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ABSTRACT

In order to compare emittances measured with flip targets
or Beamscope with those obtained from Profile detectors (wire
scaners, SEM grids) one can use the Abel transform only if there
is no dispersion folded in and if the beam centre can be determined
accurately. Fitting a polynomial distribution to the measured data
allows reconstruction of the beam centre, and computation of R.M.
S. emittances of the projected density by simple analytic formulae.
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1. Introduction

Measuring transverse beam dimensions or emittances has gained importance over
the last years with the operation of proton (or p, resp.) colliders where emittances
determine the luminosity. Future proton colliders like LHC requiring very bright beams
will impose even more stringent conditions on the beam emittances produced by the
injector complex ().

As the occasions for beam blow-up are multiple, monitoring and comparing
emittances in the different machines involved in the LHC injector becomes crucial for
commissioning and trouble-shooting.

Devices to measure emittances or beam dimensions can be divided into two
groups according to the measured quantities:

(1) Devices measuring betatron amplitude distributions

Ex.: Flip targets, Beamscope @ in the PSB

(i) Devices measuring the projected density (profile detctors)

Ex.: SEM grids, flying wire, wire scanner, ionisation beam monitors
Accordingly, emittances quoted are defined differently:

Devices of group (i) define dimensions containing 95 % of the beam, say, while
group (ii) devices quote one or two sigmas (r.m.s.) of the projected density distribution,
FWHH's, tangent footwidths etc.

Obviously, measured emittances of different definition should be compared with
care and, if possible, transformed to a common type. Of course, for a rotationally
symmetric phase space population, amplitude distribution and projected density are
linked through a well-known formal relationship, the Abel transform @)

For analytically defined distributions, the transform can in many cases be
executed analytically, and conversion is particularly simple for Gaussian beams. As a
result, emittance measurements of different type are compared as if the beams were
indeed Gaussian, a fairly misleading practice for e.g. collimated beams.

In order to compare the emittances of type (i) and type (ii) measurements one
needs to measure the complete amplitude or projected density distribution, respectively,
and subsequently perform the Abel transform numerically. Computer codes for this task
exist for a while ®)0), but are rarely used in practice.

Note that type (i) devices measure the circulating beam current i(a) as a function
of the betatron amplitude a and the amplitude distribution F(a) has to be found by
differentiation. This is done numerically in the computer program ) and electronically
by Beamscope @,

Both methods introduce some errors by the mandatory filtering of the noise
generated in the differentiation process, which add to the errors inherent in target or
Beamscope measurement.

Nonetheless these transforms are useful in comparing measurements of vertical
emittances, where dispersion effects are vanishing in practically all machines. The
contrary applies to the horizontal plane; here in many machines, e.g. PS and PSB, the
lattice dispersion never vanishes and consequently one always deals with a two-
dimensional amplitude distribution with contributions from both betatron amplitudes and
momentum deviations. Unless one is able to disentangle the distributions - which is



theoretically possible by independent measurements at locations of different lattice
dispersion, but far too complicated in operation - straightforward application of the Abel
transform is strictly speaking meaningless and can only be considered as a first
approximation.

Even more problematic is the determination of the beam centre as particles of
different momentum turn on different closed orbits. Any error in this procedure entails
even more severe errors in the r.m.s. emittances of the transform. Beamscope uses an
automated procedure based on a tangent fitted to the small amplitude slope of the
amplitude distribution, which should increase linearly for smooth phase space density
around the origin. While this works well in the vertical plane, the fit has to be done
manually on the screen display in the horizontal plane for quantitative measurements and
even then it is not always evident. It should be noted that for straightforward
measurement of the beam radii containing 95% of the beam particles the beam centre is
not required: it is derived from a measurement of the "diameter" of the beam by
consecutive scraping from both sides.

Instruments of type (ii) have other problems, like the determination of the
baseline and noise in the tails rendering this way the computation of second moments
unreliable and sometimes systematically wrong. A frequently used way out is fitting a
Gaussian through the data measured and computing the variance analytically.

