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A minimal extension of the Standard Model (SM) featuring two scalar leptoquarks, an SU(2)
doublet with hypercharge 1/6 and a singlet with hypercharge 1/3, is proposed as an economical
benchmark model for studies of an interplay between flavour physics and properties of the neutrino
sector. The presence of such type of leptoquarks radiatively generates neutrino masses and offers
a simultaneous explanation for the current B-physics anomalies involving b → cℓνℓ decays. The
model can also accommodate both the muon magnetic moment and the recently reported W mass
anomalies, while complying with the most stringent lepton flavour violating observables.
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I. INTRODUCTION

The Standard Model (SM) of particle physics is our current guide towards a consistent description of the subatomic
phenomena, able to withstand a series of most stringent tests [1–7]. However, the SM does not resemble a fundamen-
tally complete theory. It cannot explain various observations such as neutrino masses, dark matter relic density or
the baryon asymmetry of the Universe. Apart from these limitations, recent anomalies have emerged in significance
as of late. Specifically, the anomalous magnetic moment of the muon [8, 9] and hints for lepton flavour universality
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(LFU) violation in B meson decays, such as RD(∗) [10–15], defined as

RD(∗) ≡ Br
(
B̄ → D(∗)τ ν̄τ

)

Br
(
B̄ → D(∗)lν̄l

) , with l = µ, e (1)

as well as tensions regarding decays of the B0/Bs mesons into a pair of muons, showcasing a 2.3σ deviation from the
SM prediction [16]. Some previous results on RK(∗) [17–20] indicated a tension, but recently [21] it was shown to be
consistent with the SM. There is also the recently reported CDF-II precision measurement of the W mass indicating
a 7.0σ deviation from the SM prediction [22], whose new physics (NP) effects can be parameterized in a modification
to the oblique T parameter [23]. Attempts to address these anomalies have been extensively reported in the literature
(see, e.g. [24–38]) but are often treated in isolation rather than being simultaneously resolved in the same model. In
a recent article [39], the B-physics anomalies and the anomalous magnetic moment of the muon were shown to be
simultaneously accommodated in an economical framework solely featuring a leptoquark (LQ) and a charged scalar
singlet. An explanation for neutrino properties is also well known to be a tantalizing possibility in LQ models as
was discussed in [40–64]. Particularly relevant are [43–49] where a minimal two-LQ scenario featuring a weak-singlet
S ∼ (3,1)1/3 and a doublet R ∼ (3,2)1/6, offers the simplest known framework for radiative neutrino mass generation.
However, a complete analysis of such an economical setting in the light of current flavour anomalies is lacking.

Furthermore, while minimal models often imply that fits to experimental data can become rather challenging, they
also represent an opportunity for concrete and falsifiable predictions. In this paper, we then propose an inclusive
study where B-physics, the muon aµ ≡ 1

2 (g − 2)µ and the CDF-II W mass anomalies are simultaneously explained
alongside neutrino masses and mixing while keeping lepton flavour violating (LFV) observables under control. We
further inspire our model on the flavoured grand unified framework first introduced by some of the authors in [65, 66]
in order to motivate the presence of a baryon number parity defined as PB = (−1)3B+2S , with B being the baryon
number and S the spin. Such a parity forbids di-quark type interactions for the S LQ otherwise responsible for fast
proton decay.

In this model, the RD,D∗ observables are explained via the tree-level exchange of the S LQ as in diagram (a).
Noteworthy, the mixing between the S and R doublet induces radiative generation of neutrino masses at one-loop
level, while a splitting between the two components of the R doublet can modify the W mass.

In what follows, we present the model and demonstrate how the fields contribute to each of the relevant observables
and the main experimental constraints that affect the allowed parameter space. We then discuss the regions of
parameter space where all anomalies and constraints are realized within experimental bounds. Finally, we summarize
our results.

II. THE MINIMAL LQ MODEL

The interactions of the singlet and doublet LQs with the SM fermion sector invariant both under the gauge symmetry
and the PB parity are described by the following terms

LY = ΘijQ̄
c
jLiS +ΩijL̄idjR

† +Υij ū
c
jeiS + h.c. . (2)

As usual, Q and L are the left-handed quark and lepton SU(2) doublets, respectively, whereas d and e are the right-
handed down quark and charged lepton SU(2) singlets. All Yukawa couplings, Θ, Ω and Υ, are complex 3×3 matrices.
Here, SU(2) contractions are also left implicit. For example, Q̄cL ≡ ϵαβQ̄

c,αLβ , with ϵαβ being the Levi-Civita symbol
in two dimensions and c indicating charge conjugation.

The relevant part of the scalar potential reads as

V ⊃ − µ2|H|2 + µ2
S |S|2 + µ2

R|R|2 + λ(H†H)2 + gHR(H
†H)(R†R) + g′HR(H

†R)(R†H) + gHS(H
†H)(S†S)+

(
a1RSH† + h.c.

)
.

(3)

Once the Higgs doublet gains a vacuum expectation value (VEV), which in the unitary gauge corresponds to ⟨H⟩ =[
0 (v + h)/

√
2
]T and v ≈ 246 GeV, the mass for the Higgs field remains identical to that of the Standard model

(SM), m2
h = 2λv2. One of the components of the R doublet mixes with the S field (corresponding to the LQs with

an electrical charge of 1/3e) via the a1 interaction term in Eq. (3), resulting in the squared mass matrix

M2
LQ1/3 =



µ2
S +

gHSv
2

2

va1√
2

va1√
2

µ2
R +

Gv2

2


 (4)
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where G = (gHR + g′HR) and we assume that a1 is a real parameter. The eigenvalues of the mass matrix read

m2

S
1/3
1

=
1

4

(
2µ2

R + 2µ2
S + v2(G+ gHS)−

√
(2µ2

R − 2µ2
S + (G− gHS)v2)2 + 8a12v2

)
,

m2

S
1/3
2

=
1

4

(
2µ2

R + 2µ2
S + v2(G+ gHS) +

√
(2µ2

R − 2µ2
S + (G− gHS)v2)2 + 8a12v2

)
,

(5)

where we adopt the notation for the mass eigenstates of S1/3
1 and S

1/3
2 . Do note that one can diagonalise the matrix

in Eq. (4) via a bi-unitary transformation, that is,

Mdiag
LQ1/3 = ZHM2

LQ1/3Z
H,†, (6)

where ZH is an unitary matrix and Mdiag
LQ1/3 is the LQ mass matrix in the diagonal form. Since this is a 2× 2 matrix,

the mixing can be parameterized by a single angle, which in terms of the mass eigenstates it is given by

sin(2θ) =

√
2va1

m2

S
1/3
1

−m2

S
1/3
2

, (7)

where θ is a mixing angle. This relation necessarily implies the condition −1 ≤ (
√
2va1/(m

2
S1

− m2
S2
)) ≤ 1. The

remainder LQ does not mix with the others and its tree level mass reads as

m2
S2/3 = µ2

R +
gHRv

2

2
, (8)

where we adopt the nomenclature for the 2/3e one as S2/3. The relations in (5) can be inverted such that the physical
masses of the LQ can be given as input in the numerical scan. Solving with the system of equations with respect to
µ2
R and µ2

S , one obtains

µ2
S =

1

2
(m2

S
1/3
1

+m2

S
1/3
2

− gHSv
2 +

√
(m2

S
1/3
1

−m2

S
1/3
2

)2 − 2a12v2),

µ2
R =

1

2
(m2

S
1/3
1

+m2

S
1/3
2

− (gHR + g′HR)v
2 −

√
(m2

S
1/3
1

−m2

S
1/3
2

)2 − 2a12v2).

(9)

Note that the mass of the (2/3)e LQ is not given as input and is determined from gHR and the calculated value of µ2
R.

As one can note from both equations (4) and (5), in the limit of small mixing (a1 → 0) the 2/3e LQ is approximately
degenerate with the heaviest 1/3e LQ, i.e. S1/3

2 , with m
S

1/3
2

and mS2/3 differing only by a factor of g′HR. This means
that the majority of cases feature a 2/3e state with mass close to one of the two LQ masses used as input. On the
other hand, if the mixing is large, then we should obtain a sizeable mass splitting, but not significant enough to deviate
from m

S
1/3
1

. Therefore, a1 and g′HR are responsible for generating a mass splitting between the two components of
the R doublet, providing a contribution to the CDF-II W mass discrepancy.

