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ABSTRACT

This note is a companion paper to the PS/HI Note 91-07 dealing with an alternative to 
the Abel transform relating amplitude distribution and projected density in form of a fit of 
polynomial distributions and its application to the conversion of emittance results from 
beamscope or flip targets to profile detector emittance measurements.

The note describes the algorithms used in the FORTRAN code implemented for PCs 
and, recently, in the real-time environment of the PSB beamscope processing software. Results 
of both methods are compared for the vertical plane. Agreement is satisfactory and justifies the 
application of the fitting method to measurements of radial emittances in presence of momentum 
dispersion where the Abel transform is not strictly meaningful.



1. Introduction

Measuring transverse beam dimensions or emittances has gained importance over 
the last years with the operation of proton (or p-pbar, resp.) colliders where emittances 
determine the luminosity. Future proton colliders like LHC requiring very bright beams 
will impose even more stringent conditions on the beam emittances produced by the 
injector compleχ[1]

Devices measure emittances or beam dimensions can be divided into two groups 
according to the measured quantities.

(i) - Devices measuring betatron amplitude distributions.
Ex. Flip targets, Beamscope[2] in the PSB.
(ii) - Devices measuring the projected density (profile detectors).
Ex. SEM grids, flying wire, wire scanner, ionisation beam monitors.
We will look at devices of type (i) which measure the circulating beam current 

i(a) as a function of the betatron amplitude a. In this case the amplitude distribution F(a) 
has to be found by differentiation, which is done numerically in the computer code and 
electronically by Beamscope[2].

Existing computer codes use the numerical Abel transform together with a 
procedure to determine the beam centre[3,4] for calculation of the r.m.s. emittances of the 
projected density. Beam scope uses an automated procedure based on a tangent fitted to 
the small amplitude slope of the amplitude distribution, which should increase linearly 
for smooth phase space density around the origin. This procedure is useful for calculation 
of vertical emittances, where dispersion effects are vanishing. The contrary applies to the 
horizontal plane: here in many machines, e.g. PS and PSB, the lattice dispersion never 
vanishes and consequently one always deals with a two-dimensional amplitude 
distribution with contributions from both betatron amplitudes and momentum deviations.

Another code[5] uses analytical distributions to fit the real distribution function 
and obtains the r.m.s. emittances directly by fitting of the circulating current to avoid the 
noisy differentiation.This method gives good results especially for the horizontal 
emittances for which the beam scope procedure of beam center determination is not very 
precise. A pitfall of this method is that the best fitting distribution can be still different 
from the real one which leads to errors in computed emittances.

In view of this facts it appears desirable to have a computer code which allows to 
combine the possibilities of the two methods described above.

The present note describes a computer code for computing the r.m.s. emittances 
of the projected density based on the numerical Abel transform and fitting of the well 
known family of binomial distributions [6,7], which offers exactly the feature mentioned 
above.

2. Analytical Description of the Code

Let us consider the betatron oscillations of the particles in the beam like a set of 
harmonic oscillators.





Here Γ(m) denotes the gamma function, xl the limiting amplitude and x is a 
dimensionless variable[7] 0 < x < 1.
The same relations hold in the (y,y') phase plane.

Obviously if we select the analytical fitting curve ia(x) described by (6) in such a 
way that the differences between ia(x) and measured curve id(x) will be a minimum, we 
will be immediately in position to calculate the transverse emittance. We remember that 
the precision of emittances obtained in such a way depends on the differences between 
the fitting distribution and the real one.

3. Numerical Treatment

a) Input Data
The BEAMSCOPE measurement is based on perturbing the reference orbit in the 

horizontal or vertical direction and scraping the beam at a fixed aperture, which is done 
during two consecutive machine cycles to both sides of the reference orbit (left-right in 
the horizontal direction and up - down in the vertical one). As a result of this procedure 
we have circulating beam currents ileft, iright or iup, idown as a function of bump amplitude, 
which is equivalent to a function of position of a moving target. As mentioned 
BEAMSCOPE determines the beam centre location for both directions with respect to 
the reference orbit using an automated procedure based on a tangent fitted to the small 
amplitude slope of the amplitude distribution.

b) Calculation of the Reference Orbit Position
As was mentioned in the introduction the procedure of the beam center 

determination used by BEAMSCOPE gives results which are not precise for the 
horizontal measurements. In this case we use the procedure described below.

Doing the transformations



The Figure shows beam currents yg(i), yd(j) as a functions of the target positions 
xg(i), xd(j), respectively, and gives the geometric interpretation of calculations (8).

The beam centre location xoo and reference orbit position are connected through 
the relation: 

we will be in position to calculate the amplitude distribution F(a)= F(ak)= Fa(k) given by 
(2).

