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Abstract: We present a framework for self-consistent cosmological analyses of the full-shape

anisotropic bispectrum, including the quadrupole (` = 2) and hexadecapole (` = 4) moments. This

features a novel window-free algorithm for extracting the latter quantities from data, derived using a

maximum-likelihood prescription. Furthermore, we introduce a theoretical model for the bispectrum

multipoles (which does not introduce new free parameters), and test both aspects of the pipeline

on several high-fidelity mocks, including the PT Challenge suite of gigantic cumulative volume.

This establishes that the systematic error is significantly below the statistical threshold, both for

the measurement and modeling. As a realistic example, we extract the large-scale bispectrum

multipoles from BOSS DR12 and analyze them in combination with the power spectrum data.

Assuming a minimal ΛCDM model, with a BBN prior on the baryon density and a Planck prior

on ns, we can extract the remaining cosmological parameters directly from the clustering data.

The inclusion of the unwindowed higher-order (` > 0) large-scale bispectrum multipoles is found

to moderately improve one-dimensional cosmological parameter posteriors (at the 5%− 10% level),

though these multipoles are detected only in three out of four BOSS data segments at ≈ 5σ.

Combining information from the power spectrum and bispectrum multipoles, the real space power

spectrum, and the post-reconstructed BAO data, we find H0 = 68.2 ± 0.8 km s−1Mpc−1, Ωm =

0.33± 0.01 and σ8 = 0.736± 0.033 (the tightest yet found in perturbative full-shape analyses). Our

estimate of the growth parameter S8 = 0.77±0.04 agrees with both weak lensing and CMB results.

The estimators and data used in this work have been made publicly available.
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1 Introduction

The large scale structure (LSS) traced by the distribution of galaxies, has become one of the pri-

mary cosmological observables, allowing for precision tests of our theoretical models and numerical

simulations. A key feature of this distribution is its statistical non-Gaussianity, induced by non-

linear gravitational evolution. Any analysis aimed at maximizing the information yield of a galaxy

survey should therefore include non-Gaussian statistics, the simplest of which is the three-point

correlation function of the galaxy overdensity field, or its Fourier image, known as the bispectrum.

Spectroscopic surveys observe the galaxy distribution in three dimensions, with the radial

axis contaminated by line-of-sight velocities, through the phenomena of redshift space distortions
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(RSD). This anisotropy propagates to summary statistics such as the bispectrum [1, 2], and is a

valuable probe of cosmological information encoded in the peculiar velocity field. To date, most

bispectrum analyses to date have considered only the angle-averaged galaxy bispectrum, also called

the bispectrum monopole moment [e.g., 3–16]. This moment, however, is only the first term of

an infinite expansion in angular moments needed to capture the entire anisotropic clustering in-

formation present within the bispectrum [1, 17]. Including this information in analysis pipelines

requires a systematic and efficient treatment, taking careful account of effects such as analytical

modeling, robust statistical estimation, the impact of survey geometry, and discreteness effects. In

this work, we present the first such analysis carried out on publicly available data using the twelfth

data release of the Baryon Oscillation Spectroscopic Survey (BOSS) [18].

A number of previous works have studied the galaxy bispectrum beyond the monopole mo-

ment including Refs. [19–27] (see also Refs. [13, 14, 28–47] for other bispectrum analyses). Using

a combination of Fisher forecasts and simulated data, several of these works have demonstrated

that anisotropic bispectrum multipoles may lead to a significant tightening of our constraints on

cosmological and astrophysical parameters of interest; for example, Ref. [25] studied the informa-

tion content in the idealized setting of periodic box geometries with tree-level perturbation theory

and derived cosmological parameters such as fσ8(z). Here, our goal is to extend these studies by

considering their application both to actual data (including all relevant observational effects and

covariances) and to the measurement of underlying ΛCDM cosmology parameters, thus discovering

whether the purported gains can be practically realized. An important step towards this was per-

formed in Ref. [26], which analyzes observational data from the BOSS bispectrum quadrupole, using

tree-level theory. This work finds more modest improvements from the redshift-space information,

with only a small (< 10%) posterior shrinkage observed for ωcdm (and Ωm). Here, we go beyond

the former work by including a more detailed treatment of survey geometry effects (i.e. window-

function convolution), and through testing the pipeline on high-quality large-volume simulations,

ensuring that our results remain applicable to future high-precision surveys.

Here, our goal is to perform a systematic, consistent, and efficient analysis of the large-scale

galaxy bispectrum quadrupole and hexadecapole, as applied to realistic survey data. In this vein,

we will address several key issues that have previously complicated anisotropic galaxy bispectrum

analyses. First, we validate our perturbative theoretical model for the bispectrum multipoles (based

on [15]) on the high-fidelity PT Challenge simulation dataset [48]. This allows us to test our fitting

pipeline in the unprecedented conditions that correspond to the cumulative volume of 566h−3Gpc3,

which significantly exceeds the volume of upcoming and even futuristic surveys.

To robustly account for the mixing of modes and multipoles induced by the survey geometry, we

will construct new ‘window-free’ estimators for the bispectrum multipoles, based on the maximum-

likelihood approaches outlined in [49, 50].1 This approach is tested using a suite of Nseries mocks,

designed for precision tests of the official BOSS analysis pipeline [51]. Our new window-free esti-

mator enables straightforward comparison of theory and data the need to forward model the effect

of the window function on the former [11]. This allows us to avoid making simplified assumptions

about the window function’s action, which have led to the excision of large-scale modes in [26]; this

could severely limit analyses of primordial non-Gaussianity. Whilst analytic methods for bispec-

trum convolution now exist (at least for the monopole, see [e.g., 52, 53] for recent progress), this

route still leads to a significant amplification in model complexity, which may make typical Monte

Carlo Markov Chain (MCMC) analyses (with ∼ 106 steps [54]) infeasible. Our efforts herein are a

natural extension of our previous full-shape BOSS analyses of the galaxy power spectrum [55–57],

BAO [58], real-space power spectrum proxy [59], and bispectrum monopole [16, 60, 61], based on

the effective field theory of large-scale structure (EFTofLSS; [62–65]). Alternative BOSS full-shape

1A public implementation of these is available at GitHub.com/OliverPhilcox/Spectra-Without-Windows.
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Dataset ωcdm H0 ln
(
1010As

)
ns S8 Ωm σ8

P` +Q0 +B0 0.140+0.010
−0.013 69.3 ± 1.1 2.60 ± 0.13 0.872 ± 0.066 0.734 ± 0.039 0.339+0.016

−0.018 0.691+0.035
−0.039

P` +Q0 +B` 0.1444+0.0098
−0.012 69.19+0.98

−1.1 2.60 ± 0.12 0.869 ± 0.060 0.760 ± 0.039 0.349+0.015
−0.017 0.704+0.034

−0.039

P` +Q0 +B0 0.1262+0.0052
−0.0058 68.32 ± 0.83 2.741 ± 0.095 – 0.745 ± 0.039 0.3197 ± 0.0096 0.722+0.032

−0.035

P` +Q0 +B` 0.1303 ± 0.0055 68.19 ± 0.78 2.740 ± 0.091 – 0.771 ± 0.039 0.3296 ± 0.0095 0.736 ± 0.033

Table 1. Marginalized constraints on ΛCDM cosmological parameters from the BOSS power

spectrum multipoles, the real-space power spectrum proxy, and the bispectrum. We include BAO

information from reconstructed power spectra in all cases. The first and third columns correspond

to the likelihood with the bispectrum monopole only, whilst the second and fourth also contain the

bispectrum quadrupole and hexadecapole. In each case, we display the mean value and the 68%

confidence intervals. All results are obtained assuming the BBN prior on ωb, with the lower two

rows including the Planck prior on ns. The final three parameters in each row are derived from the

MCMC samples and not sampled directly.

analyses have been carried out in Refs. [26, 66–75]. Throughout this work, we focus on the bis-

pectrum multipoles on large scales, i.e. considering only modes with k < 0.08 hMpc−1. For this

reasons we use only the tree-level bispectrum likelihood, though extensions to higher k with the

one-loop theory of [76] may prove interesting.

Having extensively tested our pipeline on various mock data, we apply it to the BOSS DR12

anisotropic clustering measurements. Our overall conclusion is that the BOSS bispectrum mul-

tipoles do not carry a significant signal, but their inclusion in the analysis allows one to slightly

improve constraints on cosmological parameters. In particular, using priors on the primordial power

spectrum tilt ns from Planck 2018 [77] and a BBN prior on the physical baryon density ωb, we find

the Hubble constant H0 = 68.2± 0.8 km s−1Mpc−1, the matter density fraction Ωm = 0.33± 0.01

and the late-time mass clustering amplitude σ8 = 0.736± 0.033. The latter two measurements can

be combined into a growth parameter S8 ≡ σ8(Ωm/0.3)0.5 = 0.77 ± 0.04, which agrees well with

other independent estimates from the weak lensing and cosmic microwave background radiation

surveys.

Our paper is structured as follows. We begin in §2 by summarizing our main results and

placing them in context of other cosmological parameter estimates. In §3 we define the bispectrum

multipoles and present idealized estimators before considering their optimal unwindowed form in

§4. Then, §5 reviews our theory model for the redshift-space bispectrum multipoles at the tree-level

order in perturbation theory. Our data and likelihood are discussed in detail in §6, and the pipeline

validated on mock clustering data from PT Challenge and Nseries simulations in §7. Finally, we

present our of the BOSS survey data in §8 before concluding with a discussion in §9.

