy spread if there is disper-
sion. Then the batches always rotate around the same point : the closed orbit, but at different distances according
to the moment when they were injected. L, for the first bunch and L, = i-Ax, = i—Axy+bump = L, + bump
for the second one, etc.

Figure 2 Multitumn injection (end of the second tum)
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2.2. Combined Multiturn and Transverse Injection

Here the dispersion D is non zero in the injection section and advantage is taken of this to increase the number of
injected bunches in the machine.

The principle illustrated in Figure 1 is still valid for the first turn in the case of Combined Injection. The closed
orbit corresponds to the trajectory of particles with a given momentum. If the particles are not injected on the
closed orbit they oscillate around it, following a circular trajectory in transverse phase space x or y. The closed
orbit of a particle with a momentum deviation Ap_is displaced by the dispersion by an amount Ax = DAp_from
the trajectory of the same particle without momentum deviation. In other words, one can consider that for this
particle the closed orbit is translated by Dap, in the x direction. To each energy (or momentum) state corre-
sponds a different closed orbit. The combined injection scheme consists in increasing the momentum of the par-
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ticles injected (coming from the Linac via the transfer line) at each turn by delrap. Then, the displacement of the
closed orbit relative to the n"* bunch has two components : the bump n - bump and the displacement due to dis-
persion DnAp :

Ax_ (n) = n-Axd'.Spemlm- (n - bump) (Eq.1)
and the position of the n"* closed orbit is
x,,(n) = Axy—Ax_ (n) = Axy— (n-DAp - bump) (Eq.2)

So, in the particular case where DAp = bump the n'® batch “sees the same” closed orbit as the first one placed
at Ax, as it arrives from the transfer line. In other words, it will rotate around the same point as the first bunch
arriving before the first turn. It is as if the n' batch was the first. This also means that every injected turn will
rotate around its own closed orbit at the same distance i-Ax,. As a consequence, there will be a higher density of
particles in phase space than in the classical multiturn injection.

Figure 3 Combined injection
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2.3. Injection Parameters

Let’s suppose that one injects a matched beam and Twiss parameter a = 0 at injection, that is to say, there is no
B mismatch so, the injected beam has a circular shape and its trajectory in the normalized phase space of the ma-
chine is a circle. The first condition in order to avoid losses at the septum is that the injected bunch is far enough
from the outer edge of the septum.

i-JBezs+w (Eq.3)

where i is the injection position, B is the horizontal beta function at the injection point, € is the emittance of the
incoming beam, s is the position of the inner edge of the septum and w its width.
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Figure 4 Injection position
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The second condition is on the initial closed orbit bump. It must be compatible with the size of the stack present
in the machine.

Axy+ [Be, < (Eq.4)

A third condition to fulfil is that the beam does not touch the inner edge of the septum after one turn. This can be
expressed as :

Axy—bump+Lcos (2n-Q ) + /Be, S5 (Eq.5)
where
L =i-Ax, (Eq.6)
SO
Axo—bump+ (i=Axg) cos 2r-Q) + Bebs.s (Eq.7)

bump > 0 is the displacement of the closed orbit at each turn and Ax, its initial position, Q, is the horizontal tune
factor.

Figure 5 After one tumn
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So, if one injects the beam at position i given by (Eq.3)

i=s+w+ [Be, (Eq.8)
the inequation (Eq.7) becomes

bump 2 Ax, + Bsb—s+ (i=bumpg) - cos [2n- Q] (Eq.9)
This formula can be generalized for the n;’h batch after the n:h turn.
Axy+ BE,,‘“’ (i —bump) - cos [21t(n'—nb+ H-0]

. Eq.10
bump 2 n,~(ny-1) -cos[2n(n —n, +1)-Q ] o

The injection position i is determined by (Eq.3) and the initial bump is given by (Eq.4). For a given machine and
beam, 0 and «/B—Eb are known as well as the septum position s and width w, and one can choose a bump rate
which satisfies (Eq.10) for a couple of values (n p ) - These values should be chosen in order to have
(n,=n,+1) -0 close to an integer. This corresponds to the n;" batch coming back close to the inner edge of the
septum after n_turns in the machine. The choice of the bump rate gives the number of turns that can be injected
knowing the initial bump Ax, and assuming that the bump returns to zero at the end of injection. The choice of

the number of turns effectively injected and of the bump rate also depend on the acceptance of the machine.

2.4. Injection at an Angle

It is possible to introduce some refinements in the previous formulae such as in the case of an injection with a
non-zero angle. If the injected beam has a certain angle of incidence in the horizontal plane at injection, then the
beam translates along the momentum axis in the phase space in the injection section. This angle corresponds to a
certain horizontal momentum deviation Ap, .

Figure 6 Injection at an angle
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A new term has to be added to the previous equations. The condition after one turn (Eq.4) becomes (assuming
again a, = 0 at the septum) :

Axy—bump + (i - Axj) cos (21 Q) + /Beh +Pap sin (27 Q) ss (Eq.11)

so, the condition on the bump rate bump is now

bump 2 Ax, + B€b-5+ (i=Axg) -cos (2r-Q)) + BAstin (2r-Q)) (Eq.12)

and for the n;h batch after the n:" turn
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Axg+ Pe,-s+ (i-Axg) -cos[2n(n,—n,+1) - Q ] +BAp sin [2x(n,-n,+1) - Q]

bump 2
ump n = (n,~1)-cos[2n(n-n,+1) Q] (Eq.13)

The use of an injection angle allows to sweep a wider area in the momentum direction of the phase space because
the distance between the centre of the injected beam and the stack is

JL2+ (Bap)? (Eq.14)

instead of L, for injection without angle.

3. LEAR Machine Data

3.1. The LEAR Accelerator

The LEAR (Low Energy Antiproton Ring) accelerator was designed and built in the 1980’s in order to provide
low energy antiprotons to a large number of experiments. It supplies antiproton beams in the range 60 MeV/c -
2 GeV/c, with different extraction schemes : very slow extraction, slow extraction and single turn extraction.

The accelerator has a square shape (Figure 7) and in the actual configuration each straight section has a specific
role in the machine.

* SD1 Injection/ejection
* SD2 Jet Set experiment (internal target and detector)
* SD3 Electron cooling

* SD4 Radio Frequency cavities

This layout was valid for the antiproton program and will be modified for transformation in LEad Accumulator
Ring for LHC. For instance, injection and ejection would take place in sections | and 4 respectively.

Figure 7 LEAR

Section 1

Section 4 Section 2
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3.2. Machine Data

Table 1 contains the important machine data for injection : the Twiss parameters in the injection section. They
only depend on the optical set-up of the machine and not on the beam characteristics. They can be adjusted to ful-
fil injection requirements such as tune or dispersion.

Table 1 Twiss parameters at injection

Machine a, Bx D, ay By Dy Q, Qy
LEAR_Michel 0 2.036 37.687 0 6.294 0 2.314 2.62
LEAR1 0 2.034 37.642 0 6.321 0 2.315 2.621
LEAR2 0 1.384 0.014 0 8.038 0 2.46 2.42
LEAR3 0 9.416 0.066 0 6.021 0 1.8 242
LEAR3+ 0 10.0 0.008 0 12.435 0 1.85 2.6
Long_LEAR 0 2.938 108.674 0 4.614 0 1.796 2.754
Long_LEAR? ) 0 2.099 105.291 0 8.217 0 1.60 2.55

4. Remarks on Injection Constraints

There are several constraints to fulfil in order to achieve an efficient injection. The conditions on the injection
position and the initial bump can be seen in sections 2.3 and 2.4, There are also conditions on the accelerator
itself and more precisely on the Twiss parameters in the injection section. Combined injection requires horizontal
dispersion to be non-zero, D # 0. The alpha function is equal to zero because the injection point is a symmetry
point of the lattice. The tune factors have to be chosen carefully for multiturn injection. Apart from the resonance
conditions which have to be avoided, the horizontal tune factor Q, should not be 0o near an integer thus reduc-
ing the bump step at each tumn. An optimum value is about 1/4, this allows to inject 4 turns before the first
injected turn passes near the septum again. Although, only the horizontal multiturn and combined injection has
been studied, the choice of the vertical tune is not completely free. If the working point of the machine is near a
first order resonance of the type Q,-Q = 0 acoupling between horizontal and vertical motion introduces an
exchange of energy between both directions and allows a better repartition of the particles in phase space.

5. Simulation of Multiturn Injection

Multiturn injection is a complex process that depends on a great number of parameters. Simulation is necessary
to predict the effects of coupling (due to skew quadrupoles), the effect of dispersion, the loss of particles and the
effect of electron cooling. The simulation consists of sampling a beam of particles, to specify the injection
parameters such as the injection position. the number of turns and to run a program that tracks the particles along
the machine and removes the lost ones.

5.1. Sampling of the Beam

The beam is considered as a 2-dimension Gaussian elliptical distribution in both x and y transverse planes
(Figure 8). In the longitudinal plane, the bcam is uniformly sampled in a time interval to adjust the bunch length,
and the energy (or momentum) is a Gaussian distribution. In fact all the Gaussian distributions are truncated at
c-o where the usual value is ¢ = 1.64 because the Gaussian distribution in the interval [-1.640;1.640]
represents 90% of the probability and a distribution over [-w.=] has no physical meaning. The emittance is
defined by the surface of the ellipse cut at ¢ - ©.that isto say € = ab in & - mm - mrad units.



8 Lead Injection in LEAR

Figure 8 Sampling
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Distribution can be truncated to get different percentages of the total Gaussian distribution. Assuming that the
total number of particles in the Gaussian distribution is N,

€
“2e,
N = N0|:l-e J (Eq.15)
with
£, = 16 /B (Eq.16)
and
€ = n(oc)>/P (Eq.17)
£
N=Nj1-e? (Eq.18)

So, the choice of parameter ¢ makes it possible to get any percentage of the total Gaussian distribution.

Table 2
c percentage
J6 = 2.49 95%
2 86%
J2 = 141 63%

5.2. The Input File

The bunch.dat file contains the data necessary to specify injection : data on the beam, bump sweeping, number
of turns. Some of the parameters are illustrated in Figure 10.
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n_injct
nb_turn
nbmp

nsup

X
Xp

dx

dxp

phi_x
sigma_x

Y

Yp

dy

dyp

phi_y
sigma_y

dr

deltat

P

deltap
sept_pos
sept_width (m)
deltax
bumprate (m)
injct_pos(m)
deltapini
deltaprate

Trev (m)

number of particles injected per turn
number of turns to be injected
number of turns during the bump continues to decrease without injecting particles

number of turns after injection and bump decrease are completed

Figure 9 Bump definition

bump A

P - — | m
n_injct  nbmp nsup

size of the beam at 1 - 6, along the x-axis in metres

size of the beam at | - o_along the px-axis

displacement of the centre of the distribution along the x-axis
displacement of the centre of the distribution along the px-axis
angle of rotation of the ellipse in the (x,px) plane

value of 6 where the emittance ¢, is defined

size of the beam at 1 - o, along the y-axis in metres

size of the beam at 1 - ¢ _along the py-axis

displacement of the centre of the distribution along the x-axis
displacement of the centre of the distribution along the px-axis
angle of rotation of the ellipse in the (y,py) plane

value of o where the emittance ¢ is defined

length of the beam in metres

fraction of the beam length to be plotted (negative, -1<deltat<0)
momentum (deviation from the reference momentum)
momentum spread

position of the inner edge of the septum in metres

width of the septum in metres

initial value of the bump

bump decrease per turn in metres

position of injection of the centre of the beam distribution in metres
initial momentum deviation from the momentum p

decrease of the momentum per turn

revolution time along the machine in metres (c.time)
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Figure 10 Definitions relative to the sampied beam
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First of all, the program randomly samples a 2-dimension Gaussian distribution over a circle of unit radius that
corresponds to ¢ and cut at radius c. It is then expanded to an ellipse by multiplying the x and y coordinates by
the semi-axis lengths of the ellipse. The centre of the distribution is translated by a vector (dx,dpx) and is
rotated around its centre by an angle phix relative to the x axis. So, the three parameters (dx,dpx) and phix
make it possible to inject the beam at a certain angle dpx and position dx and to tilt it by an angle phix. This can
also be done in the y plane.

5.3. Structure of the Program

Structure of the program is described in Figure 11. The complete listing can be found in Appendix A.2. on page
36 and the details of each routine is in section 8. on page 18. For the moment, the general ideas of the program
will be seen.

The core of the program is MAD {6], which performs the tracking of the particles along the machine. First of all,
the program reads the parameters defining the beam and the injection in the file bunch.dat, then it samples a
batch of particles according to these data. The bump needed for multiturn injection (simple transverse as well as
for combined) is not implemented in MAD, but is artificially applied to the particles. The closed orbit remains the
same during all the simulation, there are no bumper magnets to alter it in the injection area, but the coordinates of
the particles injected are corrected so that the distance between a particle and the closed orbit without bump, is
the same as the distance between the particle and the closed orbit with the bump (see section 8.1.11. on page 21).
Therefore, the particle will undergo the same oscillation as if there was a real bump. After one turn, the results of
the tracking by MAD are exploited to get the number of particles lost at the collimators. This information is avail-
able in the file print . # ## ## which contains the coordinates of the particles lost and where it occurs. Loss at the
septum is calculated in the program by examining the coordinates of the particles at the end of the tracking and
by correcting their coordinates, relative to the closed orbit to get their absolute coordinates relative to the centre
of the machine by tacking the bump into account (see section 8.1.11. on page 21). The coordinates of particles
which are not lost are stored and kept for the next turn. A new batch of particles will be added to them if the
injection is not finished, otherwise they can be tracked for a few more turns to see if there are some losses.
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Figure 11 Structure of the program

Read data in file

bunch.dat —® bunch.dat
Begin of tumn
Sampling of a —® Part.dat
bunch of particles
]
Apply the bumps
to the particles ~<&p- Partdal
1
run MAD 4_’ LEAR.mad
Keep the particles I lear.dat
Part.dat & not lost for new turn Statistics of particles
lost at collimators or | ——®» PartLos. ###
at the septum
1

Store the nb of
particles per bunch
1
Store the position
of the particles — part.n.###

—3» Bunches ###

n>total number
of turns desired

yes

Creation of the
—3» bunch.###
file bunch.### un

END

6. Results of the Simulation

6.1. Output and Postprocessing

The simulation output consists of several files which are first treated by a program called Stat . exe' and then
the data are visualized using paw [5].

