
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

cern-ps dγvision

PS/ DI/ Note 95-26 (Tech.)

Multitum Injection of Pb ions in LEAR

F. Motsch

Geneva, Switzerland
8 March 1996

Table of Contents

Table of Contents
1. Introduction...ɪ
2. Multitum Injection...ɪ

2.1. Classical Multiturn Injection... 1
2.2. Combined Multitum and Transverse Injection.. 2
2.3. Injection Parameters..3
2.4. Injection at an Angle..5

3. LEAR Machine Data..6
3.1. The LEAR Accelerator... 6
3.2. Machine Data...7

4. Remarks on Injection Constraints........-..~.................. 7
5. Simulation Of Multitum Injection... 7

5.1. Sampling of the Beam..7
5.2. The Input File...8
5.3. Stmcture of the Program... 10

6. Results of the Simulation..11
6.1. Output and Postprocessing... 11
6.2. Plots ..12

6.2.1. Plot.kumac.. 12
6.2.2. Collim.kumac..13
6.2.3. Distr.kumac..14

7. How to use the Program..15
7.1. Setting-up the Program..15
7.2. Compiling the Program..15
7.3. Setting-up the Input Files... 16

7.3.1. Machine Lattice... 16
7.3.2. Injection Data..16

7.4. Running the Program..16
7.4.1. Normal Run.. 16
7.4.2. Batch Run.. 16

7.5. Postprocessing the Output... 17
7.6. Plotting the Results.. 18

8. Program Multinj...18
8.1. SUBROUTINES.. 18

8.1.1. Onetum (page 39)... 18
8.1.2. Partlostdat (page 41)...18
8.1.3. Hnalpos (page 42)... 18
8.1.4. Startfile (page 43)... 19
8.1.5. Newbunchfile (page 44)...19
8.1.6. Paquet (page 45)... 19
8.1.7. Gauss2 (page 46)... 19
8.1.8. Gauss l (page 46)...20
8.1.9. Hnished (page 47)...20
8.1.10. BeginTum (page 48).. 20
8.1.11. MakeBump (page 49).. 21
8.1.12. ReadData (page 50).. 22
8.1.13. InitBunch (page 51).. 22

Lead Injection in LEAR

8.1.14. MakeSbunch (page 51)...22
8.1.15. InitPartlost (page 51)...22
8.1.16. StorePan (page 52)... 22
8.1.17. Uniform (page 53)...23
8.1.18. Store (page 54)..23
8.1.19. Store2 (page 54)... 23
8.1.20. EnergyRamp (page 55).. 23
8.1.21. Collimator (page 56)...23
8.1.22. RemoveSpace (page 56).. 23
8.1.23. ColimDat (page 57)... 23
8.1.24. ReplaceZero (page 58)...24

8.2. FUNCTIONS... 24
8.2.1. CHARACTER*5 FUNCTION NumberToAsdi (page 47)........................24
8.2.2. INTEGER FUNCTION WhichCoUim (page 58).. 24

9. Multitum Injection Simulation..24
9.1. Lattices used... 24

9.1.1. Machine LEAR3..25
9.1.2. Machine LEAR3+... 26

9.2. Injection Parameters.. 27
9.2.1. Beam Parameters..27
9.2.2. Machine Parameters... 27

9.3. Results of the Simulation..27
9.3.1. Machine LEAR3..27
9.3.2. Machine LEAR3+... 31

10. Conclusion..34
Appendix...35

A.l. 2-dimension Gaussian Distribution.. 35
A.2. Simulation Program.. 36
A.3. Analysis Program: Statnew.f... 59
A.4. Plotting Programs...63

A.4.1. collim.kumac.. 63
A.4.2. plot.kumac...65

References.. 68

Introduction 1

Multiturn Injection and Stacking
of Pb ions in LEAR

Fabien Motsch1

1. Fabien Motsch obtained his engineering degree in 1994 from the Ecole Centrale in Paris. He
spent 16 months, (from September 1994 to December 1995), at CERN as a French Coopérant and
worked in the PS/DI group on multitum injection in LEAR. He is now preparing a Phd on Aleph at
CERN in collaboration with the CPPM in Marseille. More information : motsch@afsmail.cem.ch

CERN Geneva, Switzerland

1. Introduction
The need of multitum injection in LEAR for the LHC program is considered in Refs. [1] and [2]. The LHC |3] is
planned to start operation in the year 2004-8 and will have two main physics programs : proton collisions and Pb
ion collisions. For the latter, there is a need to have high-density beams which cannot be delivered directly from
the ECR ion source used. In fact, there is a factor of 50 between the intensity outgoing from the Linac and the
intensity needed for LHC even with multitum injection in the PS Booster. Therefore, it is necessary to accumu
late the pulses from the linac in LEAR (after the antiproton physics program has stopped) re-baptized LEad
Accumulator Ring, or in a LEAR-Iike machine. A LEAR-Iike machine would re-use the elements from LEAR to
make a longer machine or LEAR would be slightly transformed, to move the injection section from SDl to SD2
(see Figure 7 on page 7).

The information given in this report is quite general with respect to the simulation of injection and accumulation
in LEAR. Changing the machine simply consists in changing the lattice file. The injection scheme considered is
a multitum injection (classical transverse injection or combined transverse-longitudinal injection) followed by
cooling with an electron cooling device, and stacking before the next pulse.

2. Multitum Injection
Multitum injection aims at injecting more particles than it is possible by the usual single turn injection with a
septum and kicker magnet. The simplest is the transverse multitum injection (“classical” multitum injection), but
to increase the efficiency one can think of using in the injection section to achieve combined longitudinal and
transverse multitum injection.

2.1. Classical Multitum Injection
The classical scheme [4] consists in injecting particles at many consecutive turns in an accelerator. A septum
magnet deflects the particle trajectories coming from the transfer line. The closed orbit of the machine is dis
placed in the injection region by bumper magnets to prevent particles from touching the inner edge of the septum
after the first turns or later. If the beam is matched to the injection section Twiss functions, it has a circular shape
and in both x and y normalized phase space planes its trajectory is a circle centred on the closed orbit. In case of
a mismatch, the trajectories remain circles in normalized coordinates but the shape of the beam becomes ellipti
cal. In general a mismatch in the plane at injection permits a more efficient filling of the machine acceptance.

At the beginning of the injection of the first turn, the closed orbit is displaced by ∆x0. During each turn, the bump
decreases by a constant value bump and at the beginning of the second turn the bump equals Δx1 . The angle of
rotation of the particles during one turn is given by the tune factor Qχ. As a consequence, the movement of the
particles in phase space is the combination of the translation of the closed orbit (bump∖ and the rotation (angle
2πQχ) around the closed orbit with the new position after the first turn ∆x1 = ∆xθ-bump. Thecentreofthepar-

mailto:motsch@afsmail.cem.ch

2 Lead Injection in LEAR

tides distribution remains at a constant distance L1 = i — ∆xθ from the stack (j is the position where the beam is
injected).

Rgure 1 Mutlitum injection (end of the first turn)

The process of translation and rotation is the same for all injected turns. It is assumed that there is no dispersion
in the injection section of the machine or that the beam has a very small constant energy spread if there is disper
sion. Then the batches always rotate around the same point : the closed orbit, but at different distances according
to the moment when they were injected. L1 for the first bunch and L2 = /-∆xl = i- Δxq + bump = Ll + bump
for the second one, etc.

Rgure 2 Multitum injection (end of the second turn)

2.2. Combined Multiturn and Transverse Injection
Here the dispersion D is non zero in the injection section and advantage is taken of this to increase the number of
injected bunches in the machine.

The principle illustrated in Figure 1 is still valid for the first turn in the case of Combined Injection. The closed
orbit corresponds to the trajectory of particles with a given momentum. If the particles are not injected on the
closed orbit they oscillate around it, following a circular trajectory in transverse phase space x or y. The closed
orbit of a particle with a momentum deviation ∆pj is displaced by the dispersion by an amount ∆x = D∆pχ from
the trajectory of the same particle without momentum deviation. In other words, one can consider that for this
particle the closed orbit is translated by D∆pχ in the x direction. To each energy (or momentum) state corre
sponds a different closed orbit. The combined injection scheme consists in increasing the momentum of the par-

Multitum Injection 3

tides injected (coming from the Linac via the transfer line) at each turn by deltap. Then, the displacement of the
closed orbit relative to the n,h bunch has two components : the bump ∏ ■ bump and the displacement due to dis
persion DnApχ :

Δλco (n) = n ∙ Axdiipersion - (n ∙ bump)

and the position of the nlh closed orbit is

xco(n) = Ax0-Axco (n) = ∆xθ- (n DApχ- bump)

(Eq.l)

(Eq.2)

So, in the particular case where DApχ = bump the n,h batch “sees the same” closed orbit as the first one placed
at ∆xθ as it arrives from the transfer line. In other words, it will rotate around the same point as the first bunch
arriving before the first turn. It is as if the n'h batch was the first. This also means that every injected turn will
rotate around its own closed orbit at the same distance /-ʌjrθ. As a consequence, there will be a higher density of
particles in phase space than in the classical multitum injection.

Figure 3 Combined injection

2.3. Injection Parameters
Let’s suppose that one injects a matched beam and Twiss parameter α = 0 at injection, that is to say, there is no
β mismatch so, the injected beam has a circular shape and its trajectory in the normalized phase space of the ma
chine is a circle. The first condition in order to avoid losses at the septum is that the injected bunch is far enough
from the outer edge of the septum.

/-Vβε≥5 + H' (Eq.3)

where i is the injection position, β is the horizontal beta function at the injection point, ε is the emittance of the
incoming beam, s is the position of the inner edge of the septum and w its width.

4 Lead Injection ⅜π LEAR

pt4

Figure 4 Injection position

The second condition is on the initial closed orbit bump. It must be compatible with the size of the stack present
in the machine.

ʌɪθ + ≤ 5 (Eq.4)

A third condition to fulfil is that the beam does not touch the inner edge of the septum after one turn. This can be
expressed as :

where

∆xθ - bump + Lcos (2π ∙ Qχ) + √ βεz, ≤ $

L = i-∆xo

(Eq.5)

(Eq.6)

so

∆xθ - bump + (i- ∆xθ) cos (2π ∙ Qχ) + λ]βε^ ≤ s (Eq.7)

bump > O is the displacement of the closed orbit at each turn and ∆xθ its initial position, Qχ is the horizontal tune
factor.

Figure 5 After one turn

Multitum Injection 5

So, if one injects the beam at position i given by (Eq.3)

(Eq.8)

the inequation (Eq.7) becomes

bump ≥ ∆xθ + Jfizh -s + (i - bump0) ■ cos [2π ∙ Qχ]

This formula can be generalized for the nJ batch after the nJ turn.

∆xθ + Jfizh- s + (i-bump0) ∙ cos [2π(nf-∏h+ 1) ∙ Qχ]
bump ≥-- —

nt~ (nb~ ŋ ' cθs{2π(nf-∏h+ 1) ∙ Qχ]

(Eq.9)

(Eq. 10)

The injection position i is determined by (Eq.3) and the initial bump is given by (Eq.4). For a given machine and
beam, Qχ and JfiiJ are known as well as the septum position 5 and width w, and one can choose a bump rate
which satisfies (Eq.10) for a couple of values (nf, nfc). These values should be chosen in order to have
(nf - nh + 1) Qχ close to an integer. This corresponds to the nJ batch coming back close to the inner edge of the

septum after n turns in the machine. The choice of the bump rate gives the number of turns that can be injected
knowing the initial bump ∆xθ and assuming that the bump returns to zero at the end of injection. The choice of
the number of turns effectively injected and of the bump rate also depend on the acceptance of the machine.

2.4. Injection at an Angle
It is possible to introduce some refinements in the previous formulae such as in the case of an injection with a
non-zero angle. If the injected beam has a certain angle of incidence in the horizontal plane at injection, then the
beam translates along the momentum axis in the phase space in the injection section. This angle corresponds to a
certain horizontal momentum deviation ∆pχ.

Figure 6 Injection at an angle

A new term has to be added to the previous equations. The condition after one turn (Eq.4) becomes (assuming
again aχ = 0 at the septum) :

Axq-bump + (i-∆xθ) cos (2π∙ Qχ) + Jfizh + β∆pχsin (2π ∙ Qχ) ≤s

so, the condition on the bump rate bump is now

bump≥∆xo + Jfiεb-s+ (i-∆xo) ∙ cos (2π ∙ Qχ) + β∆pχsin (2π ■ Qχ)

(Eq.11)

(Eq. 12)
and for the nJ batch after the nh turn D t

6 Lead Injection in LEAR

bump ≥
δλo+ 'J^εb~s+ (i~∆χo> ‘ cos [2π(nt-nh+ 1) βχ] + β∆pjsin [2π(nf-nfc+ɪ) ∙ Qχ]

nt~ (nb~v> cos[2π(nf-nfc+l) ∙ Qχ]
(Eq. 13)

The use of an injection angle allows to sweep a wider area in the momentum direction of the phase space because
the distance between the centre of the injected beam and the stack is

/ ? ?X,+ (βΔp/ (Eq.l4)

instead of L} for injection without angle.

3. LEAR Machine Data
3.1. The LEAR Accelerator
The LEAR (Low Energy Antiproton Ring) accelerator was designed and built in the 1980’s in order to provide
low energy antiprotons to a large number of experiments. It supplies antiproton beams in the range 60 MeV/c -
2 GeV/c, with different extraction schemes : very slow extraction, slow extraction and single turn extraction.

The accelerator has a square shape (Figure 7) and in the actual configuration each straight section has a specific
role in the machine.

• SDl InjectionZejection

• SD2 Jet Set experiment (internal target and detector)

• SD3 Electron cooling

• SD4 Radio Frequency cavities

This layout was valid for the antiproton program and will be modified for transformation in LEad Accumulator
RingforLHC. Forinstance, injection and ejection would take place in sections 1 and 4 respectively.

Figure 7 LEAR

Section 1

Section 4 Section 2

Section 3

Remarks on Injection Constraints 7

3.2. Machine Data
Table 1 contains the important machine data for injection : the Twiss parameters in the injection section. They
only depend on the optical set-up of the machine and not on the beam characteristics. They can be adjusted to ful
fil injection requirements such as tune or dispersion.

Table 1 Twiss parameters at injection

Machine ax βχ Dx αy βy Dy Qx Qy

LEAR_Michel 0 2.036 37.687 0 6.294 0 2.314 2.62

LEAR1 0 2.034 37.642 0 6.321 0 2.315 2.621

LEAR2 0 1.384 0.014 0 8.038 0 2.46 2.42

LEAR3 0 9.416 0.066 0 6.021 0 1.8 2.42

LEAR3+ 0 10.0 0.008 0 12.435 0 1.85 2.6

Long_LEAR 0 2.938 108.674 0 4.614 0 1.796 2.754

Long_LEAR7 0 2.099 105.291 0 8.217 0 1.60 2.55

4. Remarks on Injection Constraints
There are several constraints to fulfil in order to achieve an efficient injection. The conditions on the injection
position and the initial bump can be seen in sections 2.3 and 2.4. There are also conditions on the accelerator
itself and more precisely on the Twiss parameters in the injection section. Combined injection requires horizontal
dispersion to be non-zero, Dχ ≠ 0. The alpha function is equal to zero because the injection point is a symmetry
point of the lattice. The tune factors have to be chosen carefully for muɪtitum injection. Apart from the resonance
conditions which have to be avoided, the horizontal tune factor Qχ should not be too near an integer thus reduc
ing the bump step at each turn. An optimum value is about 1/4, this allows to inject 4 turns before the first
injected turn passes near the septum again. Although, only the horizontal multitum and combined injection has
been studied, the choice of the vertical tune is not completely free. If the working point of the machine is near a
first order resonance of the type Q1-Q^ =Oa coupling between horizontal and vertical motion introduces an
exchange of energy between both directions and allows a better repartition of the particles in phase space.