2 Summary of the Main Results

We begin with a summary of our cosmological results. In this work, we have developed new window-

free estimators for the bispectrum multipoles and applied them to the BOSS DR12 luminous red

galaxy sample [51] (in two redshift bins and hemispheres), computing the monopole, quadrupole,

and hexadecapole (` = 0, 2, 4) of both the redshift-space power spectrum and bispectrum. We ad-

ditionally analyze the Alcock-Paczynski parameters from reconstructed power spectrum (following

Ref. [58]), and the real-space power spectrum proxy Q0 [59] (see also Refs. [78–80]). Our dataset

matches that of our previous analysis [16], but supplemented with the bispectrum quadrupole and

hexadecapole moments. For all the bispectrum moments used in this work, we focus on large-scale
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Figure 1. Bispectrum monopole, quadrupole, and hexadecapole extracted from the PT Challenge

dataset (points), along with the best-fitting theory model curves (lines). We highlight squeezed and

equilateral configurations as a function of wavenumber in the top panels, and show all configurations

as a function of the triangle index in the lower panel. The errorbars shown correspond to the

diagonal elements of the Gaussian tree-level covariance matrix (see Appendix A), which matches

the total simulation volume of 566 (h−1Gpc)3. We note that the extension of the theory model

to bispectrum multipoles does not add new parameters. Corresponding detection significances are

given in Tab. 2.
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Dataset B0 B2 B4 B2 +B4

BOSS NGC z = 0.61 390.0 (19.7σ) 24.5 (4.9σ) 2.84 (1.7σ) 23.4 (4.8σ)

BOSS SGC z = 0.61 149.4 (12.2σ) −7.61 (−) 0.04 (−) −7.2 (−)

BOSS NGC z = 0.38 271.0 (16.5σ) 31.6 (5.6σ) 2.7 (1.6σ) 30.2 (5.5σ)

BOSS SGC z = 0.38 99.7 (10.0σ) 15.4 (3.9σ) 0.09 (−) 15.8 (4.0σ)

PT Challenge z = 0.61 3.07 × 105 (554σ) 1.88 × 104 (137σ) 1038 (32σ) 1.90 × 104 (138σ)

Table 2. ∆χ2 values and the associated detection significance for the bispectrum multipoles for

the four chunks of the BOSS dataset and the PT Challenge simulations. These are computed as

∆χ2 = χ2
null − χ2

model, where χ2
model/null =

∑
``′(B

data
` − Bmodel/null

` ) · C−1
``′ · (Bdata

`′ − Bmodel/null
` ),

with Bmodel
` = {Bbf

0 , 0, 0} and Bnull
` = {0, 0, 0} for the first column (B0), Bmodel

` = {Bbf
0 , B

bf
2 , 0}

and Bnull
` = {Bbf

0 , 0, 0} for the second column (B2), Bmodel
` = {Bbf

0 , 0, B
bf
4 } and Bnull

` = {Bbf
0 , 0, 0}

for the third column (B4), Bmodel
` = {Bbf

0 , B
bf
2 , B

bf
4 } and Bnull

` = {Bbf
0 , 0, 0} for the fourth column

(B2 +B4), where Bbf
`=0,2,4 are best-fit theory curves. We note that the covariance matrix is highly

correlated, thus the detection significance of B2 +B4 pair is not equal to the sum of the individual

B2 and B4 significances. Furthermore, we ignore the correlation between the bispectra and power

spectra in our estimates, and consider only wavenumbers in the range 0.01 < k/(hMpc−1) < 0.08,

yielding 62 triangle bins per multipole. We find a strong detection of the BOSS bispectrum monopole

in all data chunks, and a somewhat less significant detection the higher multipoles in three out of

four data chunks.

modes with kBmax = 0.08 hMpc−1, and limit ourselves with kBmin = 0.01 hMpc−1 to mitigate large-

scale observation systematics. The power spectrum and bispectrum multipoles are measured with

new maximum-likelihood estimators, as derived in §4 (building on Refs. [49, 50]). These allow for

robust comparison of theory and data without the need for window convolution.

In terms of theory, we use a tree-level perturbative model for the bispectrum multipoles (in

the form introduced in Ref. [15], and later used in Refs. [16, 60, 61], see also Refs. [26, 73, 75]).

We consistently fit the BOSS bispectrum multipole data, recomputing the theoretical templates

for each set of cosmological parameters sampled in our MCMC chains. We focus on the minimal

ΛCDM model and assume a BBN prior on the physical baryon density ωb [56, 81, 82], with all

other parameters fit directly from the BOSS data. Before analyzing the BOSS data, we test our

fitting pipeline and estimators on a set of high-quality simulated galaxy catalogs, including the

PT challenge mocks [48]. Our fits match these data well and we recover the true cosmological

parameters in these cases, as shown in Fig. 1 for the PT challenge data and the best-fit theory

model. This implies that our pipeline for the bispectrum multipoles is adequate at the percent

precision level, which even exceeds the statistical power of futuristic surveys.

Our main results are shown in Fig. 2 and Tab. 1. For comparison, we also display the con-

straints obtained from our previous BOSS likelihood that included only the bispectrum monopole

(` = 0) moment [16]. The inclusion of the bispectrum multipole moments is found to have only a

marginal effect on the cosmological parameter posteriors. Considering the Ωm−σ8 plane, we find a

slight reduction in the errorbars and a small posterior shift, which drives the clustering amplitude

parameter S8 ≡ σ8(Ωm/0.3)0.5 (at z = 0) upwards by ≈ 0.6σ. The largest effect can be seen

in the marginalized ns-posterior, which narrows by ≈ 10% from the inclusion of ` = 2, 4 galaxy

bispectrum moments. All other one-dimensional posteriors on cosmological parameters typically

shrink by . 5%. These modest gains are a consequence of the relatively low signal-to-noise of the

large-scale BOSS galaxy bispectrum multipoles. As shown in Fig. 3 and in Tab. 2, we could detect
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Figure 2. Constraints on ΛCDM cosmological parameters from the BOSS DR12 dataset. We com-

pare results from the combined power spectrum, BAO, and bispectrum monopole (` = 0) dataset

(blue) and those adding the ` = 2, 4 bispectrum multipoles (red). The inclusion of bispectrum

multipoles is found to tighten parameter constraints only slightly, with most significant variation

found in ns and Ωm.

the higher order large-scale bispectrum multipoles only at ≈ 5σ in three out of the four BOSS data

chunks. In comparison, the bispectrum monopole moment is detected typically at more than 10σ

in all of the regions. This occurs due to the larger noise and reduced signal intrinsic to higher-order

moments. We caution, however, that this ∆χ2 detection metric does not fully reflect the impact

on parameter constraints, for which one should use appropriate Fisher derivatives. We further note

that we do not detect the higher order multipoles in the high-z SGC data chunk (which is small

in volume), with the anisotropic clustering signal even being disfavored at around 2σ. Whilst not

significant, this result may be driven by neglecting the correlation with the power spectrum in our
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Figure 3. Comparison of the measured and theoretical galaxy bispectrum multipoles. We show

the BOSS NGC high-z (z = 0.61) data, along with the best-fit theory curves from our MCMC

analysis. The top, middle, and bottom panels show the monopole, quadrupole, and hexadecapole

respectively. Data are shown for kmax = 0.08 hMpc−1 with all elements stacked (with smallest

scales shown on the right). Errorbars correspond to diagonal elements of the covariance matrix,

estimated from mocks. Though the signal of the higher-order BOSS multipoles is relatively small

(see Tab. 2), the model provides an excellent fit to the data, as evidenced by the simulation results

in Fig. 1.
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estimate, or by a statistical fluctuation.

In addition, we remind that the particular one-dimensional parameter projections may not

completely reflect changes in the full multi-dimensional posterior. In particular, the impact of the

higher order multipole moments may be larger in extended cosmological models, analogous to the

improvements found for the power spectrum [57]. The parameter improvements continue to be

modest when we include a Planck prior on the primordial power spectrum tilt ns, as shown in the

lower rows of Tab. 1. Finally, it is worth stressing that the inclusion of the new data sets such as

reconstructed power spectra, Q0, and B` (` = 0, 2, 4) yields significant improvements over the usual

power spectrum-alone analysis. Indeed, our final constraints on σ8 are ≈ 30% tighter than those

from BOSS P`(k) alone, cf. [16].

To place our results in context, let us compare the optimal value of S8 from our chains with

those from other measurements. The direct measurements of this parameter from various weak lens-

ing and galaxy clustering surveys (KIDS-1000 [83], DESY3 [84–86], HSC [87], unWISE+Planck [88],

DESI+Planck [89]) are summarized in Fig. 4. We particularly focus our attention on the full-shape

anisotropic galaxy clustering probes in redshift space [16, 67, 69, 70, 90, 91]. For comparison, we also

show there the prediction of the ΛCDM fit to the primary Planck [77] and ACT+WMAP CMB [92]

data, which may be considered an indirect probe of S8. Our notation and choice of data sets follow

those of Ref. [70]. Our measurement is fully consistent with those of other BOSS full-shape analyses,

obtained both using perturbation theory [67, 70] and simulation-based frameworks [69]. We find a

small (and relatively insignificant) tension between the S8 measurements from ELG [90] and QSO

samples [91] of the eBOSS survey [93], which may be either due to residual systematics, or simply

a statistical fluctuation. Finally, we point out that our S8 posterior is broadly consistent with both

CMB and various weak lensing probes. The latter two probes are in some ∼ 2σ disagreement with

each other, which is often known as the S8 tension (see Ref. [94] for a recent review). We conclude

that our measurement does not yield evidence for this tension.

3 The Bispectrum Multipoles

3.1 Definition

The galaxy bispectrum is defined as the three-point expectation of the overdensity, δg:

(2π)3δD (k123)Bggg(k1,k2,k3) ≡ 〈δg(k1)δg(k2)δg(k3)〉 , (3.1)

[e.g., 95], writing k123 ≡ k1 +k2 +k3 for Dirac delta δD. In real-space, symmetry under translations

and rotations forces the bispectrum to be a function only of three variables (usually chosen to be the

side lengths ki ≡ |ki|); this implies Bggg(k1,k2,k3) → Bggg(k1, k2, k3). Redshift-space distortions

break symmetry with respect to the line-of-sight n̂ (hereafter LoS), affording an additional two

degrees of freedom to the bispectrum. Whilst this can be parametrize in a number of ways, a

particularly well-motivated choice of variables are the angle of the triangle plane to the LoS, and

the orientation of the triangle within the plane [e.g., 17, 96, 97].

