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1 Introduction

In mirror Twin Higgs (TH) theories, the exact copy of gauge groups and particle contents of
the SM sector are introduced, and two sectors so obtained enjoy Z2 exchanging symmetry.
Due to Z2, there arises an accidental global SU(4) symmetry of the mass terms of the
Higgses. Further assuming that the Higgs quartic terms are also approximately SU(4)
symmetric, the SM-like Higgs boson can be understood as the pseudo Nambu-Goldstone
boson (pNGB) of the spontaneously broken global SU(4) by the twin Higgs [1, 2]. As
such, the quadratic sensitivity of the SM-like Higgs mass squared to the UV cut-off scale
is relaxed, and so is the little hierarchy problem of the electroweak scale. The two main
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challenges of the TH theories concern 1) the SU(4) invariant quartic coupling and 2) the
big hierarchy between the twin electroweak (EW) scale and the fundamental scale.

These two challenges may be resolved by extending TH theories by supersymmetry
(SUSY). The twin EW scale can be set by the soft mass scale, and the SU(4) invariant
quartic can be obtained by an F -term potential from a new singlet field [3–6] or a D-term
potential from a new gauge interaction [7–9]. The SUSY TH models are indeed able to
explain the EW scale with a mild tuning. For example, in the D-term model with an U(1)
gauge symmetry [7], the required tuning can be as low as ∼ 20%. Another noticeable thing
in SUSY TH models is that the tree-level SM-like Higgs mass is larger than the MSSM
one by about a factor

√
2, and the observed SM-like Higgs boson mass can be obtained

without radiative corrections from a large stop mass, which also reduces fine-tuning. As
a further bonus, the lightest SUSY particle, which may be a super-partner of a mirror
particle [10, 11], is a dark matter candidate [12–14].

On the other hand, the simplest scheme of the mediation of SUSY breaking, namely,
gravity mediation, suffers from the infamous Polonyi problem [15]. In gravity mediation,
gaugino masses of the order of scalar masses require a singlet SUSY-breaking field called
the Polonyi field. Although the Polonyi field S may sit at a minimum of the potential dur-
ing inflation thanks to a Hubble-induced potential, that minimum is in general displaced
from the minimum after inflation by as large as O(MP ), where MP ' 2.4×1018GeV is the
reduced Planck mass. The resultant oscillation of S around the minimum is dangerous as
it (or its decay products) overcloses the universe afterward. The problem is fundamen-
tally attributed to the lack of any charge of S and hence the absence of the symmetry
enhanced point of the S field space. A solution to the Polonyi problem by a large coupling
of the Polonyi field with the inflaton [16–18] and that by a coupling with a pseudo-flat
direction [19] have been considered in the literature.

Motivated by the advantages of SUSY TH models and the cosmological danger lurking
in the gravity mediation, we consider the possibility where S transforms as S→−S under
the Z2 symmetry exchanging the SM and mirror sectors. Such a transformation rule of S
clearly pins down the origin of the field space of S, providing a complete solution to the
Polonyi problem. Moreover, in this set-up, any neutral (up to Z2) operator O in the SM
and O′ in the mirror SM can couple to S via S(O−O′). O includes gauge kinetic terms,
so tree-level gaugino masses are obtained despite the Z2-odd charge of S. As we will see,
the spontaneous Z2 breaking by the F term of S, together with R symmetry breaking, can
contribute to the phenomenologically required Z2-breaking terms in the Higgs potential
either at tree-level or by radiative corrections.

The outline of the paper is as follows. In section 2, we briefly review the Higgs sector
in the SUSY TH models. Section 3 is dedicated to discussion for the generation of gaugino
masses, trilinear scalar couplings, scalar masses, and the µ and b terms in the presence
of the Z2 odd field S. We show that the Z2 breaking in the Higgs potential can be
sufficiently suppressed. In section 4, we compute the SM-like Higgs mass. Finally in
section 5, we present a concrete model for the SUSY breaking sector and study the early-
universe dynamics of S.
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We use the same symbol for a chiral superfield and its scalar component. We also use
primes to denote the fields in the mirror sector. Finally, the R-charge of an operator O is
denoted as R[O].

2 Review of supersymmetric twin Higgs

In this section, we briefly review SUSY TH models.
As in generic TH models, the Z2 symmetry exchanging the SM particles with their

mirror partners is introduced. The Z2 symmetry is extended to SUSY particles, so the
mirror squarks, sleptons, gauginos, and higgsinos are also introduced.

The Higgs sector at the minimal contains Hu, Hd, H ′u, and H ′d, and they have quartic
and quadratic terms. The quartic terms arise from the F and D terms. To be concrete,
we only introduce D term potentials from the SM and mirror electroweak symmetry,

VD,EW =
(
g2

2 +g2
Y

8

)[(
|Hu|2−|Hd|2

)2
+
(
|H ′u|2−|H ′d|2

)2
]
, (2.1)

and that from a new gauge symmetry under which both the SM and mirror particles are
charged. The form of this potential depends on models [7–9]. To be concrete, we assume a
gauge symmetry with an opposite charge of Hd to Hu. The new gauge symmetry is broken
at a scale above the SM and mirror EW symmetry breaking scale. If this occurs via a
supersymmetric potential, the D term potential of the new gauge interaction decouples.
A non-zero D term remains if the gauge symmetry breaking involves a SUSY-breaking
potential, which is parameterized by ε,

VD,new =
(
λX
2

)2 (
|Hu|2−|Hd|2 + |H ′u|2−|H ′d|2

)2
, λ2

X ≡ (1−ε2)g2
X/2, (2.2)

where gX is the new gauge coupling constant. TheD term potential from the EW symmetry
violates the SU(4) symmetry but preserves the Z2 symmetry, while the one from the new
gauge interaction preserves both SU(4) and Z2.

Quadratic terms arise from a supersymmetric mass µ and soft supersymmetry breaking,

V2 =
(
|µ2|+m2

Hu

)
|Hu|2 +

(
|µ2|+m2

Hd

)
|Hd|2 +

(
|µ′2|+m2

H′
u

)
|H ′u|2 +

(
|µ′2|+m2

H′
d

)
|H ′d|2

+(bHuHd+h.c.)+
(
b′H ′uH

′
d+h.c.

)
. (2.3)

As we will see in the next section, Z2-breaking masses arise at tree-level or from quantum
corrections. Without loss of generality, we assume Z2 breaking such that v2 = |〈Hu〉|2 +
|〈Hd〉|2<v

′2 = |〈H ′u〉|2 + |〈H ′d〉|2. In order for the potential to be bounded from below,
2|b′|<m2

H′
u

+m2
H′

d
+2|µ′|2 is required.

