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A BEAMSCOPE POSTPROCESSOR FOR PCs TO COMPUTE
R.M.S. EMITTANCES OF THE PROJECTED DENSITY

E. Ivanov*

ABSTRACT

This note is a companion paper to the PS/HI Note 91-07 dealing with an alternative to
the Abel transform relating amplitude distribution and projected density in form of a fit of
polynomial distributions and its application to the conversion of emittance results from
beamscope or flip targets to profile detector emittance measurements.

The note describes the-algorithms used in the FORTRAN code implemented for PCs
and, recently, in the real-time environment of the PSB beamscope processing software. Results
of both methods are compared for the vertical plane. Agreement is satisfactory and justifies the
application of the fitting method to measurements of radial emittances in presence of momentum
dispersion where the Abel transform is not strictly meaningful.
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1. Introduction

Measuring transverse beam dimensions or emittances has gained importance over
the last years with the operation of proton (or p-pbar, resp.) colliders where emittances
determine the luminosity. Future proton colliders like LHC requiring very bright beams
will impose even more stringent conditions on the beam emittances produced by the
injector complex[1l.

Devices measure emittances or beam dimensions can be divided into two groups
according to the measured quantities.

(i) - Devices measuring betatron amplitude distributions.

Ex. Flip targets, Beamscopel2] in the PSB.

(ii) - Devices measuring the projected density (profile detectors).

Ex. SEM grids, flying wire, wire scanner, ionisation beam monitors.

We will look at devices of type (i) which measure the circulating beam current
i(a) as a function of the betatron amplitude a. In this case the amplitude distribution F(a)
has to be found by differentiation, which is done numerically in the computer code and
electronically by Beamscopel2l.

Existing computer codes use the numerical Abel transform together with a
procedure to determine the beam centrel3:4] for calculation of the r.m.s. emittances of the
projected density. Beamscope uses an automated procedure based on a tangent fitted to
the small amplitude slope of the amplitude distribution, which should increase linearly
for smooth phase space density around the origin. This procedure is useful for calculation
of vertical emittances, where dispersion effects are vanishing. The contrary applies to the
horizontal plane: here in many machines, e.g. PS and PSB, the lattice dispersion never
vanishes and consequently one always deals with a two-dimensional amplitude
distribution with contributions from both betatron amplitudes and momentum deviations.

Another codel3] uses analytical distributions to fit the real distribution function
and obtains the r.m.s. emittances directly by fitting of the circulating current to avoid the
noisy differentiation.This method gives good results especially for the horizontal
emittances for which the beamscope procedure of beam center determination is not very
precise. A pitfall of this method is that the best fitting distribution can be still different
from the real one which leads to errors in computed emittances.

In view of this facts it appears desirable to have a computer code which allows to
combine the possibilities of the two methods described above.

The present note describes a computer code for computing the r.m.s. emittances
of the projected density based on the numerical Abel transform and fitting of the well
known family of binomial distributions(6:7), which offers exactly the feature mentioned
above.

2. Analytical Description of the Code

Let us consider the betatron oscillations of the particles in the beam like a set of
harmonic oscillators.



The one-dimensional density distribution p(x) produced by a set of harmonic
oscillators, oscillating around x=0 with amplitudes given by an amplitude distribution

F(a) is[8]:
R

p()= (1/m) | F(a) (a2 - x2) 12 da ()
0

where R denotes the upper limit of the amplitude a2= x2 + y2 and x,y are dimensionless
variables.
The inverse relation has the form:

R

F(a)=-2a ] p'(x) (x2 - 8212 dx
0

The beam current i(x) not intercepted by a target located at the distance x from

the reference orbit is given by:

ix)=J F(a) da ?)
0

Using relation (1) and (2) we can easy obtain the following relation for the
projected density:

R
p(x)= (1/m) [ i(a) (a2 - x2)'12 da

X

Transverse emittance is frequently defined by[9l:

€xy= Cry 2By 3)

where B, | is the lattice function and

R R R R
o= x2pm ax11fpex ax11 5 o2=1[y2piy) dy 11) piy) dy 1. 4)
0 0 0 0

If we assume that our real two-dimensional density distribution has a binomial
form:

F(a)= m (1-a2)m-l/x | (5)
we will have the following relations for the quantities i(x), p(x) and o(x):



ix)=1-(1-x2)m (6)

p(x)=m (1 - x2)m-1/2 (m) [x!/2 [(m+1/2)]-1

0,2= x,2/[2(m+1)] (7
Here I'(m) denotes the gamma function, x, the limiting amplitude and x is a

dimensionless variablel71 0 < x < 1.
The same relations hold in the (y,y') phase plane.