Again the error is the more signifcant the more the true distribution deviates from
a Gaussian.

In view of this facts it appears desirable to have a method at hand that fits a more
flexible analytical distribution and yields the beam centre as a byproduct, if possible
directly from the beam current i(a) to avoid the noisy differentiation.

The method described in the following sections offers exactly the features
mentioned above. The class of analytical distributions fitted is the well-known family of
"Binomial Distributions" employed by a number of authors, e.g. ©) and described in
the following section. The choise of this family of distributions is determined by:

- it has two fitting parameters m, x, and finite range (x,), which allow us to obtain
the location of the beam centre and sigmas of the projected distributions directly from the
beam current.

- The waterbag model (uniform density in phase space) and Gaussian
distributions are limiting cases of the binomial distributions (m=0 and m=
respectively).

- they include the Kapchinsky-Vladimirsky and the frequently used parabolic
distribution.

- there are relatively simple analytical relations for the projected distribution
densities and sigmas of the beam.

2.Theoretical analysis

Let assume that our experimental distribution density has a binomial form in each
phase plane. In this case the amplitude function will have the form:

F(a)= m (1-a2)m-1/x (1)



wherem=.5,1,1.5,2 ............ and a= (u2+v2)172,
The dimensionless variables u and v are connected to phase space variables x and
x' with relations:

X=X_u

x'= X', a sin(¢p+y)

where x, and x', are limiting amplitude and divergence, respectively.
Consequently the corresponding function i_(u) describing beam current as a
function of the target position will have the following form:
u u
i (u)=2 1] aF@) da= 2 m [ a(1-a2)m1 da= 1-(1-u2)m (1)
0 0
The projected distribution function (onto the u-axis) g(u) is obtained by
integrating F[a= (u2+v2)1/2] over all slopes v:
(1_u2)1/2 (1_u2)1f2
g(u)= J' Fla= (u2+v2)12] da= (2 m/m) J' (1-u2-y2ym-1 gy
_(1_u2)1/2 0
With the substitution v= (1-u2)1/2 sinct we find:
/2
g(u)=(2 m/r) (1-u2)ym-1/2 [ (cosoy2 m-1 do= m (1-u2ym-12 T(m) [71/2 T(me+1/2)] !
0
where I'(m) is the gamma function ®),

One can easily check that g(u) and i.(u) are normalized to 1 by solving the

1 1
integrals (2 j g(u)du) and 2 ,f a F(a) da), respectively.
0 0

From the definition of ¢ of the projected distribution density we have:

1 1
o= x.2 | u? g(u) du=2 m x2 T(m) [71/2 Tm+12)]! § 2 (1-u2)ym-172 du=
-1 0
=xL2/[2(m+1)] (2)

Obviously, if we select the analytical fitting curve i. described by (1), in such a

way that differences between 1, and the experimental measured curve 1, will be a
minimum, we will immediately obtain the beam parameters x, and m. On top of that one

knows to which precision the real beam is approximated by the fitted binomial
distribution.



The conversion from amplitudes and projected density is then reduce to the
selection of the fitting parameters m and x,_ in (1).

3. Selection of m and x, : Procedure.

As a result from beam size measurements we have the normalized circulating
current as a function of the distance x, (see Fig.1 where is shown a simple scheme of the

measurement).Making the substitutions:

nx(ng -+ D=x.() ; x*(t)= nx(1) - nx(f) forevery!from 1tony,
where n, is number of measured points. (3)

we obtain beam losses current i, as a function of the intercepting target position (see 1,

curve in Fig.3).
Let us write once again expression (1) in the form:

1()=1-(1-c2i2  (i=12.......... n ;j=2m=12....... )
where: c= [x(1) - (k-1) dx1/x, (k) < 1; x (k)= - (k-1) dx + x, = ; dx=x,/(n-1) ; k=1,2........ ;
x, ™ is the initial limiting amplitude (see Fig.4) and j and k are numbers of iteration. (4)

We are now going to compare functions 1, and i, at points x(i) (i=1,2......n)
equidistant one to another and not equivalent with measured points O (=1,2..... n,).