5. Simulation of Multitum Injection
Multitum injection is a complex process that depends on a great number of parameters. Simulation is necessary
to predict the effects of coupling (due io skew quadrupoles), the effect of dispersion, the loss of particles and the
effect of electron cooling. The simulation consists of sampling a beam of particles, to specify the injection
parameters such as the injection position, the number of turns and to run a program that tracks the particles along
the machine and removes the lost ones.

5.1. Sampling of the Beam
The beam is considered as a 2-dιmensιon Gaussian elliptical distribution in both x and y transverse planes
(Figure 8). In the longitudinal plane, the beam is uniformly sampled in a time interval to adjust the bunch length,
and the energy (or momentum) is a Gaussian distribution. In fact all the Gaussian distributions are truncated at
c ∙σ where the usual value is c = ɪ .64 because the Gaussian distribution in the interval [-1.64σ; 1.64σ]
represents 90% of the probability and a distribution over (-∞.∞] has no physical meaning. The emittance is
defined by the surface of the ellipse cut at co. that is to say ɛ = ab in π ∙ mm ∙ mrad units.

8 Lead Injection in LEAR

Figure 8 Sampling

Distribution can be truncated to get different percentages of the total Gaussian distribution. Assuming that the
total number of particles in the Gaussian distribution is Nq

with

and

N = N0 ∖-e

ε0 = πσ2∕β

ɛ = π(σc)2∕β

/v = /V0 ɪ

(Eq. 15)

(Eq. 16)

(Eq. 17)

(Eq. I 8)

So, the choice of parameter c makes it possible to get any percentage of the total Gaussian distribution.

Table 2

C percentage

√6 = 2.49 95%2 86%

√2 = 1.41 63%

5.2. The Input File
The bunch.dat file contains the data necessary to specify injection : data on the beam, bump sweeping, number
of turns. Some of the parameters are illustrated tn Figure 10.

Simulation of Multitum Injection 9

n_in j ct number of particles injected per turn

nb_turn number of turns to be injected

nbmp number of turns during the bump continues to decrease without injecting particles

∏sup number of turns after injection and bump decrease are completed

Rgure 9 Bump definition

X size of the beam at 1 σj along the x-axis in metres

xp size of the beam at 1 ∙ oʌ along the px-axis

dx displacement of the centre of the distribution along the x-axis

dxp displacement of the centre of the distribution along the px-axis

phi_x angle of rotation of the ellipse in the (x,px) plane

s igma_x value of σj where the emittance ɛʃ is defined

y size of the beam at ɪ ∙ ɑʌ along the y-axis in metres

yp size of the beam at I ∙σ along the py-axis

dy displacement of the centre of the distribution along the x-axis

dyp displacement of the centre of the distribution along the px-axis

phi_y angle of rotation of the ellipse in the (y,py) plane

s igma_y value of σ where the emittance ε is defined y y
dT length of the beam in metres

deltat fraction of the beam length to be plotted (negative, -1 <deltat<0)

P momentum (deviation from the reference momentum)

deltap momentum spread

sept_pos position of the inner edge of the septum in metres

sept_width (in) width of the septum in metres

del tax initial value of the bump

bumprate(m) bump decrease per turn in metres

injct_pos(m) position of injection of the centre of the beam distribution in metres

del tapini initial momentum deviation from the momentum p

del taprate decrease of the momentum per turn

Trev (m) revolution time along the machine in metres (c.time)

10 Lead Injection in LEAR

Figure 10 Definitions relative to the sampled beam

sample expand

translate rotate

First of ail, the program randomly samples a 2-dimension Gaussian distribution over a circle of unit radius that
coσesponds to σ and cut at radius c. It is then expanded to an ellipse by multiplying the x and y coordinates by
the semi-axis lengths of the ellipse. The centre of the distribution is translated by a vector {dx, dpx) and is
rotated around its centre by an angle phix relative to the x axis. So, the three parameters (dx, dpx) and phix
make it possible to inject the beam at a certain angle dpx and position dx and to tilt it by an angle phix. This can
also be done in the y plane.

5.3. Structure of the Program
Structure of the program is described in Figure 11. The complete listing can be found in Appendix A.2. on page
36 and the details of each routine is in section 8. on page 18. For the moment, the general ideas of the program
will be seen.

The core of the program is mad [6], which performs the tracking of the particles along the machine. First of all,
the program reads the parameters defining the beam and the injection in the file bunch.dat, then it samples a
batch of particles according to these data. The bump needed for multitum injection (simple transverse as well as
for combined) is not implemented in mad, but is artificially applied to the particles. The closed orbit remains the
same during all the simulation, there are no bumper magnets to alter it in the injection area, but the coordinates of
the particles injected are corrected so that the distance between a particle and the closed orbit without bump, is
the same as the distance between the particle and the closed orbit with the bump (see section 8.1.11. on page 21).
Therefore, the particle will undergo the same oscillation as if there was a real bump. After one turn, the results of
the tracking by mad are exploited to get the number of particles lost at the collimators. This information is avail
able in the file print. ##### which contains the coordinates of the particles lost and where it occurs. Loss at the
septum is calculated in the program by examining the coordinates of the particles at the end of the tracking and
by correcting their coordinates, relative to the closed orbit to get their absolute coordinates relative to the centre
of the machine by tacking the bump into account (see section 8.1.11. on page 21). The coordinates of particles
which are not lost are stored and kept for the next turn. A new batch of particles will be added to them if the
injection is not finished, otherwise they can be tracked for a few more turns to see if there are some losses.

Results of the Simulation 11

Part.dat

Figure 11 Structure of the program

---- ► Part.dat

---- ► bunch.###

bunch.dal

Part.dat

LEAR, mad
lear.dat

PartLos.###

Bunches.###

part.n.###

6. Results of the Simulation
6.1. Output and Postprocessing
The simulation output consists of several files which are first treated by a program called stat.exel and then
the data are visualized using paw [5].

1. Stat. f is written in XL fortran for AIX.

The interesting output files from the simulation are listed below (### represents the number allocated to each run
of the program, and $$ represents a number of turns).

• part. $$. ### coordinates of the particles in phase space, after turn $$ for the run number ###.

• bunch.### reproduction of the data contained in the file bunch.dat for the run number ###, in addi
tion with the value of the Twiss functions αx and βx at injection, the number of collimators, the list of the ele
ments placed after the collimators.

12 Lead Injection in LEAR

• Bunches . ### number of particles per bunch after each turn.

• PartLos . ### for each turn, list of particles lost at the septum, total number of particles lost at the septum
and at the collimators along the machine.

The program Stat.exe1 (see Appendix A.3. on page 47 for the complete listing) processes the data from
Bunches,### to give the fractions of particles effectively injected relative to the total number of particles
injected at each turn (the number of particles per bunch times the number of turns). This fraction is calculated for
each bunch and stored in the file bnchstt .plt.The sum of all fractions gives the total efficiency of injec-
tion.The file partios .pit contains the number of particles lost relative to the total “injected” particles. The file
col lost. pl t gives the fraction of particles lost per turn at each location of a collimator.

1. See A.4. on page 63 for the complete listing
2. See A.4.2. on page 65

The program Stat.exe processes the data from Bunches.### to give the number of particles effectively
injected. This number is calculated for each bunch and stored in the file bnchstt .pit for plotting with paw. The
sum of all numbers gives the total number of particles injected.The file partios .pit contains the number of
particles lost relative to the total “injected” particles (the number of particles per bunch times the number of
turns). The file co Host, pit gives the fraction of particles lost per turn at each location of a collimator. The file
Nbinjct. ### contains the total number of particles injected at each turn. This file can then be used io compare
different configurations of injection when plotting a curve for each of them as with Excel for instance.

6.2. Plots
Plots are made with the visualisation program paw [5]. There are three different kumac scripts to plot different
types of data resulting from the simulation.

• plot. kumac plots the coordinates of the particles in the horizontal transverse phase space for each turn
(data from the files part.$$.###)

• distr . kumac plots the particle distribution in the transverse x and y phase planes for each turn (data from
the files part.$$.###)

• collim. kumac plots the number of particles injected at each turn, the particle loss, and their repartition
along the machine (data from the files bnchstt .pit, partios .pit and collost .pit)

6.2.1. Plotkumac
The paw script plot. kumac1 2 plots the coordinates of the particles in the transverse phase space (Figure 12). Six
turns are represented on the same page and in the same eps file. The cross symbolizes the closed orbit and ena
bles to see the bump, the two lines on the left side indicate the position of the septum edges.

Results of the Simulation 13

Figure 12 transv. $. ###.eps file

6.2.2. Collim.kumac
The collim. kumac file1 handles data concerning the losses of particles either at the septum or at collimators.
The ef fcy### . eps plot (Figure 13) represents the number of particles injected at each turn“. The different parts
of each histogram bar correspond to a different bunch. The first injected bunch is the darkest. This allows to see
the repartition of losses amongst the bunches.

1. See Appendix A.4.1. on page 63
2. The number of particles injected or lost is normalized to the total number of particles which could be
injected, i.e. the number of turns done in the run times the number of particles injected per turn.

Figure 13effcy###.eps file

There are two possible ways to lose panicles : at the septum (hitting the outer edge at injection or the inner edge
after one or several turns) or at collimators along the machine. Collimators are placed where there are aperture
limitations, i.e. quadrupoles. It is therefore interesting to see where the losses occur at each turn. On the plot
plost### .eps (Figure 14) the number of particles“ lost at the septum is represented by the darkest bar. In the 1 2 1 2

14 Lead Injection in LEAR

case of Figure 14, particles are lost at the septum only during the first turn, there are no losses during turns 2, 3
and 4, then particles are lost at collimators.

95/08/25 14.47

Figure 14 plost###. eps file

Plot colim### . eps (Figure 14) gives the position where particles are lost along the machine. The different col
ours used for each bar correspond to different bunches and the position given is the name of the element follow
ing the collimator in the beam line.

95/08/25

Figure 15 colim### . eps file

6.2.3. Distnkumac
For each turn, the script Distr .kumac plots the histograms of the x and px transverse distributions ol particles

How to use the Program 15

Figure 16 di str. $. ### .eps file

7. How to use the Program
How to set-up the program for personal use will be shown, as some features depend on user ID, then how to ram
pile it. Before a run, the input files have to be prepared with the correct parameters for the injected beam and
machine. The run can then be made in batch mode, which is preferred for a few tens of turns, otherwise the pro
gram would crash. Eventually, how to deal with the program’s output to produce graphics will be described.

7.1. Setting*up the Program
Some features in the program depend on the user and have to be set before compiling and nmning it.

The program Multinj runs mad [6] as many times as the number of turns requested, mad is run in batch mode tty
using the command s=SYSTEMF ('madbatch -q medium -p8.16 LEAR.mad'). The p-ogram has to wait
until the end of this batch to go on and process the output of mad. For this purpose one uses the Ilq command
which gives the list of batch processes on PaRC1 [8]. This is implemented in Finished (page 20) in the form of
a pipped command S = Systemf (' 1 Iq i g rep -c motsch > end.dat') which counts the number of occur
rence of the user’s name (here motsch) in the list of batches and redirects it in the file end. dat. Therefore each
user nmning the program on his personal PaRC account must place here his username.

1. PaRC has migrated to cernsp in 1996.
2. XL Fortran for AIX [12]

This has a drawback : it is impossible to run several programs in batch. It is only possible to run Multinj in
batch, then the program knows it is run in batch and takes it into account when reading the contents of the file
end.dat.

The program was initially used for the LEAR machine so the lattice file and the mad file names are Iear. dat
and LEAR. mad respectively. If one wishes to give different names to these files they also have to be changed. The
name of the mad file occurs only once in the program when nmning the batch command s=SYSTEMF ('mad
batch -q medium -p8.i6 Lear.mad,) and the name of the lattice file occurs once in the mad input file
LEAR . MAD (CALL, FILENAME = ' Iear . dat ').

To summarize :

• change username in the subroutine Finished (Compulsoiy)

• change the names of the lattice file (in the mad input file) and of the MAD input file (not compulsory)

7.2. Compiling the Program
The program is written in fortran90 and has to be compiled with the command : 1 2

16 Leadlnjectionin LEAR

xlf -q extname -L /cern/pro/lib -1 kernlib -1 mathlib file_name

This compiles and links the program to the specified Iitraries and the default name given to the executable is
a. out. This ∞mmand can be defined as an alias [8]. For instance, to create the alias f 90 corresponding to
this command just type

alias f90 xlf -q extname -L ∕cern∕ρro∕lib -1 kernlib -1 mathlib

Typing f90 mult in j . f will do the same thing.

7.3. Setting-up the Input Files
7.3.1. Machine Lattice
The machine lattice is defined in the file Iear. datɪ. It is a plain mad lattice file, so all the details concerning the
syntax,... is in [6].

7.3.2. Injection Data
The injection’s parameters and description of the bunch, the bump,...etc. are specified in the file bunch.dat.
The detailed parameters are listed in section 5.2. on page 9.

7.4. Running the Program
There are two ways to run the program : the “normal” and the batch mode. It will be assumed that the program
name is mutlin j . exe.

7.4.1. Normal Run
The simplest way to run the program is to type mutlinj.exe or mult in j .exe and to πm it in background. It
is often useful to redirect the output of the program to a file to avoid getting all the messages on the screen
(multinj.exe > output &).

7.4.2. Batch Run
This is a preferable way to run the program and almost compulsory when nmning it for large numbers of parti
cles per bunch or large number of turns. In this case the run-time may overcome the limits allowed and the pro
gram would crash. The simplest way is to use the menu driven batch utility xloadl [8]. In the menu File select
Build a Job and fill in the pop-up window (Figure 17 on page 17). Write the name of the executable in the
frame Executable and press the button Submit. It is then possible to exit xloadl and to see the status of the
run by using the Ilq command or by listing the files created.

1. See “Setting-up the Program” on page 15 if you wish to change its name.

How to use the Program 17

Figure 17 xloadl window for submitting a batch

M
.

Executable

Argumei

Stdout

Stderr

Initialdir

NotiFy User

Start Date mm/dd/yy

Start Time hh:mm

Cla

Hold

Account Humber

Environment

RequirementsNotification Checkpoint Restart

I ì Tools Edit
I

Help

Choices

Choices

Alway

xz Complete ʌ User

Error System
Preferences

ʌ Never

ʌ Start
Limits

Parallel Jobs

Save Close

7.5. Postprocessing the Output
The postprocessing of the output of Multinj is made by the fortran program stat.exe (see section 6.1. on
page 11). This program asks for the number of the run which has to be processed and creates the files needed for
plotting.

18 Lead Injection in LEAR

7.6. Plotting the Results
The simulation results can be visualized by using paw. The c.ifferent paw scripts and their purpose is described in
section 6.2. on page 12. To run paw, just type paw. The program asks the workstation type which is 787 9 for an
xterm. Then paw opens a tektronix (Tek) window used for the drawings whilst the previous window is used
to enter commands after the prompt paw >.