A similar analysis can be conducted in both the quark and lepton sectors. For simplicity of the numerical analysis,
one assumes a flavour diagonal basis for the up-type quarks such that the Cabibbo–Kobayashi–Maskawa (CKM)
mixing resides entirely within the down-quark sector. Additionally, we assume that the charged lepton mass matrix
to be diagonal. With this in kind, we can express the fermion Yukawa matrices as

Yd =

√
2

v
V †Mdiag

d , Yu =

√
2

v
Mdiag

u , Ye =

√
2

v
Mdiag

e . (10)

where V is the Cabibbo–Kobayashi–Maskawa (CKM) mixing matrix and Mdiag
f are the diagonal mass matrices for

f = u, d, l fermions.
The mixing parameter a1 is also responsible for enabling radiative generation of neutrino masses at one-loop level

via the diagram

(Mν)ij =
νL

〈H〉

dL d∗
R

νL

S
1/3
1 S

1/3
2

Θ Ω

a1

(11)
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which for simplicity one assumes a flavour diagonal basis for the up-type quarks such that the CKM mixing resides
entirely within the down-quark sector. Therefore, one can express the components of the neutrino masses as

(Mν)ij =
3

16π2(m2

S
1/3
2

−m2

S
1/3
1

)

va1√
2
ln



m2

S
1/3
2

m2

S
1/3
1


∑

m,a

(md)aVam(ΘimΩja +ΘjmΩia) , (12)

where Vab denote the CKM matrix elements and (md)a are the down-type quark masses. In the limit of vanishing
LQ mixing, i.e. a1 → 0, the loop contribution goes to zero. Indeed, mixing between the doublet and singlet LQs is a
necessary aspect for a viable phenomenology. As in the previous cases, it can be inverted such that the neutrino mass
differences as well as the mixing angles can be given as input. In this case, however, we do not obtain a closed-form
formula for the inversion in terms of the physical input parameters and instead we numerically invert equation (12).

2006.04822

III. SETTING UP THE PROBLEM: ANOMALIES

In this study, besides considering the properties of the neutrino sector, we focus our attention on the three main
observables: (i) the anomalous magnetic moment of the muon, (ii) the flavour universality ratio RD,D∗ as well as (iii)
the W -mass anomaly. We do note that, for the later, no independent experimental verification of this anomaly has
been made, hence, a healthy dose of scepticism is advised. On the same note, the muon anomaly is also not consensual
if lattice results from the BMW collaboration [67] are taken at face value, which have now been independently verified
by different lattice groups [68, 69].

1. Anomalous magnetic moment of the muon

The anomalous magnetic moment of leptons represents a deviation from the classical g = 2 prediction of Dirac’s
theory, sourced by loop corrections to the electromagnetic vertex. Within the SM, these corrections can be reliably
computed in QED and in weak processes involving massive vector and Higgs bosons. However, QCD corrections are
typically the largest source of uncertainties, coming from the hadronic vacuum polarisation (HVP) and hadronic light-
by-light loop-induced diagrams, since a first principles’ calculation is arduous and requires sophisticated computational
techniques. Combining the latter contributions leads to the SM prediction [70–90]. The precision measurement of
aℓ ≡ (g − 2)ℓ/2 is the goal of several experimental efforts, and not only for the electron (ℓ = e) but also for other
particles such as the muon (ℓ = µ). The latter has gained a particular interest due to a combined result from the
Brookhaven National Laboratory (BNL) [91] and the Fermi National Laboratory (FNAL) [8, 9], showing a 5.0σ
deviation from the SM prediction as





aFNAL
µ = (116 592 055± 24)× 10−11

aBNL
µ = (116 592 089± 63)× 10−11

a2023µ = (116 592 059± 22)× 10−11

, aSMµ = (116 591 810± 43)× 10−11 , (13)

with a2023µ representing the world average as of 2023. Here we note that the SM theoretical result aSMµ is primarily
driven by the R-ratio approach, which relies on data-driven methods [90]. The results obtained in this approach are
not in agreement with those obtained by the lattice QCD community [67–69]. Given that the most recent FNAL result
reaches a discrepancy between the SM prediction in [90] and the experimental value at the 5σ level, the importance
of clarifying the correct SM theoretical calculation becomes rather significant for the community.

The usage of scalar LQs to address the anomalous magnetic moment of the muon is not a novel idea (for earlier
studies see, for example, [45, 53, 92–94]). As was discussed in previous works, the dominant contributions to aµ
arise from chirality flipping of the internal fermionic propagators. The latter in turn leads to a correction that scales
as aµ ∝ mqi/mµ, where mqi and mµ denote the SM quarks and muon masses respectively. This makes the top
contribution the most important. At one-loop level, the relevant contributions in our model are shown in Fig. 1,
where it must be noted that the photon can also be attached to the quark propagators.
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µL

γ

tL µL

S
1/3
1,2 S

1/3
1,2

Θ Θ

(a)

µR

γ

tR µR

S
1/3
1,2 S

1/3
1,2

Υ Υ

(b)

µL

γ

tL tR µR

S
1/3
1,2 S

1/3
1,2

Θ Υ

(c)

µR

γ

dR µR

S2/3 S2/3

Ω Ω

(d)

FIG. 1: One-loop Feynman diagrams that contribute to the anomalous magnetic moment of the muon, involving the
new LQs. In the left and top-right diagrams, we show contributions from 1/3e LQs, while the bottom-right diagram
represents the contribution from the 2/3e LQ. Four additional diagrams with the photon attached to the quark
propagators are also considered.

With this in mind, we write each individual contribution to the anomalous magnetic moment as follows [45]:

∆a
S

1/3
1

µ = − 3mµ cos
2 θ

36π2m2

S
1/3
1


2mtRe{ΘµtΥµt}A

(
m2

t

m2

S
1/3
1

)
−mµ

(
|Θµt|2 + |Υµt|2

)
B
(

m2
t

m2

S
1/3
1

)
 ,

∆a
S

1/3
2

µ = − 3mµ sin
2 θ

36π2m2

S
1/3
2


2mtRe{ΘµtΥµt}A

(
m2

t

m2

S
1/3
2

)
−mµ

(
|Θµt|2 + |Υµt|2

)
B
(

m2
t

m2

S
1/3
2

)
 ,

∆aS
2/3

µ =
3m2

µ|Ωdµ|2

36π2m2
S2/3

C
(

m2
d

m2
S2/3

)
,

(14)

where d = d, s, b, and mt is the top quark mass. Here, the loop functions are defined as

A(x) =
7− 8x+ x2 + 2(2 + x) lnx

(1− x)3
,

B(x) = 1 + 4x− 5x2 + 2x(2 + x) lnx

(1− x)4
,

C(x) = x(5− 4x− x2 + (2 + 4x) lnx)

(1− x)4
.

(15)

Note that the contributions from the 1/3e LQs play the dominant role, as they contain contributions enhanced by
mt/mµ as can be seen from (14).. Additionally, in the scenarios where the mixing is small (a1 → 0), then only the
first eigenstate contributes, since the contribution of the second one scales with sin2 θ. Note that the presence of
diagrams such as the ones in Fig. 1 implies that LFV graphs also exist (and amount to replacing the external muons
with any other combination of charged leptons), leading to transitions such as e.g. µ → eγ or τ → µγ. Therefore,
sizeable chirality flipping contributions proportional to e.g. ΘetΥµt or ΘτtΥet can efficiently generate large corrections
to tightly constrained LFV observables and must be taken into account when finding viable parameter space domains.

2. RD,D∗ flavour anomaly

In recent years, an intriguing set of anomalies has emerged, showing deviations from LFU predicted by the SM.
The experiments conducted at BaBar [10, 11], Belle [12–14] and LHCb [15] concerned tree-level decays of B mesons
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to final states with a τ lepton, specifically,

RD(∗) ≡ BR
(
B → D(∗)τ ν̄τ

)

BR
(
B → D(∗)lν̄l

) , with l = µ, e , (16)

with D(∗) being an (excited state of) D meson and BR – the branching ratio. This ratio exceeds the SM predictions
consistently across different experiments. The way the SM deems these processes to happen is via a W− boson
exchange. The following are the averages of these results as well as the SM prediction [95],

RD = 0.339± 0.026 (stat) ± 0.014 (syst), RD,SM = 0.298± 0.004 (17)
RD∗ = 0.295± 0.010(stat) ± 0.010 (syst), RD∗,SM = 0.254± 0.005 (18)

measured with a dilepton invariant mass squared between 0 < q2 < 10 GeV2, showing a discrepancy of 1.4σ and 2.8σ,
respectively, when compared to the values predicted by the SM. Here, the SM/BSM prediction is taken from flavio
package [96], which is based on [97, 98]. Taking into account the correlated nature of these observables, the difference
between the experiment and the SM amounts to 3.3σ.

S
1/3
1,2

ν̄ ν

b

ū, d̄

s

ū, d̄

Θ Θ

(a)

S
1/3
1,2

ν̄τ
τ

b

d̄

c

d̄

Θ Υ

(b)

FIG. 2: On the left, we show an additional contribution from the LQ to the transition B → K+ν̄ν, while on the
right we present the model’s impact on the B → D(∗)τ ν̄τ decay.

Within the context of the LQ model, this tension can be alleviated through a tree-level exchange of the two 1/3e
LQs, as shown in Fig. 2. Similarly to aµ, how much each of them contributes to this observable depends on the size
of a1. Here, we note that the S2/3 does not contribute to this observable. The same Yukawa matrices Θ and Υ that
played a role in aµ are also present here, albeit through distinct matrix elements. As noted in [99], RD and RD∗

are impacted by different operators, namely, the RD transition is dominated by scalar operator (c̄bL)(τ̄Rντ ), which
in turns implies that this observable is enhanced by real couplings, while the RD∗ transition is primarily driven by
the pseudo-scalar operator (c̄γ5bL)(τ̄Rντ ) which prefers imaginary couplings. Hence, a complex parametrisation of
both Θ and Υ allows for an easier fit of both observables. Simultaneously, the Rνν

K,K∗ observable, which is defined
as the ratio between the model prediction for BR(B+(0) → K∗+(0)νν) and the corresponding SM prediction, is also
induced at tree-level via the virtual exchange of the same LQs, through the Θ Yukawa couplings. In turn, maximizing
RD∗ can also result in larger contributions to Rνν

K,K∗ , in particular, if Θ contains additional sizeable entries. Notice
that a recent measurement by the Belle II Collaboration [100] points towards a deviation of the B+(0) → K∗+(0)νν
branching ratio, whose value is measured to be higher than that of the SM prediction. Indeed, the preference for a
larger RD favours an enhancement of BR(B+(0) → K∗+(0)νν) in our model due to the presence of a shared coupling
as can be seen in Fig. 2. This suggests good prospects for accommodating the new result. However, our numerical
analysis was performed before the recent announcement and therefore one has considered a Rνν

K,K∗ to be SM-like,
leaving a dedicated analysis for future work.