We work in the decoupling limit of heavy Higgses so that the effective theory around
the mirror and SM EW scale is given by that of the SM-like Higgs H and its partner H ′,
which may be obtained by the following replacement;

Hu =H sin β, Hd =H cosβ, H ′u =H ′ sin β′, H ′d =H ′ cosβ′ , (2.4)
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where tanβ= 〈Hu〉/〈Hd〉 and tanβ′= 〈H ′u〉/〈H ′d〉 are given by

sin 2β= 2b
m2
Hu

+m2
Hd

+2|µ|2 , sin 2β′= 2b′
m2
H′

u
+m2

H′
d

+2|µ′|2 . (2.5)

The potential of H and H ′ is

V (H,H ′) =m2(|H|2 + |H ′|2)+λ(|H|2 + |H ′|2)2

+κ(|H|4 + |H ′|4)
+∆m2

H |H|2 +ρ|H|4 , (2.6)

where

λ̄=
(
λX
2

)2
cos2βcos2β′, (2.7)

ρ̄=
[(

λX
2

)2
+
(
g2

2 +g2
Y

8

)]
(cos2 2β−cos2 2β′) , (2.8)

κ̄=
(
λX
2

)2
cos 2β′(cos 2β′−cos 2β)+

(
g2

2 +g2
Y

8

)
cos2 2β′ , (2.9)

m2 =|µ′|2 +m2
H′

u
sin2 β′+m2

H′
d

cos2 β′−b′ sin 2β′ , (2.10)

∆m2
H =

(
|µ|2 +m2

Hu
sin2 β+m2

Hd
cos2 β−b sin 2β

)
−
(
|µ′|2 +m2

H′
u

sin2 β′+m2
H′

d
cos2 β′−b′ sin 2β′

)
. (2.11)

In eq. (2.6), the first line respects both Z2 and the global SU(4), the second line breaks
SU(4) explicitly while respecting Z2, and the last line breaks Z2 and SU(4). ∆m2

H |H|2 and
ρ|H|4 are soft and hard Z2 breaking, respectively. In addition to these tree-level potentials,
quantum corrections from the top Yukawa are important in determining the SM-like Higgs
mass. We will discuss it in section 4.

For m2�∆m2
H and λ̄� κ̄, ρ̄, the potential is approximately SU(4) symmetric. The

approximate SU(4) symmetry is broken to SU(3) by the condensation of H ′, and the SM-
like Higgs is understood as four pseudo-Nambu Goldstone bosons. (Three are eaten by
W ′ and Z ′.) The EW scale is thus doubly protected by SUSY and the SU(4) symmetry.
See [20, 21] for other models with double protection based on SUSY and a global symmetry.

The tree-level mass is enhanced in comparison with the MSSM. To see this, let us use
the nonlinear realization of the Higgs h as a pNGB of the broken SU(4);

H = f sin h√
2f
, H ′= f cos h√

2f
, (2.12)

where f2 = v2 +v
′2 is the SU(4)-breaking scale. For λ̄ >> κ̄, ρ̄, the pNGB mass reads

m2
h' 4v2(2κ̄+ ρ̄)

(
1− v

2

f2

)
+O(κ̄/λ̄) , (2.13)

which is proportional to explicit SU(4)-breaking quartic couplings. This is larger than
the MSSM tree-level prediction 4κ̄v2, so a large stop mass is not required to explain the
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observed Higgs mass. In particular, for f� v, ρ̄� κ̄, and a large tan β, the tree-level Higgs
mass is already around 125GeV.

The Z2 breaking in the quadratic term ∆m2
H is determined from v and v′. In the limit

κ̄ >> ρ̄ and f >>v, combined with eq. (2.13), eq. (2.11) reduces to

∆m2
H '

1
4

(
f

v

)2
m2
h' (200GeV)2×

(
f/v

3

)2
' 0.07

λ̄
(−m2)≡∆m2

H,req. (2.14)

SUSY TH models may have two types of tuning: 1) the tuning of ∆m2
H to obtain the

hierarchy v <f and 2) the tuning to obtain f <mSUSY. The former is given by

∆v/f = ∂ log(v2/f2)
∂∆m2

H

= f2

2v2 −1 . (2.15)

Avoiding the tuning worse than 10% requires f to be smaller than 5v. The latter is typically
dominated by the quantum correction from the stop mass and is given by

∆f ≡
log f2

logm2
t̃

' 3
8π2

y2
t

λ̄

m2
t̃

f2 . (2.16)

The total degree of fine-tuning is given by the product ∆v/f ×∆f ,

∆TH≡∆v/f ×∆f '
3

8π2
y2
t

λ̄

m2
t̃

2v2 . (2.17)

In comparison with the fine-tuning in the MSSM, (3y2
tm

2
t̃
/8π2λSMv

2), the fine-tuning in
SUSY TH models is improved by a factor of 2λ̄/λSM' 15λ̄. Together with the large tree-
level Higgs mass, which remove the necessity of a large stop mass, the EW scale can be
obtained with a mild tuning of O(1-10) %.

3 Soft masses from Z2-odd Polonyi field

We assume that the Polonyi field S is odd under the Z2 exchange symmetry in the TH
mechanism. In this section, we show how the SM and mirror sector fields can couple to S
and obtain soft masses.

We assume that S is the dominant source of supersymmetry breaking, so that its
F -term is given by

FS =
√

3m3/2MP ≡m3/2M∗, (3.1)

where m3/2 is the gravitino mass and MP = 2.4×1018GeV is the reduced Planck mass.
Here we define M∗=

√
3MP in order to remove the factors of

√
3 from the formulae for soft

masses shown below.
We write down the coupling between S and other fields in terms of dimension-less

coefficients and M∗. If the cutoff scale Mcut is around MP , we expect that dimension-less
coefficients are O(1) . When Mcut is below MP , dimension-less coefficients are expected to
be O

(
(MP /Mcut)D−2

)
for the Kahler potential and O

(
(MP /Mcut)D−3

)
for the superpo-

tential and gauge kinetic terms, where D is the dimension of the operator.
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Since FS is Z2 odd, the couplings of S to SM and mirror fields seem to lead to large
Z2-breaking soft masses. However, a linear combination of the Z2 symmetry and a Z4R
subgroup of R symmetry is unbroken by non-zero FS , and the apparent Z2 breaking can
be removed by a discrete R rotation. Here we assign a vanishing R charge to the scalar
component of S. Physical Z2-breaking arises only by picking-up R symmetry breaking,
which at the minimal is given by the non-zero VEV of the superpotential, namely, the
gravitino mass. The effect of the R breaking can be expressed by the F term of the
conformal compensator φ,

φ= 1+Fφθ
2, Fφ =m3/2. (3.2)

As we will see, supergravity effects including anomaly mediation generate physical
Z2 breaking. A non-zero VEV of the scalar component of S also breaks R symmetry.
However, as we will see in section 5.1, it is much smaller than the Planck scale in su-
persymmetry breaking models without the Polonyi problem and introduces negligible R
symmetry breaking. In the following, we take 〈S〉�MP that will be justified in section 5.

3.1 Gaugino masses

Usually, in gravity mediation, tree-level gaugino masses of order scalar masses require that
the Polonyi field be singlet under any symmetry. This is because the kinetic terms of gauge
multiplets are singlet. In supersymmetric TH mechanism, the kinetic terms transform into
their Z2 partner. Therefore, S can couple to gauge multiplets via

W ⊃ kig
2
i

S

M∗
Tr[−Wα

i Wαi+W
′α
i W

′
αi] , (3.3)

where gi are gauge coupling constants, Wα
i (i= 1, 2, 3) are the field strength superfields of

the SM gauge fields with a spinor index α, and ki are dimensionless coupling constants.
Eq. (3.3) provides Z2-odd gaugino masses and their values at the TeV scale are M3'

1.3k3m3/2, M2' 0.4k2m3/2, and M1' 0.2k1m3/2. The anomaly mediation [22, 23] gives
Z2-even gaugino masses. Adding them together, we obtain

Mi =−bi
αi
4πm3/2−kig2

im3/2, M ′i =−b′
i

α
′
i

4πm3/2 +kig
2
im3/2 , (3.4)

where bi = b
′
i = (33/5, 1,−3) and αi≡ g2

i /(4π). These bis are the first beta function coeffi-
cients in the MSSM, which need properly modified in the extensions including additional
particle contents depending on models.