The command to run a PAW script, let’s call it script .kumac, is simply exec script.

8. Program Multinj
This paragraph describes all the subroutines and functions composing the program. For each of them, there is
first a list of variables used as arguments and their meaning. A short description of the purpose of the procedure
(subroutine or function) is then given and the manner in which it is achieved.

8.1. SUBROUTINES
Each subroutine is described in the following paragraphs. First the input or output variables are listed, then a
short description of the subroutine is given. The page number refers to the listing of the program in Appendix
A.2. on page 36.

8.1.1. Oneturn (page 39)
RunNb identification number of the MAD run

nom common suffix given to the files generated by the program

tour number of the turn being performed

initios number of particles lost at the septum before the beginning of the turn

septpos position of the inner edge of the septum

septwidth width of the septum

ninjet number of particles injected per turn

bunch table containing the number of particles per bunch

bunchLoss table containing the number of particles lost in each bunch

totl.oss total loss of particles during turn tour

bet ax horizontal β function in the injection section

alphax horizontal α function in the injection section

This subroutine analyses the results from mad. It uses the subroutines Partlostdat (see section 8.1.2. on page
18) and Finalpos (see section 8.1.3. on page 18) to get the statistics of particles lost at the collimators or at the
septum respectively.

8.1.2. Partlostdat (page 41)
RunNb (see 8.1.1, on page 18)

nlost number of particles lost at collimators

PartLost table containing the list of lost particles

Sbunch cumulated number of particles per bunch

bunchLoss table containing the number of particles lost in each bunch

This subroutine reads the data in the print. RunNb file generated by mad to find the particles lost at collimators
along the machine. It identifies the bunch to which the particle belongs and counts the number of particles lost in
each bunch as well as the total loss during the turn. The number of particles lost at each collimator is written in
the file PartLos.###.

8.1.3. Finalpos (page 42)
string string containing a line from the file print. ###

ProgramMuItinj 19

SeptLoss number of particles lost at the inner edge of the septum

PartLost (see 8.1.2. on page 18)

Sbunch (see 8.1.2. on page 18)

bunchLoss (see 8.1.2. on page 18)

septpos (see 8.1.1. on page 18)

septwidth (see 8.1.1. on page 18)

Stackposref closed orbit position at the beginning of the turn

bumprate value of the bump decrease per turn

This subroutine reads the coordinates of the particles remaining after the turn in the pri∏LRunNb file. It calculates
the stack position stackpos depending on the moment when the particle crosses the injection section io calcu
late the real position of the particles relative to the closed orbit without bump : x+stackpos. This value is com
pared with the position of the inner edge of the septum septpos to show whether or not the particle is lost. The
table PartLost stores the number of each particle lost. The number of particles lost in each bunch is in
bunchLoss and the total number of particles lost at the septum is SeptLoss.

8.1.4. Startfile (page 43)
PartLost (see 8.1.2. on page 18)

ntot total number of particles remaining after the turn

totLoss (see 8.1.1. on page 18)

CoLoss Number of particles lost at collimators

RunNb (see 8.1.1. on page 18)

This subroutine creates the part .dat file for the new turn. The coordinates of the particles are read from the
files coord. ### created by MAD[6]. There are ntot-CoLoss particles in the file, which correspond to the par
ticles which have not been automatically removed by mad because they were lost at a collimator. The particles
lost at the septum are still there because they are not processed by MAD but by the current program. The particle
number is checked in the list of lost particles PartLost, if it is not lost at the septum the six coordinates X, PX,
Y, PY, T, DELTAP are written in the part .dat file.

8.1.5. Newbunchfile (page 44)
turn number of the current turn

bunch number of particles per bunch

bunchLoss (see 8.1.2. on page 18)

Stores the number of particles per bunch1 after the turn in the file Bunches.###.

1. Bunch(i)=bunch(i)-bunchLoss(i)

8.1.6. Paquet (page 45)
n number of particles to be sampled

seed value of the seed parameter for random sampling

This subroutine samples the bunches of panicles using the subroutines Gaussl for the momentum distribution,
Gauss2 for the 2-dimension Gaussian distribution in the transverse planes x and y and the subroutine Uniform
for the longitudinal distribution of the panicles. If it is the first turn, the coordinates are stored in the file Part. -
dat, and if it is not, they are added to the file Part. dat after the coordinates of the remaining particles after the
previous turn.

8.1.7. Gauss2 (page 46)
n (see 8.1.6. on page 19)

a horizontal dimension of the emittance ellipse

20 Lead Injection in LEAR

b vertical dimension of the emittance ellipse

da horizontal translation of the centre of the ellipse

db vertical translation of the centre of the ellipse

alpha angle of rotation of the ellipse relative to the horizontal axis

cut value of the standard deviation where the distribution is cut

Vect 2-dimension table containing the coordinates of the sampled particles in phase space

seed (see 8.1.6. on page 19)

This subroutine samples a 2-dimension Gaussian distribution according to the definitions used in section 5. on
page 8. The coordinates are stored in the table Vect and transferred back to the calling routine. The algorithm
used is based on the Gaussian distribution on a circle (Appendix A.l. on page 35), which can be inverted.

8.1.8. Gauss1 (page 46)
DELTAP table containing the sampled values

n (see 8.1.6. on page 19)

Mean mean value of the Gaussian distribution

Sigma standard deviation of the distribution

This subroutine generates a Gaussian distribution used for the distribution of the momentum of the particles.

8.1.9. Finished (page 47)
nbfile identification of the mad run

BATCH logical value, true if the program is run in batch mode

This subroutine detects the end of the mad run. It redirects the outputof the command Ilq ɪ grep -c motsch
in the file fini. dat. This command counts the number of occurrences of the user ID in the list of batch jobs.
This has to be changed for each different user, see section 7.1. on page 15. Then according to the number read in
the file and if the program is run in batch mode, the mad run is either finished or not.

Table 3

batch yes no

Number in fini.dat 1 0

MAD finished yes yes

8.1.10. BeginTurn (page 48)
initios (see 8.1.1. on page 18)

septpos (see 8.1.1. on page 18)

septwidth (see 8.1.1. on page 18)

turn (see 8.1.5. on page 19)

de It ax initial bump of the closed orbit

bumprate (see 8.1.3. on page 18)

notlost number of particles remaining

This subroutine checks if any panicles from the file Part .dat hits the outer edge of the septum before the stan
of MAD. The position of the panicles from the file Part. dat are relative to the closed orbit and take into account
the bump, the coordinates used for the calculation are translated by the value of the bump at the moment when
the particle crosses the injection section to get the real coordinates of the particles relative to the centre of the
machine.

X + StackT (Eq. 19)

ProgramMuItinj 21

where

StackT = Stackpos------------------------ (Eq.20)
1 rev

and stackT is the position of the stack at a given time T (when the particle crosses the injection section) calcu
lated on the basis of the stack position at the beginning of the turn stackpos.

These coordinates are compared with the position of the outer edge of the septum septpos + septwidth.

8.1.11. MakeBump (page 49)
turn (see 8.1.5. on page 19)

not lost (see 8.1.10. on page 20)

This subroutine simulates the closed orbit bump. Given the injection position i∏jctpos and the value of the bump
at a given time T the coordinates of the particles relative to the closed orbit bump are

X + injctpos - bump (Eq.21)

where bump is the bump at time T (expressed in metres in mad)

, , , T bumpratebump = bumpref------------------ (Eq.22)
rev

and bumpref is the bump at the beginning of the turn

bumpref = ∆.r - (turn - 1) ∙ bumprate (Eq.23)

Figure 18 Simulation of the closed orbit bump

particle

X

∣njctpos-bumpref

closed orbit in MAD

22 Lead Injection in LEAR

Figure 19 Collimatore and bump

collimators

closed orbit in MAD

8.1.12. ReadData (page 50)
n (see 8.1.6. on page 19)

nbturn number of turns to inject

ns number of turns after injection

Trev revolution period in metres

This subroutine reads all the parameters specifying the bunch and the injection in the file bunch.dat.

8.1.13. InitBunch (page 51)
bunch (see 8.1.5. on page 19)

bunchLoss (see 8.1.2. on page 18)

This subroutine initializes tables bunch and bunchLoss containing the number of particles per bunch and the
number of particles lost per bunch.

8.1.14. MakeSbunch (page 51)
turn (see 8.1.5. on page 19)

bunch (see 8.1.5. on page 19)

Sbunch (see 8.1.2. on page 18)

This subroutine creates the table Sbunch. where Sbunch (i) is the sum of the number of particles in the bunches
j ≤ i. This is used to identify the bunch to which a particle belongs.

8.1.15. InitPartIost (page 51)
Partlost (see 8.1.2. on page 18)

bunchLoss (see 8.1.2. on page 18)

This subroutine initializes the tables Partlost and bunchLoss.

8.1.16. StorePart (page 52)
tour number of the turn to add to the file name

name string containing the number of the run to add to the file name

del tax (see 8.1.10. on page 20)

bumprate (see 8.1.3. on page 18)

bet ax (see 8.1.1. on page 18)

alphax (see 8.1.1. on page 18)

deltat gives the fraction of particles relative to the length of the machine to be kept in the file

Program Multinj 23

This subroutine stores the particle coordinates from the file Part. dat in a file. The coordinates of the particles
relative to the closed orbit used for the calculation are converted in absolute coordinates relative to the centre of
the machine by adding the value of the bump at the time the particle crosses the injection section. The coordi
nates can also be normalized.

8.1.17. Uniform (page 53)
n number of particles to sample

T table containing the uniformly sampled variables

dτ upper edge of the sampled interval

seed (see 8.1.6. on page 19)

This subroutine uses the function RANF from the library to generate n uniform values in the interval [C,dT]
stored in Table τ. The value of the seed parameter is stored outside this routine to avoid regenerating the same
distribution at each run.

8.1.18. Store (page 54)
name name to be given to the file where the coordinates are stored.

This subroutine stores the content of the file Part.dat in a file called name, that is to say, the coordinates of the
particles relative to the closed orbit.

8.1.19. Store2 (page 54)
tour (see 8.1.16. on page 22)

del tax (see 8.1.10. on page 20)

bumprate (see 8.1.3. on page 18)

This subroutine stores the absolute coordinates of the particles relative to the centre of the machine in a file
called part2 .plot.

8.1.20. EnergyRamp (page 55)
turn (see 8.1.5. on page 19)

not lost (see 8.1.10. on page 20)

This subroutine creates the bump in momentum required for combined injection. The momentum deviation is

T ■ ∆p, r rate
dɑp = ∆pref+ —------ (Eq.24)

rev

8.1.21. Collimator (page 56)
Col im_name table containing the name of the collimators used in the lattice

nbcol im number of collimator types in the whole lattice

This subroutine finds in the file Iear . dat defining the machine the names and the number of collimators placed
in the lattice. The names of the nbcol im collimators are stored in Colim_name.

8.1.22. RemoveSpace (page 56)
name string from which a substring delimited by spaces has to be isolated

name_length length of the string

This subroutine extracts the name of the collimator from string. The name is placed at the beginning and is sur
rounded by spaces that are removed.

8.1.23. CoIimDat (page 57)
Col im_pos table containing the position of the collimators along the lattice

col imNum number of collimators in the lattice

RunNb (see 8.1.1. on page 18)

24 Leadlnjection in LEAR

Col imli st list of the collimators along the lattice

long length of the list containing the collimator list

This subroutine reads the file print .### to find the position and the succession of the collimators along the
machine. It uses the names of the collimators given by the subroutine Collimator.

8.1.24. RepIaceZero (page 58)
string string in which the character O has to be replaced by a space

This subroutine replaces the O characters in string with spaces. This enables the comparison of the number rep
resented in string to be compared with another number.

8.2. FUNCTIONS
8.2.1. CHARACTER*5 FUNCTION NumberToAscii (page 47)
n integer to be converted into the corresponding string

This function converts the number n in the form of a 5 character string. If the number to convert has less than 5
digits the empty spaces are filled with O.

8.2.2. INTEGER FUNCTION WhichCoIIim (page 58)
pos position of the collimator

Col im_pos table of collimator positions

nbcol im number of collimators in the list

This function identifies the collimator corresponding to a given position pos and the list Ofcollimator positions
in Table Col im_pos. Then it will allow to count the number of particles lost at a given position where a collima
tor is placed.

9. Multiturn Injection Simulation
Presented here, are the results of the simulations in two cases which might be tested. Two different lattices were
used and the beam parameters have been optimized to maximize the efficiency.

9.1. Lattices used
The Twiss functions in the injection section of the machines used are listed in Table I on page 7. Both LEAR3
and LEAR3+ lattices are not fully symmetric : the pattern is 4(A,B). Collimators are placed to simulate aperture
limitations. Their location corresponds to places where the beta function is low and the particles may be lost :
centre of quadrupoles (which are split in two), entrance of the dipoles. A solenoid can be switched ON to take
into account the solenoidal field in the electron cooler in section 3. The following are the lattice files defining the
machines LEAR3 and LEAR3+ in mad format.

25

9.1.1. Machine LEAR3

TITLE, S="Machine 3 for MD Pb -> LEAR*

EDl
ED2
ED3

=-0.0120348
= 0.0157712
= 0.0962689

INJ
EC

: MARKER
: MARKER

DBI
DBA
DS
DL
DSOL

: DRIFT, L=O.07299
: DRIFT, L=0.01575
: DRIFT, L=l.059107
: DRIFT, L=3.72925
: DRIFT, L=2.97925

Cl :
C2 :

Rcollimator,l=o.o,xsize=o.05,ysize=o.027
Rcollimator,l=o.o,xsιzE=o.05,γsιzE=o.06

BIl
BAl
BA2
BI2
BB
BE

: SBEND, L=2.13554, ANGLE=O.544434, E1=ED3
: SBEND, L=l.11684, ANGLE=O.240964, E1=ED2, E2=ED1
: SBEND, L=l.11684, ANGLE=O.240964, El=EDl, E2=ED2
: SBEND, L=2.13554, ANGLE=O.544434, E2=ED3
: LINE = (DBI, Cl, BH, Cl, DBA, Cl, BAI, Cl)
: LINE = (Cl, BA2, Cl, DBA, Cl, BI2, Cl, DBI)

SOL : SOLENOID, L=1.5, KS=O.O

QFll
QDll
QF2 2
QD2 2

: QUADRUPOLE ,L=O.2529, Kl= 0.9742
: QUADRUPOLE ,L=O.25575, Kl=-1.3327
: QUADRUPOLE ,L=0.2529, Kl= QFll[KI]
: QUADRUPOLE ,L=0.25575, Kl=-1.1250

QFl
QDl
QF2
QD2

LINE = (QFll, C2 , QFll)
LINE = (QDll, C2 , QDll)
LINE = (QF22, C2 , QF22)
LINE = (QD22, C2 , QD22)

SF: Sextupole, l=o.33535
SD: Sextupole, l=o.33535

PERU : LINE = (BB, DS, QDl, SF, QFl, SD, DL)
PER12 : LINE = (DL, SD, QFl, SF, QDl, DS, BE)

PER21 : LINE = (BB, DS, QD2, SF, QF2, ΞD, DL)
PER22 : LINE = (DL, SD, QF2, SF, QD2, DS, BE)

PER31 : LINE = (BB, DS, QDl, SF, QFl, SD, DSOL)
PER32 : LINE = (DSOL, SD, QFl, SF, QDl, DS, BE)