For this purpose we calculate the functions ydk(k) and ygk(k) (k=l . . . n) at 
equidistant points x(k) and take their derivatives using a three point Lagrange 
interpolation[5]

The next step is to calculate the projected density distribution given by (1).
Let the function F(a) be linear between points ak and ak+1, for every k=l... n-1:
F(a)= Ck + Dk a, ak<a<ak+1

Then the integral (1) will have the form:



we obtain the following formulae for the projected density:

This formulae is valid for all k= 2 ... n exept k=l where xk=0. In this case the 
above formulae reduces to:

For the calculation of the coefficients Ck and Dk we use the simple relations that 
connect these coefficients with the function F(a) in the points ak and ak+1, for every k.

d) Calculation of the Sigmas of the Projected Density and r.m.s. Emittances.
Using a trapezoidal aproximation for the numerical calculation of the integrals (4) 

we obtain the following formulas for the sigmas of the projected density:

Then the r.m.s. emittances of the beam are determined by (3).

e) Fitting Procedure.
Assuming as in chapter 2 that the real two-dimensional density distribution is 

close to the binomial (5), we have to find the parameters m and xl for which the 
diference between the analytical fitted curve ia(x) described by (6) and the measured 
curve id(x) will be a minimum.

Let us introduce the following functions:



η

Then the procedure of obtaining the best fitting m and xl consists in looking for a 
minimum of the function Hs(k). It is then easy to obtain the sigmas of the projected 
distribution and the r.m.s. emittances of the beam from these parameters m and xl using 
relations (3) and(7). This procedure is described in detail in the note [5].

We have to note that for the vertical phase plane this procedure reduces to 
looking for the optimal m in (5).In this case the parameter xl is calculated using the beam 
centre location obtained by BEAMSCOPE.

4. Calculation Possibilities.
The present postprocessor calculates:
- amplitude distribution
- projected density distribution
- sigma of the projected density
- r.m.s. emittance of the beam

using the numerical Abel transform and fitting the real density distribution with a 
binomial one to obtain the above values.

The precision of the results obtained in this way strongly depends upon the 
precision of the procedure for the beam centre determination.

We have three ways to determine the location of beam centre:
(i) - from BEAMSCOPE.
(ii) - with the procedure described in chapter 3(b).
(iii) - with the fitting procedure of chapter 3(e).
The choice of one of these methods depends upon the plane of measurement.
Table shows this choice as a function of the method used for calculation of the 

sigmas of both the projected densitese and the plane of betatron motion.

Table

vertical betatron motion horizontal betatron motion
numerical Abel 

transform
(i)

fitting 
procedure

(i)

numerical Abel 
transform

(i)

fitting 
procedure

(iii)



5. Results.
In the appendix results of the calculation of the r.m.s. PS Booster emittances are 

shown.
One can see a good agreement between results obtained by numerical Abel 

transform and fitting procedure. The little difference of the results, especially for the 
vertical betatron motion, is a consequence of the numerical transform errors or of the fact 
that our real distribution density is not exactly binomial. Obviosly one can succesfully 
use any of this two methods to obtain the vertical r.m.s. emittance of the beam.

For the horizontal betatron motion we prefer to use the fitting procedure, where 
dispersion effects have not so much influence on the results as it is the case for the 
numerical Abel transform.
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Appendix

We use the following abbreviations:
HOR; VER - horizontal or vertical betatron motion.
Qh,v - horizontal and vertical betatron tunes.
B - average magnetic field.
signa-a;sigma-f - σ 's of the projected density obtained by the numerical Abel 

transform and the fitting procedure, respectively.
e/nce-a;e/nce-f - r.m.s. emittances obtained by the same methods.
; - Beamscope bump amplitude corresponding to beam centre, measured 

and from fitting procedure, respectively.
XL; m - fitting parameters in (6).
U and D - up and down measurements.
M - results obtained for the current which is averaged between ileft and iright∙

Input file: hos.dat

BSC TEST 13/ 5/1991 18:14:22 ser. 964 ring-3 Qh,v=4.160,5.230 B=6860[G] VER
INTEGR. sigma-a sigma-f e/nce-a e/nce-f bc-a bc-f XL m .

[mm] [mm] [mm.mrad] [mm.mrad] [mm] [mm] [mm]
102.324 2.42 2.23 03.93 03.35 31.41 31.41 17.13 28.45 U
099.121 2.37 2.41 03.77 03.91 25.76 25.76 14.19 16.27 D

BSC TEST 13/ 5/1991 18:30:58 ser. 968 ring-3 Qh,v=4.160,5.230 B=6860[G] HOR
INTEGR. sigma-a sigma-f e/nce-a e/nce-f bc-a bc-f XL m .

[mm] [mm.mrad]
3.54 09.04

[mm.mrad] [mm]
06.79 52.89

[mm] 
52.31

[mm] ......... .
28.83 32.10097.995 4.09 M

BSC TEST 13/ 5/1991 18:41:56 ser. 976 ring-3 Qh,v=4.160,5.230 B=6860[G] HOR
INTEGR. sigma-a sigma-f e/nce-a e/nce-f bc-a bc-f XL m .