3. CDF W -mass anomaly

A recent measurement by the CDF collaboration seemed to indicate that a substantial tension between the exper-
imental value of the W mass, and the corresponding SM prediction [22], amounting to a 7σ deviation, well above the
threshold for discovery. However, no independent measurement with such level of precision has so far been made,
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while the other existing measurements [101–103] point towards a consistent description of the SM. Either way, com-
bining the CDF result with the earlier measurements leads to a tension of 3.7σ [104], which is still below the discovery
threshold.

Corrections to the W -mass can be parametrised through deviations of the EW precision observables S, T and U
[23], particularly, the T parameter. While only the T parameter is needed to analyse the W -mass deviations, the
other parameters are also impacted and are taken into account in the numerical analysis, especially since they are
strongly correlated with each other. Alterations to the T parameter can be expressed in terms of corrections to the
self-energy of the W boson as

ΠWW (0) = W W

S
1/3
1,2 , S2/3

+

S2/3

S
1/3
1,2

W W , (19)

such that the T parameter scales as [105]

T ∼ 1

αM2
W

ln

(
mS2/3

m
S

1/3
a

)(
mS2/3

m
S

1/3
a

− 1

)−1

, (20)

where α ∼ 1/137 is the fine-structure constant. Hence, for non-zero T required by the CDF experiment, we must have
that mS2/3 ̸= m

S
1/3
a

. Following the discussion above, the degeneracy between the doublet components can be lifted
either by having a non-zero mixing a1 (which is always true, since a non-zero value is needed for a viable neutrino
description), or a non-zero value for the quartic coupling g′HR.

4. Constraints on the parameter space

Besides the observables so far discussed, there is a plethora of other constraints that must be taken into account.
Here, we shall discuss only the stringiest ones, while the full list used in our numerical calculations is shown in Tab. III.
Notice that we have not assumed any flavour ansatz (see e.g. [39]), which implies that Θ, Ω and Υ are taken to be
generic 3×3 complex matrices. While assuming texture zeros would simplify our analysis, these would be artificial as
no symmetry in the Lagrangian is present to protect them from being radiatively generated. Indeed, Θ and Ω need
to have a generic structure if one wishes to explain neutrino physics1.

Besides constraints from LFV such as µ → eγ, which are generated through topologies identical to those of Fig. 1,
there are also constraints coming from LFV decays of the Z0 boson such as e.g. Z0 → µτ , where our model’s main
contributions are displayed in Fig. 4. Not only that, we also need to worry about the flavour conserving cases as
those are very well measured at LEP [106] and tightly constrain LQ couplings. For this, we have considered the full
one-loop expressions as determined by P. Arnan et. al [107]. Higgs LFV decays are also relevant and are considered
in the analysis. The diagrams are identical to those shown in Fig. 4 by replacing Z0 with the Higgs boson.

Due to the complex parametrisation of the Yukawa couplings, strong constraints also come from CP-sensitive
observables as well as from quark flavour violating (QFV) decays. In the former, the electric dipole moments (EDMs)
of the charged leptons represent a strong constraint on the allowed sizes of the imaginary parts of the Yukawas
couplings. Contributions to these observables come at one-loop level via identical diagrams to the ones shown in
Fig. 1, with the only difference being that the EDMs are proportional to the imaginary part of Yukawa couplings,
and not to the real part as in the anomalous magnetic moment. On the other hand, QFV decays strongly constrain
the allowed couplings, in particular, for the Ω and Θ matrices. The main constraints come from the meson mixing
observables (∆Md, ∆Ms, ϵk, ϵ′/ϵ and ϕs), which are sensitive to the additional sources of CP violation coming from the

1 While most elements need to be non-zero, it is possible to have some zero entries, as long as at least two neutrinos remain massive. In
this work, we have not explored what are the minimal textures that can still lead to viable neutrino phenomenology.
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Yukawa couplings. These observables are impacted through one-loop box diagrams involving the exchange of virtual
LQ states, with some examples seen in Fig. 3. Besides this, fully leptonic rare Kaon decays such as e.g. K0

L → µ+µ−

or semi-leptonic ones such as K+ → π0µ+ν are particularly important. These decays can be written as functions of
the Wilson coefficients for the semi-leptonic operators (L̄γµL)(Q̄Lγ

µQL) (for the full list of relevant operators, see
Tab.1 of [108]), which are generated already at tree-level in our LQ model, via the last diagram shown in Fig. 3.
Atomic parity constraints [109, 110] are also included in the numerical analysis.

ν

S
1/3
1,2

S
1/3
1,2

ν

dL

dL

dL

dL

Θ

Θ

Θ

Θ

(a)

`L

S2/3

S2/3

`L

dR

dR

dR

dR

Ω

Ω

Ω

Ω

(b)

S
1/3
1,2

d̄L

dL

¯̀L

`L
Θ

Θ

(c)

FIG. 3: Dominant one-loop box contributions to CP-sensitive meson mixing constraints (first two diagrams), and
the dominant tree-level graph that contributes to the Kaon decays (third graph).

Z0

uR

S
1/3
1,2

uR

`R

`R

Υ

Υ

(a)

Z0

uL

S
1/3
1,2

uL

`L

`L

Θ

Θ

(b)

Z0

dR

S2/3

dR

`L

`L

Ω

Ω

(c)

FIG. 4: Some of the one-loop contributions mediated by the model’s LQs to the flavour conserving and
non-conserving decays Z0 → ℓℓ′. There exist additional wave contributions to the one-loop amplitude (see e.g. [107])
as well as similar diagrams to those shown Fig. 1, which are not shown here but are taken into account in the
numerical calculations.

There are additional constraints coming from B-physics. Namely, we consider the current limits on BR(Bs/B0 →
µ+µ−) as well as the LFU observable RK,K∗ . The b → sℓℓ observables are impacted via both tree-level and box
diagrams involving the virtual exchange of the S LQ as shown in Fig. 5. These can be parameterised in terms
of the Wilson operators Oℓ

9 ∝ Cbsℓℓ
9 (s̄γµPLb)(ℓ̄γµℓ) and Oℓ

10 ∝ Cbsℓℓ
10 (s̄γµPLb)(ℓ̄γµγ

5ℓ) for diagrams (b) and (c) and
O′ℓ

9 ∝ C ′bsℓℓ
9 (s̄γµPRb)(ℓ̄γµℓ) and O′ℓ

10 ∝ C ′bsℓℓ
10 (s̄γµPRb)(ℓ̄γµγ

5ℓ) for diagrams (a), (d) and (e). As usual, the C-factors
are the Wilson coefficients and ℓ = e, µ.

To finalise, since no positive results have been reported at colliders, direct searches for LQs also pose limits on their
allowed masses. Constraints coming from pair production channels at the ATLAS and CMS experiments [111–114]
provide a lower bound, approximately, between 1 and 1.5 TeV, considered in this work.

FIG. 5: Box and tree-level diagrams responsible for generating the LQ contributions to RK,K∗ and Bs/B0 → µ+µ−

processes.
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IV. NUMERICAL METHODOLOGY

We perform a parameter space scan considering a plethora of different observables as listed in Appendix A. The
experimental limits were taken from the latest PDG review [115]. For an extensive analysis featuring a large number
of observables we have implemented the model in SARAH [116], where interaction vertices and one-loop contributions
relevant for such observables were determined. Outputs were then generated for numerical evaluation in SPheno [117],
where the particle spectrum and the necessary Wilson coefficients to be used in flavio [96] were calculated. SPheno
calculates the Wilson coefficients in the WET basis, where the LFV coefficients are evaluated at the Z0 mass scale
(µ = 91 GeV) and the QFV coefficients are evaluated at the top mass scale (µ = 160 GeV). Renormalisation-group
running between these scales and those of the low-energy observables is done flavio through a interface with the
wilson [118] package. With this in consideration, we have constructed a χ2 function, defined as [16]

χ2 = (Oexp −Oth)
T(Σth +Σexp)

−1(Oexp −Oth) (21)

using the observables indicated in Appendix A. Notice that the method used to calculate each of the observales
considered in this work is indicated in the first column of Tabs. IV and V. In (21) Oexp and Oth represent vectors of
experimental values and the model prediction, respectively, while Σexp is the experimental covariance and Σth is the
theoretical one. Both covariance matrices can be computed using well-known formulas

Σth = σthρthσth, and Σexp = σexpρexpσexp, (22)

where σth (σexp) are diagonal matrices whose entries are the 1σ theoretical (experimental) errors and ρth (ρexp) are
the theoretical (experimental) correlation matrices. For the experimental inputs, the experimental uncertainties can
be easily extracted from literature, while for the experimental correlations, we extract those that are available and
neglect if those do not exist. The various uncertainties and correlations were taken from the references inside Tab. III.