PER41 : LINE (BB, DS, QD2, SF, QF2, SD, DL)
PER42 : LINE = (DL, SD, QF2, SF, QD2, DS, BE)

LEAR : LINE (PER12, PER21, PER22, PER31, SOL, PER32, PER41, PER42, PERU)

26 Appendix

9.1.2. Machine LEAR3+

QD22 : QUADRUPOLE ,L=0.25575, Kl=-1.38628

TITLE, S='Machine 3 for MD Pb -> LEAR'

EDl = -0.0120348
ED2 = 0.0157712
ED3 = 0.0962689

INJ : MARKER
EC : MARKER

DBI : DRIFT, L=0.07299
DBA : DRIFT, L=0.01575
DS : DRIFT, L=l.059107
DL : DRIFT, L=3.72925
DSOL : DRIFT, L=2.97925

Cl : Rcollimator,l=o.o,xsize=o.Oss,ysize=o . 027
C2 : Rcollimator,l=o.o,xsize=o.055, ysize=o.06

BIl : SBEND, L=2.13554, ANGLE=O.544434, E1=ED3
BAl : SBEND, L=l.11684, ANGLE=O.240964, E1=ED2, E2=ED1
BA2 : SBEND, L=l.11684, ANGLE=O.240964, El=EDl, E2=ED2
BI2 : SBEND, L=2.13554, ANGLE=O.544434, E2=ED3
BE : LINE = (DBI, Cl, BH, Cl, DBA, Cl, BAI, Cl)
BE : LINE = (Cl, BA2, Cl, DBA, Cl, BI2, Cl, DBI)

SOL : SOLENOID, L=1.5, KS=O.O

QFll : QUADRUPOLE ,L=O.2529, Kl=O.92090
QDll : QUADRUPOLE ,L=O.25575, Kl=-1.13417
QF2 2 : QUADRUPOLE ,L=O.2529, Kl=I.08290

QFl :
QDl :
QF2 :
QD2 :

LINE = (
LINE = (
LINE = (
LINE = (

QFll, C2
QDll, C2
QF22, C2
QD22, C2

, QFlD
, QDlD
, QF22)
, QD22)

SF: Sextupole,
SD: Sextupole,

PERU : LINE =

L=O.33535
L=O.33535

(BB, DS, QDl, SF, QFl, SD, DL)
PER 12 : LINE = (DL, SD, QFl, ΞF, QDl, DS, BE)

PER21 : LINE = (BB, DS, QD2, SF, QF2, SD, DL)
PER 2 2 : LINE = (DL, SD, QF2, SF, QD2, DS, BE)

PER 31 : LINE = (BB, DS, QDl, SF, QFl, SD, DSOL
PER32 : LINE = (DSOL, SDi, QFl, SF, QDl, DS, BE

PER41: LINE = (BB, DS, QD2, SF, QF2, SD, DL)
PER42: LINE = (DL, SD, QF2, SF, QD2, DS, BE)

LEAR : LINE = (PER12, PER21,, PER22, PER31, SOL, PER32, PER41, PER42, PERU)

Multitijmlnjection Simulation 27

9.2. Injection Parameters
9.2.1. Beam Parameters
Table 4 gives the beam parameter used to perform the simulations in the machine LEAR3 and its modified ver
sion LEAR3+. The differences come from the Twiss functions at injection. In both cases the horizontal mismatch

Table 4 Beam parameters injected in LEAR3 and LEAR3+

LEAR X χp dx dxp Φx σx y yp dy dyp Φy σy dT P ∆p

3 2.2E-3 9.45E-4 0 0 0 1.64 3.6E-3 5.91E-4 0 0 0 1.64 -829.226 0 0

3+ 2.29E-3 9.17E-4 0 0 0 1.64 5.11E-3 4.11 E-4 0 0 0 1.64 -829.226 0 0

is 4. The vertical beam parameters are not important so far as coupling is not introduced in the lattice. For all
simulations, the number of particles per batch is 200.

9.2.2. Machine Parameters
The main machine parameters such as Twiss functions in the injection section and the tunes can be found in
Table 1 on page 7 and the lattice files are listed above.

9.3. Results of the Simulation
9.3.1. Machine LEAR3
The injection parameters are listed in Table 5. The initial bump ∆x and the injection position injc_pos have been
calculated with (Eq.3) and (Eq.4) .The bump rate results from the application of (Eq. 10) for the different batches.

Table 5 Injection parameters in LEAR3

run sept_pos
(m)

se pt_ width
(m)

∆x
(m)

bumprate
(m)

injct_pos
(m)

∆pjni
(1)

∆p.ratθ
(1)

nb_tum nbmp nsup

008 0.055 0.009 0.0382 0.00347 0.0662 0.0 0.0 7 4 5

009 0.055 0.009 0.0382 0.00347 0.0662 0.0 0.0 11 0 5

010 0.055 0.009 0.0382 0.00347 0.0662 0.0 0.0 6 5 5

011 0.055 0.009 0.0382 0.003183 0.0662 0.0 0.0 7 5 5

012 0.055 0.009 0.0382 0.003183 0.0662 0.0 0.0 8 4 5

The number of turns during which the bump decreases is ∏biurn + nbmp and there are only nbturn during which
particles are effectively injected. This number is adjusted according to the results of the simulation. In run 007,
the maximum efficiency is reached at the 7lh turn so, at run 008, we only inject 7 turns and let the bump decrease
to zero for 4 turns. In Figure 20, the evolution of the effective number of turns injected for the different situations

Table 6 Effective turns injected in LEAR3

run 008 009 010 011 012

effective turns
injected

5.65 5.65 5.28 5.92 6.1

simulated can be seen. The best results can be seen in more detail at run 012 : more than 6 batches injected

28 Lead Injection in LEAR

Figure 20 Injection in LEAR3 with small collimators (5.0 cm)

First of all, let us look at the transverse phase space in Figure 21 which shows the position of the closed orbit
symbolized by the cross and the septum which is represented with two lines, the inner and the outer edge. It can
be seen that only a little more than 7 batches are effectively injected thus it is not necessary to try to inject more
than 8 batches.

Multiturn Injection Simulation 29

Figure 21 transvO12.eps

Tronsverse Phose-Spoce X

95/11/29 11.55

Turn lʒ Turn 16

Figure 22 shows this more precisely. There are no loss of particles amongst the first 7 batches (represented with
different hatches) during the 17 turns performed in the machine. Figure 23 indicates that the particles are lost at
the collimators (light hatches) mainly at the 8th turn. The fraction is the number of particles lost relative to the
total number of particles that could be injected, i.e. the number of turns during batches are injected times the
number of particles per batch.

30 Lead Injection in LEAR

Figure 22 effcy012.eps

95/11/29 12.00

Figure 23 plost012.eps

The optimum parameters are as those for run 012. The limited number of turns injected comes from the collima
tors placed in the machine (horizontal aperture 0.05m).

Figure 24 shows that by increasing the size of the collimators makes it possible to inject more turns : on average

Multiturn Injection Simulation 31

one more turn is injected with 5.5 cm and 5.0 cm collimators, with the parameters given in Table 7. The parame-

Table 7 Injection parameters in LEAR3+ (with 5.0 cm wide collimators)

run
sept_pos

(m)
se pt_ width

(m)
∆x
(m)

bumprate
(m)

injct_pos
(m)

∆pjni
(1)

∆p-rate
(1)

nb_tum nbmp nsup

014 0.055 0.009 0.0382 0.003183 0.0662 0.0 0.0 8 4 5

015 0.055 0.009 0.0382 0.00347 0.0662 0.0 0.0 11 0 5

ters for runs 014 and 015 are the same as for runs 012 and 009 respectively.

Figure 24 Injection in LEAR3 : influence of the collimator size (hollow markers corre
spond to 5.0 cm wide collimators and full markers to 5.5 cm wide collimators), the same

shapes ∞rrespond to the same ∞nfigurations of the injection parameters.

9.3.2. Machine LEAR3+
This machine is derived from LEAR3. The main difference is the value of the tunes. The horizontal tune has

Table 8 Injection parameters in LEAR3+ (with 5.0 cm wide collimators)

run sept_pos
(m)

sept_width
(m)

Δ×
(m)

bumprate
(m)

injct_pos
(m)

∆pjni
(1)

∆p-rate
(1)

nb_tum nbmp nsup

016 0.055 0.009 0.0327 0.∞275 0.0713 0.0 0.0 12 0 5

017 0.055 0.009 0.0327 0.00275 0.0713 0.0 0.0 7 5 5

019 0.055 0.009 0.0377 0.002513 0.0663 0.0 0.0 15 0 5

020 0.055 0.009 0.0377 0.002513 0.0663 0.0 0.0 12 3 5

021 0.055 0.009 0.0377 0.002513 0.0663 0.0 0.0 12 2 5

been chosen to be more irrational than the horizontal tune of LEAR3 (βr = 1.8). The slight difference could
allow the injection of more particles by decreasing the bump more slowly together with the fact that the operat
ing point is further from resonance lines. The other parameters such as the α and β function in the injection sec
tion, the dispersion, are of the same order of magnitude.

32 Lead Injection in LEAR

The number of turns effectively injected is slightly larger than in the machine LEAR3. This difference mainly

TaWe 9 Effective turns injected in IEAR3+ (5.5 cm collimators)

run 016 017 019 020 021

effective turns
injected

4.3 4.38 7.77 7.67 7.39

comes from different sizes of the collimators used.

The number of turns injected is highly dependant on the value of the bump step at each turn. If it is too big, the
particles oscillate far from the reference orbit after a few turns and come close to the aperture limitations.

Figure 25 Injection in LEAR3+ (collimators size : 5.5 cm)

This happens during runs 016 and 017 (Figure 25) where the number of turns is limited to 4.3 after 6 turns in the
machine due to the particles hitting the collimators (Figure 26).

Multitum InjectionSimuIation 33

95/12/01 09.58

Figure 26 ρ∣ost016.eps : particles lost during injection in LEAR3+ light hatched bars
represent particles lost at the collimators and dark ones, particles lost at the septum

A smaller bump step was then used for runs 019, '020 and 021. The injection position was reduced so that the
injected beam almost touched the outer edge of the septum. This lead to a tremendous increase in the number of
turns injected : 3 more turns.

In order to compare the results of LEAR3+ with those of LEAR3, the size of the collimators was changed to
5.5 cm. The injection parameters are the same as for runs 016 and 019. There is a 2-tum difference between both

Table 10 Injection parameters in LEAR3+ (with 5.0 cm wide collimators)

run sept_pos
(m)

sep1_width
(m)

Δ×
(m)

bumprate
(m)

injct_pos
(m)

∆pjni
(1)

∆p-rate
(1)

nb_tum nbmp nsup

022 0.055 0.009 0.0377 0.002513 0.0663 0.0 0.0 15 0 5

024 0.055 0.009 0.0327 0.00275 0.0713 0.0 0.0 12 0 5

cases (Figure 27). So, adjusting the bump step gives 3.5 more turns (run 024 to run 022) and then there is still a
strong dependence on the collimator size which gives 2 more turns (run 022 to run 019).

The size of the collimators is a very sensitive parameter which should be carefully adjusted with experimental
results to calibrate the simulations.

34 Lead Injection in LEAR

Rgure 27 Injection in LEAR3+ : influence of the collimator size (hollow markers corre
spond to 5.0 cm wide collimators and full markers to 5.5 cm wide collimators, the same

shape corresponds to the same configuration of the injection parameters)

10. Conclusion
The program presented allows the simulation of classical and combined multitum injection. It gives the number
of particles injected per turn and makes it possible to adjust the lattice, the injection and the beam parameters in
order to optimize injection. Some features could be added to the program. For instance, it would be useful to sim
ulate the presence of a stack of given emittance circulating in the machine and to see how it behaves during the
closed orbit displacement. One would like to keep as many particles from the stack as possible and to add new
ones by multitum injection and cooling. As proposed by Christian Carli, a pre-distortion of the closed orbit by
means of the bending dipoles could be used to get sufficient displacement in the injection section with the exist
ing two bumpers. In addition, the energy of the circulating stack could be reduced to make use of dispersion and
to prevent the stack from touching the inner edge of the septum during injection. All the results of the program
should be calibrated with experiments to set a correct size to the collimators and to place them at the appropriate
location.

2-dimension Gaussian Distribution 35

Appendix
A.1. 2-dimension Gaussian Distribution
The density function of a 2-dimensional Gaussian distribution over a circle is the following

ξ2÷ξ∙2

P⅛ξ') - vɪ/ 2°, <e÷25>
2πσ

where ξ and ξ' are the two coordinates in the plane, σ is the standard deviation and N0 is the total number of
particles. It only depends on the distance

ξ2÷ξ'2 (Eq.26)
between the centre and the point (ξ,ξ')

Figure 28 Gaussian distribution

Let N (r) be the number of particles enclosed in a circle of radius r centred on the distribution.

r2π

N(r) = ∫ ∫ P (r) rdrdφ

0 O

The integration over the angle φ is straightforward

(Eq.27)

/V(r) = ∫2πr∕√θ ------e
2πσ^

(Eq.28)
o

This is easily integrated after making the substitution

∣∣ = — and σ du = rdr
2σ^

r' '2∏'

N (r) = Λ,θ ʃ e "du

0

(Lq.29)

(Eq.3U)

Thus, one gets

N(r) = /V0 I (Eq.31)

36 Appendix

Different choices of r allow to cut the distribution and typical values are listed in Table 11.

Table 11

Γ percentage

JàG = 2.49σ 95%

2σ 86%
JlG - 1.41σ 63%

(Eq.31) is easily inverted

(Eq.32)

and makes it possible to sample a set of Gaussian point (x, y) on the circle one needs two random variables
(rndv rnd^) uniformly distributed over [0,1] and independent.