[mm] [mm.mrad] [mm.mrad] [mm] [mm] [mm] ------- .
092.840 3.76 3.95 07.64 08.42 49.19 49.50 26.61 21.75 M

BSC TEST 13/ 5/1991 18:43:26 ser. 977 ring-3 Qh,v=4.160,5.230 B=6860[G] HOR
INTEGR. sigma-a sigma-f e/nce-a e/nce-f bc-a bc-f XL m .

[mm] [mm.mrad]
4.02 09.25

[mm.mrad] [mm]
08.73 49.52

[mm] 
49.56

[mm] ------- .
26.49 20.73094.961 4.13 M

BSC TEST 13/5/1991 18:51: 7 ser. 978 ring-3 Qh,v=4.160,5.230 B=6860[G] VER
INTEGR. sigma-n sigma-f e/nce-a 
------ [ma] [mm] [mm.mrad] [

e/nce-f 
mm.mrad]

03.45

bc-a 
[mm] 
31.27

bc-f 
[mm] 
31.27

XL 
[mm] 
17.03

m .

099.270 2.22 2.27 03.31 27.21 U
099.946 2.38 2.40 03.81 03.87 25.72 25.72 14.16 16.40 D



BSC TEST 13/5/1991 18:52:27 ser. 980 ring-3 Qh,v=4.160,5.230 B=6860[G] VER
INTEGR. sigma-a sigma-f e/nce-a e/nce-f bc-a bc-f XL m .
-------- [mm] [mm] [mm.mrad] [mm.mrad] [mm] [mm] [mm] •

099.870 2.36 2.21 03.74 03.29 31.28 31.28 17.03 28.62 U
099.034 2.46 2.42 04.08 03.94 25.75 25.75 14.28 16.38 D

BSC TEST 27/ 5/1991 18:10:42 ser. 280 ring-3 Qh,v=4.266,5.278 B=1300[G] HOR
INTEGR. sigma-a sigma-f e/nce-a e/nce-f bc-a bc-f XL m .
-------- [mm] [mm] [mm.mrad] [mm.mrad] [mm] [mm] [mm] •

099.681 8.02 7.75 35.48 33.08 50.41 50.87 44.19 15.26 M

BSC TEST 27/ 5/1991 18:15:53 ser. 283 ring-3 Qh,v=4.266,5.278 B=1300[G] VER
INTEGR. sigma-a sigma-f e/nce-a e/nce-f bc-a bc-f XL m .

[mm] [mm] [mm.mrad] [mm.mrad] [mm] [mm] [mm]
098.016 5.59 5.27 20.91 18.62 30.56 30.56 32.42 17.91 U
099.299 5.68 5.62 21.61 21.15 25.88 25.88 28.03 11.44 D

BSC TEST 21/ 6/1991 17: 7:14 ser. 440 ring-3 Qh,v=4.250,5.230 B=1300[G] HOR
INTEGR. sigma-a sigma-f e/nce-a e/nce-f bc-a bc-f XL m
-------- [mm] [mm] [mm.mrad] [mm.mrad] [mm] [mm] [mm] ------

098.817 7.74 7.88 32.95 34.14 49.06 49.39 46.29 16.25 M

BSC TEST 21/ 6/1991 17:11:26 ser. 444 ring-3 Qh,v=4.250,5.230 B=1300[G] VER
INTEGR. sigma-a sigma-f e/nce-a e/nce-f bc-a bc-f XL m .
-------- [mm] [mm] [mm.mrad] [mm.mrad] [mm] [mm] [mm] ------  .
101.059 5.93 5.86 23.60 23.04 31.37 31.37 33.83 15.68 U
102.476 6.18 6.09 25.68 24.87 25.96 25.96 28.31 09.82 D

BSC TEST 21/ 6/1991 17:21:43 ser. 993 ring-4 Qh,v=4.160,5.230 B=6860[G] VER
INTEGR. sigma-a sigma-f e/nce-a e/nce-f bc-a bc-f XL m .

[mm] [mm] [mm.mrad] [mm.mrad] [mm] [mm] [mm] •
100.727 4.41 4.49 13.05 13.52 31.82 31.82 20.31 09.25 U
099.248 4.41 4.51 13.09 13.66 25.47 25.47 16.63 05.81 D

BSC TEST 21/ 6/1991 18:18:27 ser. 992 ring-4 Qh,v=4.160,5.230 B=6860[G] HOR
INTEGR. sigma-a sigma-f e/nce-a e/nce-f bc-a bc-f XL m .

[mm] [mm.mrad]
6.49 25.02

[mm.mrad] [mm]
22.78 56.54

[mm] 
56.08

[mm] ------  .
26.96 07.63099.193 6.80 M

BSC TEST 16/ 7/1991 21: 7:30 ser. 487 ring-3 Qh,v=4.270,5.290 B=1260[G] VER
INTEGR. sigma-a sigma-f e/nce-a e/nce-f bc-a bc-f XL m .

[mm] [mm] [mm.mrad] [mm.mrad] [mm] [mm] [mm]
100.146 6.55 6.13 28.69 25.13 31.45 31.45 34.80 15.13 U
097.880 6.56 6.17 28.78 25.47 25.66 25.66 28.97 10.03 D
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