As we anticipated, gaugino masses have physical Z2 breaking only if both contributions
are present. When Mcut∼MP , since ki =O(1), the mass splitting between the MSSM and
mirror gaugino is O(0.1-1) %, so gaugino mass terms remain nearly degenerate. When
Mcut�MP , ki∼MP /Mcut� 1 and even smaller splitting is expected. As we will see, this
splitting can cause the splitting in the Higgs mass squared radiatively.

Couplings of S to charged fields Q in the Kähler potential,

K ⊃ S

M∗
(Q†Q−Q′†Q

′), (3.5)
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also generate one-loop suppressed gaugino masses [24]. These, however, are also Z2-odd
and negligible in comparison with the tree-level Z2-odd one.

After SM and mirror EW symmetry breaking, v′>v introduces further mass splitting
for the bino and wino. This dominates over the radiative ones discussed above, and the
twin bino and wino are lighter than the MSSM bino and wino. The twin bino (B̃′) LSP is
studied in [10]. Because of v′>v, the fermions in the mirror sector is heavier than in the
MSSM sector, which helps avoid the chirality suppression of the B̃′ annihilation into a pair
of fermions in the mirror sector. This makes B̃′ annihilation cross section larger than in
the MSSM sector, which can help avoid the overabundance of B̃′ dark matter and achieve
ΩB̃′h2' 0.12 [10].

In D-term SUSY TH models, the new gauge multiplet whose D-term is responsible
for the SU(4) invariant quartic coupling should be Z2 even so that it can couple to both
the Higgs and Twin Higgs. The coupling of it to S is forbidden by the Z2 symmetry, and
the gaugino mass is absent at tree-level. Potential large corrections to the soft masses of
Higgses due to the large gauge coupling constant are automatically suppressed.

3.2 A terms

A terms are also obtained at tree-level. For example, the following superpotential

W ⊃ du
S

M∗
yu
(
QHuu

c−Q′H ′uu
′c
)
, (3.6)

with Q (uc) being SU(2)L doublet (singlet) and Q′ (u′c) SU(2)′L doublet (singlet), gives
rise to Z2-odd A terms. Here yu is the up-type yukawa coupling and du is a dimensionless
coupling constant. The Kähler potential of the form in (3.5) also gives Z2-odd A terms of
the same order. On the other hand, the anomaly mediation [22, 23] gives Z2-even A terms.
When combined, A-terms for the two sectors can be written as

Au = yudum3/2−yu(γQ+γHu +γuc)m3/2≡AuS +AuAMSB , (3.7)
A

′u =−yudum3/2−yu(γQ′ +γH′
u

+γu′c)m3/2≡−AuS +AuAMSB , (3.8)

where γX is the anomalous dimension of the field X. When Mcut∼MP , we expect du, dd =
O(1) and the splitting in the A terms is of O(1)%. For Mcut�MP , du, dd∼MP /Mcut� 1
and the splitting would be smaller than O(1)%.

3.3 Sfermion masses

Sfermion masses mf̃ are O(m3/2MP /Mcut). At tree-level, there is no Z2-breaking soft
masses, since |FS |2 is Z2 even. FSF

†
φ is Z2-odd, but the Kähler potential φ†SQQ† is

forbidden by the formal conformal symmetry at tree-level. Such terms arise at loop-level
and give Z2-breaking soft masses. For example, quantum corrections from gaugino masses
and/or A terms generate Z2-breaking soft scalar masses.

Since m2
f̃
receives quantum corrections from gaugino masses and A terms (see ap-

pendix. A), the splitting in these quantities between two sectors (∆|Mi|2 and ∆|Af |2)
contributes to the RGE of the splitting in the sfermion mass ∆m2

f̃
≡m2

f̃
−m2

f̃ ′ . Figure 1

– 7 –
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Figure 1. The one loop diagrams that result in difference in δmf̃ and δmf̃ ′ . The crosses represent
gaugino masses (left panel) or scalar trilinear couplings (right panel).

shows the one-loop diagrams contributing to these splittings. The interference between Z2-
even and odd contributions to gaugino masses and the trilinear couplings Af in eqs. (3.4)
and (3.8) respectively has the opposite sign for the two sectors and this leads to

∆|Mi|2 = 4
(
bi
αi
4πm3/2

)
(kig2

im3/2), ∆|Af |2 = 4AfSA
f
AMSB . (3.9)

By substituting eq. (3.9) into eq. (A.1) and solving RGEs, we estimate the sfermion
mass splittings ∆m2

f̃
between the two sectors. We find that ∆m2

f̃
is dominated by ∆M2

i

and

∆m2
f̃
'


(8×10−2)×m3/2×M3[1TeV] for Q̃L, q̃R,
−(8×10−3)×m3/2×M2[1TeV] for L̃L,
−(5×10−2)×m3/2×M1[1TeV] for ẽR,

(3.10)

where we write ∆m2
f̃
in terms of the gravitino mass and tree-level gaugino masses in

eq. (3.3) evaluated at the TeV scale. The sign difference in the sfermion mass splitting for
squarks and sleptons is ascribed to b3< 0 and b2, b1> 0.

The twin stau is a natural dark matter candidate. Ref. [11] studied the tree-level mass
splitting between the MSSM and twin staus induced by v′>v, and found that the twin
stau may be lighter than the MSSM stau if tanβ is large and/or the twin tau yukawa is
larger than the SM tau yukawa. The radiative mass splitting in eq. (3.10) can help realize
the twin stau LSP if m3/2M1< 0.

3.4 Higgs mass parameters

In this subsection, we study how the soft masses and the µ-term of Higgses are generated.
We will see that the opposite signs of S couplings to the SM and mirror operators give a
Z2-breaking Higgs potential. We then compute the Z2-breaking mass in the potential of
the SM-like Higgs and the twin Higgs after integrating out heavy Higgses.

3.4.1 Tree-level mass terms

We begin with the tree-level contributions to the µ-term, b-term, and soft mass squared of
the Higgses. To be concrete, we consider R[HuHd] = 0, so that the µ and b terms can be
naturally obtained from R and supersymmetry breaking.1

1There can be another contribution to µ and b terms from the direct coupling of the SUSY-breaking
sector to HuHd in the superpotential [25, 26]. As is shown in appendix. B, appropriate size of b terms may
be obtained while µ terms cannot.

– 8 –
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First, we study the tree-level sources of µ-term and b-term from the Kähler poten-
tial. Given a Kähler potential K, one can obtain the leading contribution by expanding
−3e−K/(3M2

P ) below,
L⊃−3M2

P

∫
d2θd2θ̄ φ†φe−K/(3M

2
P ) . (3.11)

The following operators in Kähler potential including HuHd are allowed by the Z2 and R
symmetry,

−3M2
P e
−K/(3M2

P )⊃ c2(HuHd+H ′uH
′
d)+ r3S

†+r3∗S

M∗
(HuHd−H ′uH ′d)

+r4
S†S

M2
∗

(HuHd+H ′uH
′
d)+h.c.+ . . . , (3.12)

where c’s and r’s are the dimensionless coefficients of each operator and each subscript
denotes the mass dimension of the associated operators. We use c for operators consisting
of Hu and Hd only whereas r’s are used for the couplings of S to Higgses.