The interesting output files from the simulation are listed below (### represents the number allocated to each run
of the program, and $$ represents a number of turns).

*part.S$S.### coordinates of the particles in phase space, after turn $$ for the run number ###.

* bunch.### reproduction of the data contained in the file bunch.dat for the run number ###, in addi-
tion with the value of the Twiss functions o, and B, at injection, the number of collimators, the list of the ele-
ments placed after the collimators.

1. stat.f is written in XL fortran for AIX.
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* Bunches . ### number of particles per bunch after each turn.

* PartLos. ### for each turn, list of particles lost at the septum, total number of particles lost at the septum
and at the collimators along the machine.

The program Stat .exe! (see Appendix A.3. on page 47 for the complete listing) processes the data from
Bunches.### to give the fractions of particles effectively injected relative to the total number of particles
injected at each turn (the number of particles per bunch times the number of turns). This fraction is calculated for
each bunch and stored in the file bnchstt.plt.The sum of all fractions gives the total efficiency of injec-
tion.The file partlos.plt contains the number of particles lost relative to the total “injected” particles. The file
collost.plt gives the fraction of particles lost per turn at each location of a collimator.

The program Stat.exe processes the data from Bunches. ### to give the number of particles effectively
injected. This number is calculated for each bunch and stored in the file bnchstt.plt for plotting with paw. The
sum of all numbers gives the total number of particles injected.The file partios.plt contains the number of
particles lost relative to the total “injected” particles (the number of particles per bunch times the number of
turns). The file collost.plt gives the fraction of particles lost per turn at each location of a collimator. The filc
Nbinjct . ### contains the total number of particles injected at each turn. This file can then be used 10 compare
different configurations of injection when plotting a curve for each of them as with Exce: for inslance.

6.2. Plots

Plots are made with the visualisation program PAW [5]. There are three different kumac scripts to plot different
types of data resulting from the simulation.

*plot.kumac plots the coordinates of the particles in the horizontal transverse phase space for each turn
(data from the files part.$3.###)

e distr.kumac plots the particle distribution in the transverse x and y phase planes for each turn (data from
the files part.$3$.###)

*collim.kumac plots the number of particles injected at each turn, the particle loss, and their repartition
along the machine (data from the files bnchstt .plt, partlos.plt and collost.plt)

6.2.1. Plot.kumac

The paw script plot. kumac? plots the coordinates of the particles in the transverse phase space (Figure 12). Six
turns are represented on the same page and in the same eps file. The cross symbolizes the closed orbit and ena-
bles to see the bump, the two lines on the left side indicate the position of the septum edges.

1. See A.4. on page 63 for the complete listing
2. See A .4.2. on page 65
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Figure 12transv.$. ###.epsfile
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6.2.2. Collim.kumac

The collim.kumac file! handles data concerning the losses of particles either at the septum or at collimators.
The effcy##4. eps plot (Figure 13) represents the number of particles injected at each turn”. The different parts
of each histogram bar correspond to a different bunch. The first injected bunch is the darkest. This allows to sce
the repartition of losses amongst the bunches.

Figure 13 effcy### . eps file
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There are two possible ways to lose particles : at the septum (hitting the outer edge at injection or the inner edge
after one or several turns) or at collimators along the machine. Collimators are placed where there are aperture
limitations, i.e. quadrupoles. It is therefore interesting to see where the losses occur at each turn. On the plot
plost###.eps (Figure 14) the number of paniclesz' lost at the septum is represented by the darkest bar. In the

1. See Appendix A.4.1. on page 63
2. The number of particles injected or lost is normalized to the total number of particles which could be
injected, i.e. the number of turns done in the run times the number of particles injected per turn.
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case of Figure 14, particles are lost at the septum only during the first turn, there are no losses during turns 2, 3
and 4, then particles are lost at collimators.

Figure 14 plost ### . eps file
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Loss

Percent

Turn

Plot colim### .eps (Figure 14) gives the position where particles are lost along the machine. The different col-
ours used for each bar correspond to different bunches and the position given is the name of the element follow-
ing the collimator in the beam line.

Figure 15 colim### . eps file
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6.2.3. Distr.kumac

For each turn, the script Distr .kumac plots the histograms of the x and px transverse distributions ol particles
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Figure 16 distr.$. ### .eps file
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7. How to use the Program

How to set-up the program for personal use will be shown, as some features depend on user ID, then how to com-
pile it. Before a run, the input files have to be prepared with the correct parameters for the injected beam and
machine. The run can then be made in batch mode, which is preferred for a few tens of turns, otherwise the pro-
gram would crash. Eventually, how to deal with the program’s output to produce graphics will be described.

7.1. Setting-up the Program
Some features in the program depend on the user and have to be set before compiling and running it.

The program Multinj runs MAD [6] as many times as the number of tums requested. MAD is run in batch mode by
using the command s=SYSTEMF ( ‘madbatch -q medium -p8.16 LEAR.mad’). The program has to wait
until the end of this batch to go on and process the output of MAD. For this purpose one uses the 11q command
which gives the list of batch processes on Parc! [8). This is implemented in Finished (page 20) in the form of
a pipped command s=SYSTEMF (‘llgigrep -c motsch > end.dat’) which counts the number of occur-
rence of the user’s name (here motsch) in the list of batches and redirects it in the file end.dat. Therefore each
user running the program on his personal PaRC account must place here his username.

This has a drawback : it is impossible to run several programs in batch. It is only possible to run Multinj in
batch, then the program knows it is run in batch and takes it into account when reading the contents of the file
end.dat.

The program was initially used for the LEAR machine so the lattice file and the MaD file names are lear.dat
and LEAR .mad respectively. If one wishes to give different names to these files they also have to be changed. The
name of the MAD file occurs only once in the program when running the batch command s=SYSTEMF ( *‘mad-
batch -q medium -p8.16 LEAR.mad’) and the name of the lattice file occurs once in the MAD input file
LEAR.MAD (CALL, FILENAME='lear.dat’).

To summarize :
* change usemame in the subroutine Finished (compulsory)

* change the names of the lattice file (in the MAD input file) and of the MAD input file (not compulsory)

7.2. Compiling the Program

The program is written in fortran902 and has to be compiled with the command :

1. PaRC has migrated to CERNSP in 1996.
2. XL Fortranfor AIx [12]
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x1lf -q extname -L /cern/pro/lib -1 kernlib -1 mathlib file_name

This compiles and links the program to the specified libraries and the default name given to the executable is
a.out. This command can be defined as an alias [8). For instance, to create the alias £90 corresponding to
this command just type

alias f90 xlf -q extname -L /cern/pro/lib -1 kernlib -1 mathlib
Typing £90 multinj. f will do the same thing.

7.3. Setting-up the Input Files

7.3.1. Machine Lattice

The machine lattice is defined in the file lear.dat!. Itisa plain MAD lattice file, so all the details conceming the
syntax,... is in [6).

7.3.2. Injection Data

The injection’s parameters and description of the bunch, the bump,...etc. are specified in the file bunch.dat.
The detailed parameters are listed in section 5.2. on page 9.

7.4. Running the Program

There are two ways to run the program : the “normal” and the batch mode. It will be assumed that the program
name is mutlinj.exe.

7.4.1. Normal Run

The simplest way to run the program is to type mutlinj.exe ormultinj.exe andto run it in background. It
is often useful to redirect the output of the program to a file to avoid getting all the messages on the screen
(multinj.exe > output &).

7.4.2. Batch Run

This is a preferable way to run the program and almost compulsory when running it for large numbers of parti-
cles per bunch or large number of wms. In this case the run-time may overcome the limits allowed and the pro-
gram would crash. The simplest way is to use the menu driven batch utility x1oad1 [8). In the menu File select
Build a Job and fill in the pop-up window (Figure 17 on page 17). Write the name of the executable in the
frame Executable and press the button Submit. It is then possible to exit xloadl and to see the status of the
run by using the 11q command or by listing the files created.

1. See “Setting-up the Program” on page 15 if you wish to change its name.
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Figure 17 xload! window for submitting a batch
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7.5. Postprocessing the Output

The postprocessing of the output of Multinj is made by the fortran program Stat.exe (see section 6.1. on
page 11). This program asks for the number of the run which has to be processed and creates the files needed for
plotting.
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7.6. Plotting the Results

The simulation results can be visualized by using PAw. The cifferent PAW scripts and their purpose is described in
section 6.2. on page 12. To run PAW, just type paw. The program asks the workstation type which is 7879 for an
xterm. Then paw opens a tektronix (Tek) window used for the drawings whilst the previous window is used
to enter commands after the prompt PAW >.

The command to run a PAW script, let’s call it script . kumac, is simply exec script.

8. Program Multinj

This paragraph describes all the subroutines and functions composing the program. For each of them, there is
first a list of variables used as arguments and their meaning. A short description of the purpose of the procedure
(subroutine or function) is then given and the mammer in which it is achieved.

8.1. SUBROUTINES

Each subroutine is described in the following paragraphs. First the input or output variables are listed, then a
short description of the subroutine is given. The page number refers to the listing of the program in Appendix
A.2. on page 36.

8.1.1. Oneturn (page 39)

RunNb identification number of the MAD run

nom common suffix given to the files generated by the program
tour number of the turn being performed

initlos number of particles lost at the septum before the beginning of the turn
septpos position of the inner edge of the septum

septwidth width of the septum

ninjct number of particles injected per turn

bunch table containing the number of particles per bunch
bunchLoss table containing the number of particles lost in each bunch
totloss total loss of particles during turn tour

betax horizontal B function in the injection section

alphax horizontal o function in the injection section

This subroutine analyses the results from MAD. It uses the subroutines Partlostdat (see section 8.1.2. on page
18) and Finalpos (see section 8.1.3. on page 18) to get the statistics of particles lost at the collimators or at the
septum respectively.

8.1.2. Partlostdat (page 41)

RunNb (see 8.1.1. on page 18)

nlost number of particles lost at collimators

PartLost table containing the list of lost particles

Sbunch cumulated number of particles per bunch

bunchLoss table containing the number of particles lost in each bunch

This subroutine reads the data in the print . RunNb file generated by MAD to find the particles lost at collimators
along the machine. It identifies the bunch to which the particle belongs and counts the number of particles lost in
each bunch as well as the total loss during the turn. The number of particles lost at each collimator is written in
the file PartLos.###.

8.1.3. Finalpos (page 42)
string string containing a line from the file print . # ##
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SeptLoss number of particles lost at the inner edge of the septum
PartLost (see 8.1.2. on page 18)
Sbunch (see 8.1.2. on page 18)

bunchLoss (see 8.1.2. on page 18)

septpos (see 8.1.1. on page 18)

septwidth (see 8.1.1. on page 18)

stackposref closed orbit position at the beginning of the turn
bumprate value of the bump decrease per turn

This subroutine reads the coordinates of the particles remaining after the turn in the print. RunNb file. It calculates
the stack position stackpos depending on the moment when the particle crosses the injection section to calcu-
late the real position of the particles relative to the closed orbit without bump : X+stackpos. This value is com-
pared with the position of the inner edge of the septum septpos to show whether or not the particle is iost. The
table PartLost stores the number of each particle lost. The number of particles lost in each bunch is in
bunchLoss and the total number of particles lost at the septum is Sept Loss.

8.1.4. Startfile (page 43)

PartLost (see 8.1.2. on page 18)

ntot total number of particles remaining after the turn
totLoss (see 8.1.1. on page 18)

CoLoss Number of particles lost at collimators

RunNb (see 8.1.1. on page 18)

This subroutine creates the part .dat file for the new turn. The coordinates of the particles are read from the
files coord. ### created by MAD[6]. There are ntot-CoLoss particles in the file, which correspond to the par-
ticles which have not been automatically removed by MAD because they were lost at a collimator. The particles
lost at the septum are still there because they are not processed by MAD but by the current program. The particle
number is checked in the list of lost particles Part Lost, if it is not lost at the septum the six coordinates X, PX,
Y, PY, T, DELTAP are written in the part .dat file.

8.1.5. Newbunchfile (page 44)

turn number of the current turn
bunch number of particles per bunch
bunchLoss (see 8.1.2. on page 18)

Stores the number of particles per bunch! after the turn in the file Bunches.###.
8.1.6. Paquet (page 45)

n number of particles to be sampled

seed value of the seed parameter for random sampling

This subroutine samples the bunches of particles using the subroutines Gauss1 for the momentum distribution,
Gauss?2 for the 2-dimension Gaussian distribution in the transverse planes x and y and the subroutine Uniform
for the longitudinal distribution of the particles. If it is the first turn, the coordinates are stored in the file part . -
dat, and if it is not, they are added to the file Part .dat after the coordinates of the remaining particles after the
previous turn.

8.1.7. Gauss2 (page 46)
n (see 8.1.6. on page 19)

a horizontal dimension of the emittance ellipse

1. Bunch(i)=bunch(i)-bunchLoss(i)
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b vertical dimension of the emittance ellipse

da harizontal translation of the centre of the ellipse

db vertical translation of the centre of the ellipse

alpha angle of rotation of the ellipse relative to the horizontal axis

cut value of the standard deviation where the distribution is cut

Vect 2-dimension table containing the coordinates of the sampled particles in phase space
seed (see 8.1.6. on page 19)

This subroutine samples a 2-dimension Gaussian distribution according to the definitions used in section 5. on
page 8. The coordinates are stored in the table vect and transferred back to the calling routine. The algorithm
used is based on the Gaussian distribution on a circle (Appendix A.l. on page 35), which can be inverted.

8.1.8. Gauss1 (page 46)

DELTAP table containing the sampled values

n (see 8.1.6. on page 19)

Mean mean value of the Gaussian distribution
Sigma standard deviation of the distribution

This subroutine generates a Gaussian distribution used for the distribution of the momentum of the particles.
8.1.9. Finished (page 47)

nbfile identification of the MAD run

BATCH logical value, true if the program is run in batch mode

This subroutine detects the end of the MAD run. It redirects the output of the command 11q | grep -c motsch
in the file fini.dat. This command counts the number of occurrences of the user ID in the list of batch jobs.
This has to be changed for each different user, see section 7.1. on page 15. Then according to the number read in
the file and if the program is run in batch mode, the MAD run is either finished or not.