Taking into account that function 1 . is defined in points x*(t) and performing a three
points Lagrange interpolation we obtain:

1,G)=[x)-x* OIx O DU X ED-x" O ¢-D-x "+ DI} E D1+
+Hx(@)-x*¢-DIxE-x G DX O-x* DI O-x "¢ DIF 1, 01+
Hx(E)-x" DI OU X G D-xE DI D-x*O1) 1, ¢+1)]
where x(-1) < x(i) < x*(+1).

Repeating this procedure for every i we will find the function id in all points x(i).
Note that n, is usualy choosen between 3 and 10 n, because the precision of the

comparison between 1, and 1, depends on n,.

Let us introduce the following functions:
n

S(k.j)=S+G) + S.G) S+(k,j)= 2 C0) [1,0) - 1,()]

i=1



n

S.(k.j)= X C, () [1,) - 1,()]
i=1
where the coefficients C (i) and C,(i) are defined by:

C (=1 C,()=0
C,(1)=0 wheni,(i)>i(i) and C,(i)=1 when1,3i) <1i,)

and  H (k)= Sy(k,j,) + IS_(k,j, ) where j_ is determined by S(k,j, )=0, for every k.

The procedure of obtaining the best fitting m and x_ consists in looking for a
minimum of the H (k) function. Because this function is defined only when S(k,j)=0 we

have to find this j for which the above condition is realized.
Starting with j=1 (m=.5) we are looking for that j=j_ for which S(k,j) just turned
negative.Then j,_is determined by the expression

j.=[-B+B2-4 A C)12)/2 A),

where: A=2 S(k,j. - 1) - S(k,j- - 2) - S(k,j),
B=(2j.- 1) S(k;j--2) +4 (1-]) S(k,j. - 1) + (2. - 3) S(k,j),
Cj (1-j) SCkij--2)+2j. (.- 1) Skj. - 1)+ (3j.-j.2-2).

The typical behaviour of the function S(k,j) for fixed k is shown in Fig.2a.
Repeating this procedure for k=1,2, etc. we are looking for an extremum of the
function H (k) [see Fig.2b where Hs is shown as a function of x, defined by (4)].

Assume that for k=k, we have H (k) > H (k4+-1). Then using [H,(k)]'=0 and a
three point Lagrange interpolation we obtain:
ko= [(1-2 ky) H,(ky-2) +4 (ky-1) Hky-1) + (3-2 k) Hikp)] #
% [2H (k4-2) + 4 H(ky-1) - 2 H (k]!
where k__is the value of k for which [H,(k)]'=0.

The procedure of fitting m and x,_ is shown graphically in Fig.3 and Fig.4. They
also illustrate the behaviour of the functions S(k,j) and H (k) given by Fig.2a and Fig.2b.
From (3) and (4) we obtain for the fitting m, x, and o,

m= jﬁx/2 s XT xLin - (kﬁx'l) dx ; o= XL/[Z(m+1)] 12
Taking into account relations (3) for the location of the beam centre we obtain.

(Xe)centre= nx(l) = (kﬁx'l) dX



4. Results

The formulae and the procedure described in the preceding analysis were used for
creating a computer code which calculates the quantities:
- fitting m and x_ parameters in expression (4)

- o of the projected density

- beam centre location and relative error between 1, and 1, curves for comparison into
n, points.

Fig.5 and Fig.6 show experimental and fitting curves for the vertical and
horizontal phase plane, respectively. One can see a good coincidence between them.This
indicates that the real beam density distribution has approximately a binomial form,
which allows us to obtain the ¢ of the projected density and the location of the beam
center with sufficient accuracy.