After scaling out φ, using φ= 1+Fφθ
2, and integrating over θ̄2 on φ† and S† and over

θ2 on HuHd, we obtain µ-parameters

µ= c2Fφ+r3
FS
M∗

, µ′= c2Fφ−r3
FS
M∗

. (3.13)

Integrating over θ2θ̄2 on φ, φ†, S, and S† gives b-parameters

b = −c2F
2
φ−r3Fφ

FS
M∗

+r3∗Fφ
FS
M∗

+r4

(
FS
M∗

)2
,

b′ = −c2F
2
φ +r3Fφ

FS
M∗
−r3∗Fφ

FS
M∗

+r4

(
FS
M∗

)2
. (3.14)

Note that the terms linearly proportional to FS are Z2-odd. Using Fφ'FS/M∗'m3/2, µ
and b-parameters are given by

µ = (c2 +r3)m3/2, µ′= (c2−r3)m3/2 ,

b = (−c2−r3 +r3∗+r4)m2
3/2, b′= (−c2 +r3−r3∗+r4)m2

3/2 . (3.15)

Physical Z2 breaking arises from the coexistence of Z2-even contributions proportional to
c2 and r4, and Z2-odd contributions proportional to r3 and r3∗.

The tree-level Higgs soft mass squared comes from the following Kähler potential,

−3M2
P e
−K/(3M2

P ) ⊃ SS†+HuH
†
u+H ′uH

′†
u +ru4

(
S†S

M2
∗
HuH

†
u+ S†S

M2
∗
H ′uH

′†
u

)
. (3.16)

Here we use the superscript u for the dimensionless coefficients of couplings to the up-type
Higgs. For the down-type Higgs, we use the superscript d. Terms such as SHuH

†
u can be

eliminated by S-dependent rotation of Hu and H†u. After scaling out φ, one can see that
there are no terms proportional to S†φnHuH

†
u without extra S. Therefore, a Z2-odd soft
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Figure 2. The one loop diagrams that result in difference in δm2
Hu

and δm2
H′

u
. The crosses represent

the wino mass (left panel) or scalar trilinear couplings (right panel).

mass term proportional to F †SFφ is suppressed by 〈S〉/MP and m2
Hu
'm2

H′
u
should hold at

the tree-level. After integrating over θ2θ̄2, we obtain

m2
Hu
'm2

H′
u
' ru4

(
FS
M∗

)2
≡ ru

(
FS
M∗

)2
. (3.17)

The same applies for Hd and H ′d as well with the coefficients ru’s replaced with rd’s;

m2
Hu
'm2

H′
u
' rum2

3/2 , m2
Hd
'm2

H′
d
' rdm2

3/2 . (3.18)

Note that µ and b terms generically have tree-level Z2 breaking, which may induce too
large ∆m2

H . We consider the following two cases where ∆m2
H can be naturally suppressed:

• Case I: |ru| ∼ |rd|=O(1)� c2, r3, r3∗, r4 at the TeV scale.

• Case II: |ru| ∼ |rd| ∼ r4� r3, r3∗� c2 at the TeV scale.

Case I is naturally realized when Mcut∼MP and couplings involving HuHd are sup-
pressed, for example by an approximate symmetry under which HuHd is charged. The
Z2-even and Z2-odd contributions to µ and b are comparable with each others, but since
µ and b are smaller than m2

Hu
and m2

Hd
, ∆m2

H is suppressed. For this, it suffices to have a
hierarchy of parameters only around 0.3, since ∆m2

H has to be only smaller than O(0.1)m2
H

(see eq. (2.14)) and is proportional to µ2 and b2.
Case II is naturally realized when Mcut<MP . We then expect c2 =O(1), r3, r3∗=

O(M∗/Mcut), and r4, ru, rd =O((M∗/Mcut)2) at the UV scale, and the hierarchy |ru| ∼
|rd| ∼ r4>>r3, r3∗>>c2 is achieved. Z2-odd and even contributions to µ and b dominate
respectively and the Z2 breaking ∆m2

H is suppressed. We also use re-scaled couplings
r̃= r×(Mcut/M∗)Dr−2, where Dr is the dimension of the corresponding operators. For
example, r̃4 = r4×(Mcut/M∗)2. The natural values of the rescaled couplings are O(1).

3.4.2 Quantum corrections

Next, we investigate Z2-breaking quantum corrections to the Higgs mass parameters. We
first examine the one-loop radiative corrections δm2

Hu
and δm2

Hd
from the gauge and
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Yukawa interactions. The splitting in wino masses in eq. (3.4) induces δm2
Hu
−δm2

H′
u
6= 0

from gauge interactions as shown in the left panel of figure 2. The cross denotes the
wino-mass insertion. Using the RGE for m2

Hu
in appendix. A, we obtain

∆m2
Hu, gauge≡ δm2

Hu
−δm2

H′
u
' (4×6)

16π2 ×
∫ log[Mcut]

log[1TeV]
dtg2

2

(
b2
α2
4πm3/2

)
(k2g

2
2m3/2)

= (8×10−3)×m3/2×M2[1TeV] = (90 GeV)2m3/2
TeV

M2[1TeV]
TeV , (3.19)

where t= d logµ. The similar diagram for Hd gives the similar ∆m2
Hd, gauge≡ δm2

Hd
−δm2

H′
d
.

∆m2
Hu, gauge and ∆m2

Hd, gauge are smaller than ∆m2
H in eq. (2.14) and do not introduce too

much Z2 breaking.
The splitting of the trilinear coupling in eq. (3.6) induces δm2

Hu
−δm2

H′
u
6= 0 from the

Yukawa interaction via the diagram shown in the right panel of figure 2, where the cross
denotes trilinear scalar coupling. Using the RGE for m2

Hu
in appendix. A.1 and the anoma-

lous dimensions in appendix. A.3, we obtain

∆m2
Hu,Yuk ' −

(4×6)
16π2 ×

∫ log[Mcut]

log[1TeV]
dt′ AtS(t′)AtAMSB(t′)

' −(4×6)
16π2 ×m3/2

∫ log[Mcut]

log[1TeV]
dt′ AtS(t′)yt(t′)(γQ3 +γHu +γuc

3
). (3.20)

AtS(t) in general depends on the UV boundary condition of it and the gaugino mass. To
be concrete, we assume that AtS(Mcut) = 0 and dAtS/dt is dominantly determined by the
one-loop correction from the top Yukawa, gauge interaction, and the gaugino mass; see
appendix. A.2. We then obtain

∆m2
Hu,Yuk'−0.01×m3/2×M3[1TeV]'−(200GeV)2m3/2

TeV
M3[4TeV]

4TeV . (3.21)

∆m2
Hu,Yuk is typically larger than ∆m2

Hu,gauge and may be as large as ∆m2
H in eq. (2.14)

to provide an appropriate size of Z2 breaking.
There are radiative corrections to b and b′ parameters as well. The one-loop corrections

δb and δb′ are similar to what is shown in the left panel of figure 2 with the external line for
H†u replaced with Hd and a single mass insertion for each of the wino and Higgsino prop-
agator instead of two mass insertions in the Higgsino propagator. If sign[b] = +(−)sign[b′]
at tree-level, quantum corrections such that δb−δb′(δb+δb′) 6= 0 contribute to physical Z2
breaking. For Case II, the assumed hierarchy r4� r3, r3∗, c2 ensures that sign[b] = sign[b′].
For Case I, both signs are possible. To be concrete, we discuss the case with sign[b] = sign[b′]
and compute δb−δb′.

In Case I, the correction comes from the tree-level Z2-even µ term proportional to c2
and the tree-level Z2-odd wino mass. Solving the RGE of b and b′ in eq. (A.2), we find
δb−δb′ at the TeV scale to be

∆m2
H,b≡ δb−δb′'−(400 GeV)2µ[1TeV]

0.3TeV
M2[1TeV]

TeV , (3.22)
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where we assume that the µ term is dominated by the Z2-even contribution. The con-
tribution of ∆m2

H,b to ∆m2
H may be suppressed by sin 2β < 1. However, as we will see

in section 4.2, the consistency of the SM-like Higgs mass with a TeV scale stop mass re-
quires tan β∼ 2−3 and sin 2β∼ 0.7 does not provide suppression. The resultant ∆m2

H is
comparable to the required one in (2.14).