Table 3
batch yes no
Number in fini.dat 1 0
MAD finished yes yes

8.1.10. BeginTurn (page 48)

initloes (see 8.1.1. on page 18)
septpos (see 8.1.1. on page 18)
septwidth (see 8.1.1. on page 18)
turn (see 8.1.5. on page 19)
deltax initial bump of the closed orbit
bumprate (see 8.1.3. on page 18)
notlost number of particles remaining

This subroutine checks if any particles from the file Part .dat hits the outer edge of the septum before the start
of MAD. The position of the particles from the file Part.dat are relative to the closed orbit and take into account
the bump, the coordinates used for the calculation are translated by the value of the bump at the moment when
the particle crosses the injection section to get the real coordinates of the particles relative to the centre of the

machine.

X + stackT (Eq.19)
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where

T b 1
stackT = stackpos - -—;M (Eq.20)

rev

and stackT is the position of the stack at a given time T (when the particle crosses the injection section) calcu-
lated on the basis of the stack position at the beginning of the turn srackpos.

These coordinates are compared with the position of the outer edge of the septum septpos + seprwidth.

8.1.11. MakeBump (page 49)
turn (see 8.1.5. on page 19)

notlost (see 8.1.10. on page 20)
This subroutine simulates the closed orbit bump. Given the injection position injctpos and the value of the bump
ata given time T the coordinates of the particles relative to the closed orbit bump are

X + injctpos — bump (Eq.21)

where bump is the bump at time T (expressed in metres in MAD)

T-b
bump = bumpref———g_w (Eq.22)
and bumpref is the bump at the beginning of the turn
bumpref = Ax— (turn—1) - bumprate (Eq.23)

Figure 18 Simulation of the closed orbit bump
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Figure 19 Collimators and bump
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8.1.12. ReadData (page 50)

n (see 8.1.6. on page 19)
nbturn number of turns to inject

ns number of turns after injection
Trev revolution period in metres

This subroutine reads all the parameters specifying the bunch and the injection in the file bunch.dat.

8.1.13. InitBunch (page 51)
bunch (see 8.1.5. on page 19)

bunchLoss (see 8.1.2. on page 18)

This subroutine initializes tables bunch and bunchLoss containing the number of particles per bunch and the
number of particles lost per bunch.

8.1.14. MakeSbunch (page 51)

turn (see 8.1.5. on page 19)
bunch (see 8.1.5. on page 19)
Sbunch (see 8.1.2. on page 18)

This subroutine creates the table Sbunch, where Sbunch (1) is the sum of the number of particles in the bunches
j<i. This is used to identify the bunch to which a particle belongs.

8.1.15. InitPartlost (page 51)

Partlost (see 8.1.2. on page 18)

bunchlLoss (see 8.1.2. on page 18)

This subroutine initializes the tables Partlost and bunchLoss.
8.1.16. StorePart (page 52)

tour number of the turn to add to the file name

name string containing the number of the run to add to the file name
deltax (see 8.1.10. on page 20)

bumprate (see 8.1.3. on page 18)

bet ax (see 8.1.1. on page 18)

alphax (see 8.1.1. on page 18)

deltat gives the fraction of particles relative to the length of the machine to be kept in the file
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This subroutine stores the particle coordinates from the file part.dat in a file. The coordinates of the particles
relative to the closed orbit used for the calculation are converted in absolute coordinates relative to the centre of
the machine by adding the value of the bump at the time the particle crosses the injection section. The coordi-
nates can also be normalized.

8.1.17. Uniform (page 53)

n number of particles to sample

T table containing the uniformly sampled variables
ar upper edge of the sampled interval

seed (see 8.1.6. on page 19)

This subroutine uses the function RANF from the library to generate n uniform values in the interval (G, dT;
stored in Table T. The value of the seed parameter is stored outside this routine to avoid regenerating the same
distribution at each run.

8.1.18. Store (page 54)
name name to be given to the file where the coordinates are stored.

This subroutine stores the content of the file Part.dat in a file called name, that is to say, the coordinates of the
particles relative to the closed orbit.

8.1.19. Store2 (page 54)

tour (see 8.1.16. on page 22)
deltax (see 8.1.10. on page 20)
bumprate (see 8.1.3. on page 18)

This subroutine stores the absolute coordinates of the particles relative to the centre of the machine in a file
called part2.plot.

8.1.20. EnergyRamp (page 55)
turn (see 8.1.5. on page 19)

not lost (see 8.1.10. on page 20)
This subroutine creates the bump in momentum required for combined injection. The momentum deviation is
T Apralc
dAp = Ap”/+T—- (Eq.24)

rev

8.1.21. Collimator (page 56)

Colim_name table containing the name of the collimators used in the lattice
nbcolim number of collimator types in the whole lattice

This subroutine finds in the file lear .dat defining the machine the names and the number of collimators placed
in the lattice. The names of the nbcol im collimators are stored in Colim_name.

8.1.22. RemoveSpace (page 56)
name string from which a substring delimited by spaces has to be isolated
name_length length of the string

This subroutine extracts the name of the collimator from st ring. The name is placed at the beginning and is sur-
rounded by spaces that are removed.

8.1.23. ColimDat (page 57)
Colim_pos table containing the position of the collimators along the lattice

colimNum number of collimators in the lattice

RunNb (see 8.1.1. on page 18)
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Colimlist list of the collimators along the lattice
long length of the list containing the collimator list

This subroutine reads the file print . ### to find the position and the succession of the collimators along the
machine. It uses the names of the collimators given by the subroutine Collimator.

8.1.24. ReplaceZero (page 58)
string string in which the character 0 has to be replaced by a space

This subroutine replaces the 0 characters in st ring with spaces. This enables the comparison of the number rep-
resented in string to be compared with another number.

8.2. FUNCTIONS
8.2.1. CHARACTER"5 FUNCTION NumberToAscii (page 47)
n integer to be converted into the corresponding string

This function converts the number n in the form of a 5 character string. If the number to convert has less than 5
digits the empty spaces are filled with 0.

8.2.2. INTEGER FUNCTION WhichCollim (page 58)

pos position of the collimator
Colim_pos table of collimator positions
nbcolim number of collimators in the list

This function identifies the collimator corresponding to a given position pos and the list of collimator positions
in Table Colim_pos. Then it will allow to count the number of particles lost at a given position where a collima-

tor is placed.

9. Muititurn Injection Simulation

Presented here, are the results of the simulations in two cases which might be tested. Two different lattices were
used and the beam parameters have been optimized to maximize the efficiency.

9.1. Lattices used

The Twiss functions in the injection section of the machines used are listed in Table 1 on page 7. Both LEAR3
and LEAR3+ lattices are not fully symmetric : the pattern is 4(A B). Collimators are placed to simulate aperture
limitations. Their location corresponds to places where the beta function is low and the particles may be lost :
centre of quadrupoles (which are split in two), entrance of the dipoles. A solenoid can be switched ON to take
into account the solenoidal field in the electron cooler in section 3. The following are the lattice files defining the
machines LEAR3 and LEAR3+ in MAD format.
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9.1.1. Machine LEAR3

TITLE, S="Machine 3 for MD Pb -> LEAR”

ED1 =-0.0120348
ED2 = 0.0157712
ED3 = 0.0962689

INJ : MARKER
EC : MARKER

DBI : DRIFT, L=0.07299
DBA : DRIFT, L=0.01575
DS : DRIFT, L=1.059107
DL : DRIFT, L=3.72925
DSOL: DRIFT, L=2.97925

Cl : RCOLLIMATOR,L=0.0,XSIZE=0.05,YSIZE=0.027
C2 : RCOLLIMATOR,L=0.0,XSIZE=0.05,YSIZE=0.06

BI1 : SBEND, L=2.13554, ANGLE=0.544434, E1=ED3

BAl : SBEND, L=1.11684, ANGLE=0.240964, El=ED2, E2=ED1
BA2 : SBEND, L=1.11684, ANGLE=0.240964, E1=ED1, E2=ED2
BI2 : SBEND, L=2.13554, ANGLE=0.544434, E2=ED3

BB : LINE ( DBI, C1, BI1, Cl1l, DBA, Cl1l, BAl, C1 )

BE : LINE = ( Cl, BA2, Cl, DBA, Cl1, BRI2, Cl, DBI )

SOL : SOLENOID, L=1.5, KS=0.0

QFl1l : QUADRUPOLE ,
QD11 : QUADRUPOLE ,
QF22 : QUADRUPOLE ,
QD22 : QUADRUPOLE

.2529, Kl= 0.9742

.25575, K1=-1.3327
.2529, Kl= QF11[K1)
.25575, K1=-1.1250

[l S o o
"
o o oo

QFl : LINE = ( QF1ll, C2 , QFll)
QD1 : LINE = ( QD11l, C2 , QD11l)
QF2 : LINE = ( QF22, C2 , QF22)
QD2 : LINE = ( QD22, C2 , QD22)

SF: SEXTUPOLE, L=0.33535
SD: SEXTUPOLE, L=0.33535

PER1l: LINE
PER12: LINE

( BB, DS, QD1, SF, QF1l, SD, DL )
( DL, SD, QFl, SF, QDl, DS, BE )

PER21: LINE =
PER22: LINE

!

BB, DS, QDz, SF, QF2, SD, DL )
DL, SD, QF2, SF, QD2, DS, BE )

PER31: LINE = ( BB, DS, QDl, SF, QFl, SD, DSOL )
PER32: LINE = ( DSOL, SD, QFl, SF, QD1, DS, BE )
PER41: LINE = ( BB, DS, QD2, SF, QF2, SD, DL )
PER42: LINE = ( DL, SD, QF2, SF, QD2, DS, BE )

LEAR : LINE = ( PER12, PER21, PER22, PER31, SOL, PER32, PER41, PER42,

PER11)
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9.1.2. Machine LEAR3+

-

TITLE, S="Machine 3 for MD Pb -> LEAR”

ED1 =-0.0120348

ED2 = 0.0157712

ED3 = 0.0962689

INJ : MARKER

EC : MARKER

DBI DRIFT, L=0.07299

DBA DRIFT, L=0.01575

DS DRIFT, L=1.058107
DL : DRIFT, L=3.72925

DSOL : DRIFT, L=2.97925
Cl RCOLLIMATOR, L=0.0,
C2 : RCOLLIMATOR,L=0.0,
BI1l SBEND, L=2.13554,
BAl SBEND, L=1.11684,
BA2 SBEND, L=1.11684,
BI2 SBEND, L=2.13554,
BR LINE = ( DBI, C1,
BE LINE = ( Cl, BA2,
SOL SOLENOID, L=1.5,

QF11 QUADRUPOLE ,L=0

QD11 QUADRUPOLE ,L=0.
QF22 QUADRUPOLE ,L=0

QD22 QUADRUPOLE ,L=0

QF1 LINE = ( QF1l1l, C2
QD1 LINE = ( QOD11, C2
QF2 LINE = ( QF22, C2
QD2 LINE = ( QD22, C2
SF: SEXTUPOLE, L=0.3353
SD: SEXTUPOLE, L=0.3353
PER11: LINE = ( BB, DS,
PER12: LINE = ( DL, SD,
PER21: LINE = ( BB, DS,
PER22: LINE = ( DL, SD,
PER31: LINE = ( BB, DS,
PER32: LINE = ( DSOL, S
PER41: LINE = ( BB, DS,
PER42: LINE = ( DL, SD,
LEAR LINE = ( PER1l2,

XSIZE=0.055,YSIZE=0.027
XSIZE=0.055,YSIZE=0.06

ANGLE=0.544434, E1=ED3

ANGLE=0.240964, E1=ED2, E2=ED1l
ANGLE=0.240964, E1=ED1, E2=ED2
ANGLE=0.544434, E2=ED3
BI1l, Cl1l, DBA, Cl, BAl, Cl1 )
Cl, DBA, Cl, BI2, Cl, DBI )
KS=0.0
.2529, K1=0.92090
25575, K1=-1.13417
.2529, K1=1.08290
.25575, K1=-1.38628
QF11)
, QD11)
, QF22)
, QD22)
5
5
QDl, SF, QFl, SD, DL )
QFl, SF, QD1, DS, BE )
QD2, SF, QF2, SD, DL )
QF2, SF, QD2, DS, BE )
QDl, SF, QFl, SD, DSOL )
D, QF1l, SF, QD1, DS, BE )
QD2, SF, QF2, SD, DL )
QF2, SF, QD2, DS, BE )
PER21, PER22, PER31, SOL, PER32, PER41, PER42,

PER11)
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9.2. Injection Parameters

9.2.1. Beam Parameters

Table 4 gives the beam parameter used to perform the simulations in the machine LEAR3 and its modified ver-
sion LEAR3+. The differences come from the Twiss functions at injection. In both cases the horizontal mismatch

Table 4 Beam parameters injected in LEAR3 and LEAR3+

LEAR X xp dx | dxp | ®x | ox y yp dy | dyp | &y | oy daT p| Ap

3 22E-3 | 945E4 | O 0 0 | 164 | 3.6E-3 | 591E4 | 0 0 0 | 164 | -829.226 | 0| O

3+ 2.29E-3 | 9.17E4 | O 0 0 164 | 511E-3 | 411E4 | O 0 0 1.64 | -829.226 [ 0| O

is 4. The vertical beam parameters are not important so far as coupling is not introduced in the lattice. For all
simulations, the number of particles per batch is 200.

9.2.2. Machine Parameters

The main machine parameters such as Twiss functions in the injection section and the tunes can be found in
Table 1 on page 7 and the lattice files are listed above.

9.3. Results of the Simulation
9.3.1. Machine LEAR3

The injection parameters are listed in Table 5. The initial bump Ax and the injection position injc_pos have been
calculated with (Eq.3) and (Eq.4) .The bump rate results from the application of (Eq.10) for the different batches.

