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Due to the possible damage caused by unforeseen failures of safety-critical systems, it is crucial to maintain these
systems appropriately to ensure high reliability and availability. If numerous units of a system are installed in
various areas and permanent access is not guaranteed, remote, data-driven condition monitoring methods can be
used to schedule maintenance actions and to prevent unexpected failures. Thereby, failure precursors identified by
unsupervised anomaly detection algorithms can be used to detect system malfunctions or to assess the systems
condition. The anomaly detection process presented in this paper proposes a novel integrative combination of noise
extraction using wavelet transforms and unsupervised algorithms to improve the detectability of a broad variety
of anomalies for safety-critical electronics. Here, the performance of this modular process is demonstrated by
identifying outlying data samples in datasets generated by the CERN Radiation Monitoring Electronics (CROME)
system.
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1. Introduction and Motivation

In order for systems to fulfill safety-critical func-
tions, it is crucial to keep their failure rates at
an extremely low level through appropriate main-
tenance measures. Especially for occupational
safety systems, e.g., radiation protection, unfore-
seen system failures could endanger people and
the environment. Planning maintenance actions
based on failure predictions helps to reduce unex-
pected failures and to increase system availability
and reliability. If operational data is available,
data-driven methods can be used to monitor the
system’s condition and to detect malfunctions.
This requires the identification of characteristics

related to the system’s degradation and the de-
tection of failure precursors. Data-driven methods
are suitable for remote monitoring of the sys-
tem’s condition and can be executed automatically
based on scheduled routines. Further, no interven-
tion in system operation is required and methods
are scalable and thus applicable to numerous de-
vices in separated areas, if connected to a data
infrastructure.
In this paper, an anomaly detection process is

presented enabling remote, data-driven condition
monitoring based on detected failure precursors
and system malfunctions. The proposed process
combines noise extraction using wavelet trans-
forms and unsupervised anomaly detection al-
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gorithms to increase the detectability of anoma-
lous system behavior of safety-critical electronics.
This allows to include noise-related features in
the analysis and is particularly appropriate when
neither typical failure precursors nor the type of
anomalies of interest are known. In this case, the
process can be used to detect rare and deviant data
events based on a calculated anomaly score.
The system used as demonstrator in this pa-

per is the CERN Radiation Monitoring Electron-
ics (CROME). It is an active system for reli-
able ambient dose rate monitoring used by the
CERN radiation protection service to protect peo-
ple and the environment from unjustified expo-
sure to ionizing radiation. It is based on a re-
configurable System-on-Chip (SoC) architecture
with an integrated Field Programmable Gate Ar-
ray (FPGA) to process measurement calculations
in real-time (Boukabache et al. (2017)). Many de-
vices are located in restricted, high-radiation areas
to which engineers do not have permanent access.
All CROME devices are connected to a cloud-
based data infrastructure with long-term storage,
permanent data access and live data injection from
all devices.
In the context of the proposed data processing

for anomaly detection, useful features to distin-
guish between anomalous and normal observa-
tions are developed to improve the performance
and reliability of anomaly detection algorithms.
Here, it is assumed that quantifying the noise
extracted from the raw signals using wavelet trans-
forms will make anomalous noise in the sig-
nals detectable to the algorithms. Due to missing
guidelines in the literature on how to configure
the wavelet transform, a signal classification pro-
cess is developed to select the most appropriate
configuration of the wavelet transform for a noise
extraction use case.

2. Anomaly Detection for Predictive

Maintenance

Generally, anomaly detection follows the princi-
ple of finding patterns or instances in datasets
that are different from the rest of the dataset and
do not conform to the expected normal behavior
(Pecht and Kang (2018)). Hence, anomalies are

data points which are sufficiently far away from
normal patterns and can be caused by errors in
the data acquisition or new, previously unknown,
processes indicating changes in the system behav-
ior or malfunctions. Data-driven predictive main-
tenance requires the monitoring of failure pre-
cursors, e.g., by anomaly detection algorithms,
to schedule appropriate maintenance actions in
order to achieve maximum system availability and
reliability (Niu (2017)).
CROME datasets are discrete time-series gener-