Obviously if we select the analytical fitting curve 1,(x) described by (6) in such a
way that the differences between i,(x) and measured curve i;(x) will be a minimum, we
will be immediately in position to calculate the transverse emittance. We remember that

the precision of emittances obtained in such a way depends on the differences between
the fitting distribution and the real one.

3. Numerical Treatment

a) Input Data

The BEAMSCOPE measurement is based on perturbing the reference orbit in the
horizontal or vertical direction and scraping the beam at a fixed aperture, which is done
during two consecutive machine cycles to both sides of the reference orbit (left-right in
the horizontal direction and up - down in the vertical one). As a result of this procedure
we have circulating beam currents 1,5, i4gp, OF 1,50 1goun @8 2 function of bump amplitude,
which is equivalent to a function of position of a moving target. As mentioned
BEAMSCOPE determines the beam centre location for both directions with respect to
the reference orbit using an automated procedure based on a tangent fitted to the small
amplitude slope of the amplitude distribution.

b) Calculation of the Reference Orbit Position

As was mentioned in the introduction the procedure of the beam center
determination used by BEAMSCOPE gives results which are not precise for the
horizontal measurements. In this case we use the procedure described below.

Doing the transformations

Xe(ngk-i+1)= X (i) - AP yo(ngk-i+1)= I, (i)
X4(ndk-j+1)= AP - x .., () Ya(ndk-j+1)= 551, G)
for every i=1 . .. ngk and j=1 ... ndk we obtain the beam current as a function of the

equivalent target position. Here AP is the half-aperture of the fixed scraper.
Performing the calculations

Xgi(1)= X4(min)+[y,(1)-y4(min)] [x4(max)-x 4(min)] [y,(max)-y (min)]-1
ngk
Xgg= 2 0.5 [x,()+x,,()] (&)

i=1



X4 i)= Xg(min) [y 4(i)-y(min)] [Xg(max)-xy(min)] [y,(max)-y,(min)]}
ndk
Xgq= 2 0.5 [x4()+x4,()]
i=1
then the calculated reference orbit position x ¢ will be:

X = (xsg+xsd)/ (ngk+ndk)

The Figure shows beam currents y,(i), y4() as a functions of the target positions
x4(1), X4(), respectively, and gives the geometric interpretation of calculations (8).

The beam centre location x,, and reference orbit position are connected through
the relation:

Xoo™ XostAP

¢) Calculation of the Amplitude and Projected Density Distributions
Knowing the reference orbit position and doing the transformations:

Xgi(D)= X - X, (i-1) Xg (D= %x4G-1) - X ¢
V()= y,(-1) Yax(@)= y4G-1)

we will be in position to calculate the amplitude distribution F(a)= F(a,)= F,(k) given by
).

For this purpose we calculate the functions y, (k) and y, (k) (k=1 ... n) at
equidistant points x(k) and take their derivatives using a three point Lagrange
interpolation(5].

The next step is to calculate the projected density distribution given by (1).

Let the function F(a) be linear between points a, and a,,,, for every k=1...n-1:

Then the integral (1) will have the form:

R R
p(x0)=(1/m) [C, J(a2 - 212 da + D, fa (a2 - x2)1/2 da]
Xk Xic

Dividing the interval (x,;R) into the intervals (X,;X,.1)> (Kga13Xka2) - - - - (X,.3X,=R)
and using Abel transforms tabulated in Ref.[8], where:

Xi+1

,[ (a2 - x2)-1/2 da= arccosh(x,, /%,)
Xy



X1
'[ a (a2 - x2)1/2 da= [(xj.,)2-(x) 2172 -
Xy
we obtain the following formulae for the projected density:

n

p(x)= (1/m) Z(C, arccosh(xy, ,/xp) + Dy [(x,1)2 - (xp?]-1/2)
=k

This formulae is valid for all k=2 . . . n exept k=1 where x,=0. In this case the
above formulae reduces to:

n

p(x,=0)= (1/r) {D, x, + Z[C; In(xy,,/xp + Dy (x5, - xp1}
=2

For the calculation of the coefficients C, and D, we use the simple relations that
connect these coefficients with the function F(a) in the points a, and a,,,, for every k.

d) Calculation of the Sigmas of the Projected Density and r.m.s. Emittances.
Using a trapezoidal aproximation for the numerical calculation of the integrals (4)
we obtain the following formulas for the sigmas of the projected density:

n

o,= (Z [p(x) x2 + p(x;y) %] [p(x)) + p(x;. I 11172
i=2
n

o,= {Zlp(y;) v + p(y;.0) y2i1) [PGYD) + Py )1 )12
i=2

Then the r.m.s. emittances of the beam are determined by (3).

e) Fitting Procedure.
Assuming as in chapter 2 that the real two-dimensional density distribution is
close to the binomial (5), we have to find the parameters m and x; for which the

diference between the analytical fitted curve i,(x) described by (6) and the measured
curve i,(x) will be a minimum.
Let us introduce the following functions:

n

S(kj)=S.0) +S.(), S:+()= X Cyy(i) [14(xy) - 1,(x)]

i=1



n
8.()= X Cy,() [ig(x)) - 1,1

i=1
where the coefficients C (i) and C,,(i) are defined by:

C,q(0)=1 C,(0)=0
Caa=0 for iy(x>i,(x), and  Cy()=1 for i,(x)<i,(x;)

and H (k)= S, (k,jg,) + IS_(k,jz,)! where jg, is determined by S(k,j;,)=0 for every k.