In Case II, although µ terms are dominated by the Z2-odd terms, the dominant contri-
bution to δb−δb′ comes from the interference between the tree-level Z2-even contribution
to µ proportional to c2 and the tree-level Z2-odd contribution to the gaugino mass. At the
TeV scale it is

∆m2
H,b≡ δb−δb′'−(240GeV)2

(
c2

0.1r3

)
µ[1TeV]

TeV
M2[1TeV]

TeV , (3.23)

which is as large as the required one in (2.14) if c2∼ 0.1r3, corresponding to Mcut∼ 0.1M∗.
The above quantum corrections to b−b′ may be understood as corrections to r3−r3∗

and suggest that the assumed hierarchy for Case I and II is natural. Other types of hierarchy
are not radiatively stable. For example, the hierarchy |ru| ∼ |rd| ∼ c2 =O(1)� r3, r3∗, r4
could suppress the Z2-breaking µ and b terms, but the correction in eq. (3.22) makes this
hierarchy radiatively unstable.

4 Higgs potential and Higgs mass

In this section, we compute the potential of the Higgs and Twin Higgs in the decoupling
limit and compute the mass of the SM-like Higgs.

4.1 The difference of tanβ

In this subsection, we compute the difference between tan β and tan β′ and its effect on
the Higgs mass terms in the decoupling limit.

Case I. For the Higgs potential to be bounded from below, |2b′|<m2
H′

u
+m2

H′
d

+2|µ′|2 is
required. In terms of the parameters introduced in section 3.4.1,

2|c2−r4−r3 +r3∗|< 2(c2−r3)2 +ru+rd . (4.1)

Without loss of generality, we assume c2−r4> 0. We also assume |r3−r3∗|<c2−r4 for
simplicity. b, b′< 0 for this case, so we flip the sign of HuHd to take b, b′> 0. Then from
eq. (2.5), sin 2β and sin 2β′ are given by

sin 2β= 2(c2−r4)+2(r3−r3∗)
2(c2 +r3)2 +ru+rd

, sin 2β′= 2(c2−r4)−2(r3−r3∗)
2(c2−r3)2 +ru+rd

. (4.2)

Z2 breaking in the Higgs potential gives a small difference between tanβ and tanβ′. Using
the relation tan β' (2/ sin 2β)−(sin 2β/2) and denoting the leading quantum corrections
to µ, b and soft masses squared of Higgs as δµ, δb, δm2

Hu
and δm2

Hd
, we find ∆ tan β at

leading order is given by

∆ tan β ' [(m2
Hu

+m2
Hd

)(b′−b+δb′−δb)+2µ2δb′−2µ′2δb
+b′{δm2

Hu
+δm2

Hd
+2(µ2 +δµ2)}−b{δm2

H′
u

+δm2
H′

d
+2(µ′2 +δµ′2)}]

×(bb′+b′δb+bδb′)−1 . (4.3)
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Taking into account the assumed hierarchy among parameters, this can be approximated as

∆ tan β≈(ru+rd)[2(r3∗−r3)−0.3k2(c2 +r3)]−0.6k2(c2 +r3)(c2
2 +r2

3)
(c2−r4)2−(r3−r3∗)2

+ (c2−r4)(O(10−2)k3 +8c2r3)−(r3−r3∗)[4(c2
2 +r2

3)]
(c2−r4)2−(r3−r3∗)2

≈(ru+rd)(2(r3∗−r3)−0.3k2(c2 +r3))+8(c2−r4)c2r3
(c2−r4)2 , (4.4)

where we used |r3−r3∗|< |c2−r4| in the second equality.
Let us assess the effect of ∆tanβ on Z2 breaking in the Higgs mass terms. In the

decoupling limit, the quadratic terms of the Higgs and Twin Higgs are

V (H ,H ′)quadratic =
[
(c2 +r3)2 +rd cos2 β+ru sin2 β−(c2−r4 +r3−r3∗) sin 2β

]
m2

3/2|H|
2

+
[
(c2−r3)2 +rd cos2 β′+ru sin2 β′−(c2−r4−r3 +r3∗) sin 2β′

]
m2

3/2|H
′|2 .

(4.5)

The Z2-breaking mass of the Higgs from ∆ tan β is, to the leading order in (∆ tan β)/ tan β,

∆m2
H,∆β '

(
ru−rd+(c2−r4) tan β

) 2∆ tan β
tan3 β

m2
3/2 (4.6)

' ru−rd+(c2−r4) tan β
(c2−r3)2 +rd cos2 β′+ru sin2 β′−(c2−r4) sin 2β′

2∆ tan β
tan3 β

m2
H′ .

As we will see in section 4.2, the observed Higgs mass and the stop mass of O(1)TeV requires
that tanβ= 2-3. ∆ tan β should not be larger than O(1) in order to suppress ∆m2

H,∆β . For
c2, r4<r

u,d, to suppress the term proportional to r3∗−r3 in eq. (4.4) requires that r3∗−r3
be somewhat smaller than c2−r4.

Case II. The analysis for Case II is parallel to that of Case I. Without loss of generality,
we take r4> 0. The Higgs potential is bounded from below if

2r4< 2r2
3 +ru+rd . (4.7)

sin 2β and sin 2β′ at the leading order are

sin 2β, sin 2β′' 2r4
ru+rd+2r2

3
= 2r̃4
r̃u+ r̃d+2r̃2

3
, (4.8)

where we used ru = r̃u(M∗/Mcut)2, rd = r̃d(M∗/Mcut)2, r3 = r̃3(M∗/Mcut) and
r4 = r̃4(M∗/Mcut)2 for the last equality.

∆ tan β is given by the generic formula in eq. (4.3). Taking into account the hierarchy
of the parameters,

∆ tan β≈ 2(ru+rd)(r3−r3∗)−(4×10−3)r3
3−(c2−r4)(O(10−2)k3 +8c2r3)
r2

4

≈O(10−2)k3
r4

+ 2(ru+rd)(r3−r3∗)
r2

4

=O(10−2)Mcut
M∗

k̃3
r̃4

+Mcut
M∗

2(r̃u+ r̃d)(r̃3− r̃3∗)
r̃2

4
(4.9)

For O(1) couplings with tildes, the second term dominates and ∆ tan β=O(Mcut/M∗)� 1.
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In the decoupling limit, the quadratic terms of the Higgs and Twin Higgs are

V (H,H ′)quadratic =
[
r2

3 +rd cos2 β+ru sin2 β−r4 sin 2β
]
m2

3/2|H|
2

+
[
r2

3 +rd cos2 β′+ru sin2 β′−r4 sin 2β′
]
m2

3/2|H
′|2 , (4.10)

where we have included only the Z2 breaking through β 6=β′. Z2-breaking mass is, to the
leading order in (∆ tan β)/ tan β,

∆m2
H,∆β ' (ru−rd+r4 tan β)2∆ tan β

tan3 β
m2

3/2

' ru−rd+r4 tan β
rd cos2 β′+ru sin2 β′−r4 sin 2β′

2∆ tan β
tan3 β

m2
H′ . (4.11)

For |ru| ∼ |rd| ∼ r4 and tanβ= 2-3, ∆m2
H∆β may be as large as ∆m2

H,req in eq. (2.14) if
∆ tan β=O(Mcut/M∗) is not too much smaller than 1.