In this approach, one can expand the bispectrum as a spherical harmonic series:

Bggg(k1,k2,k3) =

∞∑

`=0

∑̀

m=−`

B`m(k1, k2, k3)Y`m(θk, φk), (3.2)

where θk and φk specify the aforementioned orientation. Though this basis is complete, measuring

B`m is difficult, since the spherical harmonic cannot be separably decomposed into k1, k2, and

k3 pieces, yielding a non-factorizable estimator. This is not a problem for theoretical forecasts

[e.g., 22, 24], but severely limits application to observational data. Consequently, several works
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P` + Q0 + B`
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P`

eBOSS ELG + BOSS         , Ivanov (2021)
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Figure 4. A compilation of some direct and indirect measurements of the growth parameter S8,

from spectroscopic surveys, weak lensing, and the CMB. Errorbars shown approximately correspond

to the 68% CL, and our measurement is shown in the top row. Further detail is given in Ref. [70]

and the main text.

[e.g., 17, 25] have considered only the m = 0 moment (independent of φ), and set cos θ ≡ k̂3 · n̂,

additionally fixing k1 ≤ k2 ≤ k3. This corresponds to representing the bispectrum as a Legendre

series in θ:

Bggg(k1,k2,k3) ≈
∞∑

`=0

B`(k1, k2, k3)L`(k̂3 · n̂), (k1 ≤ k2 ≤ k3) (3.3)

where L` is a Legendre polynomial and B` the corresponding coefficient.2 We note that (3.3) is not

a strict equality, since the bispectrum contains higher-order moments (with m 6= 0) not captured

within its formalism; in the below, we will instead define the multipoles directly as integrals over

θ, φ.

2Some works [e.g., 22] have instead expanded the bispectrum as a double Legendre series in the two

angles. A separable choice would be to expand in, say, L`(k̂2 ·n̂) and L`′(k̂3 ·n̂); however, the corresponding

coefficients are generally difficult to estimate robustly, since the two angles are not independent once the

side-lengths are specified.
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3.2 Idealized Estimators

The decomposition of (3.3) can be used to construct estimators for the bispectrum multipoles, B`.

For an idealized periodic-box geometry (such as an N -body simulation), the conventional estimator

for the bispectrum multipoles is given by

B̂abc`

∣∣∣
periodic

≡ 2`+ 1

Nabc
T

∫

k1k2k3

(2π)3δD (k123) Θa(k1)Θb(k2)Θc(k3) (3.4)

× δg(k1)δg(k2)δg(k3)L`(k̂3 · n̂),

where
∫
k
≡ (2π)−3

∫
k

[17]. Here, a ≤ b ≤ c specify a triplet of k-bins of finite radius, defined by

Θi(k), which is unity if k is in bin i, and zero else. (3.4) is simply an integral over three copies of the

density field weighted by the Legendre polynomial in the longest side L`(k̂3 · n̂), with translation

invariance enforced by the Dirac delta. This is normalized by the isotropic bin volume, defined by

Nabc
T =

∫

k1k2k3

(2π)3δD (k123) Θa(k1)Θb(k2)Θc(k3). (3.5)

In this work, we regard (3.4) as the definition of the binned bispectrum multipoles (rather than the

approximate relation of 3.3).

Theoretical predictions for the bispectrum multipoles can be similarly computed from the

expectation of (3.4):

Babc`

∣∣
theory

≡ 2`+ 1

Nabc
T

∫

k1k2k3

(2π)3δD (k123) Θa(k1)Θb(k2)Θc(k3) (3.6)

×Btheory
ggg (k1,k2,k3)L`(k̂3 · n̂),

for some theory model Btheory which is not yet averaged over angles. This will be discussed in §5.

In practice, we implement (3.4) by factorizing in ki, following Ref. [17]. This is realized by

rewriting the Dirac function as an exponential, yielding the asymmetric expression

B̂abc`

∣∣∣
periodic

=
2`+ 1

Nabc
T

∫
dxF a0 (x)F b0 (x)F c` (x), Nabc

T =

∫
dxDa(x)Db(x)Dc(x), (3.7)

using the definitions

F i` (x) ≡
∫

k

e−ik·xΘi(k)δ(k)L`(k̂ · n̂), Di(x) ≡
∫

k

e−ik·xΘi(k). (3.8)

Each piece can be straightforwardly evaluated using fast Fourier transforms (FFTs) with Ng logNg
complexity for Ng grid points. If we had defined the redshift-space components using Y`m(θk, φk)

rather than L`(k̂3 · n̂), (or some other choice) the expression would not factorize in the above

manner, and computation would scale as O(N3
g ).

In realistic surveys, the LoS is not fixed, but varies depending on which galaxies are being

considered.3 In this case, we can adopt the ‘Yamamoto’ prescription [17, 100], fixing n̂ to the

direction vector of the galaxy associated to k3. This corresponds to the replacement

F i` (x) →
∫

k

e−ik·xΘi(k)

∫
dr eik·rδ(r)L`(k̂ · r̂) (3.9)

≡ 4π

2`+ 1

∑̀

m=−`

∫

k

e−ik·xΘi(k)Y`m(k̂)

∫
dr eik·rδ(r)Y ∗`m(r̂),

with the latter equality allowing for fast estimation using the spherical harmonic addition theorem.

3Strictly, a separate line-of-sight is required for each galaxy. The effects of assuming a single line-of-sight

are small for typical survey sizes however [cf. 98, 99].
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4 Window-Free Bispectrum Estimators

4.1 Motivation

When applying the estimators described in §3 to observational data, we must specify the density field

δg. Usually, this is modelled by the pixelized field of “data-minus-randoms”; δg(r) ∝ ng(r)−αnr(r),

where ng is the observed galaxy density field and nr(r) is the random catalog (containing 1/α

times more particles than the galaxy catalog). Since both data and randoms are multiplied by

the survey mask, conventional estimators will measure only the windowed bispectrum, Bwin
ggg , rather

than the true underlying statistic, Bggg. Before bin integration, the two are related by the following

convolution integral:

Bwin
ggg (k1,k2,k3) =

∫

p1p2p3

(2π)3δD (p123) (4.1)

×W (k1 − p1)W (k2 − p2)W (k3 − p3)Bggg(p1,p2,p3).

To compare theory and data, we should similarly convolve the theory model. Due to its oscillatory

nature, this is a difficult and time-consuming numerical operation (though see Ref. [52] for a possible

` = 0 approach), thus the effect is often ignored or heavily simplified [e.g., 10, 11, 26, 73, 75, 101,

102]. This may lead to biases in data-analysis when large-scale modes (relevant to primordial

non-Gaussianity studies) are included.

A major goal of this work is the estimation of unwindowed bispectrum multipoles. These are

unbiased by the window function and can be robustly compared to theory models without the need

to window-convolve the latter (via 4.1). Our approach follows Refs. [49, 50] for the power spectrum

and ` = 0 monopole (as well as Ref. [103] for the higher-point CMB correlators), themselves inspired

by early work on the subject in [104–106].

4.2 Binned Bispectrum Components

To define unwindowed estimators, we must first express the true bispectrum Bggg(k1,k2,k3) in

terms of the quantity of interest: the set of bispectrum coefficients bα ≡ Babc` (using α to denote

the radial bin indices and multipole). This relation will then be used to form an estimator for bα
via maximum-likelihood methods. As an ansatz, we will assume

Bggg(k1,k2,k3) =
∑

α

bα
∆α

[
Θa(k1)Θb(k2)Θc(k3)L`(k̂3 · n̂) + 5 perms.

]
. (4.2)

This is similar in form to the Legendre decomposition of (3.3), but is defined for all arbitrary

ordering of {k1,k2,k3}, with the binning functions picking out the relevant permutation, such that

we can represent the full bispectrum in terms of its binned components bα with a ≤ b ≤ c. (4.2)

includes a bin-specific normalization factor ∆α; this takes a simple form for ` = 0 as in Ref. [50]

but is more complex in general, as we show below, due to the omitted φ integrals and exchange

symmetry.

Inserting (4.2) into the expectation of our idealized estimator (3.4) gives

〈
B̂abc`

〉
=

2`+ 1

Nabc
T

∫

k1k2k3

(2π)3δD (k123) Θa(k1)Θb(k2)Θc(k3)L`(k̂3 · n̂) (4.3)

×
∑

β

bβ
∆β

[
Θa′(k1)Θb′(k2)Θc′(k3)L`′(k̂3 · n̂) + 5 perms.

]
,

where β ≡ {a′, b′, c′, `′}. Assuming non-overlapping bins, the integral will be non-zero only when

{a′, b′, c′} is some permutation of {a, b, c} (again restricting to a′ ≤ b′ ≤ c′). Invoking global
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rotational invariance, we can average over the LoS, making use of the relation:

∫
dn̂

4π
L`(k̂i · n̂)L`′(k̂j · n̂) =

δ``
′

K

2`+ 1
L`(k̂i · k̂j). (4.4)

Writing out the permutations explicitly, this gives

〈
B̂abc`

〉
=

1

Nabc
T

bα
∆α

∫

k1k2k3

(2π)3δD (k123) Θa(k1)Θb(k2)Θc(k3) (4.5)

×
{[
L`(k̂1 · k̂3)

[
δbb

′

K δca
′

K + δba
′

K δcb
′

K

]
δac

′

K + L`(k̂2 · k̂3)
[
δaa

′

K δcb
′

K δab
′

K δca
′

K

]
δbc

′

K

+ δaa
′

K δbb
′

K + δab
′

K δba
′

K

]
δcc

′

K

}
.

The Kronecker deltas demarcate four scenarios: (1) a 6= b 6= c, (2) a = b 6= c, (3) a 6= b = c, (4)

a = b = c. The latter two are more complex since they involve additional Legendre polynomials of

two different k vectors. To simplify these, we define the term:

Nabc
` ≡

∫

k1k2k3

(2π)3δD (k123) Θa(k1)Θb(k2)Θc(k3)L`(k̂2 · k̂3) (4.6)

=
4π

2`+ 1

∑̀

m=−`

∫
dx

[∫

k1

e−ik1·xΘa(k1)

] [∫

k2

e−ik2·xΘc(k2)Y`m(k̂2)

]

×
[∫

k3

e−ik3·xΘc(k3)Y ∗`m(k̂3)

]
,

rewriting the Dirac function as an exponential in the second line, allowing expression in terms of

Fourier transforms. We note that Nabc
0 is just the isotropic bin volume Nabc

T . With the above

definitions, we obtain the desired result
〈
B̂abc`

〉
= bα (i.e. an unbiased estimator) subject to the

following definition:

∆α ≡





1 a 6= b 6= c

2 a = b 6= c
(
1 +Nabc

` /Nabc
T

)
a 6= b = c

2
(
1 + 2Nabc

` /Nabc
T

)
a = b = c.