Finally the Table presents the results from processing of experimental data
measured at the PSB. Here 6, and o, denote the ¢'s of the projected density obtained by

fitting procedure and numerical Abel transform, respectively, b.c. and (b.c.)f are the

beam centre locations as determined by Beamscope and by fitting, respectively, and the
limiting amplitude x,_ and the distribution parameter m are defined by the expression (4).
Columns 3 to 5 of the table show the results of the fit if the beam centre is taken from the
Beamscope measurement , while columns 6 and 7 display the beam centre reconstructed
in the fit and the corresponding r.m.s beam radius ©f.

One can see a fairly good agreement between the results obtained with both
methods, which inspires some confidence into the use of the fitting procedure for the
horizontal betatron motion, where dispersion effects spoil the Abel transform method and
the beam centre found by Beamscope is not very accurate.
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Table

Comparison of fitting procedure with Abel transform
for the vertical betatron motion

(be) 6 © m x (b.c.)r of Polarity
267 220 227 2121 17.03 233 20 up
288 238 240 1640 14.16 3.23 2.12 down
268 236 221 2862 17.03 241 20 up
286 246 242 1638 14.28 318 216 down
2.73 593 586 1568 33.83 197 523 up
265 6.18 6.09 9.82 28.31 3.23 5.63 down
196 559 527 1791 3242 213 536 up
272 5.68 562 1144 28.03 2.97 5.37 down
322 443 449 0925 2031 239 384 up
313 441 451 0581 16.63 396  3.87 down
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Fig.2a Function S(k,j) vs. parameter m
in the distribution function.

8.0 /
7.0 /

N

Hs(k)
\

| S |

2.0 /

] ~—
F: 0 s o S B S e s A S S O B B B S A A B
22.5 23.0 23.5 24.0

X =X - (k-1)dx

Fig.2b Function Hs(k) vs. limiting amplitude X .



‘f Jo uwonjounjy ® se ~g+*g=g JO Inoraeysq moys (x)°®%1
soaIn) -uorjrsod 3a3ae)} ‘SA JULIIND SI9SSO[ WIRSQ PLZI[RUWION £ 51
X —uorjisod 1a31e)

G¢ 0T4 Gl Ol ] 0
IR EENEE INEEEEENNE FREEERER N RS TN

(r=1) (x°
(r<? 2=l SQ_:/.\.

Q
o

¢0

<
o

o) ©
o o
JUIIND SISSO[ W PIZI[euULIOU

IHIIIIIIlIIIHIIHTIIHIiHIIIII!HHI]IUIIIIII!I

@)
-

-



"3 JO uorjounjy e se _um_ + *S=SH Jo Janoraeysq moys (x)°r1
ssaan)y-uoryisod 323a1e) ‘SA JUSIIND SSSSO[ WIBSIQ PIBZI[RWJION ' IF1J

X—uornsod jo81e)

G¢ 0c¢ Gl (0] S 0
~— —m________—_________—________~—_________—_.__ IO.O
. W\ w -
\ YH m
/ .I.m.om
- =
. =5
—————{ .

xp(L-y) - ¥O =
- o
- ¢
= o
wno.om
= 5
— n
— N
— ¢0]
— Q0 W
- o
- <
— -
— .M

Y




*x — experimental points ; ——— fitted curve

1.0 o 1
*,0.8
o i
q) -
19
> i
= i
©0.6
n i
o 4
n
177) -
O 4
o
0.4
E : /
« .
)
a i
0.2 /
O-O |I|'1‘|.||] T T T T T TTTT TTTTT T TTITTT [ T rTTrT 1 rrorr
0] 10 20 30 40

target position—-X
Fig.5 Normalized beam losses current vs. target position
(vertical phase plane) m=8.52,X =24.67. =5.65mm

x — experimental points ; ——— fitted curve

5

1.0

1t 1

o
[o¢]
—

L 11 1

o
o)

beam losses current
o
>
1 1 1 1

| I |

o
N

11 1 1

0.0 M T T T T T T T T T T T T T T I T T [T T T T A T Y T T [ T T T T i T T7 71

6] 10 20 30 40 50
target position—X
Fig.6 Normalized beam losses current vs. target position
(horizontal phase plane) m=13.18,X =44.76, =8.41mm.