For the theoretical inputs, the errors can be computed inside flavio [96], with the function flavio.np_uncertainty
for each of the observables of interested. This also takes into account potential hadronic uncertainties that exist for
observables sensitive to these. As for the theoretical correlations, those can be computed from our entire dataset using
standard methods available in statistics libraries. In our case, we have use Pearson’s algorithm through the pandas
package [119]. Since the LQ mass scale is well above the scale of observables that we analyse, one needs to run the
various couplings to the appropriate scales, which is done with the wilson [118] package.

With this in mind, a numerical scan over all relevant parameters of the model is then conducted. In particular, we
perform an inclusive logarithmic scan over the various parameters within the ranges shown in Tab. I.

m
S
1/3
1

, m
S
1/3
2

(TeV) gHS , gHR, g
′
HR |Υ|, |Θ|, |Ω| a1 (GeV)

[1.5, 10]
[
10−8, 4π

] [
10−8,

√
4π

] [
10−8, 100

]
TABLE I: Ranges used for the free parameters during the numerical scan. The values for the masses of the SM fields
and corresponding mixings were varied within the allowed experimental ranges.

Once valid solutions are found within the first initial random scan, we then use these points as seeds for finding
new solutions in subsequent runs, by perturbing around the valid couplings/masses in order to find new consistent
points. Do note that not all Θ and Ω Yukawas are free parameters, with some being calculated through the inversion
procedure of the neutrino mass matrix. In this regard, within the GitHub page (https://github.com/Mrazi09/
LQ-flavour-project) one can find auxiliary jupyter notebooks, which demonstrate how to numerically implement
the inversion procedure for the neutrinos/quark/charged leptons and LQs (named Neutrino_inversion.ipynb) as
well as how to utilise the data to extract the relevant neutrino observables (named Read_neutrino.ipynb).

We have performed parameter space scans considering three cases: a) aµ and mW both consistent with the SM, b)
only mW consistent with the SM and c) neither of them consistent with the SM prediction. In all three scenarios we
do take into account the LFU deviation in RD,D∗ as well as keeping the remaining constraints (for a complete list,
see Appendix A) under control. The generic parameterization of our couplings also implies that kaon decays [120]
and atomic parity violating constraints [109, 110] are relevant for our parameter scan. We use as input parameters
the quark and charged lepton masses as well as the CKM and PMNS mixing matrices, which we allow to vary within
their two sigma uncertainty. Regarding neutrino masses, we focus on a normal ordering scenario with three massive
states.

https://github.com/Mrazi09/LQ-flavour-project
https://github.com/Mrazi09/LQ-flavour-project
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FIG. 6: Preferred sizes for each of the LQ Yukawas couplings: (a) Ω, (b) Θ and (c) Υ. The radius of the
circumference represents the size of the absolute value of the coupling while the color gradation describes how
frequent such a magnitude appears in the scan, i.e. darker shades indicate more preferred sizes, according the
probability P(X) = N(X)

Ntot
with N(X) the number of points with order X in our data.

χ2/d.o.f χ2,SM/d.o.f (m
S
1/3
1

,m
S
1/3
2

,mS2/3) TeV

Scenario a) 1.16 1.26 (1.53 , 7.02 , 7.00)
Scenario b) 1.17 1.66 (1.58 , 4.50 , 4.52)
Scenario c) 1.37 2.46 (1.63 , 3.30 , 3.35)

TABLE II: χ2/d.o.f for the obtained best fit points (first column) and for the SM limit (second column) with
d.o.f = 45. The LQ masses (in TeV) are indicated in the third column.

V. NUMERICAL RESULTS

Employing our χ2 analysis, the results we obtain are summarised in Tab. II where we show the χ2 and the LQ
masses for each scenario. We note that in all three cases the model predictions offer a better fit than that of the SM
limit. A numerical scan in the couplings and masses of the LQs is conducted and the main results are highlighted in
Figs. 6 and 7. In Fig. 6 we show the preferred sizes that were found to simultaneously address the studied anomalies
and are consistent with neutrino physics and flavor constraints. While the darker shades offer a conclusive estimate
the lighter ones allow for some dispersion. This information in combination with the best-fit points can be relevant
in proposing searches for LQs at colliders. In particular, taking Θµt ∼ O(1), the µ+µ− → tt̄ t-channel S1/3 LQ
exchange can be seen as a smoking-gun benchmark scenario of the considered model and a physics case for the future
muon collider. For the case of the S2/3 LQ, its couplings to d-quark can be as large as Ωed ∼ Ωτd ∼ O(10−1), which
might be sufficiently large to be tested at the LHC in the t-channel LQ exchange for ee, ττ and eτ pair production
[121, 122]. Furthermore, such LQ can be searched for at future hadronic machines such as the HE-LHC or the FCC.
In particular, for the best-fit point (A3), the future 50 TeV FCC-eh collider offers an opportunity for the s-channel
process ed → S2/3 → tµ.

In Fig. 7 we demonstrate that for all displayed observables the data can be well accommodated. In particular, we
show the three best fit points marked as colored polygons, with the blue, cyan and red denoting scenarios a), b) and c)
respectively. In panel (a) one sees that both RD,D∗ and Rνν

K can be reconciled simultaneously, which is also displayed
in panel (f). In (c), a linear correlation between RK,K∗ observables is found, in consistency with previous literature
[16, 123]. Furthermore, Bs,0 → µµ is well-fitted with a strong correlation with RK,K∗ , as expected. In panel (d), we
note that the combination of Υµt and Θµt is the dominant source for the contribution for aµ since these couplings
induce chirality flipping of the top quark in the internal propagator. In panel (e) we show how the T̂ parameter
depends on the mass difference between the LQs that originate from the doublet. In colour we show the LQ mixing.
We note that for most of the generated points, S1/3

1 is essentially the S singlet, as indicated by the yellow and green
regions.
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FIG. 7: Scatter plots of selected observables analysed in this work. In (a) we plot the RD∗ as a function of RD with
Rνν

K in the color scale. In (b), the branching ratios of B0 → µ−µ+ and Bs → µ−µ+, with RK [1.1; 6.0] in the color
scale. In (c) we plot RK∗ vs. RK with BR(Bs → µµ) in the color scale. In (d) the product of the real and imaginary
parts of ΥµtΘµt are shown with aµ in the color gradation while in (e) the T parameter as function of the logarithm
of the mass difference between the masses of S1/3

1 and S2/3 is presented, where the color scale represents the LQ
mixing angle and in (f) we show BR(Z0 → µτ) versus Rνν

K with log10BR(τ → µµµ) in the colour axis. Areas of
phenomenological interest lie inside the contours. For the T parameter, we show the areas of interest for both NP
and SM-like cases. The relevant range for aµ lies within (251± 59)× 10−11, while BR(Z0 → µτ) < 1.2× 10−5,
Rνν

K < 4.35 and BR(τ → µµµ) < 2.1× 10−8. The best fit points are marked with a blue square (scenario a), a cyan
circle (scenario b) and a red diamond (scenario c).

VI. CONCLUSIONS

In this paper, we have studied the most economical extension of the SM with two scalar LQs, representing the
minimal scenario capable of addressing all measured flavour anomalies as well as explaining neutrino masses and their
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mixing structure. Additionally, the model can accommodate the measured value of the muon anomalous magnetic
moment as well as opening the door for alleviating the CDF-II W mass anomaly, if both observables are confirmed to
be inconsistent with the SM predictions. For the best-fit points the lightest LQ can have a mass around 1.6 TeV, which
should be accessible at the high-luminosity phase of the LHC. In this regard, our numerical results have highlighted
the preferred sizes for the LQ Yukawa couplings which will be relevant in pinpointing the direction for future searches.
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Appendix A: Numerical benchmarks for best fit points

If we take that both the W mass and the anomalous magnetic moment of the muon are SM-like, scenario a), then
the best fit point found in the scan is

Υ =



−7.273× 10−7 + 4.372× 10−7i 0.001174− 0.000872i −2.575× 10−8 − 7.646× 10−8i
1.862× 10−6 + 1.4× 10−7i −8.78× 10−8 + 6.04× 10−8i −0.00299− 0.01222i

−7.74× 10−8 − 2.695× 10−7i −0.467 + 2.298i 0.0007761 + 0.0002683i


 ,

Ω =




0.00483 + 0.09936i −0.01122 + 0.01725i 7.48× 10−6 − 1.338× 10−5i
2.238× 10−6 + 5.57× 10−7i 6.502× 10−7 − 6.579× 10−7i 6.548× 10−7 − 1.702× 10−7i

−0.2284 + 0.1277i −0.000803− 0.001714i −1.698× 10−6 − 7.62× 10−7i


 ,

Θ =




0.004857− 0.000927i 5.827× 10−8 + 1.049× 10−8i −1.82× 10−8 + 3.979× 10−7i
−0.0001236 + 0.0002241i 1.601× 10−8 − 4.832× 10−8i 0.6154 + 0.1603i