(4.7)

For ` = 0, this reduces to the symmetry factors used in [50] (1 for scalene, 2 for isosceles, 6 for

equilateral). This calculation generalizes the standard bispectrum definition (3.3) to the binned

bispectrum beyond the narrow bin limit (whence a 6= b 6= c is guaranteed).

4.3 Maximum-Likelihood Estimators

We now consider the estimation of bispectrum coefficients bα, given their relation to the full bis-

pectrum Bggg(k1,k2,k3). Following Refs. [49, 50, 103], our pathway to this will be:

1. Write down the likelihood for the observed pixellized data-minus-randoms field d in terms

of the pixel correlators Cij ≡ 〈didj〉, Bijk ≡ 〈didjdk〉, et cetera, where i, j, · · · ∈ [1, Npix] are

pixel indices.

2. Express the relevant correlator (here Bijk) in terms of the coefficients of interest, i.e. the

binned bispectrum multipoles bα.

3. Maximize the log-likelihood with respect to bα forming a quasi-optimal estimator.

4. Simplify the resulting form such that it can be efficiently implemented on data using FFTs.
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In the weakly non-Gaussian regime, the likelihood of the data is given by the Edgeworth

expansion [e.g., 107]

− logL[d] = − logLG[d]− 1

3!
Bijk

(
hihjhk − hiC−1

jk − hjC
−1
ik − hkC

−1
ij

)
+ · · · (4.8)

where LG is the Gaussian piece (which we do not need here), and hi ≡ C−1
ij d

j is the Wiener-filtered

data. In this formalism, the optimal estimator for bα (which enters linearly in Bijk) is given by

b̂α =
∑

β

(
F−1

)
αβ
b̂num
β , (4.9)

defining the numerator and normalization:

b̂num
α =

1

6

∂Bijk

∂bα

[
hihjhk −

(
hiC
−1
jk + 2 perms.

)]
(4.10)

Fαβ =
1

6

∂Bijk

∂bα
C−1
il C−1

jmC−1
kn

∂Blmn

∂bβ
.

This is just the maximum likelihood solution of (4.8).

In our case, the three-point function can be written as a Fourier-transform of the full redshift-

space bispectrum Bggg(k1,k2,k3), noting that di ≡ n(ri)δg(ri) for background density n(r):

Bijk = n(ri)n(rj)n(rk)

∫

k1k2k3

eik1·ri+ik2·rj+ik3·rk(2π)3δD (k123)Bggg(k1,k2,k3), (4.11)

Inserting (4.2), we can write the cumulant derivative as

∂Bijk

∂bα
=
n(ri)n(rj)n(rk)

∆α

∫

k1k2k3

[
Θa(k1)Θb(k2)Θc(k3)L`(k̂3 · n̂) + 5 perms.

]
(4.12)

× eik1·ri+ik2·rj+ik3·rk(2π)3δD (k123) .

Under the Yamamoto approximation, we fix the LoS to be n̂ = r̂3, as above.

Inserting the above results into (4.10), the numerator of the bispectrum estimator is found to

be:

b̂num
α =

1

∆α

∫
dr

[
ga0 [d](r)gb0[d](r)gc` [d](r)−

(
ga0 [d](r)

〈
gb0[a](r)g̃c` [a](r)

〉
+ 2 perms.

) ]
,(4.13)

subject to the definitions

ga` [y](r) =

∫

k

e−ik·rΘa(k)

∫
dr′eik·r

′
n(r′)[H−1y](r′)L`(k̂ · r̂′) (4.14)

g̃a` [y](r) =

∫

k

e−ik·rΘa(k)

∫
dr′eik·r

′
n(r′)[A−1y](r′)L`(k̂ · r̂′).

ga0 is equal to the ga function of Ref. [50]. This is closely linked to the F` functions found in the

ideal estimator (3.8), but now includes the survey mask and custom weighting functions. Two

points are of note: (a) we replace the C−1 Wiener filtering by a more general weighting H−1; (b)

we introduce a set of random maps a with known covariance A following Ref. [108]. The former

allows for a simple-to-implement estimator (since the full pixel covariance is difficult to compute

and harder still to invert), and the latter allows one to compute the one-point terms via Monte

Carlo summation (removing the need for a direct sum which has a prohibitive O(N2
pix) scaling).
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Exploiting spherical harmonic factorizations, the two terms in (4.14) can be written in terms

of forward and reverse Fourier-transforms F and F−1:

ga` [y](r) ≡ 4π

2`+ 1

∑̀

m=−`

F−1
[
Θa(k)Y ∗`m(k̂)F

[
nH−1y Y`m

]
(k)
]

(r) (4.15)

g̃a` [y](r) ≡ 4π

2`+ 1

∑̀

m=−`

F−1
[
Θa(k)Y ∗`m(k̂)F

[
nA−1y Y`m

]
(k)
]

(r).

The second part of the estimator is a data-independent normalization (or Fisher) matrix, Fαβ .

This acts to remove correlations between bins and multipoles and can be efficiently estimated via

Monte Carlo methods. In the limit of ideal weighting (H−1 → C−1) and vanishing non-Gaussianity,

the bispectrum covariance is equal to F−1. As in [50], this takes the form

Fαβ =
1

12

(〈
φiαH

−1
il φ̃

l
β

〉
−
〈
φiα
〉
H−1
il

〈
φ̃lβ

〉)
, (4.16)

with φiα[a] = Bijk,α H−1
jj′H

−1
kk′a

j′ak
′

and analogously for φ̃ with H−1 → A−1. (4.16) can be implemented

by applying the linear map H−1 to φ̃ then summing the result (multiplied by φ) in pixel-space. Once

again, the expectations can be computed by summation over Monte Carlo realizations a with known

covariance A (e.g., Gaussian random fields).

With the above form for the cumulant derivative (4.12), we can write the φ field explicitly in

terms of Fourier transforms:

φiα[a] = Bijk,α H−1
jj′H

−1
kk′a

j′ak
′

(4.17)

=
n(ri)

∆α

∫
dr

∫

k1k2k3

eik1·ri

[
Θa(k1)Θb(k2)Θc(k3)L`(k̂3 · n̂) + 5 perms.

]

× e−i(k123)·r[nH−1a](k2)[nH−1a](k3)

=
2n(ri)

∆α

{
F−1

[
Θa(k)F

[
gb0[a]gc` [a]

]
(k)
]

(ri) + (a↔ b)

+F−1
[
Θc(k)L`(k̂ · r̂i)F

[
ga0 [a]gb0[a]

]
(k)
]

(ri)
}
,

with an analogous form for φ̃α involving g̃n` . The final term involves a Legendre polynomial; using

spherical harmonic decompositions, this can be simplified to yield the form:

φiα[a]
∣∣
III

=
2n(ri)

∆α

4π

2`+ 1

∑̀

m=−`

Y`m(r̂i)F−1
[
Θc(k)Y ∗`m(k̂)F

[
ga0 [a]gb0[a]

]
(k)
]

(ri). (4.18)

Collecting results, the full estimator for the bispectrum is given by

b̂α =
∑

β

F−1
αβ b̂

num
β . (4.19)

This is unbiased for any choice of H−1, unwindowed, and, for H−1 ≈ C−1, close-to optimal (partly

due to the inclusion of a linear term [cf. 108]). These properties are derived formally in [50]. Both

the numerator and Fisher matrix can be efficiently computed using Nmc Monte Carlo simulations,

with the finite number of simulations incurring an error proportional to
√

1 + 1/Nmc. Whilst

the latter is computationally expensive (requiring O(Nbins) Fourier transforms), it only has to be

estimated once for a given survey geometry. We will discuss the specifics of our implementation in

§6. A public Python implementation can be found online.4

4GitHub.com/OliverPhilcox/Spectra-Without-Windows.
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5 Theory Model Overview

5.1 Idealized Form

To model the galaxy bispectrum models, we will use the tree-level theory introduced in Ref. [15]

(see also [2, 9, 46, 47, 109–114]). At a redshift z, the redshift-space bispectrum is the sum of three

contributions:

Bggg(k1,k2,k3) = B211(k1,k2,k3) +Bctr(k1,k2,k3) +Bstoch(k1,k2,k3) , (5.1)

where B211 is the standard deterministic mode-coupling contribution,

B211(k1,k2,k3) = 2Z1(k1)Z1(k2)Z2(k1,k2)P11(k1)P11(k2) + 2 cyc. . (5.2)

Here P11(k, z) is the linear matter power spectrum at redshift z, and the redshift-space perturbation

theory kernels are given by [cf., 115]

Z1(k) = b1 + fµ2 , (5.3a)

Z2(k1,k2) =
b2
2

+ bG2

(
(k1 · k2)2

k2
1k

2
2

− 1

)
+ b1F2(k1,k2) + fµ2G2(k1,k2)

+
fµk

2

(
µ1

k1
(b1 + fµ2

2) +
µ2

k2
(b1 + fµ2

1)

)
, (5.3b)

F2(k1,k2) =
5

7
+

1

2

(
(k1 · k2)

k2
1

+
(k1 · k2)

k2
2

)
+

2

7

(k1 · k2)2

k2
1k

2
2

, (5.3c)

G2(k1,k2) =
3

7
+

1

2

(
(k1 · k2)

k2
1

+
(k1 · k2)

k2
2

)
+

4

7

(k1 · k2)2

k2
1k

2
2

, (5.3d)

where we introduced the following angles with respect to the line of sight directions: µi ≡ (ki · ẑ)/ki
and µ ≡ (k · ẑ)/k, k ≡ k1 + k2. Additionally, f is the logarithmic growth factor,

f =
d lnD+

d ln a
, (5.4)

where D+ denotes the usual growth rate and a is the scale factor of the Friedmann-Lemaitre-

Robertson-Walker metric. The free coefficients b1, b2, and bG2 capture linear, quadratic, and tidal

bias between galaxies and matter [115–121].