= Jl-σ∙ ■ cos (2π ∙ rnd2)

■ sin (2π ∙ rnd2)

(Eq.33)

A.2. Simulation Program
PROGRAM Multiturn

Simulation of multiturn injection in a circular accelerator.
The tracking is made by the program MAD from CERN.

version 2.1 - October 1995
Fabien MOTSCH (motsch@parcb.cern.ch)

IMPLICIT
INTEGER
INTEGER
INTEGER
LOGICAL
REAL
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE

NONE
1,nbturn,k,t,filenb,ninjet,SYSTEMF,tour,ttour,initlos,s
totLoss,not lost,colimNum,length,ns,nbmp
bunch(100),bunchLoss(100),Partlost(1000)
IogE,BATCH
Colim_pos(100)

PRECISIONseptpos,septwidth
PRECISIONx,xp,dx,dxp,phιx,sigmax
PRECISIONy,yp,dy,dyp,phiy,sigmay
PRECISIONdT,p,sigmap,seed
PREciSIONdeltax,bumprate,injctpos
PRECISIONbetax,alphax
PRECISIONdeltat,Trev
PREciSIONdeltapini,deltaprate

CHARACTER*!
CHARACTER*5
CHARACTER*11
CHARACTER*40
CHARACTER*300

filename,nom
NumberToAsc i i,RunNb
name
string
Colim_list

COMMON
COMMON
COMMON
COMMON

/X_Plane/x,xp,dx,dxp,phix,sigmax
/Y_Plane/y,yp,dy,dyp,phiy,sigmay
/T_Plane/dT,deltat,p,sigmap
/Septum/ septpos,septwidth

mailto:motsch@parcb.cern.ch

Simulation Program 37

COMMON /Bump/ deItax,bumprate,injctpos
COMMON /Time/ Trev
COMMON /Energy/ deltapini,deltaprate
COMMON /Colim/ Co1im_pos,COlimNum

BATCH=.FALSE.
s=SYSTEMF('IlqIgrep -c motsch > end.dat')
OPEN(UNIT=IO,FILE='end.dat', STATUS='OLD')
READdO,*) s
CLOSE(10,STATUS='DELETE')
BATCH = (S.EQ.1)
WRITE(*,*) 'batch running :',BATCH

INQUIRE(FILE='seed.dat',EXIST=IogE)
IF (IogE) THEN

OPEN (UNIT=IO,FILE='seed.dat',STATUS='OLD')
READdO,*) seed
CLOSE(UNIT=10,STATUS='DELETE')

ELSE
seed = 12345.6789

ENDIF

Finds the name to be given to the new run

1 = 0
s = SYSTEMFtdsIgrep FilesNbI cut -c9-llltail -1 > lastrun')
OPEN(UNIT=17,FILE='lastrun',STATUS='OLD')

READ(17,*,END=600) 1
600 1=1+1

CLOSE(UNIT=17,STATUS=iDELETE')

filename = NumberToAscii(1) (3 : 5)
name(l:8) = 'FilesNb.'
name(9dl) = filename

OPEN(UNIT=I7,FILE=name,STATUS='NEW')

creation of the PartLoss file

named: 8)= 'PartLos.'
OPENfUNIT=Il,FILE=name,STATUS='NEW’)

Reads the data for sampling and simulation

CALL ReadData(nιnjct,nbturn,nbmp,ns,Trev)

Creation of the Bunches file for the first turn

name(1:8)='Bunches.'
OPEN(UNIT=12,FILE=name,STATUS='NEW')

CALL InitBunch(bunch,bunchLoss)

DO 5000 tour = 1 , nbturn + nbmp + ns
WRITE(*,w) ' = = = = Begining of turn :',tour, ' ===='
initios = 0
ttour = tour
WRITE(11, ' (A5,18)') 'turn=',tour
CALL InitPartlost(PartLost,bunchLoss)
IF (tour.LE.nbturn) CALL Paquet(ninjet,seed)

38 Appendix

IF (tour.EQ.1) THEN
name(1:8) = 'samples.'
CALL Store(name)

ENDIF
IF (tour.LE.nbturn) THEN

CALL MakeBump(ttour,notlost)
CALL EnergyRamp(ttour,notlost)

ENDIF
IF (tour.LE.nbturn) THEN

CALL BeginTurn(initios,septpos,septwidth,ttour,
& deltax,bumprate,notlost)

bunch(tour) = ninjct - initios
ELSE

bunch(tour) = 0
ENDIF

s=SYSTEMF('madbatch -q medium -p8.16 LEAR.mad')

CALL Finished(RunNbfBATCH)
WRITE(17,*) RunNb
ttour = tour
IF (tour.EQ.1) THEN

CALL ColimDat(Colim_pos,coIimNum,RunNb,
& Colim_list,length)

ENDIF
CALL Oneturn(RunNb,name(9 :11),ttour,initios,

& septpos,septwidth,ninj ct,bunch,bunchLoss,
&. totLoss , betax, alphax, nbturn+nbmp)

CALL StorePart(ttour,nbturn+nbmp,name(9 :11),deltax,
& bumprate,betax,alphax,deItat,nbturn+nbmp)

s = SYSTEMF('mv Part.new Part.dat')
notlost= notlost + ninjct - totLoss - initios
CALL Newbunchfile(tour,bunch,bunchLoss)

WRITE(*,*) '= = = = End of turn :',tour,' ===='

S = SYSTEMF('rm m*out')
S = SYSTEMF('rm m*err')
S = SYSTEMF('rm script*
S = SYSTEMF('rm echo*')
S = SYSTEMF('rm print *'
S = SYSTEMF('rm coord*'

5000 CONTINUE
CALL Newbunchfile(nbturn+nbmp+ns+1,bunch,bunchLoss)
CALL StorePart(nbturn+nbmp+ns+1,nbturn+nbmp,name(9:11),deltax,

& bumprate,betax,alphax,deltat)

s = SYSTEMF('rm m*out')
s = SYSTEMF('rm m*err')
s = SYSTEMF('rm script*')
s = SYSTEMF('rm echo*')
s = SYSTEMF(,rm print*')
s = SYSTEMF('rm coord*')
s = SYSTEMF(,rm Part.nob')
s = SYSTEMF('rm Part.dat')

Creation of the bunch.### file used by the plotting program (PAW script)

named: 6) = 'bunch.'
name(7:9) = filename
OPEN(UNIT=14,FILE='bunch.dat',STATUS='OLD')
OPEN(UNIT=I5,FILE=name(1:9),STATUS='NEW')

Simulation Program 39

5010 READ(14,'(A40)',END=5020) string
WRITE(15,*) string
GOTO 5010

5020 WRITE(15,5100) alphax,'alphax'
WRITE(15,5100) betax,'betax'
WRITE(15,5110) colimNum,'collimators'
WRITE(15,*) Colim_list(1 :length)

CLOSE(15)
CLOSE(14)

CLOSE(17)
CLOSE(Il)
CLOSE(12)

Stores the last seed for the next run

OPEN (UNIT=10,FILE='seed.dat',STATUS='NEW')
WRITEdO,*) seed
Close(UNIT=IO)

5100FORMAT (F6.2,10X,A6)
5110FORMAT (I6,10X,All)

END

SUBROUTINE Oneturn(RunNb,nom,tour,initios,septpos,septwidth,
& ninjct,bunch,bunchLoss,totLoss,
& betax,alphax,nbt)

Analyzes the output from MAD to get the number of particles
lost along the machine and at the septum. Generates the
new 'part.dat' file with the particles that have not been
lost.

DOUBLE PRECISIONa(6),pos,septpos,septwidth,Stackposref
DOUBLE PREciSIONdeltax,bumprate,inj ctpos
DOUBLE PRECISIONbetax,alphax

IMPLICIT NONE
LOGICAL IogE,endbmp
INTEGER turn,num,nlost,ninjet,CoLoss,SeptLoss,count
INTEGER i,ntot,npart,totLoss,nbt
INTEGER SYSTEMF,tour,initios,s,colimNum
INTEGER bunch(100),Sbunch(100),bunchLoss(100)
INTEGER PartLost(1000)
REAL Colim_pos(100)

WRITE(

CHARACTER*3 nom
CHARACTER*5 RunNb
CHARACTER*8 char
CHARACTER*11 f name
CHARACTER*16 place
CHARACTER*130 string
PARAMETER (npart=100)
COMMON /Bump/ deltax,bumprate,inj ctpos
COMMON /Colim/ Colim_pos,colimNum

) '+++ Oneturn +++'

40 Appendix

nlost = 0
CoLoss = O
totLoss = O
SeptLoss = O
turn = tour
endbmp = (turn.GT.nbt)
IF (turn.LE.nbt) THEN

Stackposref= deltax - turn * bumprate
ELSE

Stackposref= deltax - nbt * bumprate
ENDIF

fname(7:ll)= RunNb
fname(1:6) = 'print.'

OPEN(UNIT=10,FILE=fname,STATUS='OLD')

CALL MakeSbunch(turn,bunch,Sbunch)

READ(10, ' (A130)',END=I10) string(1:13 O)
READ(10,' (A130)',END=IlO) string(1:13O)
IF (string(2 :25) .EQ.'Linear lattice functions') THEN

DO 105 i=l,7
READ(10,'(A29)') string(l:29)

105 CONTINUE
IF ((string(26 : 29) .EQ.'.OOO').AND.

& (string(2 :11) .EQ. 'begin LEAR')) THEN
BACKSPACE 10
READ(10,' (A29,2X,2D7.3)') string(1:29),betax,alphax

ENDIF
ENDIF

100 CONTINUE
READ(10, ' (A13 0) ',END=IlO) string(1:130)
IF (string(2:9).EQ. 'Particle') THEN

BACKSPACE 10
CALL Partlostdat(RunNb,nlost,PartLost,Sbunch, bunchLoss)
CoLoss = CoLoss + nlost
nlost = CoLoss + 1
GOTO IOO

ELSEIF (string(2 : 6) .EQ.'Final') THEN
SeptLoss=CoLoss+!
CALL Finalpos(string,SeptLoss,PartLost,Sbunch,bunchLoss,

à septpos,septwidth,Stackposref,bumprate,
& endbmp)

GOTO IlO
ELSE

GOTO IOO
ENDIF

IlO CONTINUE

IF (SeptLoss.NE. O) WRITEdl,*) 'au septum'

DO 400 i = CoLoss + 1,CoLoss + SeptLoss
WRITEdl,*) PartLostii)

400 CONTINUE

WRITE(11,'(16,IX,A31)') CoLoss,'Pertes totales aux collimateurs'
WRITE (11, ' (16, IX, A24) ') SeptLossdPertes totales au septum'

Simulation Program 41

ntot = Sbunch(Lurn)
LotLoss = CoLoss + SepLLoss
CALL STARTFILE(ParLLosL,ntot,LoLLoss,Coboss,RunNb)
Lurn = Lurn + 1

CLOSE(10)
WRITE(*,*) '---- OneLurn------ '

END

SUBROUTINE ParLlosLdaL(RunNb,nlosL,ParLLosL,Sbunch,bunchLoss)

Finds Lhe parLicles IosL along Lhe machine and where.

IMPLICIT NONE

★

INTEGER nlost,nblost,j,nbunch,num,i,count
INTEGER nbcolim,WhichCollim,label,colimNum
INTEGER Sbunch(IOO),bunchLoss(100)
INTEGER PartLost(IOOO)
REAL Colim_pos(100)
CHARACTER*5 RunNb
CHARACTER*6 Colim_name(10)
CHARACTER*8 char
CHARACTER*16 place
CHARACTER*130 string
DOUBLE PRECISIONa(6),pos
COMMON /Colim/ Colim_pos,colimNum

j = nlost
nblosL = O
count = O
WRITE(*,*) '+++ Partlostdat +++'

READ(10,'(A130)') string

place=string(104:119)
READtstring(66:78),'(E13.6)') pos
label = WhichCollim(pos,Colim_pos,colimNum)
READ(10,'(A6)') char(l:6)

Iooocontinue
READ(10, ' (17,4X,6(1X,D15.9)) ') numa(, (i),i = l,6)
i = 1

IlOO CONTINUE
IF (num.LE.Sbunch(i)) THEN

bunchLoss(i) = bunchLoss(i) + 1
ELSE

i = i ÷ 1
goto 1100

ENDIF
nblost = nblost + 1
j = j + 1
count = count + 1
PartLost(J)= num

READ(10,'(A130)') string
IF (string(2:9).EQ.' ') THEN

42Appendix

WRITE(11,'(I6,A23,E13.6,A18,16)’) nblost,
& ' particles lost at s = ',pos,' at collimator nb ',label

GOTO 1050
ELSEIF (string(2:9).EQ.'Particle') THEN

WRITE(11,'(I6,A23,E13.6,A18,16) ') nblost,
& ' particles lost at s = ',pos,' at collimator nb ',label

nblost= 0
place=string(104:119)
READistring(66:78),'(E13.6)') pos
label = WhichCollim(pos,Colim_pos,colimNum)
READ(10,'(A6)') char(l:6)
GOTO 1000

ELSE
BACKSPACE 10
GOTO 1000

ENDIF
1050nlost = count

WRITE(*,*) '---- Partlostdat ----- '

END

SUBROUTINE Finalpos(string,SeptLoss,PartLost,Sbunch, bunchLoss,
& septpos,septwidth,Stackposref,bumprate,
& endbmp)

At the end of a turn, it checks if a particle is lost at the
injection septum.

IMPLICIT NONE
INTEGER num,SeptLoss,i,j,k
INTEGER Sbunch(100),bunchLoss(100)
INTEGER PartLost(IOOO)
LOGICAL Septum,hit,endbmp
REAL f(6)
DOUBLE PRECISIONseptpos,septwidth,Stackposref,Stackpos
DOUBLE PREciSIONbumprate,Trev,T,X
CHARACTER*8 char
CHARACTER*130 string
COMMON /Time/ Trev

WRITE(*,*) ' +++ Finalpos +++'
j = SeptLoss
SeptLoss = 0

READ(10,'(A7)') char(1:7)

2000 CONTINUEDO 2100 k=l,3
IF (k.EQ.l) THEN

READ(10,2120,END=2110) num,char(1: 6), (f(i),i = l,6)
ELSE

READ(10,2130) (f(i),i=l,6)
ENDIF

IF (k.EQ.l) THEN
X= f(1)

ELSEIF (k.EQ.3) THEN
T=f(1)

Simulation Program 43

ENDIF
2100 CONTINUE

IF (endbmp) THEN
Stackpos= Stackposref

ELSE
Stackpos = Stackposref - (T/Trev) * bumprate

ENDIF
hit = (((X + Stackpos).GE.septpos))
IF (hit) THEN

i = 1
2010 CONTINUE

IF (num.LE.Sbunch(i)) THEN
bunchLoss(i) = bunchLoss(i) + 1

ELSE
i = i + 1
goto 2010

ENDIF
SeptLoss = SeptLoss + 1
PartLost(j) = num
j = j + 1

ENDIF
GOTO 2000

2110 CONTINUE

WRITE(*,*) '---- Finalpos------ '

2120 FORMAT (16,A6,2F16.8,2F14.8,F16.8,F12.8)
2130 FORMAT (12X,2F16.8,2Fl4.8,F16.8,F12.8)

END

SUBROUTINE Start file(PartLost,ntot,tOtLoss,CoLoss,RunNb)

Generates the new 'part.dat' file using the particles
that have not been lost during the previous turn. Then a
sample of newly injected particles will be added to the
f ile.

IMPLICIT NONE
INTEGER ntot,totLoss,CoLoss,i,j,n,partnb
INTEGER PartLost(IOOO)
LOGICAL lost,IogE
double Precisionx,px,y,py,t,deltap
CHARACTER*5 RunNb
CHARACTER*!1 filename
CHARACTER*80 linei

WRITE(*,*) '++ + Startfile + ÷÷'
filename(7:11)=RunNb
filename(1:6)='coord.'

IF (ntot-CoLoss.EQ.0) THEN
OPEN(UNIT=I4,FILE='Part.new',STATUS='NEW')
CLOSE(UNIT=14)

ELSE
IogE=-TRUE.
INQUIRE(FILE=filename,EXIST=IogE)
OPEN(UNIT=I3,FILE=fi leñame,STATUS='OLD')

44 Appendix

OPEN(UNIT=I4,FILE='Part.new',STATUS='NEW')

DO 3000 i=l,ntot-CoLoss
lost=.FALSE.
READ(13,'(A80)') linei
READilinel(19:24),'{I6)') partnb
READ(13,3110) X,PX
READ(13, 3120) Y,PY
READ(13,3130) T,DELTAP
DO 3100 j=l,tOtLθSS

Iost=Iost-OR.(PartLost(j).EQ.partnb)
3100 CONTINUE

IF (.NOT.lost) THEN
WRITE(14,3110) X,PX
WRITE(14,3120) Y,PY
WRITE(14,3130) T,DELTAP

ENDIF
3000 CONTINUE

CLOSE(13)
CLOSE(14)

ENDIF

WRITE(*,*) '---- Startfile ---- '

3110 FORMAT ('START, X = ',El9.12,', PX = ',E19.12, ',&')
3120 FORMAT ('Y= ',E19.12,', PY = ',El9.12, ',&')
3130 FORMAT ('T= ',E19.12,', DELTAP = ',E19.12)

END

SUBROUTINE Newbunchfilel turn,bunch,bunchLoss)

Stores the number of particles per bunch

IMPLICIT NONE
INTEGER turn,i
INTEGER bunch(100),bunchLoss(100)

WRITE(*,*) '+++ Newbunchfile +++'
WRITE(12,4010) 'turn=',turn-1

DO 4000 i=l,turn
WRITE(12,w) bunch(i)

WRITE(*,*) bunch(i),bunchLoss(i)

WRITE(12,*) bunch(i)-bunchLoss(i)
bunch(i)=bunch(i)-bunchLoss(i)

4000 CONTINUE

WRITE(*,*) '---- Newbunchfile ---- '

4010 FORMAT (A5,I8)

END

Simulation Program 45

SUBROUTINE Paquet(n,seed)

Generates the 'n' injected particles.