0.01319− 0.01262i 0.001651− 0.004844i 0.174 + 1.843i


 ,

(A1)

with the mixing parameter a1 = 36.72 GeV. This point correspond to the blue diamond in the scatter plots plots of
the main text. On the other hand, if we assume the W boson mass to take the SM value, but the muon aµ anomaly
requires a NP explanation, scenario b), the following best fit point is obtained

Υ =



−2.319× 10−7 + 6.392× 10−7i 6.77× 10−7 + 5.516× 10−6i −9.08× 10−9 − 6.355× 10−8i

0.000526− 0.002488i −6.06× 10−8 + 1.78× 10−7i −0.01325− 0.00789i
−6.79× 10−8 − 2.811× 10−7i −0.315 + 2.623i 0.001025 + 0.000288i


 ,

Ω =




0.0447 + 0.1871i −0.001551− 0.002839i −2.442× 10−6 + 2.446× 10−6i
5.394× 10−6 + 3.39× 10−7i 4.237× 10−6 − 5.81× 10−7i 1.882× 10−6 − 1.63× 10−7i

0.006595 + 0.006782i −0.00344− 0.01522i −3.41× 10−6 + 3.156× 10−6i


 ,

Θ =




0.000683− 0.002639i 1.075× 10−7 − 1.834× 10−7i 1.048× 10−6 + 8.8× 10−8i
−6.09× 10−5 + 0.0003344i −2.281× 10−8 + 2.002× 10−8i 0.3998 + 0.0348i

0.02393− 0.00698i −0.0295− 0.0612i 0.239 + 2.042i




(A2)
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and a1 = 9.85 GeV. This point correspond to the cyan diamond in the scatter plots of the main text. Last but not
least, if we assume that both the W mass and aµ require a NP explanation, scenario c), then the best fit point is

Υ =




−5.9× 10−7 + 8.26× 10−7i 4.842× 10−6 + 4.7× 10−8i −1.352× 10−8 − 3.261× 10−8i
0.000319− 0.002549i −3.34× 10−8 + 1.449× 10−7i −0.00759− 0.01239i

−1.524× 10−7 − 9.06× 10−8i −0.15 + 2.51i 0.0002995 + 0.0004214i


 ,

Ω =




0.0567 + 0.1529i −0.0032 + 0.000344i −5.832× 10−7 − 6.36× 10−8i
3.488× 10−6 + 2.24× 10−7i 2.34× 10−6 − 3.97× 10−7i 1.354× 10−6 − 1.34× 10−7i

−0.02495− 0.00425i −0.00879− 0.01723i 1.72× 10−6 + 7.294× 10−6i


 ,

Θ =




0.00135− 0.002976i 1.444× 10−7 − 9.32× 10−8i 7.894× 10−7 + 2.147× 10−7i
−5.44× 10−5 + 0.0002732i −1.592× 10−8 + 1.964× 10−8i 0.5828 + 0.0578i

0.02236 + 0.00576i −0.01707− 0.02831i 0.408 + 2.085i


 ,

(A3)

with a1 = 6.69 GeV. This point correspond to the red diamond in the scatter plots of the main text. For each of
these cases, the LQ masses are indicated in the main text. These benchmarks were determined by minimizing the χ2

function in Eq. (21), whose input observables are showcased in Tab. III. In Tabs. IV and V we indicate the predictions
for the observables for each of the benchmark scenarios.
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Observable Experimental measurement
(g − 2)µ (251± 59)× 10−11 [8, 9]

T̂ (0.88± 0.14)× 10−3 [23]
RK [1.1, 6.0] 0.949+0.042+0.022

−0.041−0.022 [21]
RK∗ [1.1, 6.0] 1.027+0.072+0.027

−0.068−0.026 [21]
RK [0.1, 1.1] 0.994+0.090+0.029

−0.082−0.027 [21]
RK∗ [0.1, 1.1] 0.927+0.093+0.036

−0.087−0.035 [21]
RD 0.340± 0.027± 0.013 [124]
RD∗ 0.295± 0.011± 0.008 [124]

BR(h → eµ) < 6.1× 10−5 [95% CL] [115]
BR(h → eτ) < 4.7× 10−3 [95% CL] [115]
BR(h → µτ) < 2.5× 10−3 [95% CL] [115]
BR(µ → eγ) < 4.2× 10−13 [90% CL] [115]
BR(µ → eee) < 1.0× 10−12 [90% CL] [115]
BR(τ → eγ) < 3.3× 10−8 [90% CL] [115]
BR(τ → µγ) < 4.4× 10−8 [90% CL] [115]
BR(τ → eee) < 2.7× 10−8 [90% CL] [115]
BR(τ → eµµ) < 2.7× 10−8 [90% CL] [115]
BR(τ → µee) < 1.5× 10−8 [90% CL] [115]
BR(τ → µµµ) < 2.1× 10−8 [90% CL] [115]
BR(Z → µe) < 7.5× 10−7 [95% CL] [115]
BR(Z → τe) < 9.8× 10−6 [95% CL] [115]
BR(Z → µτ) < 1.2× 10−5 [95% CL] [115]
BR(τ → πe) < 8.0× 10−8 [90% CL] [115]
BR(τ → πµ) < 1.1× 10−7 [90% CL] [115]
BR(τ → ϕe) < 3.1× 10−8 [90% CL] [115]
BR(τ → ϕµ) < 8.4× 10−8 [90% CL] [115]
BR(τ → ρe) < 1.8× 10−8 [90% CL] [115]
BR(τ → ρµ) < 1.2× 10−8 [90% CL] [115]

de < 1.1× 10−29 e.cm [90% CL] [115]
dµ < 1.8× 10−19 e.cm [95% CL] [115]
dτ < (1.15± 1.70)× 10−17 e.cm [95% CL] [125]

BR(B0 → µµ) (0.56± 0.70)× 10−10 [16]
BR(Bs → µµ) (2.93± 0.35)× 10−9 [16]
R(B → χsγ) 1.009± 0.075

Rνν
K < 4.65 [95% CL] [126]

Rνν
K∗ < 3.22 [95% CL] [126]

|Re δgeR| ≤ 2.9× 10−4 [40, 106]
|Re δgeL| ≤ 3.0× 10−4 [40, 106]
|Re δgµR| ≤ 1.3× 10−3 [40, 106]
|Re δgµL| ≤ 1.1× 10−3 [40, 106]
|Re δgτR| ≤ 6.2× 10−4 [40, 106]
|Re δgτL| ≤ 5.8× 10−4 [40, 106]
R(ϵk) 1.234± 0.144

R(∆Md) 0.838± 0.109

R(∆Ms) 0.935± 0.054

R(Re(ϵ′/ϵ)) 0.868± 0.496

QW (p+) 0.0719± 0.045

QW (Cs133) −72.82± 0.42

Observable Experimental measurement
ϕs −0.008± 0.019 [95]

ACP (B
0 → K∗0µµ) −0.035± 0.024± 0.003 [127]

ACP (B
+ → K+µµ) 0.012± 0.017± 0.001 [127]

ACP (B → χs+dγ) 0.032± 0.034 [95]
FL(B

+ → Kµµ) 0.34± 0.10± 0.06 [128]
S3(B

+ → Kµµ) 0.14+0.15+0.02
−0.14−0.02 [128]

S4(B
+ → Kµµ) −0.04+0.17+0.04

−0.16−0.04 [128]
S5(B

+ → Kµµ) 0.24+0.12+0.04
−0.15−0.04 [128]

AFB(B
+ → Kµµ) −0.05± 0.12± 0.03 [128]

S7(B
+ → Kµµ) −0.01+0.19+0.01

−0.17−0.01 [128]
S8(B

+ → Kµµ) 0.21+0.22+0.05
−0.20−0.05 [128]

S9(B
+ → Kµµ) 0.28+0.25+0.06

−0.12−0.06 [128]
P1(B

+ → Kµµ) 0.44+0.38+0.11
−0.40−0.11 [128]

P2(B
+ → Kµµ) −0.05± 0.12± 0.03 [128]

P3(B
+ → Kµµ) −0.42+0.20+0.05

−0.21−0.05 [128]
P ′
4(B

+ → Kµµ) −0.092+0.36+0.12
−0.35−0.12 [128]

P ′
5(B

+ → Kµµ) 0.51+0.30+0.12
−0.28−0.12 [128]

P ′
6(B

+ → Kµµ) −0.02+0.40+0.06
−0.34−0.06 [128]

P ′
8(B

+ → Kµµ) −0.45+0.50+0.09
−0.39−0.09 [128]

FL(B
0 → Kµµ) 0.255± 0.032± 0.007 [129]

S3(B
0 → Kµµ) 0.034± 0.044± 0.003 [129]

S4(B
0 → Kµµ) 0.059± 0.050± 0.004 [129]

S5(B
0 → Kµµ) 0.227± 0.041± 0.008 [129]

AFB(B
0 → Kµµ) −0.004± 0.040± 0.004 [129]

S7(B
0 → Kµµ) 0.006± 0.042± 0.002 [129]

S8(B
0 → Kµµ) −0.003± 0.051± 0.001 [129]