The second ingredient of our model is the counterterm contribution which is, essentially, a

phenomenological term meant to capture the large-scale limit of non-linear redshift space distortions

(“fingers-of-God” (FoG) [122]). In the EFTofLSS, the higher derivative counterterms capture the

backreaction effect induced by short-scale non-linearities. In the presence of RSD, this effect is

dominated by stochastic virial velocities, which make up FoG. The physical distance scale associated

with these velocities, σv ∼ 5 [h−1Mpc], is parametrically larger than the other scales in the EFT

expansion, hence the RSD counterterms are important even on very large scales where the usual

one-loop EFT corrections due to mode coupling are suppressed. For this reason we take the FoG

counterterms into account but neglect the other one-loop corrections, effectively using a higher-

order Taylor expansion for σv. In practice, our counterterm model amounts to modifying the kernel

Z1 as

Z1 → ZFoG
1 = Z1 + δZ1 = b1 + fµ2 − c1µ2

(
k

krNL

)2

, (5.5)

where krNL = 0.3 hMpc−1 is the RSD cutoff for the Red Luminous Galaxies [48, 90]. We have

found that this phenomenological model is sufficient to capture the leading effect of FoG on large
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scales. As one moves to shorter scales, a full set of counterterms becomes necessary, along with the

appropriate one-loop corrections, as demonstrated in Ref. [76].

The third piece of our model is the stochastic contribution

Bstoch(k1,k2,k3) = Z1(k1)
P11(k1)

n̄

(
b1Bshot + fµ2(1 + Pshot)

)
+

1 +Ashot

n̄2
, (5.6)

where n̄ is the galaxy number density, and Ashot, Bshot, Pshot are free O(1) shot-noise parameters

that capture deviations from Poissonian stochasticity. Note that mathematical consistency requires

that the Pshot parameter is the same as that appearing in the power spectrum model. We addi-

tionally note that, in contrast to [15], we do not make any assumptions on Ashot, and keep this

parameter free in the fit.

The last purely theoretical ingredient of our model is infrared (IR) resummation, which captures

the non-linear evolution of baryon acoustic oscillations [123–125]. This is implemented using the

prescription outlined in Refs. [15, 126–128], developed within the context of time-sliced perturbation

theory [129].

5.2 Observational Effects

Two practical effects must also be taken into account in our model. The first is the coordinate

distortion imprinted by the assumption of a fiducial cosmology (known as the Alcock-Paczynski

effect, when applied to the shifts of the BAO peak [130]). The relationship between the true

underlying wavenumbers and angles (q, ν) and the observed wavenumbers and angles (k, µ) is given

by

q2 = k2
[
α−2
‖ µ2 + α−2

⊥ (1− µ2)
]
,

ν2 = α−2
‖ µ2

[
α−2
‖ µ2 + α−2

⊥ (1− µ2)
]−1

,
(5.7)

where

α‖ =
Hfid(z)

Htrue(z)

H0,true

H0,fid
, α⊥ =

Dtrue,A(z)

Dfid,A(z)

H0,true

H0,fid
, (5.8)

for angular diameter distance DA and Hubble parameter H. Note that we have explicitly taken

into account that wavenumbers are measured in units of hMpc−1, yielding additional factors

H0,true/H0,fid. The bispectrum multipoles in physical redshift space are then given by [36] (see

§3)

B`(k1, k2, k3)

=
2`+ 1

2α2
‖α

4
⊥

∫ 2π

0

dφ

2π

∫ 1

−1

dµ3 L`(µ3) Bggg(q1[k1, µ1], q2[k2, µ2], q3[k3, µ3], ν1[µ1], ν2[µ2], ν3[µ3]) ,

(5.9)

where µ1, µ2 are defined by µ3 and φ. The observed angles being subject to (5.7). In what follows

we will focus on the ` = 0, 2, 4 moments. Higher order moments are also present, but they generate

negligible signal on large scales, and can thus be ignored for the purposes of this paper.

The last observational effect is related to the discrete sampling of Fourier modes. We account for

this effect following Ref. [15] (with alternative binning methods discussed in Refs. [25, 46, 47, 114]).

Our method consists of two steps. As a first step (known as the “continuum approximation”), one

assumes that there is an infinitely dense continuum of Fourier modes, in which case the binning

effects simplify to an integration of the bispectrum model over the chosen wavenumber bins. As

a second step, deviations from the continuum approximation are taken into account by means of
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“discreteness weights”, defined as the ratio between the true binned bispectrum built out of discrete

Fourier modes, and its continuous approximation, i.e.

w =
B̂`,disc

B̂`,int

, (5.10)

where B̂`,int is the bin-integrated bispectrum, and B̂`,disc is the explicitly-computed bispectrum

model calculated on a discrete k-grid. Note that the angular integral (5.9) is replaced with a

discrete sum over the available angular modes in this case. The discreteness weights w (which are

expensive to compute) are defined for some fiducial cosmology that is consistent with the data.

The residual cosmology-dependence of the weights is quite weak, and in principle, can be taken into

account iteratively [15]. All in all, our theory model is given by

Bth
` = w`(k1, k2, k3)Bint

` (k1, k2, k3) . (5.11)

6 Data and Likelihood

This paper uses three different types of data and corresponding likelihoods. First, we will analyze

mock galaxy clustering data from the PT Challenge and Nseries mocks, with the former boasting

huge volume and the latter including BOSS observational effects. In the second part of the paper,

we analyze the observed BOSS DR12 LRG clustering data.

6.1 PT Challenge

The PT Challenge simulation suite was created to test analytic modeling of the large-scale clustering

of BOSS-like galaxies at the per-mile level [48], covering a cumulative volume of 566 (h−1Gpc)3.

These are periodic box simulations that are free of many observational effects, such as those of

the lightcone (radial selection), window function, and fiber collisions. The mocks, however, include

the Alcock-Paczynski effect. The publicly available simulation suite consists of 10 independent

realizations with three snapshots at z = 0.38, 0.51, 0.61. In this work, we will focus on a single

snapshot at z = 0.61, which matches the properties of the “high-z” BOSS DR12 data chunk. This

dataset has been used to validate various analyses of EFT-based theoretical models for the galaxy

power spectra and bispectra in Refs. [15, 48, 57, 59, 76, 131]. Here, we extend these analyses to the

galaxy bispectrum multipole moments. Our full data vector is given by

{P0, P2, P4, Q0, B0, B2, B4} , (6.1)

where P` (` = 0, 2, 4) are the galaxy power spectrum multipoles with kPmax = 0.16 hMpc−1, Q0 ≡
P0 − 1

2P2 + 3
8P4 is the real space galaxy power spectrum proxy (taken for kQmin = 0.16 hMpc−1

and kQmax = 0.4 hMpc−1), and B` (` = 0, 2, 4) are the bispectrum multipole moments taken for

kBmin = 0.01 hMpc−1 and kBmax = 0.08 hMpc−1, and estimated using the periodic-box estimators

of (3.4).

The power spectrum likelihood for P` and Q0 has been discussed in detail in [59], with that of

the tree-level bispectrum monopole considered in [15]. Note that these scale cuts have been chosen

by requiring the parameter estimation from PT Challenge mocks to be unbiased. In principle, one

could measure the scale cut kmax without knowing the true underlying cosmology, e.g., using the

theoretical error approach [30, 54].

In this work, we assume a Gaussian likelihood for the data vector (6.1) with the covariance

matrix computed in the Gaussian tree-level approximation, as verified for the power spectrum and

the tree-level bispectrum likelihood in Ref. [15] (see also [132–135]). In particular, it has been found

that the cross-covariance between the power spectrum and the bispectrum is negligible for our scale
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cuts. For the bispectrum multipoles, we also compute their covariances in the Gaussian tree-level

approximation, as detailed in Appendix A. Note that the correlation between various multipoles

appears already in this approximation (similar to the correlation between different P` multipoles),

though we ignore the correlation between the bispectrum multipoles and the power spectrum, as

before. Based on the results of [15], this approximation is adequate for our choice of kBmax.

6.2 Nseries

The second type of simulation data we consider is the Nseries mock suite [51, 93] (see also [136,

137]). This suite consists of 84 pseudo-independent realizations of the BOSS-like halo occupation

distribution-based galaxies, covering a cumulative effective volume of, approximately,5 235 (h−1Gpc)3.

The Nseries mocks include all necessary observational effects present in the actual BOSS CMASS

sample: the redshift distribution, fiber collisions, and the survey window function. As such, these

mocks are appropriate to test our window-free estimator, as well as our galaxy clustering model.

These mocks were used for validating the official BOSS DR12 data analysis pipeline.

The effective redshift of the Nseries mocks is zeff = 0.55 and we analyze the same dataset

as in (6.1) but with kP`
max = 0.2 hMpc−1, and kQ0

min = 0.2 hMpc−1, consistent with the analysis

of Ref. [16]. The power spectrum and bispectrum multipoles are measured with the unwindowed

estimator described in §4. This uses 100 Monte Carlo realizations to compute the Fisher matrix and

one-point terms. For the pixel weighting, we assume the FKP limit H−1 → δD(ri − rj)n
−1(r)[1 +

n(r)PFKP]−1 for PFKP = 104h3Mpc−3, with the window function n(r) computed from the survey

mask and redshift distribution. Our initial bispectra are computed with kBmax = 0.11 hMpc−1

then trimmed to kBmax = 0.08 hMpc−1 to minimize window-function-induced correlations with.

modes not included in the analysis. In the final data vector, we use 62 bispectrum bins with

∆k = 0.01 hMpc−1 for each multipole.