IMPLICIT NONE
INTEGER n,C,S,i,SYSTEMF
LOGICAL IogE
CHARACTER*5 char
CHARACTER*8 fname
REAL RANF,PI
DOUBLE PRECISIONx,xp,dx,dxp,phix,sigmax,alphax
DOUBLE PRECISIONy,yp,dy,dyp,phiy,sigmay,alphay
DOUBLE PRECISIONdT,p,sigmap,seed, deltat
DOUBLE PREciSIONHoriz(2,500),Vert(2,500)
DOUBLE PRECISIONTt500),DELTAP(500)
PARAMETER (PI=3.141592653589793238)
COMMON /X_Plane/x,xp,dx,dxp,phix,sigmax
COMMON /Y_Plane/y,yp,dy,dyp,phiy,sigmay
COMMON /T_Plane/dT,deltat,p,sigmap

WRITEt*,*) '++ + Paquet +++'

alphax = phix*PI/180.0
alphay = phiy*PI/180.0
fname = 'Part.dat'

INQUIRE(FILE=fname,EXIST=IogE)
IF (IogE) THEN

OPEN(UNIT=20,FILE=fname,STATUS='OLD')
6000 CONTINUE

READ(20,'(A5)',END=6100) char
GOTO 6000

ELSE
OPEN(UNIT=20,FILE=fname,STATUS='NEW')

ENDIF

6100 CONTINUE
CTkLL Gaussl (DELTAP, n,p, sigmap)
WRITEt*,*) 'dxp:',dxp
CALL Gauss2(n,x,xp,dx,dxp,alphax,sigmax,Horiz,seed)
CALL Gauss2(n,y,yp,dy,dyp,alphay,sigmay,Vert,seed)
CALL Uniform(n,T,dT,seed)
DO 6101 i=l,n

WRITE(20,6110) Horiz(1,i),Horiz(2,i)
WRITE(20,6120) Vert(1,i),Vert(2,i)
WRITE(20,6130) T{i),DELTAP(i)

6101 CONTINUE

CLOSE(20)
WRITEt*,*) '---- Paquet ----- '

6110 FORMAT ('START, X = ',El9.12,', PX = ',El9.12, ',&')
6120 FORMAT ('Y= ',E19.12,', PY = ,,El9.12, ' ,&')
6130 FORMAT (, T = ',E19.12,', DELTAP = ',E19.12)

END

46 Appendix

SUBROUTINE Gauss2 (n,a,b,da,db,alpha,cut,Vect,seed)

Generates a 2D gaussian distribtion over an ellipse
given by its half axes 'a' and 'b' which center is
rotated of an angle 'alpha' arround its center and
shifted from the origin by a vector ('da','db')
The gaussian distribution is cut at 'cut'.

IMPLICIT NONE
INTEGER count,n
REAL RANF,PI
DOUBLE PRECISIONu,v,a,b,da,db,alpha,cut,tmp,seed
DOUBLE PREciSIONVect(2,500)
PARAMETER (PI=3.141592653589793238)

WRITE(*,*) '+++ Gauss2 +++'
WRITE(*,*) 'db:',db
count=0
CALL RANSET(Seed)

6200 CONTINUE
u =RANF(Seed)
v =RANF(seed)
tmp =u
u =SQRT(-2*log(u))*cos(2*PI*v)
v =SQRT(-2*log(tmp))*sin(2*PI*v)

IF (SQRT(u**2+v**2).LE.cut) THEN
count =count +1
u =a*u
v =b*v
tmp =u
u =u*cos(alpha)-v*sin(alpha)
v =tmp*sin(alpha)+v*cos(alpha)
Vect(1,count)=u+da
Vect(2,count)=v+db

ENDIF
IF (count.LE.n) GOTO 6200
CALL RANGET(Seed)
WRITE(*,*) '---- Gauss2 ---- '

END

SUBROUTINE Gaussl(DELTAP,n,Mean,Sigma)

Generates a ID Gaussian distributed random set of 'n'
values in 'DELTAP'. The gaussian distribution is
characterized by 'Mean' and 'Sigma'.

IMPLICIT NONE
INTEGER n, 1
REAL Vect(500)
DOUBLE PRECISIONMean,Sigma,DELE
double Precisiondeltap(5oo■

WRITE(*,*) '+++ Gaussl + + +'

CALL RNORML(Vect,n)

Simulation Program 47

DO 6400 i=l,n
DELTAP(i)=SigmawDBLEfVect(i))+Mean

6400 CONTINUE
WRITEf*,*) '---- Gaussl ---- '

END

SUBROUTINE FinishedfnbfileiBATCH)

Tests if MAD run is finished, and gives the identification
number of the run 'nbfile'.

IMPLICIT NONE
INTEGER S,lec,Stat,SYSTEMF
CHARACTER*5 nbfile
LOGICAL IogE,BATCH

WRITEf*,*) '+++ Finished +++'

Iec =16

s =SYSTEMFfiIlq I grep -c motsch > fini.dat')

7000 CONTINUE
OPEN (UNIT=Iec,FILE='fini.dat',STATUS='OLD')
READ (lee,'(Il)') stat
CLOSE(UNIT=Iec,STATUS='DELETE')
s=SYSTEMF('Ilq I grep -c motsch > fini.dat')

IF (((stat.NE.1).OR.(.NOT.BATCH)).AND.
& ((stat.NE.0).OR.BATCH)) GOTO 7000

OPEN (UNIT=Iec,FILE='fini.dat',STATUS='OLD')
CLOSE(UNIT=Iec,STATUS='DELETE')

★

s=SYSTEMF('Is I grep printlcut -c7-ll∣tail -1 > lastfile.dat')
★

OPEN (UNIT=Iec,FILE='Iastfile.dat',STATUS=rOLD')
READ (lee,'(A5)',ERR=7100) nbfile

7100 CLOSE(UNIT=Iec,STATUS='DELETE')
★

RI WTE(w,w) '---- Finished ---- '
★

END

CHARACTER*5 FUNCTION NumberToAsciifn)

Converts the number 'n' in the corresponding
string 'NumberToAsciifn)'.

IMPLICIT NONE
INTEGER n,i,tmp
CHARACTERwSchaine

WRITE(w,w) + NumberToAscii +++'

48 Appendix

DO 8000 i=l,5
tmp =INT(n/10**(5-i))
n =n-(10**(5-i))*tmp
chained: i) =CHAR(tmp+48)

Sooocontinue
NuinberToAscii=Chaine
WRITE(*,*) '---- NumberToAscii------ '

END

SUBROUTINE BeginTurn(initios, septpos,septwidth,turn,
& deltax,bumprate,notlost)

Tests if some particles hit the outer part of the septum at
injection and removes them from the particle file.

IMPLICIT
INTEGER
LOGICAL
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
COMMON /Time/

NONE
initlos,s,SYSTEMF,turn,notlost,count
hit
septpos,septwidth
X,PX,Y,PY,T,DELTAP
deItax,bumprate,Stackpos
Trev,StackT
Trev

WRITE(*,*) '+++ BeginTurn +++'

initios = 0
count = 0
Stackspo = deltax-(turn-1)*bumprate

OPEN(UNIT=I8,FILE='Part.dat',STATUS='OLD')
OPEN(UNIT=I9,FILE='Part.new',STATUS='NEW')

8000 CONTINUE
count=count+l
READ(18,8010,END=8100) X,PX
READ(18,8020) Y,PY
READ(18,8030) T,DELTAP
StackT=Stackpos-T*bumprate/Trev

IF (count.GT.notlost) THEN
hit=((X+stackT).LE.(septpos+septwidth))

ELSE
hit=.FALSE.

ENDIF

IF (hit) initlos=initlos+l

IF (.NOT.hit) THEN
WRITE(19,8010) X,PX
WRITE(19,8020) Y, PY
WRITE(19,8030) T,DELTAP
ENDIF

GOTO 8000

8100 CONTINUE

Simulation Program 49

CLOSE(18)
CLOSE(19)

s=SYSTEMF('rm Part.dat')
s=SYSTEMF('mv Part.new Part.dat')

WRITE(*,*) '---- BeginTurn ---- '

8010 FORMAT ('START,
8020 FORMAT ('Y='
8030 FORMAT ('T='

X = ',E19.12,', PX = ' ,E19.12, ',&')
E19.12,', PY = ',E19.12,' ,&')
E19.12,', DELTAP= ',E19.12)

END

SUBROUTINE MakeBump(turn,not lost)

Transforms the particles coordinates to simulate
a bump at turn 'turn' on the newly injected particles
that is to say on all particles except the 'notlost'
first particles.

IMPLICIT NONE
INTEGER turn,s,SYSTEMF,notlost,count
DOUBLE PRECISION bump,bumprate,deltax,injctpos,bumpref
DOUBLE PRECISION X,PX,Y,PY,T,DELTAP,Trev
COMMON /Bump/ deltax,bumprate,injctpos
COMMON /Time/ Trev

WRITE(*,*) '+++ MakeBump +++'

bumpref = deltax-(turn-1)*bumprate
count = 0

OPEN(UNIT=I8,FILE='Part.dat',STATUS='OLD')
OPEN(UNIT=19,FILE='Part.new',STATUS='NEW')

9000 CONTINUE
READ(18,9010,END=9100) X,PX
READ(18,9020) Y,PY
READ(18,9030) T,DELTAP
count=count+l
IF (count.GT.notlost) THEN

bump =bumpref-T*bumprate/Trev
X =X+injctpos-bump

ENDIF
WRITE(19,9010) X, PX
WRITE(19,9020) Y,PY
WRITE(19,9030) T,DELTAP

GOTO 9000

9100 CONTINUE
CLOSE(18)
CLOSE(19)

s=SYSTEMF('mv Part.dat Part.nob')
s=SYSTEMF('mv Part.new Part.dat')

WRITE(*,*) '---- MakeBump ---- '

50 Appendix

9010 FORMAT ('START, X = ',E19
9020 FORMAT ('Y= ',E19d2,',
9030 FORMAT ('T= ',E19.12,',

END

12,', PX = ',E19.12,,,&')
PY = ',E19.12,' ,&')
DELTAP = ',E19.12)

SUBROUTINE ReadDatatn,nbturn,nbmp,ns,Trev)

Reads the data for the simulation in the file 'bunch.dat'
n number of particles injected per turn
nbturnnumber of turns

IMPLICIT NONE
INTEGER n,nbturn,nbmp,ns
DOUBLE PRECISION*,xp,dx,dxp,phix,sigmax
DOUBLE PRECISIONy,yp,dy,dyp,phiy,sigmay
DOUBLE PRECISIONdT,del tat,P,sigmap
DOUBLE PRECISIONseptpos,septwidth
DOUBLE PREciSIONdeltax,bumprate,injCtpos
DOUBLE PREciSIONdeltapini,deltaprate
DOUBLE PRECISIONTrev
COMMON /X_Plane/x,xp,dx,dxp,phix,sigmax
COMMON /Y_Plane/y,yp,dy,dyp,phiy, sigmay
COMMON /T_Plane/dT,deltat,p,sigmap
COMMON /Septum/ septpos,septwidth
COMMON /Bump/ deltax,bumprate,injctpos
COMMON /Energy/ deltapini,deltaprate

WRITE(*,*) '+++ ReadData +++'

OPEN(UNIT=IO,FILE='bunch.dat',STATUS='OLD')
READdO , *) n
READdO , *) nbturn
READ(10,*) nbmp
READdO , *) ns
READdO , *) X

READdO, *) xp
READdO , *) dx
READdO , *) dxp
READdO , *) phix
READdO , *) sigmax
READdO , *) y
READ(10,*) yp
READdO , *) dy
READdO , *) dyp
READflO,') phiy
READdO , *) sigmay
READdO , *) dT
READ(10,*) deltat
READdO , *) P
READdO , *) sigmap
READdO , *) septpos
READdO , *) septwidth
READdO, *) deltax
READdO , *) bumprate
READdO, *) injctpos
READdO, *) deltapini

Simulation Program 51

READdO,*) deltaprate
READdO,*) Trev

CLOSE(IO)

WRITE(*,*) '------- ReadData

END

SUBROUTINE InitBunch(bunch,bunchLoss)

Initializes the vectors 'bunch' and 'bunchLoss'

IMPLICIT NONE
INTEGER nombre,i
INTEGER bunch(100),bunchLoss(100)

WRITE(*,*) '+++ InitBunch +++'
nombre=100
DO Illl i=l,nombre

bunch(i)=0
bunchLoss(i)=0

Illl CONTINUE

WRITE(*,*) '---- InitBunch------ '

END

SUBROUTINE MakeSbunch(turn,bunch,Sbunch)

Creates the vector 'Sbunch' (summ of the Bunches)
from the bunch composition given in 'bunch',
bunch (i) contains the number of particles in the
bunch number 'i', and Ξbunch,.ι' the total number
of particles in the bunches from 1 to 'i'.

IMPLICIT
INTEGER
INTEGER

NONE
turn,i
bunch(100),Sbunch(100)

WRITE(*,*) '♦♦♦ MakeSbunch --♦'

DO 90 i=l,turn
IF (i.EQ.l) THEN

Sbunch!i)=bunch i.
ELSE

Sbunch(i)=Sbuneh
ENDIF

90 CONTINUE

♦ bunch(i)

WRITE(*,*) '---- MakeSbunch ----

END

SUBROUTINE InitPartlost(Partlost,bunchLoss)

52 Appendix

Initializes the vectors 'Partlost' and 'bunchLoss'
prior their use to count the lost particles...