Table 5 Injection parameters in LEAR3

run seyz:'_‘ ;)os sept(;nv\)ndth (?:) bu r?rz;ate m’?.#;os A;(>1_)|n| Ap(_;:)ﬂe nb_turm | nbmp | nsup
008 0.055 0.009 0.0382 | 0.00347 0.0662 0.0 0.0 7 4 5
009 0.055 0.009 0.0382 | 0.00347 0.0662 0.0 0.0 11 0 5
010 0.055 0.009 0.0382 | 0.00347 0.0662 0.0 0.0 6 5 5
011 0.055 0.009 0.0382 | 0.003183 | 0.0662 0.0 0.0 7 5 5
012 0.055 0.009 0.0382 | 0.003183 0.0662 0.0 0.0 8 4 5

The number of tumns during which the bump decreases is nbturn + nbmp and there are only nbturn during which
particles are effectively injected. This number is adjusted according to the results of the simulation. In run 007,
the maximum efficiency is reached at the 7'" tum so, at run 008, we only inject 7 turns and let the bump decrease
to zero for 4 tumns. In Figure 20, the evolution of the effective number of turns injected for the different situations

Table 6 Effective turns injected in LEAR3

run | 008 009 010 on 012

eftective tums 5.65 5.65 5.28 5.92 6.1
injected

simulated can be seen. The best results can be seen in more detail at run 012 : more than 6 batches injected
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Figure 20 Injection in LEAR3 with small collimators (5.0 cm)
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First of all, let us look at the transverse phase space in Figure 21 which shows the position of the closed orbit
symbolized by the cross and the septurn which is represented with two lines, the inner and the outer edge. It can
be seen that only a little more than 7 batches are effectively injected thus it is not necessary to try to inject more
than 8 batches.



Multiturn injection Simulation 29
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Figure 22 shows this more precisely. There are no loss of particles amongst the first 7 batches (represented with
different hatches) during the 17 turns performed in the machine. Figure 23 indicates that the particles are lost at
the collimators (light hatches) mainly at the 8" turn. The fraction is the number of particles lost relative to the
total number of particles that could be injected, i.e. the number of trns during batches are injected times the
number of particles per batch.
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Figure 22 effcy012.eps
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Figure 23 plost012.eps

12.00

95/11/29

Loss

uo1}204 4

0.02

0.00

5 6 7 8 9

10 11 12 13 14 15 16 17

2 3 4

1

Turn

The optimum parameters are as those for run 012. The limited number of turns injected comes from the collima-

tors placed in the machine (horizontal aperture 0.05m).

Figure 24 shows that by increasing the size of the collimators makes it possible (o inject more turns : on average
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one more turn is injected with 5.5 cm and 5.0 cm collimators, with the parameters given in Table 7. The parame-

Table 7 Injection parameters in LEAR3+ (with 5.0 cm wide collimators)

sept_pos | sept_width AX bumprate | injct_pos | Ap_ini | Ap_rate nb_tum | nbmp | nsup
e (m) (m) (m) (m) (m) () (1) -
=
014 0.055 0.009 0.0382 | 0.003183 0.0662 0.0 0.0 8 4 5
015 0.055 0.009 0.0382 | 0.00347 0.0662 0.0 0.0 " 0 5

ters for runs 014 and 015 are the same as for runs 012 and 009 respectively.

Figure 24 Injection in LEARS : influence of the collimator size (hollow markers corre-
spond to 5.0 cm wide collimators and full markers to 5.5 cm wide collimators), the same
shapes correspond to the same configurations of the injection parameters.
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9.3.2. Machine LEAR3+
This machine is derived from LEAR3. The main difference is the value of the tunes. The horizontal tune has

Table 8 Injection parameters in LEAR3+ (with 5.0 cm wide collimators)

run sep(»tr; ;JOS sep:;nv;lldth (1;:() buTrz;ate m](.: r;];))os A%_)lnl Ap(_;)ate nb_tum | nbmp | nsup
016 0.055 0.009 0.0327 0.00275 0.0713 0.0 0.0 12 0 5
017 0.055 0.009 0.0327 0.00275 0.0713 0.0 0.0 7 5 5
019 0.055 0.009 0.0377 | 0.002513 0.0663 0.0 0.0 15 0 5
020 0.055 0.009 0.0377 | 0.002513 0.0663 0.0 0.0 12 3 5
021 0.055 0.009 0.0377 | 0.002513 0.0663 0.0 0.0 12 2 S

been chosen to be more irrational than the horizontal tune of LEAR3 (@, = 1.8). The slight difference could
allow the injection of more particles by decreasing the bump more slowly together with the fact that the operat-
ing point is further from resonance lines. The other parameters such as the a and B function in the injection sec-
tion, the dispersion, are of the same order of magnitude.
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The number of turns effectively injected is slightly larger than in the machine LEARS. This difference mainly

Table 9 Effective tums injected in IEAR3+ (5.5 cm coliimators)

run 016 | 017 019 020 021

effective tums 43 | 438 | 7.77 | 7.67 | 7.39
injected

comes from different sizes of the collimators used.

The number of turns injected is highly dependant on the value of the bump step at each turn. If it is too big, the
particles oscillate far from the reference orbit after a few turns and come close to the aperture limitations.

Figure 25 Injection in LEAR3+ (collimators size : 5.5 cm)
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This happens during runs 016 and 017 (Figure 25) where the number of turns is limited to 4.3 after 6 turns in the
machine due to the particles hitting the collimators (Figure 26).
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Figure 26 plost016.eps : particles lost during injection in LEAR3+ light hatched bars
represent particles lost at the collimators and dark ones, particles lost at the septum
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A smaller bump step was then used for runs 019, *020 and 021. The injection position was reduced so that the
injected beam almost touched the outer edge of the septum. This lead to a remendous increase in the number of
turns injected : 3 more turns.

In order to compare the results of LEAR3+ with those of LEAR3, the size of the collimators was changed to
5.5 cm. The injection parameters are the same as for runs 016 and 019. There is a 2-turn difference between both

Table 10 injection parameters in LEAR3+ (with 5.0 cm wide coflimators)

sept_pos | sept_width AX bumprate | injct_pos | Ap_ini | Ap_rate
run nb_tum | nbm nsuy|
(m) (m) (m) (m) (m) (M (1 - P | nsup
022 0.055 0.009 0.0377 | 0.002513 0.0663 0.0 0.0 15 0 5
024 0.055 0.009 0.0327 | 0.00275 0.0713 0.0 0.0 12 0 5

cases (Figure 27). So, adjusting the bump step gives 3.5 more tumns (run 024 to run 022) and then there is still a
strong dependence on the collimator size which gives 2 more turns (run 022 to run 019).

The size of the collimalors is a very sensitive parameter which should be carefully adjusted with experimental
results to calibrate the simulations.
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Figure 27 Injection in LEAR3+ : influence of the collimator size (hollow markers corre-
spond to 5.0 cm wide collimators and full markers to 5.5 cm wide coliimators, the same
shape corresponds to the same configuration of the injection parameters)
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10. Conclusion

The program presented allows the simulation of classical and combined multiturn injection. It gives the number
of particles injected per turn and makes it possible to adjust the lattice, the injection and the beam parameters in
order to optimize injection. Some features could be added to the program. For instance, it would be useful to sim-
ulate the presence of a stack of given emittance circulating in the machine and to see how it behaves during the
closed orbit displacement. One would like to keep as many particles from the stack as possible and to add new
ones by multiurn injection and cooling. As proposed by Christian Carli, a pre-distortion of the closed orbit by
means of the bending dipoles could be used to get sufficient displacement in the injection section with the exist-
ing two bumpers. In addition, the energy of the circulating stack could be reduced to make use of dispersion and
to prevent the stack from touching the inner edge of the septum during injection. All the results of the program
should be calibrated with experiments to set a correct size to the collimators and to place them at the appropriate
location.
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Appendix
A.1. 2-dimension Gaussian Distribution
The density function of a 2-dimensional Gaussian distribution over a circle is the following
E2 + E,2
T

1
PEE) = Ng—se *° (Eq.25)
2nG

where & and &' are the two coordinates in the plane, o is the standard deviation and N is the total number of
particles. It only depends on the distance

r= NEP+E? (Eq.26)

between the centre and the point (£.5')

Figure 28 Gaussian distribution

Let N(r) be the number of particles enclosed in a circle of radius r centred on the distribution.

rn

N = [ [p(rrdrde (Eq.27)
00

The integration over the angle ¢ is straightforward

r -

- 2 -
N(r) = I'.’nrNo 5€ 20 4 (Eq.28)
2no
0
This is easily integrated after making the substitution
v 2 - -
w=— and 6'du = rdr (£g.29)
207
r’lo
Ny = Ny | edu (Eq.30)

Thus, one gets

N(r) = Nj|1-e?° (Eq.31)



36 Appendix

Different choices of r allow to cut the distribution and typical values are listed in Table 11.

Table 11
r percentage
J66 = 2.490 95%
20 86%
J26 = 1416 63%

(Eq.31) is easily inverted

N
r=A2-0- ’ln[l _°N] (Eq.32)

and makes it possible to sample a set of Gaussian point (x,y) on the circle one needs two random variables
(rnd|, rnd)) uniformly distributed over f0.1] and independent.

N

x=‘/5~0~ ln[———g——

- cos (2 - rnd
1 -rnd]] ( rndy)

(Eq.33)
N

S s
’ d

-sin (2 - rnd
l-rn ’] ( " Q

A.2. Simulation Program

PROGRAM Multiturn

* Simulation of multiturn injection in a circular accelerator.

* The tracking is made by the program MAD from CERN.

*

* version 2.1 - october 1995

* Fabien MOTSCH {(motsch@parcb.cern.ch)

*
IMPLICIT NONE
INTEGER l,nbturn, k,t, filenb,ninjct,SYSTEMF, tour, ttour,initlos,s
INTEGER totLoss,notlost,colimNum, length, ns, nbmp
INTEGER bunch(100), bunchLoss (100), Partlost (1000)
LOGICAL logE, BATCH
REAL Colim_pos (100)

DOUBLE PRECISIONseptpos, septwidth
DOUBLE PRECISIONX, Xp,dx, dxp, phix, sigmax
DOUBLE PRECISIONy,yp.dy.dyp,phiy, sigmay
DOUBLE PRECISIONAT,p.sigmap, seed

DOUBLE PRECISIONdeltax,bumprate, injctpos
DOUBLE PRECISIONbetax, alphax

DOUBLE PRECISIONdeltat, Trev

DOUBLE PRECISIONdeltapini,deltaprate
CHARACTER*3 filename, nom
CHARACTER*S NumberToAscii, RunNb
CHARACTER*11 name

CHARACTER*40 string

CHARACTER*300 Colim_list

COMMON /X_Plane/Xx, Xp,dx, dxp, phix, sigmax
COMMON /Y_Plane/y,yp.,dy.dyp.phiy, sigmay
COMMON /T_Plane/dT,deltat,p, sigmap
COMMON /Septum/ septpos,septwidth
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COMMON /Bump/ deltax,bumprate,injctpos
COMMON /Time/ Trev

COMMON /Energy/ deltapini,deltaprate
COMMON /Colim/ Colim_pos,colimNum

BATCH=.FALSE.

s=SYSTEMF ('1lgigrep -c motsch > end.dat’)
OPEN(UNIT=10,FILE='end.dat’, STATUS='OLD’)
READ(10,*) s

CLOSE (10, STATUS='DELETE’)

BATCH = (s.EQ.1)

WRITE(*,*) ‘batch running:’, BATCH

INQUIRE (FILE='seed.dat’, EXIST=10gE)
IF (logE) THEN
OPEN (UNIT=10,FILE='seed.dat’, STATUS='OLD')}
READ(10,*) seed
CLOSE (UNIT=10, STATUS='DELETE"’)
ELSE
seed = 12345.6789
ENDIF

Finds the name to be given to the new run

1 =20
s SYSTEMF (‘ls!grep FilesNb| cut -c9-11ltail -1 > lastrun’)
OPEN(UNIT=17,FILE='lastrun’, STATUS='0OLD’)
READ(17,*,END=600) 1
600 1 =1+1
CLOSE (UNIT=17, STATUS='DELETE')

filename = NumberToAscii(l) (3:5)
name(1l:8) = ‘FilesNb.’
name(9:11) = filename

OPEN(UNIT=17,FILE=name, STATUS='NEW’)
creation of the PartLoss file

name(1l:8)= ‘PartLos.’
OPEN(UNIT=11,FILE=name, STATUS='NEW’)

Reads the data for sampling and simulation
CALL ReadData(ninjct,nbturn, nbmp, ns, Trev)
Creation of the Bunches file for the first turn

name(l:8)="Bunches.’
OPEN(UNIT=12,FILE=name, STATUS='NEW")

CALL InitBunch (bunch, bunchLoss)

DO 5000 tour = 1 , nbturn + nbmp + ns

WRITE(*,*) ‘==== Begining of turn:’,tour,’ ===='
initlos =0

ttour = tour

WRITE(11, ' (AS5,I8)’) ‘turn=',tour

CALL InitPartlost{PartlLost,bunchLoss)
IF (tour.LE.nbturn) CALL Paquet(ninjct, seed)
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IF (tour.EQ.l) THEN
name(l:8) = ‘samples.’
CALL Store(name)
ENDIF
IF (tour.LE.nbturn) THEN
CALL MakeBump (ttour,notlost)
CALL EnergyRamp (ttour,notlost)
ENDIF
IF (tour.LE.nbturn) THEN
CALL BeginTurn(initlos,septpos,septwidth, ttour,

& deltax, bumprate,notlost)
bunch(tour) = ninjct - initlos
ELSE
bunch (tour) = 0
ENDIF

s=SYSTEMF (‘madbatch -q medium -p8.16 LEAR.mad’)

CALL Finished (RunNb, BATCH)
WRITE(17, *) RunNb
ttour = tour
IF (tour.EQ.1l) THEN
CALL ColimDat (Colim_pos, colimNum, RunNb,

& Colim_list, length)
ENDIF
CALL Oneturn(RunNb,name(9:11), ttour,initlos,
& septpos, septwidth,ninjct,bunch, bunchloss,
& totLoss,betax,alphax,nbturn+nbmp)
CALL StorePart{ttour,nbturn+nbmp,name(9:11),deltax,
& bumprate, betax, alphax, deltat,nbturn+nbmp)
s = SYSTEMF (‘mv Part.new Part.dat’)

notlost= notlost + ninjct - totLoss - initlos
CALL Newbunchfile(tour,bunch,bunchLoss)