Here, we assume the likelihood for the dataset to be Gaussian (valid since we limit to quasi-

linear scales). Since the window function induces non-negligible correlations between the power

spectrum and bispectrum (which enters the covariance but not the mean datavector), we cannot

use the analytic approximations described above; instead, we use the empirical covariance extracted

from the NGC MultiDark Patchy CMASS mocks [139, 140]. This set of approximate mocks has a

selection function and geometry closely matching that of the BOSS CMASS sample.We use 2048

mocks in our covariance estimator, which guarantees that the sampling noise is heavily suppressed

(though see [134] for compression-based appraoches). We stress that all our consistency checks are

carried out on realistic mocks such as PT Challenge and Nseries, which are based on exact N-body

simulations. The MultiDark Patchy mocks, which are generated with approximate gravity solvers,

are used only to build covariance matrices.

6.3 BOSS

Finally, we analyze real clustering data, from the twelfth data release (DR12, 2016) of BOSS [51].

The data is split into four different chunks depending on the redshift coverage and sky position,

denoted NGCz1, SGCz1, NGCz3, and SGCz3, where SGC and NGC refer to South and North

Galactic Cap survey regions, and z1= 0.38 and z3= 0.61 are the sample effective redshifts. The

power spectrum and bispectrum multipoles are computed using the window-free estimator described

in §4 (see also [49, 50]). We supplement the data vector 6.1 with BAO measurements from the

reconstructed power spectrum measurements, condensed into Alcock-Paczynski parameters α‖, α⊥.

These are extracted for each data chunk as described in Ref. [58]. The likelihood for the full data

5This value is based on the CMASS NGC effective sky area and redshift range given in [138].
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vector for each of the four BOSS data samples,

{P0, P2, P4, Q0, B0, B2, B4, α‖, α⊥} , (6.2)

is assumed to be Gaussian, with the empirical covariance obtained from the suite of MultiDark

Patchy mocks generated separately for each data sample. Note that the bispectrum covariance is

very close to the one computed in the Gaussian tree-level approximation, i.e. the window function

effects are small when using our window-free estimator (though not guaranteed to be zero).

6.4 Codes & Priors

We evaluate our theoretical predictions for the power spectrum and bispectrum with the open

source CLASS-PT code [141] (see also [72, 142]). MCMC chains are computed with the Montepython

code [143, 144].

Finally, let us discuss priors on nuisance parameters. For the power spectrum is concerned, we

adopt the same priors as in previous BOSS EFT full-shape analyses, detailed in Refs. [16, 76, 141]

(with conventions described in Appendix D of [15]). For the bispectrum nuisance parameters, we

assume

Ashot ∼ N (0, 12) , Bshot ∼ N (1, 12) , c1 ∼ N (0, 52) , (6.3)

which are motivated by naturalness, which implies that the EFT parameters should be O(1) (after

removing their physical scalings).

7 Tests on Mock Catalogs

In this section we test our analysis pipeline on the realistic mock catalogs described above, starting

with the PT Challenge mocks. These cover a huge effective volume, and do not contain survey

systematics effects, thereby allowing clear tests of our theory model for the anisotropic bispectrum.

After this, we will proceed to the Nseries mock suite, which cover a somewhat smaller volume,

are not exactly independent (the 84 mocks in the suite are based on only 7 independent N-body

realizations), but include all necessary observational effects present in the actual data, and are thus

analyzed using window-free estimators.

In both cases, we will fit for the cosmological parameters of the minimal ΛCDM model. These

are the Hubble constant H0, the physical dark matter density ωcdm, the primordial power spectrum

amplitude As and tilt ns. We also consider the derived parameters Ωm and σ8. The CMB tem-

perature T0 is kept fixed to the FIRAS value [77].6 The physical baryon fraction, ωb, is kept fixed

to the true value of the mocks in order to simulate the effect of the ωb prior from either Big Bang

Nucleosynthesis (BBN) [81, 82] or the CMB. Finally, the neutrino masses are set to zero, as in the

simulations. We will find that our pipeline successfully recovers the input cosmological parameters

from both types of mocks in this setup.

7.1 PT Challenge

We begin by considering the likelihood of the PT Challenge power spectrum and bispectrum multi-

poles. For comparison, we also present results obtained from the bispectrum monopole likelihood,

i.e. that excluding higher-order angular moments. The latter results are equivalent to those present

in Ref. [15]. The posteriors of cosmological, linear and quadratic bias parameters extracted from the

PT Challenge simulation data are displayed in Fig. 5, with the one-dimensional marginalized limits

6This parameter is not relevant for the LSS data. We require it here only to convert the measured

baryon-to-photon and dark-matter-to-photon ratios into ωb and ωcdm [145].
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Dataset ∆ωcdm/ωcdm ∆H0/H0 ∆As/As ∆ns/ns

P` +Q0 +B0 −0.004 ± 0.010 −0.0007 ± 0.0017 0.007 ± 0.019 0.0085 ± 0.0077

P` +Q0 +B` 0.0011 ± 0.0099 −0.0001 ± 0.0017 −0.017 ± 0.017 0.0064 ± 0.0077

Dataset ∆Ωm/Ωm ∆σ8/σ8 ∆b1/b1 ∆b2 ∆bG2

P` +Q0 +B0 −0.0021 ± 0.0068 0.0040 ± 0.0069 −0.0026 ± 0.0072 −0.111 ± 0.079 0.025 ± 0.024

P` +Q0 +B` 0.0011 ± 0.0067 −0.0056 ± 0.0063 0.0102 ± 0.0063 0.053 ± 0.058 0.043 ± 0.022

Table 3. One-dimensional marginalized constraints on cosmology and low-order bias parameters

extracted from the PT Challenge dataset. The top table shows directly sampled cosmological

parameters whilst the bottom shows derived parameters and biases. In each case, we give results

including both the bispectrum monopole and multipoles.

given in Tab. 3. Since the PT challenge is still on-going, the presented cosmological parameters are

normalized to their true values that we keep unknown to the reader. A similar logic holds for the

linear bias parameter, b1, whose ground truth value is taken from fits to the real-space one-loop

galaxy power spectrum and bispectrum datasets [76]. For the quadratic bias parameters, we instead

display ∆b2 = b2− btruth
2 , ∆bG2 = bG2 − btruth

G2 , where the ground truth values are adapted from [15].

Looking at Fig. 5 and Tab. 3, we see that our fitting pipeline successfully recovers the cosmolog-

ical and main nuisance parameters from the PT Challenge data. The second relevant observation

is that the addition of the bispectrum multipoles does not have a strong impact on the cosmo-

logical parameter recovery. One can notice some . 0.5σ shifts in the posterior means for some

cosmological parameters, and a modest shrinking of the errorbars. The largest effect is on σ8 (and

b1), whose posteriors narrow by . 10%. In contrast to cosmological parameters, the effect on the

quadratic bias parameters is more pronounced, with b2 and bG2 posteriors shrinking by 30% and

10%, respectively.

The best-fitting theory models for the bispectrum multipoles are shown in Fig. 1. Here, we

display the full bispectrum dataset as a function of the triangle index, as well as squeezed and

equilateral configurations as functions of relevant wavenumbers of the bin centers. As expected, we

find excellent agreement between theory and data for all multipoles considered.

7.2 Nseries

Let us now move to the Nseries mocks. Our results for this dataset are shown in Fig. 6 and in Tab. 4.

As before, we observe that our pipeline successfully recovers the input cosmological parameters used

in the simulation, thus validating the window-free estimators of §4. Once again, the bispectrum

multipoles have the strongest impact on the σ8 posteriors, which are ≈ 5% narrower than those

from the bispectrum monopole likelihood. In addition, the b2 and bG2 posteriors shrink by 20% and

5% respectively.

Overall, the improvements obtained found for the Nseries mocks are somewhat smaller than

the improvements seen in the PT Challenge case. We believe that this difference is caused by the

Gaussian tree-level approximation for the bispectrum likelihood used in the PT Challenge case. For

the Nseries dataset we use the full covariance extracted from mocks, which is more reliable than the

naive Gaussian approximation, and accounts for mode-coupling induced by non-linear clustering.

All in all, we conclude that our pipeline is capable of unbiased recovery of cosmological pa-

rameters from the actual data. We have demonstrated that the theory model works well on both

high-fidelity periodic box data, as well as on mocks with realistic survey geometry and observational
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Figure 5. Posteriors on cosmological and main bias parameters extracted from the power spectrum

and bispectrum of the PT Challenge simulation. All parameters are normalized to their true values

(or their proxy for bias coefficients). The the power spectrum data is the same in both analyses.

Blue contours correspond to the bispectrum monopole, whilst those in red result from the addition

of the bispectrum quadrupole and hexadecapole moments. We find only small shifts in cosmological

parameters, consistent with the errors, and a slight posterior shrinkage.

effects. Our tests on Nseries mocks additionally imply that our window-free estimator robustly re-

covers the true bispectrum of anisotropic galaxy clustering.

It is also important to estimate the importance of effects arising from our choice of Gaussian

priors, since these may shift the posteriors of a Bayesian analysis away from the true values [16,

55, 57].To this end we repeat our Nseries analysis, but using a covariance corresponding to the

BOSS cumulative volume 6 (h−1Gpc)3, with the datavector still given by a mean over 84 Nseries

realizations. This set-up simulates the situation where we analyze separately 84 (semi)-independent
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Dataset ωcdm H0 ln
(
1010As

)
ns

P` +Q0 +B0 0.1158 ± 0.0021 70.09 ± 0.21 3.103 ± 0.033 0.986 ± 0.014

P` +Q0 +B` 0.1153 ± 0.0020 70.09 ± 0.20 3.114 ± 0.032 0.986 ± 0.013

P` +Q0 +B`, VBOSS 0.1198+0.0092
−0.012 70.4+1.0

−1.2 2.99 ± 0.16 0.959 ± 0.067

Dataset Ωm σ8 b1 ∆b2 ∆bG2

P` +Q0 +B0 0.2825 ± 0.0032 0.838 ± 0.010 1.980 ± 0.024 −0.27 ± 0.11 −0.252 ± 0.050

P` +Q0 +B` 0.2815 ± 0.0031 0.8407 ± 0.0097 1.968 ± 0.023 −0.312 ± 0.091 −0.207 ± 0.045

P` +Q0 +B`, VBOSS 0.288+0.015
−0.018 0.801+0.043

−0.052 2.07 ± 0.12 −0.07+0.41
−0.47 −0.16 ± 0.22

Table 4. Marginalized constraints on cosmology and low-order bias parameters extracted from

the Nseries dataset. As in Tab. 3, we show sampled cosmological parameters in the first table and

derived parameters and low-order biases in the second. The first and second row shows results for

the 84 Nseries mocks with the single mock covariance divided by 84 to match the true cumulative

volume, whilst the third row gives results for the same mean data vector, but with the covariance

rescaled to match the BOSS volume VBOSS ≈ 6 h−3Gpc3, thus probing prior-volume effects. The

true cosmological parameter values are given by ωcdm = 0.11711, H0 = 70 km s−1Mpc−1, ns = 0.96,

ln(1010As) = 3.0657, Ωm = 0.286, and σ8 = 0.82.

realizations (with the BOSS covariance each), and average over our results instead of combining

them (changing the ratio of likelihood to prior relative to the above test). In what follows we will

call the covariance corresponding to the true cumulative simulation volume “true covariance,” and

the covaraince rescaled to match the BOSS volume as the “BOSS covariance.”