4.2 The SM-like Higgs mass

In this subsection, we compute the SM-like Higgs mass and determine the preferred value
of the stop mass and tan β.

The Higgs potential is given by eq. (2.6) plus quantum corrections around the soft
mass scale, which are dominated by the top Yukawa coupling. The one loop correction is
given by

V top
���SU(4)'

3
16π2 (ĝ2

t |H|2 +m2
t̃ )

2
[
log

(
ĝ2
t |H|2 +m2

t̃

µ2
R

)
− 3

2

]
− 3

16π2 ĝ
4
t |H|4

[
log

(
ĝ2
t |H|2

µ2
R

)
− 3

2

]

+ 3
16π2 (ĝ′2t |H ′|2 +m2

t̃ )
2
[
log

(
ĝ′2t |H ′|2 +m2

t̃

µ2
R

)
− 3

2

]
− 3

16π2 ĝ
′4
t |H ′|4

[
log

(
ĝ′2t |H ′|2

µ2
R

)
− 3

2

]
,

(4.12)

where µR is a renormalization scale, ĝt≡ yt, and ĝ′t≡ yt sin β′/ sin β with yt the top Yukawa
coupling. We assumed identical left-handed and right-handed stop masses mt̃ for simplicity.

In figure 3, we show the contours of the SM-like Higgs mass computed from the poten-
tials in eqs. (2.6) and (4.12). In the computation, we take v= 174GeV, f/v= 3, λX = 2, and
µR = 1TeV. Each solid and dashed line corresponds to ∆ tan β=−1 and 10−2 respectively.
We find that the predicted Higgs mass is insensitive to ∆ tan β as long as ∆ tan β. 1. The
Higgs mass decreases as f/v or λX decrease. To satisfy the experimental lower bound on
the stop mass of 1TeV [27–29], tan β. 3 is required.

In figure 4, we show the contours of tan β and the tree-level ∆m2
H in the (c2, r

d) and
(r̃4, r̃

d) planes. Here we normalize ∆m2
H by the required value ∆m2

H,req in eq. (2.14). The
upper and lower panels correspond to case I and II, respectively. In the orange shaded
regions, stable mirror EW symmetry-breaking vacua do not exist, i.e., 2b′>m2

H′
u

+m2
H′

d
+

2|µ′|2 or b′2< (|µ′|2 +m2
H′

u
)(|µ′|2 +m2

H′
d
).

For Case I, as an example, we took ru =−0.7. The gray dot-dashed and black dashed
lines give tan β= 2 and 3, respectively. For r3, r3∗<c2, r4 =O(0.1)<ru,d =O(1), |∆ tan β|=
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f/v=3, λX=2, μR=1TeV

Δtanβ = -1(solid), 10-2(dashed)

mh=120GeV
mh=125GeV
mh=130GeV

Figure 3. The SM-like Higgs mass as a function of mstop and tan β. For the solid and dashed
lines, ∆ tan β≡ tan β−tan β′=−1 and 10−2 are assumed, respectively.

O(0.1) according to eq. (4.4). For the TeV scalemstop, the observed Higgs mass is explained
for tan β= 2−3, which can be achieved when m2

Hu
+m2

Hd
∼ b, i.e., ru+rd∼ c2−r4. Along

with c2 = 0.1−0.3 for suppressing ∆m2
H,b in eq. (3.22), this requirement results in the pa-

rameter space shown in two upper panels in figure 4. The comparison of the two panels
shows that a smaller r4 requires a smaller c2 and more fine-tuned cancellation between ru
and rd for maintaining tan β∼ 3 and the sufficient suppression of ∆ tan β.

For Case II, as an example, we take (r̃u, r̃3, r̃3∗, c2,M∗/Mcut) = (−1, 1, 0.5, 0, 10) and
(−1, 1, 0.5, 0, 20). As c2 increases, the orange shaded region becomes broader and the
viable parameter space becomes narrower. On the other hand, as M∗/Mcut increases, the
Z2 breaking in the Higgs mass terms becomes smaller and the contours of ∆m2

H moves
to the left, so that the tree-level Z2 breaking cannot provide the required ∆m2

H starting
from M∗/Mcut∼ 40. Also, for a given soft mass scale, as M∗/Mcut increases, m3/2 becomes
smaller, and ∆m2

H from quantum corrections becomes smaller. Therefore, obtaining the
required amount of ∆m2

H from tree-level or one-loop level Z2 breaking requires that m3/2>

O(100)GeV.
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Figure 4. Contours of tan β and the tree-level Z2-breaking Higgs mass term ∆m2
H . There is no

stable EW vacuum in the orange shaded region. Upper and lower panels correspond to Case I and
II, respectively.
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Qi Sij Hu H ′u Hd H
′
d

Sp(1) - - - - -
Z4R +1 0 x x −x −x
Z4 +1 +2 Hu↔H ′u Hd↔H ′d

Table 1. Charge assignment for the chiral superfields.

5 UV completion and early universe cosmology of Polonyi field

In this section, we present a concrete UV completion where the Z2-odd Polonyi field obtains
a large enough mass around the origin. We then discuss the cosmological evolution of the
Polonyi field and show how the model can successfully address the cosmological problem
which it suffers from.2

5.1 SUSY-breaking sector

We construct Planck scale mediated SUSY-breaking scenarios where the SUSY-breaking
occurs in a hidden sector. To obtain gaugino masses as large as scalar masses, the
SUSY-breaking field should be a gauge-singlet. To be concrete, we analyze the Izawa-
Yanagida-Intriligator-Thomas model [35, 36], but similar discussion is applicable to generic
O’Raifeartaigh-type SUSY-breaking models with gauge-singlet SUSY-breaking fields.3

We consider Sp(1) gauge theory with NF = 4 matter fields Qi with i being the flavor
index running from 1 to 4. We also introduce singlet fields Sij with anti-symmetric indices.
As we will see, a linear combination of Sij is a SUSY-breaking field. We may impose an
anomaly-free discrete R-symmetry Z4R and discrete flavor symmetry Z4. For the vanishing
mixed anomaly of Z4R− [SU(2)L]2 and Z4R− [SU(3)c]2 within the MSSM, R[HuHd] = 0
modulo 4 is required [41]. The same applies for the mirror sector. Therefore, we choose
R[HuHd] =R[H ′

uH
′
d] = 0. In table. 1, we show the charge assignment for the SUSY-breaking

sector and (Hu,Hd) and (H ′
u,H

′
d). Under Z4, Sij is transformed into −Sij and the MSSM

2Given the cross quartic coupling in eq. (2.6), the SM Higgs-mediated scattering keeps the visible and
mirror sectors in the thermal equilibrium until the temperature TD =O(1)GeV is reached [4]. This makes
states in the mirror sector lighter than TD contribute to the extra effective neutrino species ∆Neff which is
large as 5−6 [30], which is not consistent with the constraint from CMB, ∆Neff . 0.1 [31]. Hard Z2-breaking
in the yukawa coupling can raise the twin fermions masses and the twin QCD phase transition temperature
and reduce ∆Neff to an acceptable value [32, 33]. A heavy particle decay-induced entropy production after
the decoupling of the two sectors, i.e. T <TD, but before the BBN era, can also resolve this problem. As
an example, the right-handed (s)neutrino can serve as the heavy particle to inject the entropy dominantly
to the visible sector [30, 34].