ated with a device-specific sampling frequency. At
the beginning of the anomaly detection process,
datasets are split into samples of equal duration,
more precisely one hour. This allows to account
for different sampling rates and hence the calcula-
tion of comparable anomaly scores. Each sample
is assigned a unique identifier containing all nec-
essary information related to the corresponding
device and time period. Subsequently, statistical
features are calculated for each sample describ-
ing the data distribution of the raw signals of
all measurement variables. The selection of these
features is listed in Table 1 and is based on time-
domain features that are commonly used for sig-
nal classification, e.g., in the field of brainwave
signals (see, e.g., EL Menshawy et al. (2015)
or Djordjevic et al. (2009)), or to detect failure
precursors in data-driven Prognostics and Health
Management (PHM) approaches (see Tsui et al.
(2015)). Additionally, since anomalies related to
noise in measurement signals are of special in-
terest, certain statistical measures calculated for
extracted noise signals are included in the feature
list (see Table 1). Here, wavelet transform is used
to extract noise from raw signals, similar to the
noise extraction explained in section 3.
The first part of the anomaly detection process,

data processing, handles the data import from the
database and subdivides the data into hourly sam-
ples. Moreover, data cleaning and the calculation
of statistical features, as listed in Table 1, is per-
formed. As a result, two datasets are generated:
one dataset contains the raw measurement data
of 21 measurement variables whereas the other
dataset contains all calculated features (see dataset
schematic in Figure 1). Since the entire feature set
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Table 1. Statistical features for anomaly detection
calculated for raw signals and extracted noise signals.
Std/Mean is the ratio of standard deviation and mean.

Feature Raw Signal Noise signal

Variance X X
Standard Deviation X
Mean X X
Std/Mean X
Median X X
Root Mean Square (RMS) X X
Number of Zero Crossings X X
Shannon Entropy X X
Line Length X X
Skewness X X
Kurtosis X X
Signal-to-Noise Ratio (SNR) X

is calculated for each measurement variable, the
feature dataset consists of a total of 441 features.
Subsequent to data processing, two anomaly

detection algorithms are employed to identify out-
lying data samples. Since neither the type of
anomalies nor a definition of failure precursors is
known, only unsupervised algorithms are applica-
ble. This also means that no pre-existing knowl-
edge can be used to link detected anomalies to
failure precursors. Therefore, manual analysis of
detected samples is required to gain information
on anomalous system behavior and to identify
possible failure precursors. Furthermore, CROME
is a newly installed system with no known critical
failures as of now, which is why anomalies are
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Fig. 1. Schematic of datasets resulting from the data
processing routine.

expected to be rare in datasets.
Firstly, the Isolation Forest (iForest) algorithm,

introduced by Liu et al. (2008), is applied only
to the feature dataset (Figure 1). Since reducing
the number of input dimensions can help to im-
prove the performance of the iForest algorithm,
the input dataset is reduced to a subspace of 50
features based on the kurtosis of each feature, as
shown in Liu et al. (2008). In contrast to most
of the common anomaly detection algorithms,
this algorithm does not construct a profile of the
healthy system state but identifies anomalies as
rare and distinctly different. Anomalies are thus
more likely to be isolated in binary isolation trees.
It does therefore not require the definition of the
system’s healthy state and is applicable to high-
dimensional datasets (Liu et al. (2008)), making
this algorithm particularly suitable for this use
case. The configuration of the iForest algorithm
requires only the selection of the sub-sampling
size n and the number of trees t. The configuration
used in this study is shown in Table 2. Liu et al.
(2008) and Ahmed et al. (2019) found that the
number of trees can usually be set to t = 100.
Furthermore, Liu et al. (2008) state that n = 256

is sufficient for a wide range of anomaly detection
applications.

Table 2. Configuration of the Isolation Forest algo-
rithm.