The outcome of this analysis is shown in Fig. 7 and Tab. 4. We see that the mean value of

σ8 from the analysis with the BOSS covariance is lower than that from the analysis with the true

covariance of 84 realizations (emulating a much larger survey). Since both likelihoods are identical

except for an overall multiplication of the covariance, we interpret the observed shifts as a result of

prior volume (marginalization) effects. The maximum-likelihood (but not maximum a posteriori)

value of σ8 remains the same in both analyses as it is not affected by the rescaling of the covariance

matrix. Let us denote the one-dimensional marginalized errorbar on σ8 from the BOSS analysis as

σBOSS. From the true-covariance results, we find that the best-fit is biased up by ≈ 2% with respect

to the true value of σ8, or by 0.4σBOSS. This may be interpreted as a true systematic error, although

it is small enough that we cannot robustly rule out the possibility that it is a statistical fluctuation.

The average mean value resulting from the BOSS covariance analysis is shifted by 0.4σBOSS away

from the actual input value and 0.8σBOSS from the best-fit (which nearly coincides with the mean

of the analysis with the true covariance). However, the actual metric we are interested in is the

shift of the average mean with respect to the true fiducial value, which is well below the errorbars.

We thus conclude that the prior volume effects are not significant for our analysis.

8 Analysis of the BOSS data

We now present parameter constraints from the BOSS DR12 dataset and estimate the information

content of the galaxy bispectrum multipoles, see table 2. The full constraint table including the

nuisance parameters is presented in Appendix B. We begin by considering the actual measurements

from the data, obtained using the unwindowed estimators of §4. In Fig. 3 we present the window-free

galaxy bispectrum multipoles extracted from the NGCz3 data chunk. Our first relevant observation
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Figure 6. As Fig. 5, but for the Nseries dataset. We give one-dimensional posteriors in Tab. 4.

is that only the monopole moment carries a high signal, i.e. it is detected at ≈ 20σ . The quadrupole

is detected at a relatively lower significance, ≈ 5σ, whilst the hexadecapole contribution is not

detected at all.

Although the detection significance of the large-scale bispectrum multipoles is lower than that

of the monopole, it does not mean that they are devoid of cosmological information. Indeed, what

is relevant for actual cosmological constraints is not the signal-to-noise per se, but the amplitude

of Fisher derivatives. In other words, the bispectrum multipoles may still be useful, e.g. in the

breaking of certain parameter degeneracies. To check this, we proceed now to the actual MCMC

analysis of our likelihood containing the bispectrum multipole moments. In this vein, we will

compare the parameter constraints from our likelihood including the bispectrum multipoles to that

containing only the bispectrum monopole.

We begin with the Planck -independent ΛCDM analysis, i.e. that with free tilt ns. Our results

– 23 –



0.8 0.4 0.0 0.4
b 2

68

70

72

74

H
0

2.5

2.75

3

3.25

3.5

ln
10

10
A s

0.75

0.9

1.05

1.2

n s

0.24

0.27

0.3

0.33

m

0.64

0.72

0.8

0.88

0.96

8

1.8

2

2.2

2.4

b 1

1.6

0.8

0

0.8

1.6

b 2

0.10 0.12 0.14 0.16
cdm

0.8

0.4

0

0.4

b
2

68 70 72 74
H0

2.502.753.003.253.50
ln1010As

0.75 0.90 1.05 1.20
ns

0.24 0.27 0.30 0.33
m

0.640.720.800.880.96
8

1.8 2.0 2.2 2.4
b1

1.6 0.8 0.0 0.8 1.6
b2

Nseries, V=6 h 3Gpc3

Nseries, V=235 h 3Gpc3

Figure 7. As Fig. 6, but comparing constraints on Nseries power constraints between analyses using

a covariance matching the entire Nseries volume (≈ 235 h−3Gpc3) and that of BOSS (≈ 6 h−3Gpc3).

Whilst there is some evidence prior volume effects (such as in σ8), the corresponding shifts are

subdominant compared to the errorbars.

are displayed in Fig 2 and Tab. 1, showing results for the cosmological parameters only. We find

that the bispectrum multipoles narrow the posteriors only marginally, by . 10%, with the largest

effect on ns, whose errorbar has shrunk by 10%. We also find a (broadly insignificant) ≈ 0.2σ

upward shift in the Ωm − σ8 plane.

Imposing the Planck prior on ns does not qualitatively change the situation: we observe

marginal improvements on all cosmological parameters in addition to a small upward shift of the

Ωm − σ8 posterior, see Fig. 2. To investigate the origin of this shift, we have repeated our analysis

with the same data, but with a covariance matrix in which we have artificially removed the corre-

lation between P` and B` data sets. In this case, we find that the mean values do not noticeably
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Figure 8. As Fig. 2, but for an analysis with ns fixed to the Planck best-fit value.

shift with respect to the P` + Q0+BAO+B0 analysis. In particular, we find Ωm = 0.3156+0.0094
−0.0099,

H0 = 68.21+0.85
−0.86 km s−1Mpc−1, σ8 = 0.7262+0.032

−0.036 (cf. Tab. 1). Further investigation reveals that

certain elements of the P` −B` correlation matrix are enhanced relative to the linear theory Gaus-

sian approximation, which may be a result of the non-trivial survey window function geometry, or

a limitation of the (approximate) Patchy simulations. Our study suggests that it is this correlation

that produces the apparent ∼ 0.5σ shift in the Ωm − σ8 plane. We leave further investigation of

this effect for future work.

We note that the addition of the bispectrum multipoles leads to a significantly more Gaussian

posterior for σ8: we find σ8 = 0.736± 0.033. In addition, our result is now in greater harmony with

the Planck 2018 ΛCDM constraint σ8 = 0.811 ± 0.006 [77]. We close by noting that our final σ8

result is nominally the strongest of all previously reported full-shape measurements based on the

EFTofLSS.
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9 Discussion and Conclusions

In this work we have performed a cosmological analysis of the BOSS galaxy power spectrum and

bispectrum, that for the first time self-consistently includes the large-scale (k < 0.08 hMpc−1)

bispectrum quadrupole and hexadecapole. The BOSS bispectrum moments are extracted using a

novel window-free estimator, derived within a maximum-likelihood formalism. This allows us to

reconstruct the underlying anisotropic bispectrum (i.e. that unconvolved with the survey window

function), and significantly simplifies consequent data analyses, since our measurements can be

directly compared with theory.

Our pipeline has been validated using two sets of mocks, which have established that the

method’s systematic errors are significantly below the statistical ones. In particular, we have

analyzed the multipole moments of the PT Challenge simulation suite, which covers a gigantic

volume of 566 h−3Gpc3. We obtained an excellent fit of theory and simulation, and were able

to recover unbiased true cosmological parameters in all our tests. This implies that our pipeline

matches the precision requirements of future surveys such as DESI [146] and Euclid [147–149].

Assuming the minimal ΛCDM model, we have found that the inclusion of the higher galaxy

bispectrum multipoles narrow the constraints only moderately (with typical improvements for the

one-dimensional posterior distributions at the level of (5− 10)%). The main reason for this is that

the higher bispectrum multipoles contain much less signal and much larger noise than the large-scale

power spectrum and bispectrum monopole. This is consistent with previous work [26], which showed

that the addition of the large-scale BOSS bispectrum quadrupole data only improved the constraint

on Ωm by ∼ 10%. Nevertheless, taking into account the information in the bispectrum monopole as

well, these results imply that the total improvement from the redshift-space bispectrum compared

the power spectrum alone can be significant, and as large as ∼ 20%. It is also worth commenting

on Ref. [25], which found some noticeable improvement on fσ8(z) from the bispectrum multipoles.

Our analysis is principally different from [25] in that we analyze the bispectrum multipoles in

conjunction with the power spectrum and BAO data. Our results suggest that for this type of

analysis the fσ8(z) constrains are largely dominated by the power spectrum likelihood, and the

impact of the bispectrum multipoles is somewhat modest. The information gain may be bigger

if one pushes the analysis to smaller scales, which would require either a one-loop perturbative

model [26, 76] or a simulation-based emulator [13, 33]. We plan to explore the first option in the

future.

Another important caveat is that our analysis has been performed only for the minimal ΛCDM

model. One might hope that the relative improvement from the bispectrum multipoles is larger for

extended cosmological models (as observed for the power spectrum multipoles, e.g., [57, 74, 150,

151], see also [27] for the bispectrum quadrupole in the context of interacting dark energy models).