3As R-breaking operators may pose a challenge to the stability for the SUSY-breaking vacuum [37], it is
important for the model to have a discrete R-symmetry. However, it may be violated by the gravitational
instanton effects although it remains uncertain if the path integral needs to include all the gravitational
instantons [38]. For example, the Eguchi-Hanson instanton [39] can break R-symmetry down to Z2R [40].
For our purpose, it suffices to assume the discrete Z4R as an approximate symmetry, rather than an exact
gauge symmetry. We assume that the gravitational instanton effects can be exponentially suppressed so
that it does not introduce too a large R-violation.
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sector is transformed into the mirror sector, so the Z4 symmetry may be identified with
the exchange symmetry in the TH model.

The superpotential of the SUSY-breaking sector above the dynamical scale Λ∗ is

W ⊃λijk`SijQkQ` , (5.1)

where λijk` is a dimensionless coupling constant. For simplicity, we take λijk` =λδikδj`,
which preserves global SU(4) symmetry. Below the dynamical scale, there arises a deformed
moduli constraint Pf[QiQj ] = Λ4

∗ [42]. The SUSY-breaking sector can be described by the
effective theory of the meson fields and the quantum moduli constraint can be equivalently
rewritten as Pf[Mij ] = Λ2

∗/(4π)2, where six meson fields are defined viaMij ≡QiQj/(4πΛ∗).
The mesons are sixplet of the global SU(4)' SO(6), and the global rotation allows us to
take a basis where 〈M1〉= Λ∗/(4π) and 〈Ma〉= 0 (a= 2−6). We denote the corresponding
basis of Sij fields as Sa. We denote M1 and S1 simply as M and S from this point forward.

After integrating out M with the constraint MM+MaMa = Λ2
∗/(16π2), the SUSY-

breaking sector can be effectively described by [43]

Keff =S†S+S†aSa+M †aMa+ . . . ,

Weff = λ

4π (Λ∗S
√

Λ2
∗/(16π2)−MaMa+Λ∗SaMa) . (5.2)

Here the factors of 4πs in Weff are determined in accordance with the naive dimensional
analysis [44, 45].

The F terms of S and Sa are

∂Weff
∂S

= λ

4πΛ∗
√

Λ2
∗/(16π2)−MaMa ,

∂Weff
∂Sa

= λ

4πΛ∗Ma . (5.3)

We see that ∂Weff/∂S= 0 and ∂Weff/∂Sa = 0 cannot be satisfied simultaneously, which
implies SUSY-breaking. At the minimum of the potential, ImMa = 0, while ReMa is not
fixed. They correspond to the Nambu-Goldstone bosons associated with SO(6)/SO(5).
They can be lifted by breaking SO(6) symmetry with different Yukawa couplings in eq. (5.1)
without disturbing the SUSY-breaking dynamics [43]. In particular, by taking the Yukawa
coupling of S to be smaller than that of Sa, it is ensured that 〈M〉= Λ∗/(4π) and 〈Ma〉= 0.
From the F -term of S, FS =λΛ2

∗/(4π)2, and the vanishing vacuum constant, the gravitino
mass is given by

m3/2 = λ√
3MP

(Λ∗
4π

)2
. (5.4)

The F -term conditions of Ma give

∂Weff
∂Ma

' λ

4π
Λ∗SMa√

(Λ2
∗/16π2)−MaMa

− λ

4πΛ∗Sa = 0 ⇒ Sa'
SMa√

(Λ2
∗/16π2)−MaMa

. (5.5)

So each Sa is fixed for a given Ma. For our choice of the basis with 〈M〉= Λ∗/(4π) and
〈Ma〉= 0 (a= 2−6), we have 〈Sa〉= 0.
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S is massless at the tree-level [46]. Once we integrate out heavy fields at the energy
scale below Λ∗, we obtain

Weff ⊃λ
(Λ∗

4π

)2
S . (5.6)

This form of Weff applies to all range of S; for λS >Λ∗, the theory becomes a pure gauge
theory with a S-dependent gauge coupling and gaugino condensation induces the effective
superpotential in eq. (5.6).

Let us discuss the potential of S given by one-loop corrections. For λS <<Λ∗, the
Kähler potential of S is given by [43, 47]

Keff ⊃ |S|2−
ηλ2

4
|S|4

Λ2
∗

+ · · · , (5.7)

where η is a constant that is expected to be O(1). From eqs. (5.6) and (5.7), the potential
of S is

V (S)'
(
λΛ2
∗

(4π)2

)2(
1+ηλ2 |S|2

Λ2
∗

)
(for λS <<Λ∗) . (5.8)

Near the origin of S field space, the mass of S is

m2
S '

ηλ3

(4π)2

√
3MPm3/2 . (5.9)

Note that there is no linear term of S in the Kähler potential and no tilt of the potential
that could destabilize S from around the origin. This is in contrast to the MSSM case,
where a linear term arises at quantum level even if Z2 symmetry is imposed to the tree-level
potential, and the Polonyi problem is reintroduced [47].

The condensation of QQ breaks Z4×Z4 down to Z4R, under which S has a charge
of 2. Z4R is further broken down to Z2R by the non-zero gravitino mass. There is no
residual symmetry under which S is charged and we expect a non-zero vev of S. Indeed,
the effective superpotential in eq. (5.6) and the supergravity effect induce a tadpole term
of S, V (S)⊃λm3/2Λ2

∗S/(4π)2. The balance between the tadpole term and the mass term
in eq. (5.8) gives

〈S〉' (4π)2

2λ3η
m3/2 , (5.10)

which is much smaller than MP . Also, as long as λ>Λ∗/MP , λ〈S〉 is indeed smaller than
Λ∗ and the above computation is consistent.

The non-zero vev of S may result in a non-zero F term of the meson field M . To
see that this is possible, we introduce a Lagrange multiplier X for the deformed moduli
constraint, which may be understood as a glueball field,

W ⊃ 4πX
(
M2− Λ2

∗
16π2

)
. (5.11)

The F term of M is

−〈F ∗M 〉=
λ

4πΛ∗〈S〉+8π〈X〉〈M〉= (4π)
2λ2η

Λ∗m3/2 +2Λ∗〈X〉 . (5.12)
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It is in principle possible that the two terms cancel with each other, but we expect that the F
term is of the same order as the first term. This has an implication to the possibility where
the µ term of the Higgs comes from the meson condensation as discussed in appendix B.

5.2 Cosmological evolution of the Polonyi field

The gravitino mass in the range m3/2>O(0.1−1)TeV gives the lower bound on the SUSY-
breaking scale via eq. (5.4),

m3/2>O(0.1−1)TeV → Λ∗&O(1010)GeV . (5.13)

We note that there can be two sources of domain wall problem: the spontaneous breaking
of Z4 and Z4R when the Sp(1) gauge theory becomes strongly coupled and the 〈QQ〉
condensation forms. To avoid this problem, we require

Λ∗&Hinf , (5.14)

where Hinf is the Hubble expansion rate during the inflation.4
The mass of the Polonyi field is given by eq. (5.9). Let us first discuss the case

with Hinf >mS . During the inflation, S field is fixed at the minimum of Hubble-induced
potential. We assume that the Hubble induced mass is positive so that the origin, S= 0,
is the minimum. Note that this is possible because of the Z2-odd nature of S.

After inflation ends, the Hubble-induced mass decreases and when H becomes as small
asmS in eq. (5.9), S field starts the coherent oscillation around the minimum of V (S) given
by eq. (5.10). The amplitude of the oscillation is comparable to 〈S〉=O((4π)2m3/2), which
is much smaller thanMP . Therefore, the initial energy density of S field (ρS,ini) gets reduced
by a factor (m2

3/2M
2
P )/(m2

S〈S〉2)' (MP /m3/2)×(4π)−2 in our model in comparison with
the case with neutral S.