S = SYSTEMF(‘'rm m*out')

s = SYSTEMF(‘'rm m*err'’)

s = SYSTEMF(‘rm script*’)

s = SYSTEMF (‘'rm echo*’)

S = SYSTEMF (‘rm print*')

s = SYSTEMF (‘rm coord*')

WRITE(*,*) ‘==== End of turn:‘,tour,’ ===='

5000 CONTINUE

CALL Newbunchfile(nbturn+nbmp+ns+1, bunch, bunchLoss)
CALL StorePart (nbturn+nbmp+ns+1l,nbturn+nbmp,name(9:11),deltax,

& bumprate, betax, alphax, deltat)
S = SYSTEMF('rm m*out’)
s = SYSTEMF('rm m*err’)
s = SYSTEMF(‘'rm script*’)
[ = SYSTEMF (‘rm echo*’)
s = SYSTEMF (‘rm print*')
S = SYSTEMF (‘rm coord*’)
S = SYSTEMF (‘rm Part.nob’)
s = SYSTEMF (‘rm Part.dat’)
*
* Creation of the bunch.### file used by the plotting program (PAW script)
name(l:6) = ‘bunch.’
name(7:9) = filename

OPEN(UNIT=14,FILE='bunch.dat’,STATUS='OLD')
OPEN(UNIT=15,FILE=name(1:9), STATUS="NEW')
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5010

5020

5100
5110

READ(14, (A40)‘,END=5020) string
WRITE(15,*) string
GOTO 5010
WRITE(15,5100) alphax, ‘alphax’
WRITE(15,5100) betax, 'betax’
WRITE(15,5110) colimNum, ‘collimators’
WRITE (15, *) Colim_list (l:length)

CLOSE (15)

CLOSE (14)

CLOSE(17)

CLOSE(11)

CLOSE(12)

Stores the last seed for the next run

OPEN (UNIT=10,FILE='seed.dat’,STATUS='NEW’)
WRITE (10, *) seed
CLOSE (UNIT=10)

FORMAT (F6.2,10X,A6)
FORMAT (I6,10X,All)

END

SUBROUTINE Oneturn (RunNb,nom, tour,initlos, septpos, septwidth,
ninjct, bunch, bunchLoss, totLoss,
betax, alphax, nbt)

Analyzes the output from MAD to get the number of particles
lost along the machine and at the septum. Generates the
new ‘part.dat’ file with the particles that have not been
lost.

IMPLICIT NONE

LOGICAL logE, endbmp

INTEGER turn,num,nlost,ninjct,CoLoss, SeptLoss, count
INTEGER i,ntot,npart, totLoss, nbt

INTEGER SYSTEMF, tour, initlos, s, col imNum

INTEGER bunch(100), Sbunch (100), bunchLoss (100)
INTEGER PartLost (1000)

REAL Colim_pos (100)

DOUBLE PRECISIONa(6),pos,septpos, septwidth, stackposref
DOUBLE PRECISIONdeltax,bumprate, injctpos
DOUBLE PRECISIONbetax,alphax

CHARACTER*3 nom
CHARACTER*S RunNb
CHARACTER*8 char
CHARACTER*11 fname

CHARACTER*16 place

CHARACTER*130 string

PARAMETER (npart=100)

COMMON /Bump/ deltax,bumprate, injctpos
COMMON /Colim/ Colim_pos,colimNum

WRITE(*,*) ‘+++ Oneturn +++'
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105

100

110

400

nlost =0

CoLoss =0

totLoss =0

SeptLoss =0

turn = tour

endbmp = (turn.GT.nbt)

IF (turn.LE.nbt) THEN

stackposref= deltax - turn * bumprate
ELSE

stackposref= deltax - nbt * bumprate
ENDIF

fname(7:11)= RunNb
fname (1:6) = ‘print.’

OPEN(UNIT=10,FILE=fname, STATUS='OLD')
CALL MakeSbunch(turn, bunch, Sbunch)

READ(10,’ (A130)',END=110) string(1:130)
READ(10, ' (A130)',END=110) string{(1:130)
IF (string(2:25) .EQ.‘Linear lattice functions’) THEN
DO 105 i=1,7
READ(10, ' (A29)’) string(1:29)
CONTINUE
IF ((string(26:29).EQ.’.000’).AND.
(string(2:11) .EQ. 'begin LEAR’')) THEN
BACKSPACE 10
READ(10, ' (A29,2X,2D7.3) ) string(1:29), betax, alphax
ENDIF
ENDIF

CONTINUE
READ(10, ’ (A130)',END=110) string(1:130)
IF (string(2:9).EQ. ‘Particle’) THEN
BACKSPACE 10
CALL Partlostdat (RunNb,nlost,PartLost, Sbunch, bunchLoss)

CoLoss = CoLoss + nlost
nlost = Coloss + 1
GOTO 100

ELSEIF (string(2:6).EQ.’'Final’) THEN
SeptLoss=CoLoss+1

CALL Finalpos(string,SeptLoss, PartLost, Sbunch,bunchLoss,

septpos, septwidth, stackposref, bumprate,
endbmp )
GOTO 110
ELSE
GOTO 100
ENDIF
CONTINUE

IF (SeptLoss.NE.O) WRITE(1ll,*) ‘au septum’

DO 400 i = CoLoss + 1,Coloss + SeptlLoss
WRITE(11,*) PartlLost (i)
CONTINUE

WRITE (11, ' (I6,1X,A31)') ColLoss, 'Pertes totales aux collimateurs’
WRITE (11, ' (I6,1X,A24)') SeptLoss, ‘Pertes totales au septum’
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ntot = Sbunch(turn)
totLoss = ColLoss + SeptLoss
CALL STARTFILE (PartLost,ntot,totLoss, Couoss, RunNb)
turn = turn + 1
*
CLOSE(10)
WRITE(*,*) ‘--- Oneturn ---'
*
END

SUBROUTINE Partlostdat (RunNb,nlost, PartLost, Sbunch,bunchLoss)

* Finds the particles lost along the machine and where.
*
IMPLICIT NONE
INTEGER nlost,nblost, j, nbunch, num, i, count
INTEGER nbcolim,WhichCollim, label, colimNum
INTEGER Sbunch (100) , bunchLoss (100)
INTEGER PartLost (1000)
REAL Colim_pos (100)
CHARACTER?*S RunNb
CHARACTER*6 Colim_name(10)
CHARACTER*8 char

CHARACTER*16 place
CHARACTER*130 string

DOUBLE PRECISIONa(6),pos

COMMON /Colim/ Colim_pos,colimNum

] = nlost
nblost =0
count =0

WRITE(*,*) ‘+++ Partlostdat +++°'
READ(10, '’ (A130)’) string

place=string(104:119)
READ(string(66:78), " (E13.6)') pos

label = WhichCollim(pos,Colim_pos,colimNum)
READ(10, ' (A6) ‘) char(1l:6)

*

1000 CONTINUE
READ(10, " (I7,4X,6{(1%,D15.9))') numa(, (i),1i=1,6)
i =1
1100 CONTINUE
IF {(num.LE.Sbunch(i)} THEN
bunchLoss (i) = bunchloss (i) + 1
ELSE
i=1+1
goto 1100
ENDIF
nblost = nblost + 1
b =3+ 1
count = count + 1

PartLost (j)= num

READ(10,’ (A130)’) string
IF (string(2:9).EQ.’ ‘) THEN
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WRITE (11, ' (I6,A23,E13.6,A18,16)') nblost,
& ' particles lost at s = ‘,pos,’ at collimator nb ‘, label
GOTO 1050
ELSEIF (string(2:9).EQ.‘Particle’) THEN
WRITE(11l, ' (16,A23,E13.6,A18,16)') nblost,
& ' particles lost at s = ‘,pos,’ at collimator nb ‘, label
nblost= 0
place=string(104:119)
READ(string(66:78),' (E13.6)') pos
label = WhichCollim(pos,Colim_pos,colimNum)
READ(10,’ (A6) ') char(l:6)
GOTO 1000
ELSE
BACKSPACE 10
GOTO 1000
ENDIF
1050nlost = count

*

WRITE(*,*) ‘--- Partlostdat ---'

END

SUBROUTINE Finalpos(string, SeptLoss,PartLost, Sbunch, bunchLoss,

& septpos, septwidth, stackposref, bumprate,
& endbmp)
*
* At the end of a turn, it checks if a particle is lost at the
* injection septum.

IMPLICIT NONE

INTEGER num, SeptLoss, i, 3,k

INTEGER Sbunch (100) , bunchLoss (100)

INTEGER PartLost (1000)

LOGICAL Septum, hit, endbmp

REAL f(6)

DOUBLE PRECISIONseptpos, septwidth,stackposref, stackpos
DOUBLE PRECISIONbumprate,Trev,T,X

CHARACTER*8 char

CHARACTER*130 string

COMMON /Time/ Trev

WRITE(*,*) ‘ +++ Finalpos +++’
J = SeptlLoss
SeptLoss =0
*
READ(10, ' (A7)') char(1:7)
2000 CONTINUE

DO 2100 k=1,3
IF (k.EQ.1l) THEN
READ(10,2120,END=2110) num,char{(1:6), (f(i),i=1,6)

ELSE
READ(10,2130) (f(i).i=1.6)
ENDIF
IF (k.EQ.1) THEN
X=£(1)

ELSEIF (k.EQ.3) THEN
T=£(1)
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ENDIF
2100 CONTINUE
IF (endbmp) THEN
stackpos= stackposref

ELSE
stackpos = stackposref - (T/Trev) * bumprate
ENDIF
hit = (((X + stackpos).GE.septpos))
IF (hit) THEN
i=1
2010 CONTINUE

IF (num.LE.Sbunch(i)) THEN

bunchLoss (i)
ELSE
i=14+1
goto 2010
ENDIF
SeptLoss
PartLost (3) = num
b
ENDIF
GOTO 2000
2110 CONTINUE

*

WRITE(*,*) ‘--- Finalpos ---'

*

j o+ 1

= bunchLoss (i) + 1

SeptLoss + 1

2120 FORMAT (I6,A6,2F16.8,2F14.8,F16.8,F12.8)
2130 FORMAT (12X,2F16.8,2F14.8,F16.8,F12.8)

*

END

SUBROUTINE Startfile(PartLost,ntot, totLoss,CoLoss, RunNb)

* Generates the new ‘part.dat’

file using the particles

that have not been lost during the previous turn. Then a
sample of newly injected particles will be added to the

ntot,totLoss, CoLloss,i,j,n,partnb

* file.

*
IMPLICIT NONE
INTEGER
INTEGER PartLost (1000)
LOGICAL lost, logE
DOUBLE PRECISIONX,PX,Y.PY,T,DELTAP
CHARACTER™*S RunNb
CHARACTER*11 filename
CHARACTER*80 linel

*
WRITE(*,*) ‘+++ Startfile +++'

filename(7:11)=RunNb
filename(l:6)='coord."

IF (ntot-CoLoss.EQ.0) THEN

OPEN(UNIT=14,FILE='Part.new’,STATUS='NEW’)

CLOSE(UNIT=14)
ELSE
logE=.TRUE.

INQUIRE(FILE=filename, EXIST=10gE)
OPEN(UNIT=13,FILE=filename, STATUS='0OLD’)
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OPEN(UNIT=14,FILE='Part.new’,STATUS="NEW')

DO 3000 i=1l,ntot-Coloss

lost=.FALSE.

READ(13, ' (A80)’) linel

READ(1linel(19:24),'(I6)‘) partnb

READ(13,3110) X,PX

READ(13,3120) Y,PY

READ(13,3130) T,DELTAP

DO 3100 j=1,totLoss
lost=lost.OR. (PartLost(j) .EQ.partnb)

3100 CONTINUE

IF (.NOT.lost) THEN
WRITE(14,3110) X,PX
WRITE(14,3120) Y,PY
WRITE(14,3130) T,DELTAP

ENDIF
3000 CONTINUE
*
CLOSE(13)
CLOSE (14)
ENDIF
v
WRITE(*,*) ‘--- Startfile ---°
3110 FORMAT (‘’START, X = ‘,E19.12,’, PX = ’,E19.12,"',&")
3120 FORMAT (* ¥ = ‘,El19.12,’, PY = ‘,E19.12,',&")
3130FORMAT (* T = ',E19.12,', DELTAP = ‘',E19.12)
*
END

SUBROUTINE Newbunchfile(turn, bunch, bunchLoss)

* Stores the number of particles per bunch
»*

IMPLICIT NONE

INTEGER turn, i

INTEGER bunch(100), bunchLoss (100)

WRITE(*,*) ‘+++ Newbunchfile +++°
WRITE(12,4010) ‘turn=’',turn-1

DO 4000 i=1,turn
WRITE(12,*) bunch(i;

WRITE(*,*) bunch(i),bunchLoss(1i)

* WRITE(12,*) bunch(i)-bunchLoss (i)
bunch (i)=bunch(i)~-bunchlLoss (1)
4000 CONTINUE
*
WRITE(*,*) ‘--- Newbunchfile ---'

*

4010 FORMAT (A5, 1I8)

*

END
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*

*

SUBROUTINE Paquet (n,seed)

*

* Generates the ‘n’ injected particles.
*

IMPLICIT NONE

INTEGER n,c,s,i,SYSTEMF

LOGICAL logE

CHARACTER*S char

CHARACTER*8 fname

REAL RANF,PI

DOUBLE PRECISIONX, Xp,dx, dxp,phix, sigmax,alphax
DOUBLE PRECISIONy,yp.dy,dyp,phiy, sigmay,alphay
DOUBLE PRECISIONAT,p,sigmap, seed, deltat

DOUBLE PRECISIONHoriz(2,500),Vert(2,500)
DOUBLE PRECISIONT(500),DELTAP(500)

PARAMETER (PI=3.141592653589793238)
COMMON /X_Plane/x, xp,dx, dxp, phix, sigmax

COMMON /Y_Plane/y,yp.dy, dyp,phiy, sigmay

COMMON /T_Plane/dT,deltat,p, sigmap

WRITE(*,*) ‘+++ Paquet +++'

alphax = phix*PI/180.0
alphay = phiy*PI/180.0
fname = 'Part.dat’

INQUIRE (FILE=fname, EXIST=10gE)
IF (logE) THEN
OPEN(UNIT=20, FILE=fname, STATUS='OLD"')

6000 CONTINUE
READ(20, ' (AS5)',END=6100) char
GOTO 6000
ELSE
OPEN(UNIT=20, FILE=fname, STATUS="NEW')
ENDIF
*
6100 CONTINUE

CALL Gaussl (DELTAP,n,p,sigmap)

WRITE(*,*) ‘dxp:’',dxp

CALL Gauss2 (n, x, xp,dx, dxp, alphax, sigmax,Horiz, seed)

CALL Gauss2(n,y,yp.dy,dyp, alphay, sigmay,Vert, seed)

CALL Uniform(n,T,dT, seed)

DO 6101 i=1,n
WRITE (20,6110) Horiz(l,i),Horiz(2,1)
WRITE(20,6120) Vert(l,1i),Vert(2,1i)
WRITE(20,6130) T(i),DELTAP (i)

6101 CONTINUE

*

CLOSE(20)
WRITE(*,*) ’'--- Paquet ---'
6110 FORMAT (’START, X = *,E19.12,’, PX = ‘,E19.12,"',&")
6120 FORMAT (’ Y = ',E19.12,’, PY = ‘,E19.12,',&")
6130 FORMAT (‘ T = ',E19.12,’, DELTAP = ',E19.12)

*
END
*

*
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*

SUBROUTINE Gauss2 (n,a,b,da,db,alpha,cut,Vect, seed)

Generates a 2D gaussian distribtion over an ellipse

given by its half axes ‘a’ and ‘b’ which center is
rotated of an angle ‘alpha’ arround its center and

shifted from the origin by a vector (‘da’,’db’)
The gaussian distribution is cut at ‘cut’.