IMPLICIT
INTEGER
INTEGER

NONE
i
Partlost(IOOO),bunchLoss(100)

WRITE(*,*) '+++ InitPartlost +++'
DO 9998 i=l,1000

Partlost(i)=0
99 98 CONTINUE

DO 9999 i=l,100
bunchLoss(i)=0

9999 CONTINUE
WRITE(*,*) '----InitPartlost------ '

END

SUBROUTINE StorePart(tour,nb,name,deltax,bumprate, betax, alphax,
& deltat)

Stores the position of the particles given in the file
Part.'tour'.'name'
The position of the particles is shifted according to the bump
value at the moment when the particle passes the injection
section, ('deltax', 'bumrate')
'betax' and 'alphax' are used to normalize the positions
Only a slice of particles is represented: those passing
within the time 'deltat' after the reference particle

IMPLICIT
INTEGER
REAL
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
DOUBLE PRECISION
CHARACTER*3
CHARACTER*5
CHARACTER’11
COMMON /Time/

NONE
tour,nb
RANF
X,PX,Y,PY,T,DELTAP,tmp,end
deItax,bumprate,Stackpos
betax,alphax,Trev,stackT
deltat
name
NumberToAscii
fi leñame
Trev

WRITE(’,’) '+÷> StorePart

end
filename(1:5)
filename(6:7)
filename(8:8)
filename(9:11)

= 'part . '
=NumberToAscii(tour -1) (4:5)

= name

OPEN(UNIT=I5,FILE=fi leñame,STATUS='NEW')
OPEN(UNIT = I6,FILE='Part.dat' .STATUS='OLD')

IF {(tour-1).LE.nb) THEN
stackpos=deltax-(tour-1)’bumprate

ELSE
stackpos=de1tax-nb*bumprate

Simulation Program 53

end = 0.0
ENDIF

9200 CONTINUE
READ(16,9110,END=9300)X, PX
READ(16,9120)Y,PY
READ(16,913 0)T,DELTAP
IF ((T.LE.0.0).AND.(T.GE.deltat*Trev)) THEN

Normalized coordinates

StackT = Stackpos - end*T*bumprate/Trev
tmp = X
X =X+ StackT
PX = alphax*tmp + PX*betax
WRITE(15,9140) X,PX,Y,PY,T,DELTAP

ENDIF
GOTO 9200

9300 CONTINUE

CLOSE(16)
CLOSE(15)

WRITE(*,*) '---- StorePart------ '

9110 FORMAT ('START, X = ',E19.12,', PX = ',E19.12,',&')
9120 FORMAT ('Y= ',E19.12,', PY = ',E19.12,',&')
9130 FORMAT ('T= ',E19.12,', DELTAP = ,,E19.12)
9140 FORMAT (6(El9.12,IX))

END

SUBROUTINE Uniform(n,T,dT,seed)

Generates n uniformly distributed random variables
The variables are in T and belong to the interval [0,dT]
The value of the seed is kept for further sampling

IMPLICIT
INTEGER
REAL
DOUBLE PRECISION
DOUBLE PRECISION

NONE
n, i
RANF
dT,seed
T(500)

WRITE(*,*) '+++ Uniform +++'
CALL RANSET(Seed)

DO 9200 i=l,n
T(i)=RANF(seed)*dT

92 00 CONTINUE

CALL RANGET(Seed)
WRITE(*,*) '---- Uniform ---- '

END

54 Appendix

Subroutime store(name)

implicit no:`ie
CHARACTER*11 name
DOUBLE PRECISION X,PX,Y,PY,T,DELTAP,tmp

WRITE(*,*) '++ + Store +++'

OPEN(UNIT=I5,FILE='Part.dat',STATUS='OLD')
OPEN(UNIT=I6,FILE=name,STATUS='NEW')
OPEN(UNIT=I6,FILE='Part.new',STATUS='OLD')
OPEN(UNIT=I6,FILE='Part.dat',STATUS='OLD')

Illl CONTINUE
READ(15,9115,END=I112) X,PX
READ(15,9125) Y,PY
READ(15,9135) T,DELTAP
WRITE(16,9145) X,PX,Y,PY,T,DELTAP

GOTO Illl
1112 CONTINUE

CLOSE(15)
CLOSE(16)

WRITE(*,*) '---- Store ---- '

9115 FORMAT ('START, X = ',E19.12,', PX = ',E19.12,',&')
9125 FORMAT ('Y= ',E19.12,', PY = ',El9.12,',&')
9135 FORMAT (' T = ',E19.12,', DELTAP = ',E19.12)
9145 FORMAT (6(E19.12,IX))

END

SUBROUTINE Store2(tour,deltax,bumprate)

IMPLICIT NONE
INTEGER tour
DOUBLE PRECISION X,PX,Y,PY,T,DELTAP,tmp
DOUBLE PRECISION deltax,bumprate,Stackpos
DOUBLE PRECISION Trev,stackT
COMMON /Time/ Trev

WRITE(*,*) '+++ Store2 + + +'
OPEN(UNIT=I5,FILE='part2.plot',STATUS=iNEW')
OPEN(UNIT=I6,FILE='Part.dat',STATUS='OLD')

stackpos=deltax-(tour-1)*bumprate
1212 CONTINUE

READ(16,9117,END=1213) X,PX
READ(16,9127) Y,PY
READ(16,9137) T,DELTAP
StackT =stackpos+T*bumprate/Trev
X =X+stackT
WRITE(15,9147) X,PX,Y,PY,T,DELTAP

GOTO 1212
1213 CONTINUE

CLOSE(16)
CLOSE(15)

Simulation Program 55

WRITE(*,*) Store2

9117FORMAT ('START, X= ',E19.12,', PX= ',E19.12,',&')
9127 FORMAT ('Y= ',E19.12,', PY = ',E19.12,',&')
9137 FORMAT (' T= ',E19.12,', DELTAP = ',E19.12)
9147 FORMAT (6(E19.12,IX))

END

SUBROUTINE EnergyRamp(turn,notlost)

IMPLICIT NONE
INTEGER count,s,SYSTEMF,notlost,turn
DOUBLE PRECISION X, PX
DOUBLE PRECISION Y, PY
DOUBLE PRECISION T,DELTAP
DOUBLE PRECISION DELTAPre f,dDELTAP,deltaprate,deltapini
DOUBLE PRECISION Trev
COMMON /Time/ Trev
COMMON /Energy/ deltapini,deltaprate

count =0
deltaprate =2.9E-4
deltapini =-11.6E-4

WRITE (*,*) '+++ EnergyRamp +÷+'

DELTAPref=deltapini+(turn-1)*deltaprate

OPEN(UNIT=I4,FILE='Part.dat',STATUS='OLD')
OPEN(UNIT=15,FILE='Part.new',STATUS='NEW')

9400 CONTINUE
READ(14,9410,END=9450, X, PX
READ(14,9420) Y,PY
READ(14,9430)T,DELTAP
Count=Count+1 ,
IF (count.GT.notlost` THEN

dDELTAP = DELTAPref+deltaprate*T/Trev
DELTAP = DELTAP+dDELTAP

ENDIF
WRITE(15, 9410!X,PX
WRITE(15,94 20)Y, PY
WRITE(15,9430)T,DELTA?

GOTO 9400

9450 CONTINUE

CLOSE(15)
CLOSE(14,STATUS='DELETE'

s = SYSTEMF ('mv Part, new Part.□at '
s=SYSTEMF('cp Part.dat Part.glut';

WRITE(*,*) '---- EnergyRamp ---- '

9410 FORMAT ('START, X ',E19.12, ', PX ',E19.12, ',&')

56 Appendix

9420 FORMAT ('Y= ',E19.12,', PY = ',E19.12,',&')
9430 FORMAT ('T= ',E19.12,', DELTAP = ',E19.12)

END

SUBROUTINE Collimator(Colim_name,nbcolim)

IMPLICIT NONE
INTEGER i,nbcolim,name_length
CHARACTER*10 name
CHARACTER*6 Colim_name(10)
CHARACTER*100 string

WRITE(*,*) '+++ Collimator +++'

nbcolim=0
9600 CONTINUE

OPEN(UNIT=25,FILE='lear.dat',STATUS='OLD')
READ(25,'(AlOO)',END=9620) string
i=INDEX(String,'COLLIMATOR')
IF (i.NE.O) THEN

nbcolim = nbcolim+1
name_length = i-1
name = string(1 :i-1)
CALL RemoveSpace(name,name_length)
Colim_name(nbcolim) = name(1:name_length)

ENDIF
GOTO 9600

9620 CONTINUE

CLOSE (2 5)

WRITE(*,*)

END

Collimatcr -----'

SUBROUTINE RemoveSpace(name.name_length)

IMPLICIT
INTEGER
CHARACTER*!O

NONE
name_lengtn. `
name

WRITE(*,*) '+++ FemoveSpare *-♦'
9500 CONTINUE

IF (name(1:1) . EQ. ' ') THEN
name = name(2:
name_length= name_lenntn-1

ELSE
GOTO 9550

ENDIF
95 50 CONTINUE

j = INDEX(name, ' ')
name = name(1 :j-1)
name_length= j-1

Simulation Program 57

WRITE (* , *) '---- ReinoveSpace------ '

END

SUBROUTINE ColimDat(Colim_pos,colimNum,RunNb,Colimlist,long)

IMPLICIT
INTEGER
INTEGER
LOGICAL
REAL
REAL
CHARACTER*5
CHARACTER*6
CHARACTER*!1
CHARACTER*3 O
CHARACTER*3OO

NONE
nbcolim, colimNum, j , long, n, i
elmtNb
lattice
pos
Colim_pos(IOO)
RunNb,Enb,NumberToAscii,tmp
Colim_name(10)
filename
ligne
Clist,Colimlist

WRITE (*,*) '++ + ColimDat + + +'

colimNum = O
n =1
lattice = .FALSE,
filename(l:6)= 'print.'
filename(7 :11)= RunNb

CALL Collimator{Colim_name,nbcolim)
OPEN(UNIT=29,FILE=fi leñame,STATUS='OLD')

9700 READ(29,'(A30),,END=9720) ligne
IF (INDEX(1 igne, 'Linear lattice functions') .NE.O) THEN

lattice = .TRUE.
GOTO 9700

ELSEIF (INDEX(ligne,'end LEAR').NE.O) THEN
GOTO 9720

ELSEIF (lattice) THEN
j = 1

9710 CONTINUE
IF ((INDEX(ligne,Colim_name(j)).NE.O).AND.

& (j.LE.nbcolim)) THEN
colimNum = colimNum + 1
READ(1 igne ! 2O:29), ' (FIO.3) ') pos
Colim_pos(colimNum)= pos

READ(ligne(2:6),'(15)',ERR=9740) elmtNb
elmtNb= elmtNb * 1
tmp = NumberToAscii(elmtNb)
CALL ReplaceZeroltmpi

9740 CONTINUE
READ(29, ' (A30 - ',END = 972O) ligne
Enb = ligne(2:6)
IF (Enb.NE.tmp` GOTO 9740

Cl ist(n:n + 2)= 1igne(8 : 9)//' '
n = n + 3

ELSEIF (j.LT.nbcolim) THEN
3 = 3+1

58 Appendix

GOTO 9710
ENDIF
GOTO 9700

ELSE
GOTO 9700

ENDIF
97 20 CONTINUE

long = n - 1
Coliinlist= Clist(Izlong)

9730 CONTINUE
CLOSE (2 9)

WRITE(*,*) '---- ColimDat ---- '

END

INTEGER FUNCTION WhichCollim(pos,Colim_pos,nbcolim)

IMPLICIT NONE
INTEGER nbcolim,i
LOGICAL found
REAL Colim_pos(100),epsilon
DOUBLE PRECISION pos

WRITE(*,*) '+++ WhichCollim +++'

epsilon = 0.001
i = l

9800 CONTINUE
IF ((ABS(REALtpos)-Colim_pos(i)).LE.epsilon)

& .AND.(i.LE.nbcolim)) THEN
WhichCollim = i
GOTO 9810

ELSEIF (i.GE.nbcolim) THEN
WhichCollim = 0
GOTO 9810

ELSE
i = i + 1
GOTO 9800

ENDIF
9810 CONTINUE

WRITE(*,*) '---- WhichCollim ---- '

END

SUBROUTINE ReplaceZero(String)

INTEGER index
CHARACTER*5 string

WRITE(*,*) '+++ ReplaceZero +++'
index = 1

9900 CONTINUE
IF (string(index : index).EQ.'0') THEN

Analysis Program: Statnew.f 59

string(index:index) = ' '
INDEX = INDEX + 1
GOTO 9900

ENDIF

WRITE(*,*) '---- ReplaceZero ---- '

END

A.3. Analysis Program: Statnew.f
PROGRAM Stat

IMPLICIT NONE
LOGICAL IogE
INTEGER ninjct, turn, i ,part, nbturn, tmp, colimNum
INTEGER Bunch(50),Injct(50),TotInjct,nsup,nbmp
INTEGER cursor
CHARACTER*3 nb
CHARACTER*11 filename
CHARACTER*50 string
CHARACTER*300 transfer

filename(1: 8) = 'Bunches.'
WRITE(*,*) 'File name (Bunches.###):'
READ(*, ' (A3) ')f i leñame(9:11)
nb = filename(9 :11)

OPEN(UNIT = IO,FILE= fi leñame,STATUS='OLD')

filename(1: 8)= 'Effinjc.'
filename(9 :11)= nb
CALL EraseFile(filename)
OPEN(UNIT = I6,FILE=fi leñame,STATUS='NEW')

filename(1: 8)= 'Nbinjct.'
filename(9 : 11)= nb
CALL EraseFileifilename)
OPEN(UNIT=I8,FILE=fi leñame,STATUS='NEW')

filename(1: 8)= 'bnchstt.'
filename(9 :11)= nb
CALL EraseFileifilename)
OPEN(UNIT = I2,FILE=fi leñame,STATUS='NEW')

filename(8 :11)= '.pit'
CALL EraseFileifilename)
OPEN(UNIT = I4,FILE=fi leñame,STATUS='NEW')

filename(1: 6)= 'bunch.'
filename(7 : 9)= nb
INQUIRE(FILE=filename(l:9),EXIST=IogE)
IF (IogE) THEN

OPEN(UNIT=2 4,FILE= fi leñame(1:9),STATUS='OLD')
READ i 24,*)
WRITE(*,*)
READ(24,*)
WRITE(*,*)
READ(24,*)
WRITE(*,*)

ninj et
'nbturn:',ninjet
nbturn
'nbturn:',nbturn
nbmp
'nbmp:',nbmp

60 Appendix

READ(24,*) nsup
WRITE(*,*) 'nsup:',nsup
CLOSE(UNIT=24)

ELSE
WRITE(*,*) 'Nombre de particules injectées:'
READ(*,*) ninjet
WRITE(*,*) 'Nombre de tours injectes'
READ(*,*) nbturn
WRITE(*,*) 'Nombre de tour fin bmp'
READ(*,*) nbmp
WRITE(*,*) 'Nombre de tours supplémentaires'
READ(*,*) nsup

ENDIF

turn = 0

DO 50 i=l,50
Bunch(i)= ninjet

50 CONTINUE

cursor = 7 * (nbturn+nbmp+nsup)
100 CONTINUE

READdO, ' (A5) ', END=IlO) string(l:5)
IF (stringi 1: 5).EQ.'turn=') THEN

TotInjct = 0
turn = turn + 1
IF ((turn.LE.(nbturn+nbmp+nsup+1)).AND.(turn.GT.1)) THEN
DO 300 i=l,turn-1

READdO,*) part
Injct(i) = part
TotInjct = TotInjct + part
WRITE(12,1000) turn,part,i,TotInjct

300 CONTINUE
WRITE(18,1400) REAL(TotInjct)/REAL(nbturn*ninjet)
WRITE(16,1300) turn,TotInj ct,REAL(TotInjct)/REAL(nbturn*ninj Ct)
WRITE(14,1200) ((REAL(Injctd))/REAL(nbturn*ninjet)),i=l,42)
WRITEitransfer,1200)

& ((REAL (Injctti))/REAL(nbturn*ninjet)),i = l,42)
WRITE(14,*) transfer(1:cursor)
ENDIF