In particular, the bispectrum is a sensitive probe of early universe physics [28, 29, 32, 34, 60, 61, 152,

153] and hypothetical violations of the equivalence principle [43] that are motivated, for example,

by Lorentz-violating dark matter models [154, 155], long-range forces in the dark sector [156] or

non-trivial dark energy theories [44, 45]. In addition, it would be interesting to understand if

the bispectrum multipoles can sharpen full-shape constraints on other non-minimal dark matter

models [157–162], additional long-range interactions in the dark sector [156] or some non-minimal

dark energy theories [44, 45]. We leave the exploration of these interesting possibilities to future

work.
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A Gaussian Covariance for Bispectrum Multipoles

In this section we present analytic formulae for the Gaussian tree-level bispectrum multipole co-

variance in the narrow bin approximation, ∆k � k [17]. As in (3.4), the ideal estimator for the

bispectrum multipole ` is given by

B̂`(k1, k2, k3) =
(2`+ 1)

N123
T

3∏

i=1

∫

k1k2k3

(2π)3δ
(3)
D (k123)δg(k1)δg(k2)δg(k3)L`(ẑ · k̂3) , (A.1)

where N123
T = 8π2k1k2k3∆k3V 2/(2π)6 (in the thin-bin limit), V = (2π)3k−3

f , and kf is the funda-

mental wavenumber. At linear order, the galaxy density can be written δg(k) = δ(k)(1 + βµ2) +

ε [163], where β ≡ f/b1 and ε is the stochastic density component, whose power spectrum we

assume to be equal to n̄−1.

Using Eq. (A.1), we obtain the bispectrum covariance between triangle configurations T and

T ′,

〈B̂`(k1, k2, k3)B̂`′(k
′
1, k
′
2, k
′
3)〉 = C``

′

TT ′ = (2`+ 1)(2`′ + 1)
(2π)3π

k1k2k3∆k3V
δTT ′

×

(
F``′(k1, k2, k3)

3∏

i=1

P11(ki) +
1

n̄

j=3∑

i<j,i=1

P11(ki)P11(kj)G``′(ki, kj)

+
1

n̄2

3∑

n=1

P11(kn)H``′(kn) + J``′
1

n̄3

)
,

(A.2)

where the multipole-dependent form factors for the purely continuous part are given by (defining

writing the µ1,µ2 angles in terms of µ ≡ µ3 and φ)

F general
``′ =

∫ 2π

0

dφ

2π

∫ 1

0

dµ (1 + βµ2)2(1 + βµ1(µ, φ)2)2(1 + βµ2(µ, φ)2)2L`(µ)L`′(µ) ,

F isosceles I
``′ =2F general

``′ ,

F isosceles II
``′ =

∫ 2π

0

dφ

2π

∫ 1

0

dµ (1 + βµ2)2(1 + βµ1(µ, φ)2)2(1 + βµ2(µ, φ)2)2

×L`(µ)(L`′(µ) + L`′(µ1)) ,

F equilateral
``′ =

∫ 2π

0

dφ

2π

∫ 1

0

dµ (1 + βµ2)2(1 + βµ1(µ, φ)2)2(1 + βµ2(µ, φ)2)2

×2L`(µ)(L`′(µ) + L`′(µ1) + L`′(µ2)) ,

(A.3)
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the continuous × stochastic terms are (assuming i = 1, 2, j = 2, 3, j > i):

G general
``′ =

∫ 2π

0

dφ

2π

∫ 1

0

dµ (1 + βµi(µ, φ)2)2(1 + βµj(µ, φ)2)2L`(µ)L`′(µ) ,

Gisosceles I
``′ = 2G general

``′ ,

Gisosceles II
``′ =

∫ 2π

0

dφ

2π

∫ 1

0

dµ (1 + βµi(µ, φ)2)2(1 + βµj(µ, φ)2)2L`(µ)(L`′(µ) + L`′(µ1)) ,

Gequilateral
``′ = 2

∫ 2π

0

dφ

2π

∫ 1

0

dµ (1 + βµi(µ, φ)2)2(1 + βµj(µ, φ)2)2L`(µ)(L`′(µ) + L`′(µ1) + L`′(µ2)) ,

(A.4)

and (n = 1, 2, 3)

H general
``′ =

∫ 2π

0

dφ

2π

∫ 1

0

dµ (1 + βµn(µ, φ)2)2L`(µ)L`′(µ) ,

H isosceles I
``′ = 2H general

``′ ,

H isosceles II
``′ =

∫ 2π

0

dφ

2π

∫ 1

0

dµ (1 + βµn(µ, φ)2)2L`(µ)(L`′(µ) + L`′(µ1) ,

Hequilateral
``′ = 2

∫ 2π

0

dφ

2π

∫ 1

0

dµ (1 + βµn(µ, φ)2)2L`(µ)(L`′(µ) + L`′(µ1) + L`′(µ2)) ,

(A.5)

whilst the purely stochastic contributions are

J general
``′ =

∫ 2π

0

dφ

2π

∫ 1

0

dµ L`(µ)L`′(µ) ∝ δ``′ ,

J isosceles I
``′ = 2J general

``′ ,

J isosceles II
``′ =

∫ 2π

0

dφ

2π

∫ 1

0

dµ L`(µ)(L`′(µ) + L`′(µ1)) ,

Jequilateral
``′ = 2

∫ 2π

0

dφ

2π

∫ 1

0

dµ L`(µ)(L`′(µ) + L`′(µ1) + L`′(µ2)) ,

(A.6)

where we recall that we have chosen k1 ≤ k2 ≤ k3 without loss of generality and defined

general: k1 < k2 < k3 ,

equilateral: k1 = k2 = k3 ,

isosceles I: k1 = k2 < k3 ,

isosceles II: k1 < k2 = k3 .

(A.7)

In the absence of the AP distortions, the integrals in the form factors F,G,H, J can be evalu-

ated analytically. Since the AP effect is typically quite weak, O(1%), we ignore it when evaluating

the covariance matrix. Finally, we note that we use the Gaussian covariance for bispectrum mul-

tipoles only in the analysis of the PT challenge data. For the Nseries mocks and the BOSS data

we use the covariance estimated from the Multi-Dark Patchy mocks, allowing us to incorporate the

effects of window functions and non-linear gravity.

B Full constraints and parameter tables

In Tabs. 5 & 6, we display one-dimensional marginalized constraints on cosmological and nuisance

parameters for the ΛCDM fits to the BOSS data with, respectively, free ns and ns fixed to the

Planck best-fit value. In the left and right panels we show results before and after adding the

bispectrum multipoles.
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P` +Q0 +BAO+B0 P` +Q0 +BAO+B`

Parameter best-fit mean±σ 95% lower 95% upper best-fit mean±σ 95% lower 95% upper

ωcdm 0.1348 0.1398+0.01
−0.013 0.1168 0.1649 0.1405 0.1444+0.01

−0.013 0.1215 0.1684

h 0.6903 0.6928+0.011
−0.012 0.67 0.7159 0.6923 0.6919+0.01

−0.011 0.6704 0.7139

ln
(
1010As

)
2.69 2.598+0.13

−0.14 2.335 2.868 2.626 2.602+0.12
−0.13 2.354 2.858

ns 0.8915 0.8724+0.069
−0.065 0.7371 1.007 0.8778 0.869+0.062

−0.061 0.7471 0.9924

b
(1)
1 2.317 2.419+0.13

−0.13 2.163 2.682 2.39 2.418+0.12
−0.13 2.166 2.667

b
(1)
2 0.02127 0.4025+0.71

−0.78 −1.08 1.894 0.1334 0.3783+0.69
−0.76 −1.046 1.839

b
(1)
G2 −0.393 −0.3541+0.37

−0.36 −1.09 0.3627 −0.4784−0.3051+0.35
−0.35 −1.013 0.4046

b
(2)
1 2.478 2.549+0.13

−0.13 2.289 2.815 2.525 2.548+0.13
−0.13 2.294 2.806

b
(2)
2 0.2456 0.3383+0.75

−0.81 −1.227 1.893 0.3543 0.4051+0.75
−0.8 −1.144 1.968

b
(2)
G2 −0.2815 −0.287+0.4

−0.41 −1.108 0.5181 −0.3399 −0.2646+0.4
−0.4 −1.066 0.5351

b
(3)
1 2.17 2.276+0.12

−0.12 2.039 2.519 2.222 2.247+0.11
−0.12 2.016 2.48

b
(3)
2 0.05868 0.2079+0.59

−0.64 −1.026 1.445 0.495 0.1881+0.57
−0.64 −1.012 1.417

b
(3)
G2 −0.3944−0.4344+0.32

−0.32 −1.072 0.2184 −0.2487−0.3771+0.32
−0.32 −1.005 0.2594

b
(4)
1 2.247 2.312+0.12

−0.13 2.064 2.567 2.254 2.291+0.12
−0.12 2.049 2.536

b
(4)
2 0.4349 0.01968+0.65

−0.7 −1.305 1.399 −0.125 0.1048+0.64
−0.71 −1.226 1.457

b
(4)
G2 0.02486−0.3231+0.37

−0.37 −1.06 0.415 −0.2762−0.3677+0.36
−0.36 −1.092 0.3556

Ωm 0.3319 0.3388+0.016
−0.018 0.3039 0.3736 0.3412 0.3493+0.016

−0.018 0.3159 0.3832

H0 68.96 69.28+1.1
−1.2 67 71.59 69.23 69.19+1

−1.1 67.04 71.39

σ8 0.7137 0.6909+0.036
−0.04 0.6158 0.7686 0.7055 0.7044+0.035

−0.04 0.6303 0.7797

Table 5. Full parameter constraints from the ΛCDM analysis of BOSS DR12 data using the

power spectrum + bispectrum monopole datasets (P`+Q0+BAO + B0, left) and including the

bispectrum multipoles (P`+Q0+BAO + B`, right). We give the best-fit values, the mean, 68%,

and 95% confidence level results in each case, and show the derived parameters in the bottom rows.

The superscripts on bias parameters indicate the sample, in the order NGC z3, SGC z3, NGC z1,

SGC z1. Corresponding results with a Planck prior on ns are shown in Tab. 6.
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[140] S. A. Rodŕıguez-Torres et al., The clustering of galaxies in the SDSS-III Baryon Oscillation

Spectroscopic Survey: modelling the clustering and halo occupation distribution of BOSS

CMASS galaxies in the Final Data Release, Mon. Not. Roy. Astron. Soc. 460 (2016) 1173

[1509.06404].

[141] A. Chudaykin, M. M. Ivanov, O. H. E. Philcox and M. Simonović, Nonlinear perturbation
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