IMPLICIT NONE
INTEGER count,n
REAL RANF, PI

DOUBLE PRECISIONu,vVv,a,b,da,db,alpha,cut,tmp, seed
DOUBLE PRECISIONVect (2,500)
PARAMETER (PI=3.141592653589793238)

WRITE(*,*) ‘+++ Gauss2 +++'
WRITE(*,*) ‘db:’,db
count=0

CALL RANSET (seed)

6200 CONTINUE

u =RANF (seed)

v =RANF (seed)

tmp =u

u =SQRT (-2*1log(u) ) *cos (2*PI*V)

v =SQRT (-2*log(tmp)) *sin(2*PI*v)

IF (SQRT(u**2+v**2).LE.cut) THEN
count =count+1

u =a*u

v =b*v

tmp =u

u =u*cos{alpha)-v*sin(alpha)
v =tmp*sin(alpha)+v*cos{alpha)

Vect (1, count) =u+da
Vect (2, count) =v+db
ENDIF
IF (count.LE.n) GOTO 6200
CALL RANGET (seed)
WRITE(*,*) ‘--- Gauss2 ---'

END

Generates a 1D Gaussian distiributed random set of
values in ‘DELTAP’. The gaussian distribution is
characterized by ‘Mean’ anZ ‘S:gma’.

IMPLICIT NONE
INTEGER n,i
REAL Vect (500}

DOUBLE PRECISIONMean,Sigma,DELE
DOUBLE PRECISIONDELTAP (500

WRITE(*,*) ‘+++ Gaussl +++'

CALL RNORML (Vect,n)
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DO 6400 i=1l,n
DELTAP(i)=Sigma*DBLE (Vect (i) )+Mean
5400 CONTINUE
WRITE(*,*) ‘--- Gaussl ---'

END

SUBROUTINE Finished(nbfile, BATCH)

* Tests if MAD run is finished, and gives the identification
* number of the run ‘nbfile’.

IMPLICIT NONE

INTEGER s, lec, stat, SYSTEMF

CHARACTER™*S nbfile

LOGICAL logE, BATCH

WRITE(*,*) ‘+++ Finished +++°
lec =16
s =SYSTEMF('1l1lq | grep -c¢ motsch > fini.dat’)

7000 CONTINUE
OPEN (UNIT=lec,FILE='fini.dat’,STATUS='OLD’)
READ (lec,’ (I1)'’) stat
CLOSE (UNIT=1lec, STATUS='DELETE')
s=SYSTEMF (‘1lq | grep -c motsch > fini.dat’)
IF ({((stat.NE.1).0OR. (.NOT.BATCH)) .AND.
& ({(stat.NE.O).OR.BATCH)) GOTO 7000

OPEN (UNIT=lec,FILE=‘fini.dat’, STATUS='OLD’)
CLOSE (UNIT=1lec, STATUS= 'DELETE")

s=SYSTEMF (‘lslgrep printlcut -c7-11itail -1 > lastfile.dat’)

OPEN (UNIT=lec,FILE='lastfile.dat’, STATUS='OLD’)
READ (lec,’ (A5)',ERR=7100) nbfile
7100 CLOSE (UNIT=1ec, STATUS="DELETE")

*

RI WTE(*,*) ‘--- Finished ----

*

END

CHARACTER*5 FUNCTION NumberToAscii(n)

* Converts the number ‘n’ in the corresponding
* string ‘NumberToAscii(n)’.

IMPLICIT NONE
INTEGER n, i, tmp
CHARACTER*5chaine

WRITE(*,*) ‘+++ NumberToAscii +++'
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DO 8000 i=1,5
tmp =INT(n/10**(5-i))
n =n-(10**(5-i))*tmp
chaine(i:i)=CHAR(tmp+48)
8000 CONTINUE
NumberToAscii=chaine
WRITE(*,*) ‘--- NumberToAscii ----

END

SUBROUTINE BeginTurn(initlos, septpos, septwidth, turn,

& deltax, bumprate,notlost)
* Tests if some particles hit the outer part of the septum at
* injection and removes them from the particle file.
*
IMPLICIT NONE
INTEGER initlos, s, SYSTEMF, turn, notlost,count
LOGICAL hit
DOUBLE PRECISION septpos, septwidth
DOUBLE PRECISION X,PX,Y,PY,T,DELTAP
DOUBLE PRECISION deltax,bumprate, stackpos
DOUBLE PRECISION Trev, stackT
COMMON /Time/ Trev

WRITE(*,*) ‘+++ BeginTurn +++'

initlos =0
count =0
stackspo = deltax-(turn-1)*bumprate

OPEN(UNIT=18,FILE=‘Part.dat’,STATUS='0OLD’)
OPEN(UNIT=19,FILE='Part.new’, STATUS='NEW’')

8000 CONTINUE
count=count+1l
READ(18,8010, END=8100) X,PX
READ(18,8020) Y,PY
READ(18,8030) T,DELTAP
stackT=stackpos-T*bumprate/Trev

IF (count.GT.notlost) THEN
hit=((X+stackT) .LE. (septpos+septwidth))
ELSE
hit=.FALSE.
ENDIF

IF (hit) initlos=initlos+1

IF (.NOT.hit) THEN
WRITE(19,8010) X,PX
WRITE(19,8020) Y,PY
WRITE(19,8030) T,DELTAP
ENDIF

GOTO 8000

8100 CONTINUE

*
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CLOSE(18)
CLOSE (19)

s=SYSTEMF (‘rm Part.dat’)
s=SYSTEMF (‘mv Part.new Part.dat’)

WRITE(*,*) ‘--- BeginTurn ---'
*
8010 FORMAT (‘START, X = ‘,E19.12,', PX = ‘,E19.12,',&"’)
8020 FORMAT (’ Y = ‘,E19.12,', PY = ‘,E19.12,",&")
8030 FORMAT (’ T = ‘,E19.12,', DELTAP = ‘,E19.12)

*

END

SUBROUTINE MakeBump (turn,notlost)

* Transforms the particles coordinates to simulate
* a bump at turn ‘turn’ on the newly injected particles
* that is to say on all particles except the ‘notlost’
* first particles.
*

IMPLICIT NONE

INTEGER turn, s, SYSTEMF, notlost, count

DOUBLE PRECISION bump, bumprate,deltax,injctpos, bumpref
DOUBLE PRECISION X,PX,Y,PY,T,DELTAP, Trev

COMMON /Bump/ deltax,bumprate, injctpos

COMMON /Time/ Trev

WRITE(*,*) ‘+++ MakeBump +++°'

bumpref = deltax-{turn-1) *bumprate
count =0

OPEN(UNIT=18,FILE='Part.dat’,STATUS='0OLD’)
OPEN(UNIT=19,FILE='Part.new’, STATUS='NEW’)
9000 CONTINUE
READ(18,9010, END=9100) X,PX
READ(18,9020) Y,PY
READ(18,9030) T,DELTAP
count=count+1
IF (count.GT.notlost) THEN
bump =bumpref-T*bumprate/Trev
X =X+1njctpos-bump
ENDIF
WRITE(19,9010) X,PX
WRITE(19,9020) Y,PY
WRITE(19,9030) T,DELTAP
GOTO 9000
9100 CONTINUE
CLOSE (18)
CLOSE(19)

s=SYSTEMF (‘mv Part.dat Part.nob’)
s=SYSTEMF (‘mv Part.new Part.dat’)

WRITE(*,*) ‘--- MakeBump ---'
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*

9010 FORMAT (’'START, X = ‘,E19.12,’, PX = ',E19.12, ,&")
9020 FORMAT (’ Y = *‘,E19.12,‘', PY = ‘,E19.12,",&")
9030 FORMAT (’ T = ‘,E19.12,°', DELTAP = ‘,E19.12)
*
END

SUBROUTINE ReadData(n,nbturn,nbmp,ns, Trev)

Reads the data for the simulation in the file
n number of particles injected per turn
nbturnnumber of turns

IMPLICIT
INTEGER
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

NONE

n, nbturn, nbmp, ns
PRECISIONX, xp,dx, dxp, phix, sigmax
PRECISIONy,yp.dy,dyp, phiy, sigmay
PRECISIONAT,deltat, p, sigmap
PRECISIONseptpos, septwidth
PRECISIONdeltax,bumprate, injctpos
PRECISIONdeltapini, deltaprate
PRECISIONTrev
/X_Plane/x, xp,dx, dxp, phix, sigmax
/Y_Plane/y,yp.dy.dyp,phiy. sigmay
/T_Plane/dT,deltat, p, sigmap
/Septum/ septpos,septwidth

/Bump/ deltax, bumprate,injctpos
/Energy/ deltapini,deltaprate

WRITE(*,*) ‘+++ ReadData +++'

OPEN(UNIT=10,FILE='bunch.dat’,STATUS='0OLD")

READ(10, *)
READ(10, *)
READ(10,*)
READ(10, ")
READ(10,*)
READ(10,*)
READ(10,*)
READ(10, *)
READ(10,*)
READ(10,*)
READ(10, ™)
READ(10, ")
READ(10,*)
READ(10, ™)
READ(10,*)
READ(10, ™)
READ(10,™)
READ(10,*)
READ(10,*)
READ(10,*)
READ(10,*)
READ(10,*)
READ(10,*)
READ(10,*)
READ(10,*)
READ(10,*)

n
nbturn
nbmp

ns

X

Xp

dx

axp

phix
sigmax

Y

Yp

dy

dyp

phiy
sigmay

dr

deltat

p

sigmap
septpos
septwidth
deltax
bumprate
injctpos
deltapini

‘bunch.dat’
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READ(10,*) deltaprate
READ(10,*) Trev
CLOSE(10)

WRITE(*,*) ‘----- ReadData ----- ’

END

SUBROUTINE InitBunch (bunch,bunchLoss)
* Initializes the vectors ‘bunch’ and ‘bunchLoss’

IMPLICIT NONE
INTEGER nombre, i
INTEGER bunch (100), bunchLoss (100)

WRITE(*,*) ‘+++ InitBunch +++’
nombre=100
DO 1111 i=1,nombre
bunch(i)=0
bunchLoss (1) =0
1111 CONTINUE
*

WRITE(*,*) ‘~--- InitBunch ---'

END

SUBROUTINE MakeSbunch(turn, bunch, Sbunch)

* Creates the vector 'Sbunch’ (summ of the Bunches)
* from the bunch composition given in ‘bunch’.
* bunch(i) contains the number of particles in the
* bunch number ‘i’, and Sbunch:i) the total number
* of particles in the bunches from 1 to ‘i’.
*

IMPLICIT NONE

INTEGER turn, i

INTEGER bunch(100), Sbunch (100)

WRITE(*,*) ‘+++ MakeSbunch -«

DO 90 i=1,turn
IF (i.EQ.l) THEN
Sbunch (i) =bunch::

ELSE
Sbunch(i)=Sbunch: .-l ,+bunch(i)
ENDIF
90 CONTINUE
WRITE(*,*) ‘--- MakeSbunch ---"

END

SUBROUTINE InitPartlost(Partlost, bunchLoss)
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Initializes the vectors ‘Partlost’ and ‘bunchLoss’
prior their use to count the lost particles...

IMPLICIT NONE

INTEGER i

INTEGER Partlost (1000),bunchLoss(100)
WRITE(*,*) ‘+++ InitPartlost +++’'

DO 9998 i=1,1000
Partlost (i) =0

9998 CONTINUE

DO 9999 i=1,100
bunchLoss (i)=0

9999 CONTINUE

WRITE(*,*) ‘--- InitPartlost ---'

END

SUBROUTINE StorePart (tour, nb, name,deltax, bumprate, betax, alphax,
deltat)
Stores the position of the particles given in the file
Part.‘'tour’.’'name’
The position of the
value at the moment
section. (‘deltax’,
‘betax’ and ‘alphax’
Only a slice of particles is represented:

particles is shifted according to the bump
when the particle passes the injection
‘bumrate’)

are used to normalize the positions
those passing

within the time ‘deltat’ after the reference particle
IMPLICIT NONE

INTEGER tour,nb

REAL RANF

DOUBLE PRECISION X,P¥,Y,PY,T,DELTAP, tmp, end
DOUBLE PRECISION deltax,bumprate, stackpos
DOUBLE PRECISICHN betax, alphax, Trev, stackT
DOUBLE PRECISIOHN deltat

CHARACTER*3 name

CHARACTER*S NumberToiscii

CHARACTER*11 filename

COMMON /Time:/ Trev

WRITE(*,*) ‘++-

end =
filename(1:5)
filename(6:7)
filename(8:8) =
filename(9:11)

OPEN(UNIT=15,FILE=filename
OPEN(UNIT=16,FILE='Part.da

IF

St

((tour-1).LE.nb)

crefart -+

1.0

='part.’
=NumberToAasc::i(tour-1)(4:5)

=name

r .