The condensate of the Polonyi field will mainly decay to a pair of gravitinos, and the
BBN constrains the number density n3/2 of gravitinos normalized by the entropy density s,
Y3/2≡n3/2/s. Form3/2 =O(0.1−1)TeV, mS =O(109)GeV, and the decay rate of S is ΓS '
m5
S/(300m2

3/2M
2
P ) =O(100)GeV [47]. Unless the reheating temperature of the universe

is above
√
O(100)GeVMP ' 1010GeV, the Polonyi field decays before the completion of

reheating. Note that nS/ρinf is conserved after the beginning of the Polonyi oscillation but
before the completion of reheating, where ρinf is the energy density of the inflaton. Using
this and mS ∼H at the beginning of the oscillation, we obtain

Y3/2 =
n3/2
s
' 2nS

4ρ
3Trh

= Trh〈S〉2

2mSM2
P

∼ (4π)5Trhm
3/2
3/2

M
5/2
P

∼ 10−27×
(

Trh
109GeV

)(
m3/2
1TeV

)3/2
. (5.15)

This is well-below the BBN constraint Y3/2< 10−16 [48] and thus the Polonyi problem is
completely resolved in our model.

For Hinf <mS , the oscillation amplitude of S is even smaller and the Polonyi problem
is also absent.

4One may refer to [25] for a potential gravitational wave signature of the model with the discrete R-
symmetry and the strong dynamics for the dynamical SUSY-breaking.
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6 Summary and discussion

The SUSY TH theories are appealing frameworks with double protection of the electroweak
scale by SUSY and an approximate global symmetry. However, as in the MSSM, if SUSY
TH models are embedded into the simplest mediation scheme of SUSY breaking, namely,
gravity mediation, they encounter the possibility of too large energy density of the Polonyi
field S. In this work, we considered the case in which S transforms as S→−S under the
discrete Z2 symmetry exchanging the SM and mirror sectors. The Polonyi field can couple
to gauge multiplets to give tree-level gaugino masses of the order of scalar masses. Because
of the Z2-odd nature, the symmetry enhanced point of the S field space, namely, the origin,
is clearly identified, which results in great reduction of the amplitude of the oscillations of
the Polonyi field in the early universe and the Polonyi problem is resolved in our setup.

The SUSY breaking by S spontaneously breaks the Z2 symmetry and induces Z2-
breaking soft masses and the µ term. This can explain the required Z2-breaking in the
Higgs potential. Also, the degeneracy of the masses of supersymmetric particles with their
twin partners is resolved. As discussed in section 3, the model predicts the splitting of
masses of the two sector by quantum corrections of O(0.1−1)%, O(10)%, O(1)% times
(Mcut/M∗) for gauginos, squarks, and sleptons, respectively. We leave the study of the
phenomenological implication of the mass splitting for future work.

In this paper, we focused on a Z2-odd Polonyi field in supersymmetric Twin Higgs
models motivated by the little hierarchy problem. A similar idea can also work for another
scenarios with Z2 symmetry that exchanges gauge fields with their partners. For example,
mirror Z2 symmetry is also motivated from the heavy QCD axion scenario that relaxes the
quality problem [49–52]. The Polonyi field may be also Z2-odd in such a scenario. Another
possible scenario is a solution to the strong CP problem based on a UV SU(3)c×SU(3)′c×
SU(2)L×SU(2))L′×U(1)(×U(1)′) gauge symmetry and a parity symmetry [53]. In this
case, however, S should transform as S→S† under the parity symmetry and the real part
of S is not Z2-odd. We need to add an extra Z2 symmetry under which the real part of
S is odd. We leave the survey of various possibilities of a Z2-odd Polonyi field to future
work.
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A Useful equations for computing soft masses

The following formulae are taken from [54].
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A.1 RGEs for sfermion and Higgs masses

16π2 d

dt
m2
Q̃L
⊃−32

3 g
2
3|M3|2 +2|Aq|2 ,

16π2 d

dt
m2
ũR
⊃−32

3 g
2
3|M3|2 +4|Aq|2 ,

16π2 d

dt
m2
d̃R
⊃−32

3 g
2
3|M3|2 +4|Aq|2 ,

16π2 d

dt
m2
L̃L
⊃−6g2

2|M2|2 +2|A`|2 ,

16π2 d

dt
m2
ẽR
⊃−24

5 g
2
1|M1|2 +4|A`|2 ,

16π2 d

dt
m2
Hu
⊃−6g2

2|M2|2 +6|At|2 +6|yt|2(m2
Hu

+m2
t +m2

tc) ,

16π2 d

dt
m2
Hd
⊃−6g2

2|M2|2 +6|Ab|2 +6|yb|2(m2
Hd

+m2
b +m2

bc) , (A.1)

where t= d logµ and each subscript for m2
f̃
denotes quark and lepton doublets and singlets.

A.2 RGEs for A, µ and b parameters

16π2 d

dt
At ⊃ At(18y∗t yt−

16
3 g

2
3−3g2

2)+yt
32
3 g

2
3M3 ,

16π2 d

dt
µ ⊃ µ

[
3y∗t yt−3g2

2−
3
5g

2
1

]
,

16π2 d

dt
b ⊃ b(3y∗t yt−3g2

2)+6µg2
2M2 , (A.2)

A.3 Anomalous dimensions

γHu = 1
16π2

[
3y∗t yt−

3
2g

2
2−

3
10g

2
1

]
,

γQ3 = 1
16π2

[
y∗t yt+y∗byb−

8
3g

2
3−

3
2g

2
2−

1
30g

2
1

]
,

γuc
3

= 1
16π2

[
2y∗t yt−

8
3g

2
3−

8
15g

2
1

]
. (A.3)

B µ and b terms from the hidden strong dynamics

The charge assignment specified in table. 1 allows the following superpotential terms,

W ⊃ hij
MP

QiQj
(
HuHd−H ′uH ′d

)
, (B.1)

where hij is a dimensionless coupling constant. In the confined phase of Sp(1), thanks to
the deformed moduli constraint Pf[QiQj ] = Λ4

∗, eq. (B.1) leads to

Weff ⊃
h

MP

(Λ∗
4π

)2 (
HuHd−H ′uH ′d

)
, (B.2)
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where we suppressed the flavor indices of the coupling constant for simplicity. From
eqs. (B.2) and (5.4), one can read the following contribution to µ term from the coupling
of Sp(1) quark fields to the operator HuHd

µ=
√

3h
λ

m3/2 . (B.3)

In terms of the meson field M , eq. (B.2) reads

Weff ⊃
hΛ∗

4πMP
M
(
HuHd−H ′uH ′d

)
, (B.4)

The F term of M is expected to be non-zero. Using eq. (5.12), we find

b=−b′∼h(4π)2

λ3 m2
3/2. (B.5)

For perturbative λ, if h=O(1), |b|�m2
3/2 and a stable electroweak vacuum does not exist,

so we need h� 1. This provides another way to suppress the Z2 breaking in the Higgs
potential while tan β= 2−3. The Z2-odd b terms from the meson field may be comparable
to m2

Hu
and m2

Hd
to ensure tan β= 2−3. The µ term generated from the meson field is too

small, but we may obtain µ from R symmetry breaking, as in eq. (3.15). It is generically
Z2-breaking, but as long as µ2�m2

Hu
,m2

Hd
, the Z2-breaking is suppressed.
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