Then the procedure of obtaining the best fitting m and x; consists in looking for a
minimum of the function H (k). It is then easy to obtain the sigmas of the projected
distribution and the r.m.s. emittances of the beam from these parameters m and x, using
relations (3) and(7). This procedure is described in detail in the note [5].

We have to note that for the vertical phase plane this procedure reduces to
looking for the optimal m in (5).In this case the parameter x, is calculated using the beam
centre location obtained by BEAMSCOPE.

4. Calculation Possibilities.

The present postprocessor calculates:

- amplitude distribution

- projected density distribution

- sigma of the projected density

- r.m.s. emittance of the beam
using the numerical Abel transform and fitting the real density distribution with a
binomial one to obtain the above values.

The precision of the results obtained in this way strongly depends upon the
precision of the procedure for the beam centre determination.

We have three ways to determine the location of beam centre:

(i) - from BEAMSCOPE.

(ii) - with the procedure described in chapter 3(b).

(iii) - with the fitting procedure of chapter 3(e).

The choice of one of these methods depends upon the plane of measurement.

Table shows this choice as a function of the method used for calculation of the
sigmas of both the projected densitese and the plane of betatron motion.

Table
vertical betatron motion horizontal betatron motion
numerical Abel fitting numerical Abel fitting
transform procedure transform procedure

@) ® ) (ii1)



5. Results.

In the appendix results of the calculation of the r.m.s. PS Booster emittances are
shown.

One can see a good agreement between results obtained by numerical Abel
transform and fitting procedure. The little difference of the results, especially for the
vertical betatron motion, is a consequence of the numerical transform errors or of the fact
that our real distribution density is not exactly binomial. Obviosly one can succesfully
use any of this two methods to obtain the vertical r.m.s. emittance of the beam.

For the horizontal betatron motion we prefer to use the fitting procedure, where
dispersion effects have not so much influence on the results as it is the case for the
numerical Abel transform.
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Appendix

We use the following abbreviations:

HOR;VER - horizontal or vertical betatron motion.

Qh,v - horizontal and vertical betatron tunes.

B - average magnetic field.’

signa-a;sigma-f - ¢ 's of the projected density obtained by the numerical Abel
transform and the fitting procedure, respectively.

e/nce-a;e/nce-f - r.m.s. emittances obtained by the same methods.

bc-a;be-f - Beamscope bump amplitude corresponding to beam centre, measured
and from fitting procedure, respectively.

XL; m - fitting parameters in (6).

U and D - up and down measurements.

M - results obtained for the current which is averaged between Ijef; and irgh.

Input file :  hos.dat

BSC TEST 13/ 5/1991 18:14:22 ser. 964 ring-3 Qh,v=4.160,5.230 B=6860[G] VER
INTEGR. sigma-a sigma-f e/nce-a  efnce-f bc-a  be-f XL m

-------- [mm] [mm] [mm.mrad] [mm.mrad] [mm] [mm] [mm] ----—--- .
102324 242 223 0393 03.35 3141 3141 17.13 2845 U
099.121 237 241 03.77 0391 2576 2576 14.19 1627 D

BSC TEST 13/ 5/1991 18:30:58 ser. 968 ring-3 Qh,v=4.160,5.230 B=6860[G] HOR
INTEGR. sigma-a sigma-f e/nce-a  e/nce-f bc-a bef XL m

-------- [mm] [mm][mm.mrad] [mm.mrad] [mm] [mm] [mm] ------- .
097.995 4.09 354 09.04 0679 5289 5231 28.83 3210 M

BSC TEST 13/ 5/1991 18:41:56 ser. 976 ring-3 Qh,v=4.160,5.230 B=6860{G] HOR
INTEGR. sigma-a sigma-f e/nce-a  e/ncef be-a  bef XL m

-------- [mm] [mm] [mm.mrad} [mm.mrad] [mm] [mm] [mm] ------ .
092.840 3.76 395 0764 0842 49.19 4950 2661 2175 M