THEN

stackpos=deltax-(tour-1) *bumprate

ELSE

stackpos=deltax-nb*bumprate
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end = 0.0
ENDIF

*

9200 CONTINUE
READ(16,9110, END=9300) X, PX
READ(16,9120)Y, PY
READ(16,9130) T, DELTAP
IF ((T.LE.0.Q).AND.{(T.GE.deltat*Trev)) THEN

* Normalized coordinates
stackT = stackpos -~ end*T*bumprate/Trev
tmp = X
X = X + stackT
PX = alphax*tmp + PX*betax
WRITE(15,9140) X,PX,Y,PY,T,DELTAP
ENDIF
GOTO 9200
9300 CONTINUE
CLOSE(16)
CLOSE(15)
WRITE(*,*) ’'--- StorePart ---'
9110 FORMAT ('START, X = ',E19.12,', PX = ‘',E19.12,',&")
9120 FORMAT (‘' Y = ’,E19.12,’, PY = ',E19.12,"',&")
9130 FORMAT (' T = ',E19.12,', DELTAP = ’',E19.12)

9140 FORMAT (6(E19.12,1X))

*

END

SUBROUTINE Uniform(n,T,dT, seed)

* Generates n uniformly distributed random variables
* The variables are in T and belong to the interval [0,dT]
* The value of the seed is kept for further sampling
IMPLICIT NONE
INTEGER n,1i
REAL RANF
DOUBLE PRECISION dT, seed
DOUBLE PRECISION T(500)

WRITE(*,*) ‘+++ Uniform +++°*
CALL RANSET (seed)

DO 9200 i=1,n
T (i)=RANF (seed) *dT
9200 CONTINUE
CALL RANGET (seed)
WRITE(*,*) ‘--- Uniform ----

END
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SUBROUTIME Store (name)

IMPLICIT NOWE
CHARACTER*11 name
DOUBLE PRECISION X,PX,Y,PY,T,DELTAP, tmp

WRITE(*,*) ‘+++ Store +++'

OPEN(UNIT=15,FILE='Part.dat’,STATUS="OLD’)
OPEN(UNIT=16,FILE=name, STATUS='NEW’ )
! OPEN(UNIT=16,FILE='Part.new’,STATUS="OLD’)
! OPEN(UNIT=16,FILE='Part.dat’, STATUS='OLD’)
1111 CONTINUE
READ(15,9115,END=1112) X,PX
READ(15,9125) Y,PY
READ(15,9135) T,DELTAP
WRITE(16,9145) X,PX,Y,PY,T,DELTAP

GOTO 1111

1112 CONTINUE
CLOSE(15)
CLOSE(16)

*
WRITE(*,*) ‘~--- Store ---'

9115 FORMAT (‘’START, X = ',E19.12,’, PX = ',E19.12,"',&")}

9125 FORMAT (' Y = ‘,El9.12,', PY = ‘,E19.12,’,&")

9135 FORMAT (' T = ',E19.12,°', DELTAP = ',E19.12)

9145 FORMAT (6(E19.12,1X))

END

SUBROUTINE Store2(tour,deltax,bumprate)

IMPLICIT NONE

INTEGER tour

DOUBLE PRECISION X,PX,Y,PY,T,DELTAP, tmp
DOUBLE PRECISION deltax,bumprate, stackpos
DOUBLE PRECISION Trev, stackT

COMMON /Time/ Trev

WRITE(*,*) ‘+++ Store2 +++°'
OPEN(UNIT=15,FILE='part2.plot’, STATUS='NEW’)
OPEN(UNIT=16,FILE='Part.dat’,STATUS='OLD’)

stackpos=deltax- (tour-1) *bumprate
1212 CONTINUE
READ(16,9117,END=1213) X,PX
READ(16,9127) Y,PY
READ(16,9137) T,DELTAP
stackT =stackpos+T*bumprate/Trev
X =X+stackT
WRITE(15,9147) X,PX,Y,PY,T,DELTAP
GOTO 1212
1213 CONTINUE
*
CLOSE (16)
CLOSE (15)
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WRITE(*,*) ‘--- Store2 ---'
9117 FORMAT (‘START, X = ‘,E19.12,’, PX = ',E19.12,’,&")
9127 FORMAT (‘’ Y = ‘,E19.12,’', PY = ‘,E19.12,',&")
9137 FORMAT (‘ T = ‘,E19.12,’, DELTAP = ‘,E19.12)
9147 FORMAT (6(E19.12,1X))

END

SUBROUTINE EnergyRamp(turn,notlost)

IMPLICIT NONE
INTEGER count, s, SYSTEMF,notlost, turn
DOUBLE PRECISION X, PX
DOUBLE PRECISION Y, PY
DOUBLE PRECISION T, DELTAP
DOUBLE PRECISION DELTAPref, dDELTAP,deltaprate,deltapini
DOUBLE PRECISION Trev
COMMON /Time/ Trev
COMMON /Energy/ deltapini, deltaprate
*
count =0

! deltaprate =2.9E-4
! deltapini =-11.6E-4

WRITE(*,*) ‘+++ EnergyRamp +++°'
DELTAPref=deltapini+ (turn-1)*deltaprate

OPEN(UNIT=14,FILE='Part.dat’',STATUS='OLD’)
OPEN(UNIT=15,FILE='Part.new’, STATUS='NEW’)
*
9400 CONTINUE
READ(14,9410, END=9452, 1, PX
READ(14,9420) Y,PY
READ(14,9430)T, DELTAY
count=count+1 ,
IF (count.GT.notlost' THEN
dDELTAP DELTAFref+deltaprate*T/Trev
DELTAP = DELTAF+dDELTAP
ENDIF
WRITE (15,9510, PX
WRITE (1%, 9420y, FY
WRITE(1%, “430'7T,DE_TA!
GOTO 9400

*

9450 CONTINUE

»

CLOSE(15)
CLOSE (14, STATUS="DELETE"

s=SYSTEMF (‘mv Part.new Farz.zat’
! s=SYSTEMF (‘cp Part.dat Par:.g.uk’',

WRITE(*,*) ‘--- EnergyRamp ---'

9410 FORMAT ('START, X = ‘,E19.12,', PX = ’',E19.12,',&")
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9420 FORMAT (‘ Y ‘,E19.12,', PY = ‘,E19.12,',&’)
9430 FORMAT (' T = ‘,E19.12,', DELTAP = ‘,E19.12)

*

END

SUBROUTINE Collimator (Colim_name,nbcolim)

IMPLICIT NONE

INTEGER i,nbcolim, name_length
CHARACTER*10 name

CHARACTER™*6 Colim_name(10)

CHARACTER*100 string
WRITE(*,*) ‘+++ Collimator +++’'

nbcolim=0
9600 CONTINUE
OPEN(UNIT=25,FILE='lear.dat’, STATUS="OLD"')
READ(25, ' (A100) ' ,END=9620) string
i=INDEX (string, ‘COLLIMATOR"’)
IF (i.NE.QO) THEN

nbcolim = nbcolim+1
name_length = i-1
name = string(l:i-1)
CALL RemoveSpace (name, name_length)
Colim_name(nbcolim) = name(1l:name_length)
ENDIF
GOTO 9600
9620 CONTINUE
*
CLOSE (25)
*
WRITE(*,*) ‘--- Collimatcr ---~

END

SUBROUTINE RemoveSpace (name, name_length)
IMPLICIT HONE

INTEGER name_lenzzn, -
CHARACTER*10 name

WRITE(*,*) ‘+++ FemoveSpaT< +«+'

9500 CONTINUE
IF (name(1l:1).EQ." ‘) THE!N
name = name(2:
name_length= name_lenatn-.
ELSE
GOTO 9550
ENDIF
9550 CONTINUE
3J = INDEX (name, * )
name = name(l:j-1)

name_length= j-1
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WRITE(*,*) ‘--- RemoveSpace ---'

END

SUBROUTINE ColimDat (Colim_pos, colimNum, RunNb, Colimlist, long)

IMPLICIT NONE

INTEGER nbcolim, colimNum, j, long,n, i
INTEGER elmtNb

LOGICAL lattice

REAL pos

REAL Colim_pos(100)

CHARACTER*5 RunNb, Enb, NumberToAscii, tmp
CHARACTER*6 Colim_name (10)

CHARACTER*11 filename

CHARACTER*30 ligne

CHARACTER*300 Clist,Colimlist

WRITE(*,*) ‘+++ ColimDat +++'

colimNum = 0

n =1

lattice = .FALSE.
filename(l:6)= ‘print.’

filename(7:11)= RunNb

CALL Collimator(Colim_name,nbcolim)
OPEN{(UNIT=29,FILE=filename, STATUS="'OLD’)
9700 READ(29, “ (A30) ' ,END=9720) ligne
IF (INDEX(ligne,'Linear lattice functions’).NE.0O) THEN
lattice = .TRUE.
GOTO 9700
ELSEIF (INDEX(ligne, ‘end LEAR’).NE.0) THEN
GOTO 9720
ELSEIF (lattice) THEN
j =1
9710 CONTINUE
IF ((INDEX{ligne,Colim_name(j)).NE.O).AND.
& (j .LE.nbcolim)) THEN
colimNum = colimNum + 1
READ (ligne(20:29), " (F10.3) ‘) pos
Colim_pos {colimNum)= pos

READ(ligne(Z:6},‘ (I5)‘,ERR=9740) elmtNb
elmtNb= elmthb « 1
tmp = NumberToAasci: (elmtNb)
CALL Replacelero(tmp;
9740 CONTINUE

READ (29, ' (A30: "’ ,END=9720) ligne
Enb = lignei(l:€)
IF (Enb.NE.tmp: GOTC 9740

Clist(n:n+2)= ligne(8:9)//* '
n = n + 3

ELSEIF (j.LT.nbcolim) THEN
jo=3 +1
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GO10 9710
ENDIF
GOTO 9700
ELSE
GOTO 9700
ENDIF
9720 CONTINUE
long = n -1
Colimlist= Clist(l:long)
9730 CONTINUE
CLOSE (29)

WRITE(*,*) ‘--- ColimDat ---'
END

INTEGER FUNCTION WhichCollim(pos,Colim_pos, nbcolim)

IMPLICIT NONE

INTEGER nbcolim, i

LOGICAL found

REAL Colim_pos(100),epsilon
DOUBLE PRECISION pos

WRITE(*,*) ‘+++ WhichCollim +++'

epsilon = 0.001
i=1
»
9800 CONTINUE
IF ((ABS(REAL{pos)-Colim_pos(i)).LE.epsilon)
& .AND. (i.LE.nbcolim)) THEN
WhichCollim = i
GOTO 9810
ELSEIF (i.GE.nbcolim) THEN
WhichCollim = 0
GOTO 9810
ELSE
i =14+ 1
GOTO 9800
ENDIF
9810 CONTINUE

*

WRITE(*,*) ‘--- WhichCollim ----

END

SUBROUTINE ReplaceZero(string)

INTEGER index
CHARACTER*S string

WRITE(*,*) ‘+++ ReplaceZero +++’
index = 1
9900 CONTINUE
IF (string(index:index).EQ.’0’) THEN
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A3.

string(index:index) = ‘*
INDEX = INDEX + 1
GOTO 9900
ENDIF
WRITE(*,*) ‘'--- ReplaceZero ---'

END

Analysis Program: Statnew.f
PROGRAM Stat

IMPLICIT NONE

LOGICAL logE

INTEGER ninjct, turn,i,part, nbturn, tmp, colimNum
INTEGER Bunch(50),Injct (50),TotInjct, nsup, nbmp
INTEGER cursor

CHARACTER*3 nb

CHARACTER*11 filename

CHARACTER*50 string

CHARACTER*300 transfer

filename(1:8)= ‘Bunches.’