ENDIF
GOTO 100

110 CONTINUE

WRITE(transfer,1200) (0.00,i=l,42)
WRITE(14,*) transfer(1 : cursor)
WRITE(14,*) transfer(1¡cursor)

CALL CollimatorNb(nb,colimNum)
WRITE(*,*) colimNum,' collimateurs installes'
WRITE(*,*) 'turn:',turn
CALL LossStat(nb,colimNum,turn,ninjct)

CLOSE(16)
CLOSE(18)
CLOSE(14)
CLOSE(12)
CLOSE(10)

10 00 FORMAT(4(16,IX))

Analysis Program: Statnew.f 61

1100 FORMAT(6X,10(16,IX))
12 00 FORMAT (42 (F6.4,1X))
13 00 FORMAT (2 (16, IX) , F6.4)
14 00 FORMAT(F6.4)

END

SUBROUTINE EraseFiIe(filename)

LOGICAL IogE
CHARACTER*11 filename

WRITE(*,*) '+++++ EraseFile +++++'

INQUIRE(FILE=filename,EXIST=IogE)
IF (IogE) THEN

OPEN(UNIT=22,FILE=filename,STATUS='OLD')
CLOSE(UNIT=22,STATUS='DELETE')

ENDIF

WRITE(*,*) '------- EraseFile ------- '

END

SUBROUTINE CollimatorNb(nb,colimNum)

IMPLICIT NONE
INTEGER colimNum
CHARACTER*3 nb
CHARACTER*9 filename
CHARACTER*30 string

WRITE(*,*) '+ + + Collimator + ++'

filename(1: 6)= 'bunch.'
filename(7:9)= nb
OPEN(UNIT=2 4,FILE=fi leñame,STATUS='OLD')

3000 CONTINUE
READ(24,'(A30)',END=3100) string
IF (INDEX(string,'collimators').EQ.0) THEN

GOTO 3000
ELSE

READ(string, ' (I 6) ') colimNum
ENDIF

3100 CONTINUE

WRITE(*,*) '+++ Collimator +++'

CLOSE(24)

END

SUBROUTINE LossStat(nb,colimNum,nbturn,ninjct)

62 Appendix

IMPLICIT
INTEGER
INTEGER
REAL
INTEGER
CHARACTER*3
CHARACTER*11
CHARACTER*100
CHARACTER*500

NONE
colimNum,nbturn,turn,pos,i,nblost
tmp,ninjct,cursor
c_lost,s_lost,tot_lost
septum(70)
nb
filename
string
transfer

WRITE(*,*) '++ + LossStat +++'

turn = 0
cursor = 7 * colimNum

filename(l:8) = 'PartLos.'
filename(9:11) = nb
WRITE(*,*) 'filename :',filename
OPEN(UNIT=2 4,FILE= fileñame,STATUS='OLD')

filename(l:8) = 'partios.'
filename(9:11) = 'pit'
CALL EraseFileifilename)
OPEN(UNIT=20,FILE=filename,STATUS='NEW')

filename(1: 8)= 'collost.'
CALL EraseFiletfilename)
OPEN(UNIT=2 6,FILE= fi leñame,STATUS='NEW')

35 00 CONTINUE
READ(24,'(AlOO)',END=3520) string
WRITEC,*) ' : ' ,string(l:30) , ' '
IF (INDEX(string,'turn').NE.0) THEN

turn = turn + 1
WRITE(*,*) 'turn:',turn
IF (turn.GT.1) THEN

WRITE(2 6,3610) (REAL(septum(i))/REAL(ninj ct *nbturn) ,i=1,70)
WRITE(transfer,3610)

& (REAL(septum(i))/REAL(nbturn*ninjet) , i = l, 70)
WRITE(26,*) transfer(1 : cursor)

ENDIF
DO 3510 i = 1,100

septum(i) = 0
3510 CONTINUE

GOTO 3500

ELSEIF (INDEX(string,'particles lost at').NE.0) THEN
READistring(1:6),'(16)’) nblost
READ(string(61: 66) , ' (16) ') pos
WRITEC,*) nblost,' particles lost at ',pos
septum(pos) = nblost
GOTO 3500

ELSEIF (INDEX(string,'Pertes totales').NE.0) THEN
READ(string(1 : 6), ' (16) ') tmp
c_lost = REAL(tmp)
READ(24,'(16)') tmp
s_lost = REAL(tmp)
tot_lost = s_lost + c_lost
WRITE(20,3700) s_lost/(ninjet*(nbturn-1)),

& c_lost/(ninjet*(nbturn-1))

Plotting Programs 63

GOTO 3500
ELSE

GOTO 3500
ENDIF

3520 CONTINUE

WRITE(2 6,3610) (REAL(septum(i))/REAL(nbturn*ninjet),i=l, 70)
WRITE(transfer,3610) (REAL(septum(i))/REAL(nbturn*ninjct),i=l,70)
WRITE(26,*) transfer(1:cursor)

3 530 CONTINUE

CLOSE (2 0)
CLOSE(24)
CLOSE (2 6)

WRITE(*,*) '---- LossStat ---- '

3610 FORMAT(70(F6.4,IX))
3700FORMAT(F6.4,1X,F6.4)

END

A.4. Plotting Programs
A.4.1. collim.kumac
ve/delete *
option nbox
set xsiz 17
set ysiz 17
set xlab 1.7
set ygtil6

filenb='001'
read filenb
mess [filenb]

filename='bunch.'//[fiIenb]
ve/cre datad)
ve/re data [filename] ! ! /nb_turn/(*)
ve/pri data
nbturn = datad)
ve/re data [filename] ! ! / nbmc 'i
ve/pri data
nbmp = data(l)
ve/re data [filename] ! ! /nsup ∙∣
ve/pri data
nsup = datad)
ve/re data [filename] ! ! /collimators
ve/pri data
nbcolim= data(l)
i=2

nbtot=[nbturn]+[nbmp]+[nsup]
‘ve/cre A(24,[nbtot])
ve/cre A(42,[nbtot])
ve/cre B(2,[nbtot])
ve/cre C(70,[nbtot])

64 Appendix

ve/cre motif(27) I 144 244 344 444 544 644 744 844 944 305 359 315 351 325 352 335
353 345 354 365 356 375 357 385 358 395 350
★

fortran/file 66 'Effcy'//[filenb]//'.eps'
graphics/meta 66 -113
*
gra/option DATE
gra/option DVXI
nbdiv=[nbturn]+[nbmp]+[nsup]+1
set NDVX ''[nbdiv]//'.05'
hi/cre/title_global 'Number of particles injected'
gra/hplot/null 1 [nbdiv] 0.0 1.0
gra/hplot/atitle 'Turn' 'Fraction'

*ve/re A 'bnchstt.pit' 24(1X,F6.4)
ve/re A 'bnchstt.pit' 42(1X,F6.4)

DO N=I,[nbdiv]-1
set htyp motif([N])
IF ([N].EQ.1) THEN

ve/draw A([N]) ! SB
ELSE

ve/draw A([N]) ! +B
ENDIF

ENDDO
*ve/write A ! (/ , 24(IX,F6.4))
ve/write A ! (/,42(IX,F6.4))
fortran∕close 66
★

fortran/file 66 'Plost'//[filenb]//'.eps'
graphics/meta 66 -113
★

gra/option NOPG
gra/option DATE
gra/option DVXI
nbdiv=[nbturn]+[nbmp]+[nsup]+1
set NDVX '-'//[nbdiv]//'.05'
hi/cre/title_global 'Loss'
gra/hplot/null 1 [nbdiv] 0.0 0.5
gra/hplot/atitle 'Turn' 'Fraction'
★

ve/re B 'partios.pit' 2(F6.4,1X)
ve/write B ! (/,2{F6.4,IX))
★

DO N= 1,2
set htyp motif([N])
IF ([N].EQ.1) THEN

ve/draw B([N]) ! SB
ELSE

ve/draw B([N]) ! +B
ENDIF

* ve/write B([N]) ! 2(F6.4,1X)
ENDDO
fortran/close 66

fortran/file 66 'Colim'//[filenb]//'.eps'
graphics/meta 66 -113

gra/option NOPG
gra/option DATE

Plotting Programs 65

gra/option DVXI
nbdiv=-808.01
mess nbdiv
mess [nbdiv]
mess [nbcolim]
*set NDVX '-'ll[nbdiv]//'.05'
‘set NDVX '-'//[nbdiv]
LABELS 1 48 QF QD BA DB BI DB BI DB BA DS QD QF QF QD BA DB BI DB BI DB BA DS QD QF
QF QD BA DB BI DB BI DB BA DS QD QF QF QD BA DB BI DB BI DB BA DS QD QF
set NDVX [nbcolim]+2.15
hi/cre/title_global 'CollimLoss'
!gra/hplot/null 1 [nbcolim]+l 0.0 0.35
gra/hplot/null 1 [nbcolim]+l 0.0 0.5
gra/hplot/atitle 'collim' 'Fraction'
★

ve/re C 'collost.pit' 7O(F6.4,1X)
ve/write C ! (/,70(F6.4,IX))
★

DO N=1,[nbdiv]-1
set htyp motif([N])
IF ([N].EQ.1) THEN

ve/draw C(:[nbcolim],[N]) ! SB
ELSE

ve/draw C(:[nbcolim], [N]) ! +B
ENDIF

ENDDO
set BASL 0.01
DO N=1,4

set Ityp 10
xline=[nbcolim]*[N]/4+l
dxline=[xline]-[nbcolim]/8
GraphicsZprimitives/line [xline] 0.0 [xline] 1.0
set Ityp 15
GraphicsZprimitives/line [dxline] 0.0 [dxline] 1.0

ENDDO
fortran/close 66

A.4.2. plot.kumac
* fortran/file 66 transv_x.ps
*graphics/meta 66 -111
graphics/viewing/size 19.6 28.7
option 'date'
his/create/title_global 'Transverse Phase-space X'

his/delete *
z on 2 3
filenb='OOl'
read filenb
mess [filenb]
filename='bunch.'//[filenb]
mess [filename]
★

* Reads information concerning the bump

ve/cre databmp(l)

ve/re databmp [filename] ! ! /nb_turn/(*)
ve/pri databmp
nbturn=databmp(1)
ve/re databmp [filename] ! ! /deltax/(*)

66 Appendix

ve/pri databmp
deltax=databmp(1)
ve/re databmp [filename] ! ! Zbumprate/(*)
ve/pri databmp
bumprate=databmp(1)
ve/re databmp [filename] ! ! /sept_pos/(*)
ve/pri databmp
sept_pos=databmp(1)
ve/re databmp [filename] ! ! /sept_width/(*)
ve/pri databmp
sept_width=databmp(1)
ve/re databmp [filename] ! ! /alphax/(*)
mess 'aIphax'
ve/pri databmp
alphax=atabmp(1)
ve/re databmp [filename] ! ! /betax/(*)
mess 'betax'
ve/pri databmp
betax=databmp(1)
mess [betax]

accept=465
radius=$SIGMA(sqrt([accept]*[betax]*lE-6))
mess radius [radius]

* Plots the bunches in the transverse X-plane
page=l
fortran/file 66 'transv.'//[page]//'.'//[filenb]//'.eps'
graphics/meta 66 -113

DO N=2,[nbturn]+1,6
* page=INT([N]/6)
* IF (([N]-6*[page]).EQ.0) THEN
* fortran/file 66 'transv.'//[page]//'.'//[filenb]//'.eps'
* graphics/meta 66 -113
* ENDIF

T=[N]-1.0
bump=[deltax]-[T]*[bumprate]
mess [bump]
mess [N]
nt/cre [N] 'beam' 6 ' ' 1000 x px y py t deltap
filename='part.'
IF ([N].LE.10) THEN

s=[filename]//'0'//[T]//'.'//[fi Ienb]
ELSE

s=[filename]//[T]//' .'//[f ilenb]
ENDIF
text='Turn '
IF ([N].EQ.1) THEN

title='Before '//[text]//[N]
ELSE

title=[text]//[T]
ENDIF
mess [s]
nt/rea [N] [s]

* h/cre/2dhisto 110 [title] 1000 -0.02 0.08 100 -0.05 0.05 100
h/cre/2dhisto 110 [title] 1000 -0.04 0.06 100 -0.05 0.05 100
nt/proj 110 [N].px%x
set ndvx 510
h/pl 110

Plotting Programs 67

GraphicsZpriinitives/line [sept_pos] -0.04 [sept_pos] 0.04
Graphicszpriιnitives∕line [sept_pos]+ [sept_width] -0.04 [sept_pos]+[sept_width]

0.04
GraphicsZprimitivesZline [bump] -0.01 [bump] 0.01
GraphicsZprimitivesZline [bump]-0.01 0.0 [bump]+G.01 0.0

* GraphicsZprimitivesZarc [bump] 0.0 [radius]
hZdelete 110
IF (([N]-6*INT([N]Z6)).EQ.0) THEN

fOrtranZclose 66
IF ([N].LT.([nbturn]+1)) THEN

page=[page]+1
fortranZfile 66 'transv.'ZZ[page]ZZ'.'ZZ[filenb]ZZ' .eps '
graphicsZmeta 66 -113

ENDIF
ENDIF

ENDDO
fOrtranZclose 66

68 Lead Injection in LEAR

References
[1] S. Maury and D. Möhl, Combined Longitudinal and Transverse Multiturn Injection in a Heavy Ion Accu

mulator Ring, CERN/PS/AR/Note 94-12, 31 May 1994, Geneva, Switzerland.

[2] P. Lefèvre and D. Möhl, Lead Ion Accumulation Schemefor LHC, CERN/PS/93-45 (DI), LHC Note 257, 26
October 1993, Geneva, Switzerland.

[3] The LHC Study Group, P. Lefèvre and T. Pettersson (editors), LHC, The Large Hadron Collider, Concep
tual Design, CERN/AC/95-05 (LHC), 20 October 1995, Geneva, Switzerland.

[4] P. D. V. van der Stok, Multiturn Injection into the CERN Proton Synchrotron Booster, CERN/PS/BR 81-28,
22 December 1981, Geneva, Switzerland.

[5] PAW - Physics Analysis Workstation, An Introductory Tutorial, Geneva, Switzerland.

[6] H. Grote and F. Christoph Iselin, The MAD Program (Methodical Accelerator Design), Version 8.13/8,
User’s Reference Manual, CERN/SL/90-13 (AP)(Rev. 4), Geneva, Switzerland.

[7] Application Software and Database, CERNLIB, Computing and Networks Division, Geneva, Switzerland.

[8] Sebastian Masso and Franz Rohner, PaRC User’s Guide, CERN/CN/93/8.

[9] S. Baird et al., Beam Lifetime Tests for Pb52^*^, Pb53* and Pb54 + ions subject to electron cooling in LEAR

(performed in June 1995), CERN/PS/AR/Note 95-12, 26 September 1995, Geneva, Switzerland (published
in PhysicsLetters B 361 (1995) 184-186).

110] K. Schindl and P. D. V. van der Stok, Increase of Betatron Stacking Efficiency via Linear Coupling in AG
Proton Synchrotrons ("Skew Injection”). Application to the CERN PS Booster, CERN/PS/BR 76-19,
CERN/PS/OP/76-5, 26 October 1976, Geneva, Switzerland.

[11] ed. G. Glass, Design Study of a Facility for Experiments with Low Energy Antiprotons (LEAR), CERN|PS|
DL 80-7, 16 May 1980.

[12] XL Fortran for ATX, User's Guide, Version 3 Release 2.