Parameter Value

Number of trees t 100
Sub-sampling size n 256

Additionally, a Long Short-Term Memory Au-
toencoder (LSTM-AE) model is applied to the
dataset containing raw measurements to iden-
tify time-dependent anomalies, e.g., unusual cor-
relations or inconsistencies between variables.
LSTM-AEs are commonly used for anomaly de-
tection and to learn temporal-dependencies in
time-series data (see, e.g., Said Elsayed et al.
(2020) or Sharma et al. (2020)). Autoencoders
represent the input data on a low-dimensional
bottleneck layer and reconstruct it to the origi-
nal dimensionality (Pawar and Attar (2020)). If
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used for anomaly detection, the reconstruction
error between input and output serves as anomaly
score. The configuration of the autoencoder model
is mainly based on Sharma et al. (2020). The
selected hyperparameters are shown in Table 3.
The hyperbolic tangent function is selected as
activation function as it is the preferable choice
according to Pawar and Attar (2020). Two hidden
layers for each encoder and decoder result in four
hidden layers with 16, 4, 4 and 16 neurons. The
input dataset with 21 measurement variables is
therefore projected to a four-dimensional hidden
representation.

Table 3. Configuration of the Long Short-Term
Memory Autoencoder (LSTM-AE).

Parameter Value

Hidden layers 2
Hidden layer size 16, 4
Activation function tanh
Regularization L2
Learning rate 0.0001
Loss function Mean Squared Error
Optimizer Adam
Batch size 256
Validation split 0.1

The entire anomaly detection process consists
of modular elements that allow the routine to be
adapted to case-specific requirements. All rou-
tines are executed on distributed cluster com-
puting resources with GPU support and are im-
plemented in the high-level programming lan-
guage Python. The Python packages mainly used
for anomaly detection are scikit-learn (Pedregosa
et al. (2011)) for the iForest algorithm and tensor-
flow (Abadi et al. (2016)) for LSTM-AE models.

3. Configuration of Wavelet Transforms

for Noise Extraction

Wavelet transform is used in the course of data
processing for anomaly detection to extract noise
signals from raw signals (as shown in Boukabache
et al. (2013)), allowing the quantification and eval-
uation of possible noise in the signals by calculat-
ing statistical measures for the extracted signals.
Signals generated by CROME devices are non-

stationary which is why wavelet transform is se-
lected as the most suitable time-frequency trans-
form promising high resolution in both time and
frequency domain, as found by Al-Qazzaz et al.
(2015). More specifically, Multi-Resolution Anal-
ysis Wavelet Transform (MRA-WT), first intro-
duced by Mallat (1989), which decomposes a sig-
nal into m decomposition levels by applying the
wavelet transform in a hierarchical routine with
approximation coefficients cAi and detail coeffi-
cients cDi as output, i = 1, ...,m, is used.Wavelet
decomposition is a common method to separate
noise from signals by modifying the output coeffi-
cients (Al-Qazzaz et al. (2015)). To obtain correct
representations of the extracted noise signals, it is
crucial to define the best combination of mother
wavelet and level of decomposition for this use
case (Al-Qazzaz et al. (2015)). However, there
are currently no clear guidelines in the literature
for selecting the most appropriate configuration
for wavelet transforms. To overcome this issue,
a novel signal classification process is introduced
to make this selection based on the performance
and the feature importance of a classification al-
gorithm. Similarly to the method proposed by Al-
Qazzaz et al. (2015), this process also uses wavelet
transform for noise extraction, but evaluates the
extracted noise signal instead of comparing the
denoised signal to the raw signal. In general,
the proposed approach is based on the following
idea: take an input dataset with signal samples
generated by CROME devices and modify some
of these signals by adding a synthetically gener-
ated noise signal. Then, extract the noise signal
for each sample by using the wavelet transform
and calculate statistical measures describing these
noise signals (similar to the measures shown in
Table 1). Finally, train a Gradient Boosted Deci-
sion Trees (GBDT) classifier on this binary signal
classification task using the calculated measures
to predict whether the synthetic noise signal is
present in a sample or not. Using the model per-
formance to select the best configuration assumes
that the noise signal extracted by the wavelet
transform is more suitable for noise quantification
if the model precision is higher and the feature
importance more balanced. Figure 2 shows the
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process schematics.
In the following, the signal modification and the

calculation of statistical measures quantifying the
extracted noise signals (steps 4 and 5 in Figure 2)
will be explained in more detail. As stated above,
the proposed method relies on the detection of
synthetic noise signals. During step 4, the signal
modification, a synthetically generated noise sig-
nal is added to a proportion of the signal samples.
More precisely, a sine wave signal with a certain
frequency is generated and an additional random
value drawn from a normal distribution with μ =