WRITE(*,*) ‘File name (Bunches. ###):"’
READ(*, ' (A3) ') filename(9:11)
nb = filename(9:11)

OPEN(UNIT=10,FILE=filename, STATUS='0OLD")

filename(l:8)= ‘Effinjc.’
filename(9:11)= nb

CALL EraseFile(filename)
OPEN(UNIT=16,FILE=filename, STATUS='NEW’)

filename(1:8)= ‘Nbinjct.’
filename(9:11)= nb

CALL EraseFile(filename)
OPEN(UNIT=18,FILE=filename, STATUS='NEW’)

filename(1l:8)= ‘bnchstt.’
filename(9:11)= nb

CALL EraseFile(filename)
OPEN(UNIT=12,FILE=filename, STATUS='NEW')

filename(8:11)= ‘.plt’
CALL EraseFile(filename)
OPEN(UNIT=14,FILE=filename, STATUS='NEW’)

filename(l:6)= ‘bunch.’
filename(7:9)= nb
INQUIRE(FILE=filename(1:9),EXIST=10gE)
IF (logE) THEN
OPEN(UNIT=24,FILE=filename(1:9), STATUS='OLD’)
READ(24,*) ninjct

WRITE(*,*) ‘nbturn:’,ninjct
READ(24,*) nbturn
WRITE(*,*) ‘nbturn:’,nbturn
READ(24,*) nbmp

WRITE(*,*) ‘nbmp:’,nbmp
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50

100

300

110

READ(24,*) nsup
WRITE(*,*) ‘nsup:’,nsup
CLOSE (UNIT=24)

ELSE
WRITE(*,*) ‘Nombre de particules injectees:’
READ(*, *) ninjct
WRITE(*,*) ‘Nombre de tours injectes’
READ(*, *) nbturn
WRITE(*,*) ‘Nombre de tour fin bmp’
READ(*, *) nbmp
WRITE(*,*) ‘Nombre de tours supplementaires’
READ(*, *) nsup

ENDIF

turn = 0

DO 50 i=1,50
Bunch(i)= ninjct
CONTINUE

cursor = 7 * (nbturn+nbmp+nsup)
CONTINUE
READ(10,’ (A5)',END=110) string(1l:5)
IF (string(1l:5).EQ.‘'turn=') THEN
TotInjct = 0
turn = turn + 1
IF ({(turn.LE. (nbturn+nbmp+nsup+1)) .AND. (turn.GT.1)) THEN
DO 300 i=1, turn-1
READ (10, *) part
Injct (i) = part
TotInjct = TotInjct + part
WRITE(12,1000) turn,part,i,TotInjct
CONTINUE
WRITE(18,1400) REAL (TotInjct)/REAL (nbturn*ninjct)
WRITE(16,1300) turn,TotInjct,REAL(TotInjct)/REAL(nbturn*ninjct)
WRITE(14,1200) ((REAL(Injct(i))/REAL(nbturn*ninjct)),i=1,42)
WRITE (transfer, 1200)
((REAL (Injct (i) ) /REAL (nbturn*ninjct)).,i=1,42)
WRITE (14, *) transfer(l:cursor)
ENDIF
ENDIF
GOTO 100
CONTINUE

WRITE (transfer,1200) (0.00,1=1, 42)
WRITE (14, *) transfer(l:cursor)
WRITE (14, *) transfer (l:cursor)

CALL CollimatorNb(nb,colimNum)

WRITE(*,*) colimNum, ' collimateurs installes’
WRITE(*,*) ‘turn:’,turn

CALL LossStat(nb,colimNum, turn, ninjct)

CLOSE(16)
CLOSE(18)
CLOSE(14)
CLOSE (12)
CLOSE(10)

1000 FORMAT(4(1I6,1X))
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1100 FORMAT(6X,10(I6, 1X))
1200 FORMAT (42 (F6.4,1X))
1300 FORMAT(2(I6,1X),F6.4)
1400 FORMAT (F6.4)

END

SUBROUTINE EraseFile(filename)

LOGICAL logE
CHARACTER*11 filename

WRITE(*,*) ‘+++++ EraseFile +++++’

INQUIRE (FILE=filename, EXIST=10gE)

IF (logE) THEN
OPEN(UNIT=22,FILE=filename, STATUS='0OLD’)
CLOSE (UNIT=22,STATUS='DELETE’)

ENDIF

WRITE(*,*) '----- EraseFile ----- '

END

SUBROUTINE CollimatorNb(nb,colimNum)

IMPLICIT NONE
INTEGER colimNum
CHARACTER*3 nb
CHARACTER*9 filename

CHARACTER*30 string
WRITE(*,*) ‘+++ Collimator +++'

filename(1l:6)= ‘bunch.’
filename(7:9)= nb
OPEN(UNIT=24,FILE=filename, STATUS='OLD’)
3000 CONTINUE
READ(24, ' (A30)’,END=3100) string
IF (INDEX(string, ‘collimators’).EQ.0) THEN
GOTO 3000
ELSE
READ({(string, ' (I6)’) colimNum
ENDIF
3100 CONTINUE

*

WRITE(*,*) ‘+++ Collimator +++'
CLOSE (24)

END

SUBROUTINE LossStat (nb,colimNum, nbturn, ninjct)
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IMPLICIT NONE

INTEGER colimNum, nbturn, turn, pos,i,nblost
INTEGER tmp, ninjct, cursor

REAL c_lost,s_lost,tot_lost

INTEGER septum(70)

CHARACTER*3 nb

CHARACTER*11 filename
CHARACTER*100 string
CHARACTER*500 transfer

WRITE(*,*) ‘+++ LossStat +++'

turn =0
cursor = 7 * colimNum
*
filename(1:8) = 'Partlos.’
filename(9:11) = nb

WRITE(*,*) ‘filename:’,filename
OPEN(UNIT=24,FILE=filename, STATUS='0OLD’)

filename(1:8) ‘partlos.’

filename(9:11) = ‘plt’

CALL EraseFile(filename)

OPEN (UNIT=20,FILE=filename, STATUS='NEW’)
filename(1:8)= ‘collost.’
CALL EraseFile(filename)
OPEN(UNIT=26,FILE=filename, STATUS='NEW’)

*

3500 CONTINUE
READ(24, ' (A100) ' ,END=3520) string
WRITE(*,*) ‘:’',string(l1:30),"':"

IF (INDEX(string, ‘turn’) .NE.O) THEN
turn = turn + 1
WRITE(*,*) ‘turn:’,turn
IF (turn.GT.1l) THEN

* WRITE(26,3610) (REAL(septum(i))/REAL(ninjct*nbturn),i=1,70)
WRITE(transfer,3610)

& (REAL (septum{i) ) /REAL (nbturn*ninjct),i=1,70)
WRITE(26,*) transfer(l:cursor)
ENDIF
DO 3510 1 = 1,100

septum(i) = 0
3510 CONTINUE

GOTO 3500

ELSEIF (INDEX(string, '‘particles lost at’).NE.0) THEN

READ(string(l1:6), ' (I6)') nblost
READ(string(61:66), (I6)’') pos
WRITE(*,*) nblost, ' particles lost at ’,pos
septum(pos) = nblost
GOTO 3500
ELSEIF (INDEX(string, 'Pertes totales’).NE.0) THEN
READ(string(1:6), ' (I6)‘) tmp
c_lost = REAL (tmp)
READ(24, ' (I6)') tmp
s_lost = REAL (tmp)
tot_lost = s_lost + c_lost

WRITE(20,3700) s_lost/(ninjct* (nbturn-1)),
& c_lost/ (ninjct* (nbturn-1))
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GOTO 3500
ELSE

GOTO 3500
ENDIF

*

3520 CONTINUE

*

* WRITE(26,3610) (REAL (septum(i))/REAL(nbturn*ninjct), i=1,70)
WRITE (transfer,3610)

*

3530 CONTINUE
*
CLOSE (20)
CLOSE (24)
CLOSE (26)

(REAL (septum(i)) /REAL (nbturn*ninjct), i=1,70)
WRITE (26, *) transfer(l:cursor)

WRITE(*,*) ’‘--- LossStat ---'

*

3610 FORMAT (70 (F6.4,1X}))
3700 FORMAT (F6.4,1X,F6.4)

*

END

A.4. Plotting Programs

A.4.1. collim.kumac

ve/delete *
option nbox
set xsiz 17
set ysiz 17
set xlab 1.7
set ygtilé

filenb='001"
read filenb
mess [filenb]

*

filename='bunch. ‘//[filenb])

ve/cre data(l)

ve/re data [filename)
ve/pri data

nbturn = data(l)
ve/re data [filename]
ve/pri data

nbmp = data(l)

ve/re data [filename]
ve/pri data

nsup = data(l)

ve/re data [filename]
ve/pri data

nbcolim= data(l)

i=2

1

[

/nb_turn/ (*)

/nbmg -t

/NSUE . "

/collimators

nbtot=[nbturn)+{nbmp]+ [(nsup]

*ve/cre A(24, [nbtot])
ve/cre A(42, [nbtot])
ve/cre B(2, [nbtot])

ve/cre C(70, [nbtot})

rw oy
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ve/cre motif (27) I 144 244 344 444 544 644 744 844
353 345 354 365 356 375 357 385 358 395 350

*

fortran/file 66 ‘Effcy’//[filenb)//’'.eps’
graphics/meta 66 -113

gra/option DATE

gra/option DVXI

nbdiv=[nbturn] +[nbmp]+ [nsupl+1

set NDVX ‘-'//{nbdiv]}//’'.05’

hi/cre/title_global ‘Number of particles injected’
gra/hplot/null 1 (nbdiv] 0.0 1.0

gra/hplot/atitle ‘Turn’ ‘Fraction’

*ve/re A ‘'bnchstt.plt’ 24(1X,F6.4)
ve/re A ‘bnchstt.plt’ 42(1X,F6.4)
*
DO N=1, [nbdiv]-1

set htyp motif ([N]})

IF ([N]).EQ.1l) THEN

ve/draw A([N]) ! SB
ELSE
ve/draw A([N]) ! +B

ENDIF
ENDDO
*ve/write A ! (/,24(1X,F6.4))
ve/write A ! (/,42(1X,F6.4))
fortran/close 66
*
fortran/file 66 ‘Plost’//{filenb]//’'.eps’
graphics/meta 66 -113
gra/option NOPG
gra/option DATE
gra/option DVXI
nbdiv=[nbturn] +[(nbmp]+[nsup)+1
set NDVX ‘-’//[nbdiv]//’'.05"
hi/cre/title_global ‘Loss’
gra/hplot/null 1 [nbdiv] 0.0 0.5
gra/hplot/atitle ‘Turn’ ‘Fraction’
ve/re B ‘partlos.plt’ 2(F6.4,1X)
ve/write B ! (/,2(F6.4,1X))
DO N=1,2

set htyp motif ([N])

IF ([N].EQ.1) THEN

ve/draw B([N]) ! SB
ELSE
ve/draw B([N]) ! +B
ENDIF
* ve/write B([N]) ! 2(F6.4,1X)
ENDDO

fortran/close 66

fortran/file 66 ‘Colim’//[(filenb]//’'.eps’
graphics/meta 66 -113

gra/option NOPG

gra/option DATE

944 205 359

315

351 325 352 335
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gra/option DVXI
nbdiv=-808.01
mess nbdiv
mess [nbdiv])
mess [nbcolim]
*set NDVX ‘-'//[nbdiv]//’.05"’
*set NDVX ‘-'//[nbdiv]
LABELS 1 48 QF QD BA DB BI DB BI DB BA DS QD QF QF QD BA DB BI DB BI DB BA DS QD QF
QF OD BA DB BI DB BI DB BA DS QD QF QF QD BA DB BI DB BI DB BA DS QD QF
set NDVX [nbcolim]+2.15
hi/cre/title_global ‘CollimLoss’
'gra/hplot/null 1 [nbcolim]+1 0.0 0.35
gra/hplot/null 1 [nbcolim]+l 0.0 0.5
gra/hplot/atitle ‘collim’ ‘Fraction’
*
ve/re C ‘collost.plt’ 70(F6.4,1X)
ve/write C ! (/,70(F6.4,1X))
*
DO N=1, [nbdiv}-1

set htyp motif ([N])

IF ([N].EQ.1l) THEN

ve/draw C(:{nbcolim], [N]) ! SB
ELSE
ve/draw C(:[nbcolim], [N]) ! +B
ENDIF
ENDDO
set BASL 0.01
DO N=1,4

set ltyp 10
xline=[nbcolim]*[N]/4+1
dxline=[xline]-[nbcolim]/8
Graphics/primitives/line [xline] 0.0 ([xline] 1.0
set ltyp 15
Graphics/primitives/line [dxline] 0.0 [dxline] 1.0
ENDDO
fortran/close 66

A.4.2. plot.kumac

*fortran/file 66 transv_x.ps

*graphics/meta 66 -111

graphics/viewing/size 19.6 28.7

option ‘date’

his/create/title_global ‘Transverse Phase-space X'

his/delete *

zon 2 3

filenb='001"

read filenb

mess [filenb]
filename='bunch.’//[{filenb]
mess [filename)

*

* Reads information concerning the bump
ve/cre databmp (1)

ve/re databmp [filename] ! ! /nb_turn/(*)
ve/pri databmp

nbturn=databmp (1)

ve/re databmp [filename] ! ! /deltax/(*)
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ve/pri databmp

deltax=databmp (1)

ve/re databmp [filename) ! ! /bumprate/({(*)
ve/pri databmp

bumprate=databmp (1)

ve/re databmp [filename] ! ! /sept_pos/ (*)
ve/pri databmp

sept_pos=databmp (1)

ve/re databmp (filename] ! ! /sept_width/ (*)
ve/pri databmp

sept_width=databmp (1)

ve/re databmp (filename] ! ! /alphax/(*)
mess ‘alphax’

ve/pri databmp

alphax=atabmp(1)

ve/re databmp [filename] ! ! /betax/(*)
mess ‘betax’

ve/pri databmp

betax=databmp(1)

mess [betax]

accept=465
radius=$SIGMA(sqrt ([accept] * [betax]) *1E-6))
mess radius ([radius])

* Plots the bunches in the transverse X-plane

page=1

fortran/file 66 ‘transv.’'//[pagel//'.’'//[filenbl//'.eps’
graphics/meta 66 -113

DO N=2, [nbturnl]+1,6

* page=INT([N]/6)
* IF (([N]-6*[page]).EQ.0) THEN
* fortran/file 66 ‘transv.’'//[pagel//'.'//{filenbl//’.eps’
* graphics/meta 66 -113
* ENDIF
T=[N]-1.0

bump= (deltax]-[T)* [bumprate]
mess [bump]
mess [N}
nt/cre [N] ‘beam’ 6 ‘ ‘ 1000 x px y py t deltap
filename='part.’
IF ([N].LE.10) THEN
s=[filename]//'0'//[T]1//"'."//[filenb)
ELSE
s=[filename)//[T)//'."//[filenb])
ENDIF
text='Turn
IF ([N].EQ.1l) THEN
title='Before ‘//[text]//[N]
ELSE
title=[text])//[T]
ENDIF
mess [s]
nt/rea [N} [s]

* h/cre/2dhisto 110 [title] 1000 -0.02 0.08 100 -0.05 0.05 100
h/cre/2dhisto 110 [title] 1000 -0.04 0.06 100 -0.05 0.05 100

nt/proj 110 [N].px%$x
set ndvx 510
h/pl 110
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Graphics/primitives/line [sept_pos] -0.04 [sept_pos] 0.04
Graphics/primitives/line [sept_pos]+[sept_width] -0.04 [sept_pos])+[sept_width]
0.04
Graphics/primitives/line [bump] -0.01 [bump] 0.01
Graphics/primitives/line [bump]-0.01 0.0 [bumpl+C.0I Z.C
* Graphics/primitives/arc [bump] 0.0 [radius]
h/delete 110
IF (([N}-6*INT([N]/6)).EQ.0) THEN
fortran/close 66
IF ([N].LT. ([nbturn]+1l)) THEN
page= [page] +1
fortran/file 66 ‘transv.’//[pagel//’.’//[filenbl//’' .eps’
graphics/meta 66 -113
ENDIF
ENDIF
ENDDO
fortran/close 66
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