S9(B
0 → Kµµ) −0.055± 0.041± 0.002 [129]

P1(B
0 → Kµµ) 0.090± 0.119± 0.009 [129]

P2(B
0 → Kµµ) −0.003± 0.038± 0.003 [129]

P3(B
0 → Kµµ) −0.073± 0.057± 0.003 [129]

P ′
4(B

0 → Kµµ) −0.135± 0.118± 0.003[129]
P ′
5(B

0 → Kµµ) −0.521± 0.095± 0.024 [129]
P ′
6(B

0 → Kµµ) −0.015± 0.094± 0.007 [129]
P ′
8(B

0 → Kµµ) −0.007± 0.122± 0.002 [129]
R(K+ → π0µ+ν) 0.989± 0.016

R(K+ → π0e+ν) 0.988± 0.014

R(K0
L → π+µ−ν) 0.997± 0.011

R(K0
L → π+e−ν) 0.991± 0.029

R(K0
S → π±e∓ν) 0.982± 0.015

R(K0
L → µ+µ−) 0.918± 0.158

R(K0
L → e+e−) 1.000± 0.598

BR(K0
L → e∓µ±) < 4.7× 10−12 [90% CL] [115]

BR(K0
S → µ+µ−) < 8.0× 10−10 [90% CL] [115]

BR(K0
S → e+e−) < 9.0× 10−12 [90% CL] [115]

R(K+ → µ+ν) 1.008± 0.015

R(K+ → e+ν) 1.014± 0.016

R(K+ → π+νν) 1.840± 1.202

BR(K0
L → π0νν) < 3.0× 10−9 [90% CL] [115]

TABLE III: Set of observables used as input for the χ2 function, as well as the experimental measured value. The
observables FL, AFB , Si, Pi and P ′

i are relative to the [0.10, 0.98] GeV2 q2 bins. Observables starting with “R” are
defined as the ratio between the experimental value for the observable, taken from [115] and the SM prediction,
determined in flavio. The total uncertainty is taken by error propagation, taking into account both the
experimental and theoretical errors, with the latter determined also in flavio.
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Observable Theoretical prediction: (A1) Theoretical prediction: (A2) Theoretical prediction: (A3)
aµ (sph) −5.891× 10−11 2.649× 10−9 1.879× 10−9

T̂ (sph) 0.0002702 0.0001631 0.0009105

RK [1.1, 6.0] (fla) 1.006 1.006 1.006

RK∗[1.1, 6.0] (fla) 1.000 1.001 1.001

RK [0.1, 1.1] (fla) 0.9987 0.9984 0.999

RK∗[0.1, 1.1] (fla) 1.006 1.006 1.006

RD (fla) 0.3508 0.3434 0.334

RD∗ (fla) 0.2776 0.2875 0.283

BR(h → eµ) (sph) 3.008× 10−18 9.692× 10−19 5.98× 10−19

BR(h → eτ) (sph) 2.435× 10−17 2.086× 10−17 5.931× 10−18

BR(h → µτ) (sph) 6.072× 10−7 1.039× 10−6 9.904× 10−7

BR(µ → eγ) (fla) 3.074× 10−16 2.916× 10−15 1.44× 10−15

BR(µ → eee) (fla) 2.456× 10−18 1.953× 10−17 9.509× 10−18

BR(τ → eγ) (fla) 1.925× 10−17 1.17× 10−17 1.479× 10−17

BR(τ → µγ) (fla) 6.713× 10−9 3.294× 10−9 4.864× 10−9

BR(τ → eee) (sph) 2.611× 10−14 5.161× 10−15 3.055× 10−15

BR(τ → eµµ) (sph) 1.779× 10−14 3.516× 10−15 2.089× 10−15

BR(τ → µee) (sph) 5.824× 10−27 3.924× 10−28 3.579× 10−28

BR(Z → µe) (sph) 7.003× 10−21 9.718× 10−21 1.074× 10−20

BR(Z → τe) (sph) 1.265× 10−15 2.605× 10−16 1.007× 10−16

BR(Z → µτ) (sph) 4.873× 10−8 2.244× 10−8 4.64× 10−8

BR(τ → πe) (fla) 3.94× 10−12 1.173× 10−13 1.631× 10−12

BR(τ → πµ) (fla) 1.401× 10−22 7.932× 10−22 3.776× 10−22

BR(τ → ϕe) (fla) 1.349× 10−16 3.556× 10−16 1.534× 10−15

BR(τ → ϕµ) (fla) 1.869× 10−12 9.174× 10−13 1.354× 10−12

BR(τ → ρe) (fla) 8.828× 10−12 2.743× 10−13 4.809× 10−12

BR(τ → ρµ) (fla) 1.688× 10−11 8.282× 10−12 1.223× 10−11

de (sph) 3.283× 10−33 2.75× 10−32 7.79× 10−33

dµ (sph) 1.248× 10−22 5.388× 10−23 1.094× 10−22

dτ (sph) 2.446× 10−23 1.638× 10−23 1.999× 10−24

BR(B0 → µµ) (fla) 1.139× 10−10 1.14× 10−10 1.148× 10−10

BR(Bs → µµ) (fla) 3.673× 10−9 3.685× 10−9 3.679× 10−9

R(B → χsγ) (fla) 1.000 1.000 1.000

Rνν
K (fla) 1.793 1.227 1.476

Rνν
K∗ (fla) 1.793 1.227 1.476

|Re δgeR| (ind) 4.902× 10−8 −8.815× 10−8 7.09× 10−8

|Re δgeL| (ind) 6.788× 10−9 5.207× 10−8 6.277× 10−8

|Re δgµR| (ind) 3.891× 10−9 6.56× 10−7 1.456× 10−7

|Re δgµL| (ind) 0.002152 0.002661 0.002322

|Re δgτR| (ind) 0.0005011 0.0005977 0.0005954

|Re δgτL| (ind) 3.732× 10−8 1.049× 10−8 6.595× 10−9

R(ϵk) (fla) 1.135 1.326 1.107

R(∆Md) (fla) 0.9361 0.7878 1.08

R(∆Ms) (fla) 0.8263 1.01 0.9117

R(Re(ϵ′/ϵ)) (fla) 1.177 1.013 1.425

QW (p+) (ind) 0.071 0.071 0.071

QW (Cs133) (ind) −73.33 −73.33 −73.33

TABLE IV: Theoretical predictions for the each of the benchmarks. In the first column we indicate how each
observable is computed, with fla being flavio, sph being SPheno and ind indicates that is based in our own

implementation.
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Observable Theoretical prediction: (A1) Theoretical prediction: (A2) Theoretical prediction: (A3)
ϕs (fla) −0.0092 −0.00296 −0.0585