0 is added to each value of the sine wave to create
random deviations and to increase variability of
the synthetic noise signal. It is important to say
that this signal is added only to randomly selected
parts of a sample to simulate spontaneously oc-
curring noise. Moreover, both the frequency and
amplitude of the noise signal are randomly drawn
from corresponding lists of allowed values to gen-
erate a variety of synthetic noise signals in both
training and testing dataset. This is expected to
reduce overfitting of the classification algorithm
and to ensure that the model quantifies the noise
in a signal, rather than being trained on a certain
unique signal characteristic arising from the syn-
thetic noise signal.
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Fig. 2. Schematic of the proposed classification pro-
cess for the selection of the best wavelet configuration
for noise extraction.

The classification algorithm, a GBDT algo-
rithm, is then trained on statistical measures calcu-
lated for the noise signals extracted by MRA-WT.
Precisely, the raw signal is decomposed in sets
of detail and approximation coefficients at each
level of decomposition. The noise signal is then
obtained by recomposing the detail coefficients
only. Hence, no specific thresholding technique
to modify the coefficients is applied since nei-
ther the frequency bands nor other properties of
the raw signals are known. Instead, since noise
is separable from the information of the signal
with respect to frequency, approximation and de-
tail coefficients are considered as outputs of low-
pass and highpass filters respectively, as stated in
Ben Abbes et al. (2018).
GBDT algorithms have the advantage of pro-

viding possibilities to analyze the feature impor-
tance that describes the impact of features on the
model decision. Therefore, the best suitable con-
figuration of the wavelet transform is selected con-
sidering the model performance, more precisely
the model precision, and the balance of the feature
importance. Figure 3 shows the resulting model
precision for various configurations of the wavelet
transform obtained by executing the proposed pro-
cess (Figure 2) for measurement data of several
CROME devices. Although the combination of
db1 as mother wavelet and one level of decompo-
sition (marked with solid line in Figure 3) leads
to the highest model precision, db2 with 2 lev-
els of decomposition (marked with dashed line
in Figure 3) is selected as the best configuration
as this comes with the best combination of high
model precision and balanced feature importance
(see Figure 4).

4. Demonstration of Anomaly Detection

in Operational Data

To demonstrate the anomaly detection capabilities
of the proposed process, operational data from
CROME devices is processed and injected to the
algorithms with the configurations shown in sec-
tion 2.
The iForest algorithm does not require a train-

ing dataset and is directly applied to the feature
dataset resulting in an anomaly score for each
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Fig. 3. Model precision for various configurations of
the MRA-WT using measurement data from CROME
devices. Two configurations marked in solid and dashed
line.

Fig. 4. Comparison of feature importances for two
configurations of MRA-WT.

hourly sample according to the respective path
length in the ensemble of isolation trees. Here,
a shorter path length means that the sample was
sorted out earlier and is thus more likely to be an
outlying sample (Liu et al. (2008)).
The LSTM-AE, however, needs to be trained

with data from healthy devices. During the model
training, the networks weights and biases are con-
secutively optimized to minimize the reconstruc-
tion error for training samples. As there is cur-

rently no specific data from healthy devices, the
autoencoder model is initially trained on pseudo-
healthy data that is selected based on the results of
the iForest algorithm. More precisely, the top five
percent of samples with the lowest anomaly score
calculated by the iForest algorithm are consid-
ered as healthy and used to train the autoencoder
model. It should be mentioned that this is only
the proposed solution for initial anomaly detection
and is not recommended for operational applica-
tions. Analysis of the model training shows that
the learning curve converges well after 15 epochs.
Consequently, the number of training epochs will
be adjusted to 10. This serves as a stopping cri-
terion to prevent overfitting. The remaining 95
percent of the samples are used as testing set and
an anomaly score is calculated for each sample
based on the corresponding reconstruction error.
In addition, due to the lack of healthy data, no
explicit threshold can be set to determine which
samples are truly anomalous. Hence, the samples
are ranked by anomaly score in descending order
and the top 20 samples are analyzed in detail.
It has been found that the iForest algorithm is