BSC TEST 13/ 5/1991 18:43:26 ser. 977 ring-3 Qh,v=4.160,5.230 B=6860[G] HOR
INTEGR. sigma-a sigma-f e/nce-a  e/nce-f be-a  bef XL m

-------- [mm] [mm] [mm.mrad] [mm.mrad] [mm] [mm] [mm] ---—---- .
094961 4.13 4.02 09.25 08.73 49.52 4956 2649 20713 M

BSC TEST 13/5/1991 18:51: 7 ser. 978 ring-3 Qh,v=4.160,5.230 B=6860[{G] VER
INTEGR. sigma-n sigma-f e/nce-a  e/mce-f bc-a bef XL m

-------- [ma] [mm] [mm.mrad] [mm.mrad] [mm] {mm} ([mm] ------- .,
099.270 222 227 0331 0345 3127 3127 17.03 2721 U
099946 238 240 03.81 03.87 25.72 2572 14.16 1640 D



BSC TEST 13/ 5/1991 18:52:27 ser. 980 ring-3 Qh,v=4.160,5.230 B=6860[G] VER
INTEGR. sigma-a sigma-f e/nce-a  e/nce-f bc-a bef XL m
-------- (mm] [mm] [mm.mrad] [mm.mrad] (mm]} [mm] [mm] -------
099.870 236 221 03.74 0329 3128 31.28 17.03 28. 62
099.034 246 242 04.08 0394 2575 2575 1428 16.38

BSC TEST 27/ 5/1991 18:10:42 ser. 280 ring-3 Qh,v=4.266,5.278 B=1300[G] HOR
INTEGR. sigma-a sigma-f e/nce-a  efncef bc-a bef XL m
-------- [mm] [mm][mm.mrad] [mm.mrad} {[mm] [mm] [mm] ------.
099.681 8.02 775 3548 3308 5041 5087 44.19 1526

BSC TEST 27/ 5/1991 18:15:53 ser. 283 ring-3 Qh,v=4.266,5.278 B=1300[G] VER
INTEGR. sigma-a sigma-f e/nce-a  e/mce-f bc-a bef XL m
-------- [mm] [mm] [mm.mrad] [mm.mrad] [mm] {mm] [mMm] -------
098.016 5.59 527 2091 18.62 30.56 30.56 3242 17. 91
099.299 568 562 21.61 21.15 25.88 2588 28.03 1144

BSC TEST 21/ 6/1991 17: 7:14 ser. 440 ring-3 Qh,v=4.250,5.230 B=1300[G] HOR
INTEGR. sigma-a sigma-f e/nce-a  e/nce-f bc-a bef XL m
-------- [mm] [mm][mm.mrad] [mm.mrad] [mm] [mm] [mm] ------ .
098.817 7.74 7.88 3295 34.14 49.06 49.39 46.29 16.25

BSC TEST 21/ 6/1991 17:11:26 ser. 444 ring-3 Qh,v=4.250,5.230 B=1300[G] VER
INTEGR. sigma-a sigma-f e/nce-a  e/nce-f bc-a bef XL m
-------- [mm] [mm] [mm.mrad] [mm.mrad] [mm] [mm] [mm] ------.
101.059 593 586  23.60 23.04 3137 31.37 33.83 1568
102476 6.18 6.09  25.68 2487 2596 2596 2831 09.82

BSC TEST 21/ 6/1991 17:21:43 ser. 993 ring-4 Qh,v=4.160,5.230 B=6860[G] VER
INTEGR. sigma-a sigma-f e/nce-a  e/nce-f bc-a bef XL m
-------- [mm] [mm][mm.mrad] [mm.mrad]} [mm] [mm] [mm] -----—-- .
100.727 441 449 13.05 13.52 31.82 31.82 2031 09.25
099.248 441 451 13.09 - 13.66 2547 2547 16.63 05.81

BSC TEST 21/ 6/1991 18:18:27 ser. 992 ring-4 Qh,v=4.160,5.230 B=6860[G] HOR
INTEGR. sigma-a sigma-f e/nce-a  efnce-f bc-a bef XL m
-------- [mm] [mm][mm.mrad] [mm.mrad] [mm] [mm] [mm] -------
099.193 6.80 649  25.02 22,78 56.54 56.08 26.96 O07. 63

BSC TEST 16/ 7/1991 21: 7:30 ser. 487 ring-3 Qh,v=4.270,5.290 B=1260[G] VER
INTEGR. sigma-a sigma-f e/nce-a  e/nce-f bc-a bef XL m
-------- [mm] {mm][mm.mrad] [mm.mrad] {[mm] [mm] [mm] -------
100.146 6.55 6.13  28.69 25.13 3145 3145 3480 15. 13
097.880 6.56 6.17 28.78 2547 25.66 25.66 2897 10.03
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Fig. Currents Yg(i) and Yd(j) vs. target position.