ACP (B
0 → K∗0µµ) (fla) 0.000167 0.000172 0.000187

ACP (B
+ → K+µµ) (fla) 0.001771 0.001774 0.001791

ACP (B → χs+dγ) (fla) 3.603× 10−7 7.202× 10−7 6.588× 10−8

FL(B
+ → Kµµ) (fla) 0.3041 0.304 0.3042

S3(B
+ → Kµµ) (fla) 0.01081 0.0108 0.01081

S4(B
+ → Kµµ) (fla) 0.08939 0.08907 0.08927

S5(B
+ → Kµµ) (fla) 0.2591 0.2597 0.2593

AFB(B
+ → Kµµ) (fla) −0.097 −0.09717 −0.09707

S7(B
+ → Kµµ) (fla) −0.0179 −0.01793 −0.01792

S8(B
+ → Kµµ) (fla) −0.01217 −0.01215 −0.01216

S9(B
+ → Kµµ) (fla) −0.0007138 −0.0007131 −0.0007135

P1(B
+ → Kµµ) (fla) 0.04543 0.04538 0.04541

P2(B
+ → Kµµ) (fla) −0.1359 −0.1361 −0.136

P3(B
+ → Kµµ) (fla) 0.0015 0.001498 0.001499

P ′
4(B

+ → Kµµ) (fla) 0.235 0.2341 0.2346

P ′
5(B

+ → Kµµ) (fla) 0.6811 0.6826 0.6816

P ′
6(B

+ → Kµµ) (fla) −0.04706 −0.04713 −0.04709

P ′
8(B

+ → Kµµ) (fla) −0.03198 −0.03193 −0.03196

FL(B
0 → Kµµ) (fla) 0.2972 0.2971 0.2973

S3(B
0 → Kµµ) (fla) 0.01083 0.01082 0.01082

S4(B
0 → Kµµ) (fla) 0.09582 0.09549 0.0957

S5(B
0 → Kµµ) (fla) 0.2605 0.2611 0.2608

AFB(B
0 → Kµµ) (fla) −0.09668 −0.09686 −0.09675

S7(B
0 → Kµµ) (fla) −0.02056 −0.02059 −0.02057

S8(B
0 → Kµµ) (fla) −0.002203 −0.002182 −0.002197

S9(B
0 → Kµµ) (fla) −0.0006991 −0.0006985 −0.0006988

P1(B
0 → Kµµ) (fla) 0.04449 0.04444 0.04447

P2(B
0 → Kµµ) (fla) −0.1324 −0.1326 −0.1325

P3(B
0 → Kµµ) (fla) 0.001436 0.001434 0.001436

P ′
4(B

0 → Kµµ) (fla) 0.2519 0.2511 0.2516

P ′
5(B

0 → Kµµ) (fla) 0.685 0.6864 0.6855

P ′
6(B

0 → Kµµ) (fla) −0.05405 −0.05413 −0.05408

P ′
8(B

0 → Kµµ) (fla) −0.005791 −0.005738 −0.005776

Cbsµµ
9 (fla) 0.02261 0.0142 0.02012

Cbsµµ
10 (fla) 0.0009718 −0.00568 −0.002634

C′bsµµ
9 (fla) 1.007× 10−7 3.501× 10−8 6.651× 10−8

C′bsµµ
10 (fla) −1.007× 10−7 −3.496× 10−8 −6.645× 10−8

Cbsee
9 (fla) −1.714× 10−6 −1.652× 10−7 −5.143× 10−7

Cbsee
10 (fla) 1.561× 10−6 1.379× 10−7 4.929× 10−7

R(K+ → π0µ+ν) (fla) 1.000 1.000 1.000

R(K+ → π0e+ν) (fla) 1.000 1.000 1.000

R(K0
L → π+µ−ν) (fla) 1.000 1.000 1.000

R(K0
L → π+e−ν) (fla) 1.000 1.000 1.000

R(K0
S → π±e∓ν) (fla) 1.000 1.000 1.000

R(K0
L → µ+µ−) (fla) 1.001 1.000 1.000

R(K0
L → e+e−) (fla) 0.9472 1.058 1.021

BR(K0
L → e∓µ±) (fla) 4.822× 10−14 6.372× 10−16 3.13× 10−15

BR(K0
S → µ+µ−) (fla) 5.168× 10−12 5.172× 10−12 5.169× 10−12

BR(K0
S → e+e−) (fla) 1.684× 10−16 1.637× 10−16 1.762× 10−16

R(K+ → µ+ν) (fla) 1.000 1.000 1.000

R(K+ → e+ν) (fla) 1.000 1.000 1.000

R(K+ → π+νν) (fla) 1.261 0.8588 1.939

BR(K0
L → π0νν) (fla) 2.573× 10−10 4.059× 10−11 2.184× 10−10

TABLE V: Theoretical predictions for the each of the benchmarks. In the first column we indicate how each
observable is computed, with fla being flavio. The computation of ϕs observable is not available in the current
version of flavio and needs to be added. The necessary functions for the implementation can be found in the

GitHub page.



17

[1] G. Arnison et al. (UA1), Phys. Lett. B 122, 103 (1983).
[2] S. Chatrchyan et al. (CMS), Phys. Lett. B 716, 30 (2012), 1207.7235.
[3] F. J. Hasert et al. (Gargamelle Neutrino), Phys. Lett. B 46, 138 (1973).
[4] F. J. Hasert et al., Phys. Lett. B 46, 121 (1973).
[5] F. Abe et al. (CDF), Phys. Rev. Lett. 74, 2626 (1995), hep-ex/9503002.
[6] R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, Science 360, 191 (2018), 1812.04130.
[7] D. Hanneke, S. F. Hoogerheide, and G. Gabrielse, Phys. Rev. A 83, 052122 (2011), 1009.4831.
[8] B. Abi et al. (Muon g-2), Phys. Rev. Lett. 126, 141801 (2021), 2104.03281.
[9] D. P. Aguillard et al. (Muon g-2) (2023), 2308.06230.

[10] J. P. Lees et al. (BaBar), Phys. Rev. D 88, 072012 (2013), 1303.0571.
[11] J. P. Lees et al. (BaBar), Phys. Rev. Lett. 109, 101802 (2012), 1205.5442.
[12] M. Huschle et al. (Belle), Phys. Rev. D 92, 072014 (2015), 1507.03233.
[13] Y. Sato et al. (Belle), Phys. Rev. D 94, 072007 (2016), 1607.07923.
[14] S. Hirose et al. (Belle), Phys. Rev. D 97, 012004 (2018), 1709.00129.
[15] R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 111803 (2015), [Erratum: Phys.Rev.Lett. 115, 159901 (2015)], 1506.08614.
[16] W. Altmannshofer and P. Stangl, Eur. Phys. J. C 81, 952 (2021), 2103.13370.
[17] S. Choudhury et al. (BELLE), JHEP 03, 105 (2021), 1908.01848.
[18] A. Abdesselam et al. (Belle), Phys. Rev. Lett. 126, 161801 (2021), 1904.02440.
[19] R. Aaij et al. (LHCb), JHEP 08, 055 (2017), 1705.05802.
[20] R. Aaij et al. (LHCb), Nature Phys. 18, 277 (2022), 2103.11769.
[21] LHCb Collaboration (2022), pre-print, 2212.09153.
[22] T. Aaltonen et al. (CDF), Science 376, 170 (2022).
[23] A. Strumia (2022), pre-print, hep-ph/2204.04191.
[24] M. Bauer and M. Neubert, Phys. Rev. Lett. 116, 141802 (2016), 1511.01900.
[25] W. Altmannshofer, P. S. Bhupal Dev, and A. Soni, Phys. Rev. D 96, 095010 (2017), 1704.06659.
[26] D. Das, C. Hati, G. Kumar, and N. Mahajan, Phys. Rev. D 94, 055034 (2016), 1605.06313.
[27] A. Angelescu, D. Bečirević, D. A. Faroughy, and O. Sumensari, JHEP 10, 183 (2018), 1808.08179.
[28] W. Altmannshofer, P. S. B. Dev, A. Soni, and Y. Sui, Phys. Rev. D 102, 015031 (2020), 2002.12910.
[29] G. Belanger et al., JHEP 02, 042 (2022), 2111.08027.
[30] M. Becker, D. Döring, S. Karmakar, and H. Päs, Eur. Phys. J. C 81, 1053 (2021), 2103.12043.
[31] A. Crivellin, B. Fuks, and L. Schnell (2022), 2203.10111.
[32] A. Crivellin, D. Mueller, and F. Saturnino, Phys. Rev. Lett. 127, 021801 (2021), 2008.02643.
[33] A. Crivellin, C. Greub, D. Müller, and F. Saturnino, Phys. Rev. Lett. 122, 011805 (2019), 1807.02068.
[34] M. Blanke and A. Crivellin, Phys. Rev. Lett. 121, 011801 (2018), 1801.07256.
[35] L. Calibbi, A. Crivellin, and T. Li, Phys. Rev. D 98, 115002 (2018), 1709.00692.
[36] A. Crivellin, D. Müller, and F. Saturnino, JHEP 06, 020 (2020), 1912.04224.
[37] A. Carvunis, A. Crivellin, D. Guadagnoli, and S. Gangal, Phys. Rev. D 105, L031701 (2022), 2106.09610.
[38] R. Coy and M. Frigerio, Phys. Rev. D 105, 115041 (2022), 2110.09126.
[39] D. Marzocca and S. Trifinopoulos, Phys. Rev. Lett. 127, 061803 (2021), 2104.05730.
[40] S. Saad and A. Thapa, Phys. Rev. D 102, 015014 (2020), 2004.07880.
[41] T. A. Chowdhury and S. Saad (2022), pre-print, hep-ph/2205.03917.
[42] S.-L. SChen, W.-w. Jiang, and Z.-K. Liu (2022), pre-print, hep-ph/2205.15794.
[43] I. Doršner, S. Fajfer, and N. Košnik, Eur. Phys. J. C 77, 417 (2017), 1701.08322.
[44] D. Aristizabal Sierra, M. Hirsch, and S. G. Kovalenko, Phys. Rev. D 77, 055011 (2008), 0710.5699.
[45] D. Zhang, JHEP 07, 069 (2021), 2105.08670.
[46] H. Päs and E. Schumacher, Phys. Rev. D 92, 114025 (2015), 1510.08757.
[47] Y. Cai, J. Herrero-García, M. A. Schmidt, A. Vicente, and R. R. Volkas, Front. in Phys. 5, 63 (2017), 1706.08524.
[48] K. S. Babu and J. Julio, Nucl. Phys. B 841, 130 (2010), 1006.1092.
[49] O. Catà and T. Mannel (2019), 1903.01799.
[50] O. Popov and G. A. White, Nucl. Phys. B 923, 324 (2017), 1611.04566.
[51] T. Nomura, H. Okada, and Y. Orikasa, Eur. Phys. J. C 81, 947 (2021), 2106.12375.
[52] W.-F. Chang, JHEP 09, 043 (2021), 2105.06917.
[53] T. Nomura and H. Okada, Phys. Rev. D 104, 035042 (2021), 2104.03248.
[54] K. S. Babu, P. S. B. Dev, S. Jana, and A. Thapa, JHEP 03, 006 (2020), 1907.09498.
[55] T. Faber, M. Hudec, H. Kolešová, Y. Liu, M. Malinsk´y, W. Porod, and F. Staub, Phys. Rev. D 101, 095024 (2020),

1812.07592.
[56] T. Faber, M. Hudec, M. Malinský, P. Meinzinger, W. Porod, and F. Staub, Phys. Lett. B 787, 159 (2018), 1808.05511.
[57] I. Bigaran, J. Gargalionis, and R. R. Volkas, JHEP 10, 106 (2019), 1906.01870.
[58] J. Gargalionis, I. Popa-Mateiu, and R. R. Volkas, JHEP 03, 150 (2020), 1912.12386.
[59] J. Gargalionis and R. R. Volkas, JHEP 01, 074 (2021), 2009.13537.
[60] S. Saad, Phys. Rev. D 102, 015019 (2020), 2005.04352.