able to detect samples with rare characteristics
based on the calculated statistical features. Sam-
ples with high anomaly score are often related
to implausible measurement values (e.g., nega-
tive dose rates), spikes in signals (see Sample
1 in Figure 5) or other unusual behaviors. The
detected characteristics are in many cases related
to extraordinary values of the statistical features,
e.g., high kurtosis values for spikes in signals or
high numbers of zero crossings for signals with
negative dose rates. It should be noted that the
calculated anomaly scores are generally relatively
close to the value 0.5 which means, according
to the definitions given in Liu et al. (2008), that
no sample in the dataset is clearly considered as
anomalous or normal by the iForest algorithm.
Compared to the results of the iForest algo-

rithm, samples detected by the LSTM-AE model
are rather related to correlations of variables or
unusual deviations of signals. Thus, it can be as-
sumed that the model is able to learn temporal
dependencies in the input dataset. This leads to
higher reconstruction errors if, e.g., the correlation
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between two variables is not as expected (see
sample 3 in Figure 5: direct correlation between
temperature and humidity, most samples show
inverse correlation). Generally, the calculated re-
construction errors are relatively low and there is
no sample with extraordinary high reconstruction
error.

Fig. 5. Overview of detected, potentially anomalous,
samples. Sample 1 (upper plot) shows an unusual spike
in the dose rate measurement. Sample 2 shows negative
dose rate measurements (physically incorrect). Temper-
ature and Humidity have a direct correlation in data
from Sample 3 (two lower plots, most samples show
inverse correlation). All samples have a consistent du-
ration of one hour.

Despite promising results and the demonstrated
anomaly detection capabilities of the two algo-

rithms, it needs to be verified by system ex-
perts whether the samples detected by iForest or
LSTM-AE show actual anomalous system behav-
ior or if they are rare and different but compliant
with the expected behavior. One way to integrate
expert knowledge in the process by analyzing
samples manually could be a feedback loop, as
shown in Figure 6. Samples classified as normal
by a system expert can thus be used to retrain the
model, while true anomalies can be used to further
optimize the system or plan maintenance actions.

Database

Training

Data

Model Training
e.g. LSTM-AE

Operational
Anomaly Detection

Manual Analysis

NormalAnomaly

Maintenance?

Retrain Model

Fig. 6. Proposed feedback loop to integrate system
knowledge in the anomaly detection process.

5. Discussion and Conclusion

As demonstrated for the use case of the safety-
critical radiation monitoring electronics CROME,
it has been shown that the proposed combination
of unsupervised anomaly detection algorithms and
wavelet-based noise extraction is able to iden-
tify data samples with a variety of characteristics
that possibly represent anomalous behavior and/or
failure precursors. The presented routine allows to
include noise-related features in the analysis and
is particularly appropriate when neither typical
failure precursors nor the type of anomalies of
interest are known. In this case, the process can
be used to detect rare and deviant data events
and is applicable to a variety of use cases due
to its adaptability. In general, it is highly recom-
mended to include knowledge from end-of-life



1851Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022)

tests or knowledge about the physical behavior of
the system before using the results of the anomaly
detection algorithms to plan maintenance actions.
Both data-driven maintenance strategies and

wavelet transforms for noise extraction are often
applied in a variety of research fields, although
separately. Admittedly, anomaly detection meth-
ods are commonly used for condition monitor-
ing but rarely for safety-critical electronics espe-
cially in combination with wavelet-based noise
extraction. Moreover, features used in this pa-
per describing statistical signal characteristics are
widely used for signal characterization and spec-
ification, e.g., in the field of brain wave signals.
Hence, the presented combination of these meth-
ods shows a novel approach to identify anoma-
lies related to noise in signals. Additionally, the
proposed routine for selecting the best configura-
tion of the wavelet transform proved to be useful.
However, it still needs to be verified whether this
routine is beneficial for other noise extraction use
cases.
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