18

[61] J. Julio, S. Saad, and A. Thapa (2022), pre-print, 2203.15499.
[62] J. Julio, S. Saad, and A. Thapa (2022), pre-print, 2202.10479.
[63] A. Crivellin, C. Greub, D. Müller, and F. Saturnino, JHEP 02, 182 (2021), 2010.06593.
[64] Y. Cai, J. Gargalionis, M. A. Schmidt, and R. R. Volkas, JHEP 10, 047 (2017), 1704.05849.
[65] A. P. Morais, R. Pasechnik, and W. Porod, Eur. Phys. J. C 80, 1162 (2020), 2001.06383.
[66] A. P. Morais, R. Pasechnik, and W. Porod, Universe 7, 461 (2021), 2001.04804.
[67] S. Borsanyi et al., Nature 593, 51 (2021), 2002.12347.
[68] C. Alexandrou et al. (Extended Twisted Mass), Phys. Rev. D 107, 074506 (2023), 2206.15084.
[69] M. Cè et al., Phys. Rev. D 106, 114502 (2022), 2206.06582.
[70] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. Lett. 109, 111808 (2012), 1205.5370.
[71] T. Aoyama, T. Kinoshita, and M. Nio, Atoms 7, 28 (2019).
[72] A. Czarnecki, W. J. Marciano, and A. Vainshtein, Phys. Rev. D67, 073006 (2003), [Erratum: Phys. Rev. D73, 119901

(2006)], hep-ph/0212229.
[73] C. Gnendiger, D. Stöckinger, and H. Stöckinger-Kim, Phys. Rev. D88, 053005 (2013), 1306.5546.
[74] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur. Phys. J. C77, 827 (2017), 1706.09436.
[75] A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D97, 114025 (2018), 1802.02995.
[76] G. Colangelo, M. Hoferichter, and P. Stoffer, JHEP 02, 006 (2019), 1810.00007.
[77] M. Hoferichter, B.-L. Hoid, and B. Kubis, JHEP 08, 137 (2019), 1907.01556.
[78] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur. Phys. J. C 80, 241 (2020), [Erratum: Eur.Phys.J.C 80, 410

(2020)], 1908.00921.
[79] A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D 101, 014029 (2020), 1911.00367.
[80] A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, Phys. Lett. B734, 144 (2014), 1403.6400.
[81] K. Melnikov and A. Vainshtein, Phys. Rev. D70, 113006 (2004), hep-ph/0312226.
[82] P. Masjuan and P. Sánchez-Puertas, Phys. Rev. D95, 054026 (2017), 1701.05829.
[83] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, JHEP 04, 161 (2017), 1702.07347.
[84] M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P. Schneider, JHEP 10, 141 (2018), 1808.04823.
[85] A. Gérardin, H. B. Meyer, and A. Nyffeler, Phys. Rev. D100, 034520 (2019), 1903.09471.
[86] J. Bijnens, N. Hermansson-Truedsson, and A. Rodríguez-Sánchez, Phys. Lett. B798, 134994 (2019), 1908.03331.
[87] G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and P. Stoffer, JHEP 03, 101 (2020), 1910.13432.
[88] T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, C. Jung, and C. Lehner, Phys. Rev. Lett. 124, 132002 (2020),

1911.08123.
[89] G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera, and P. Stoffer, Phys. Lett. B735, 90 (2014), 1403.7512.
[90] T. Aoyama et al., Phys. Rept. 887, 1 (2020), 2006.04822.
[91] G. W. Bennett et al. (Muon g-2), Phys. Rev. D 73, 072003 (2006), hep-ex/0602035.
[92] I. Doršner, S. Fajfer, and O. Sumensari, JHEP 06, 089 (2020), 1910.03877.
[93] G. Arcadi, L. Calibbi, M. Fedele, and F. Mescia, Phys. Rev. Lett. 127, 061802 (2021), 2104.03228.
[94] P. F. Perez, C. Murgui, and A. D. Plascencia, Phys. Rev. D 104, 035041 (2021), 2104.11229.
[95] Y. S. Amhis et al. (Heavy Flavor Averaging Group, HFLAV), Phys. Rev. D 107, 052008 (2023), 2206.07501.
[96] D. M. Straub (2022), pre-print, hep-ph/1810.08132.
[97] J. A. Bailey et al. (MILC), Phys. Rev. D 92, 034506 (2015), 1503.07237.
[98] D. Bigi and P. Gambino, Phys. Rev. D 94, 094008 (2016), 1606.08030.
[99] D. Bardhan, P. Byakti, and D. Ghosh, JHEP 01, 125 (2017), 1610.03038.

[100] E. Ganiev, On radiative and electroweak penguin decays, https://indico.desy.de/event/34916/contributions/
146877/attachments/84380/111798/EWP@Belle2_EPS.pdf (2023).

[101] M. Aaboud et al. (ATLAS), Eur. Phys. J. C 78, 110 (2018), [Erratum: Eur.Phys.J.C 78, 898 (2018)], 1701.07240.
[102] R. Aaij et al. (LHCb), JHEP 01, 036 (2022), 2109.01113.
[103] (2023).
[104] J. de Blas, M. Pierini, L. Reina, and L. Silvestrini, Phys. Rev. Lett. 129, 271801 (2022), 2204.04204.
[105] A. Crivellin, D. Müller, and F. Saturnino, JHEP 11, 094 (2020), 2006.10758.
[106] S. Schael et al. (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD

Heavy Flavour Group), Phys. Rept. 427, 257 (2006), hep-ex/0509008.
[107] P. Arnan, D. Becirevic, F. Mescia, and O. Sumensari, JHEP 02, 109 (2019), 1901.06315.
[108] C. Bobeth and A. J. Buras, JHEP 02, 101 (2018), 1712.01295.
[109] I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik, and N. Košnik, Phys. Rept. 641, 1 (2016), 1603.04993.
[110] A. Crivellin, D. Müller, and L. Schnell, Phys. Rev. D 103, 115023 (2021), 2104.06417.
[111] G. Aad et al. (ATLAS), Phys. Rev. D 104, 112005 (2021), 2108.07665.
[112] G. Aad et al. (ATLAS), JHEP 06, 179 (2021), 2101.11582.
[113] A. M. Sirunyan et al. (CMS), JHEP 03, 170 (2019), 1811.00806.
[114] A. M. Sirunyan et al. (CMS), Phys. Rev. Lett. 121, 241802 (2018), 1809.05558.
[115] R. L. Workman et al. (Particle Data Group), PTEP 2022, 083C01 (2022).
[116] F. Staub, Comput. Phys. Commun. 185, 1773 (2014), 1309.7223.
[117] W. Porod and F. Staub, Comput. Phys. Commun. 183, 2458 (2012), 1104.1573.
[118] J. Aebischer, J. Kumar, and D. M. Straub, Eur. Phys. J. C 78, 1026 (2018), 1804.05033.
[119] Wes McKinney, in Proceedings of the 9th Python in Science Conference, edited by Stéfan van der Walt and Jarrod Mill-

https://indico.desy.de/event/34916/contributions/146877/attachments/84380/111798/EWP@Belle2_EPS.pdf
https://indico.desy.de/event/34916/contributions/146877/attachments/84380/111798/EWP@Belle2_EPS.pdf


19

man (2010), pp. 56 – 61.
[120] R. Mandal and A. Pich, JHEP 12, 089 (2019), 1908.11155.
[121] D. A. Faroughy, A. Greljo, and J. F. Kamenik, Phys. Lett. B 764, 126 (2017), 1609.07138.
[122] A. Greljo and D. Marzocca, Eur. Phys. J. C 77, 548 (2017), 1704.09015.
[123] G. D’Amico, M. Nardecchia, P. Panci, F. Sannino, A. Strumia, R. Torre, and A. Urbano, JHEP 09, 010 (2017), 1704.05438.
[124] Y. S. Amhis et al. (HFLAV), Eur. Phys. J. C 81, 226 (2021), 1909.12524.
[125] K. Inami et al. (Belle), Phys. Lett. B 551, 16 (2003), hep-ex/0210066.
[126] J. Grygier et al. (Belle), Phys. Rev. D 96, 091101 (2017), [Addendum: Phys.Rev.D 97, 099902 (2018)], 1702.03224.
[127] R. Aaij et al. (LHCb), JHEP 09, 177 (2014), 1408.0978.
[128] R. Aaij et al. (LHCb), Phys. Rev. Lett. 126, 161802 (2021), 2012.13241.
[129] R. Aaij et al. (LHCb), Phys. Rev. Lett. 125, 011802 (2020), 2003.04831.


	Contents
	Introduction
	The minimal LQ model
	Setting up the problem: Anomalies
	Anomalous magnetic moment of the muon
	RD,D* flavour anomaly
	CDF W-mass anomaly
	Constraints on the parameter space


	Numerical methodology
	Numerical results
	Conclusions
	Acknowledgments
	Numerical benchmarks for best fit points
	References

