
Springer Nature 2021 LATEX template

Ensemble Reservoir Computing for

Dynamical Systems: Prediction of

Phase-Space Stable Region for Hadron

Storage Rings

Maxime Casanova1,2*, Barbara Dalena1*†, Luca
Bonaventura2† and Massimo Giovannozzi3†

1*DRF/Irfu/DACM, CEA Paris Saclay and Paris Saclay
University, Gif-Sur-Yvette, 91191, France.

2Dipartimento di Matematica, Politecnico di Milano, Via Bonardi
9, Milano, 20132, Italy.

3Beams Department, CERN, Esplanade des Particules 1, Geneva,
1211, Geneva, Switzerland.

*Corresponding author(s). E-mail(s):
casanovamaxime@outlook.com; barbara.dalena@cea.fr;

Contributing authors: luca.bonaventura@polimi.it;
massimo.giovannozzi@cern.ch;

†These authors contributed equally to this work.

Abstract

We investigate the ability of an ensemble reservoir computing approach
to predict the long-term behaviour of the phase-space region in which
the motion of charged particles in hadron storage rings is bounded,
the so-called dynamic aperture. Currently, the calculation of the phase-
space stability region of hadron storage rings is performed through direct
computer simulations, which are resource- and time-intensive processes.
Echo State Networks (ESN) are a class of recurrent neural networks
that are computationally effective, since they avoid backpropagation
and require only cross-validation. Furthermore, they have been proven
to be universal approximants of dynamical systems. In this paper, we
present the performance reached by ESN based on an ensemble approach
for the prediction of the phase-space stability region and compare it
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with analytical scaling laws based on the stability-time estimate of the
Nekhoroshev theorem for Hamiltonian systems. We observe that the
proposed ESN approach is capable of effectively predicting the time evo-
lution of the extent of the dynamic aperture, improving the predictions
by analytical scaling laws, thus providing an efficient surrogate model.

Keywords: Non-linear beam dynamics, Echo State Network, Colliders and
storage rings, Dynamical systems

1 Introduction

The advent of superconducting, high-energy hadron storage rings and collid-
ers elevated non-linear beam dynamics to the forefront of accelerator design
and operation. When studying phenomena in the field of single-particle beam
dynamics, the concept of dynamic aperture (DA), that is, the extent of the
phase space region where bounded motion occurs, has been a key observable
to guide the design of several past (see, e.g. [1, 2, 3, 4, 5, 6]), present, e.g. the
CERN Large Hadron Collider (LHC) [7], and future hadron machines (see e.g.
[8, 9, 10, 11, 12, 13, 14, 15]).

DA prediction involves many challenging aspects, including understanding
the mechanisms that determine its behaviour and addressing several com-
putational problems. An important issue is the possibility of modelling the
evolution of DA as a function of the number of turns, which has been studied
since the end of the 90s [16, 17]. Indeed, determining how to describe and effi-
ciently predict the value of the DA might solve some fundamental problems
in accelerator physics, linked to performance optimisation of storage rings and
colliders. The high computational cost of direct numerical simulations would
be significantly reduced if a reliable model for the time evolution of the DA
were available. In fact, the numerical simulations required to assess the per-
formance of a circular accelerator cannot cover a time span comparable with
operational intervals. For the LHC case, simulations up to 106 turns are at the
limit of the CPU-time capabilities, although this represents only about 89 s of
storage time, knowing that a typical fill time is of the order of several hours.
Eventually, a model for the evolution of DA over time would also open the
possibility of studying observables that are more directly related to machine
performance, such as beam losses and lifetime [18] and luminosity evolution in
colliders [19, 20].

A successful solution to this problem has been found by building models
for DA scaling with time based on fundamental results of dynamical system
theory, such as the Nekhoroshev theorem [21, 22, 23]. In fact, models with two
or three parameters can be derived that can be fitted to numerical data that
represent the evolution of the DA and used to predict the DA value for times
beyond the current computational capabilities [24].
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In the last decade, the use of neural networks has increased significantly in
a large number of diverse research areas, and this observation has suggested
their application to the prediction of the evolution of DA. For example, neural
networks are used for speech recognition [25] or to forecast wind power [26].
Among neural network techniques, the most common architectures are feedfor-
ward [27], convolutional [28], and recurrent [29] neural networks. Feedforward
neural networks are made up of neurons connected to other neurons, only.
They provide only input-output relationships and can approximate very large
classes of functions. On the other hand, recurrent neural networks are made
up of neurons connected to themselves and other neurons. They preserve an
internal state that is a non-linear transformation of the input signal and can
therefore be considered as dynamical systems.

Echo State Networks (ESN) are one of the classes of recurrent neural net-
works that use the reservoir computing approach [30]. This approach has the
main advantage of significantly reducing the computational time required by
the training process, which is performed to find the optimal parameters (called
weights) of a neural network. In fact, the peculiarity of the ESN is that train-
ing is performed, usually using linear regression [31], to calculate the weights
used to project the reservoir state onto the output state. Therefore, no back-
propagation is needed. Backpropagation [32] refers to the numerical procedure,
usually based on the stochastic gradient method, used for the training of feed-
forward networks, which is responsible for a large share of its computational
cost. ESN have also been proven to be universal approximants of dynamical
systems [33]. Thus, ESN seem to be natural candidates for performing the pre-
diction of DA for a large number of turns, and hence challenge the performance
of the deterministic models developed so far.

This paper is organised as follows: In Section 2, we introduce the concept
of DA and the approach used to provide numerical estimates of its value. Ana-
lytical scaling laws, based on the Nekhoroshev theorem and used to predict the
time evolution of DA, are also presented. Section 3 introduces the continuous-
time leaky ESN framework that is used for the prediction of DA. The Echo
State Property (ESP), and a sufficient condition that can be applied in practice
to satisfy it, are discussed in the Appendix A. Section 4 describes the ensem-
ble procedure used in the cross-validation of the ESN and in the prediction of
DA. The results are presented and discussed in Section 5, while conclusions
are drawn in Section 6.

2 Dynamic Aperture

2.1 Generalities

We consider a Hamiltonian system in R2n, with a stable fixed point at the
origin, whose dynamics is generated by a polynomial map M, and such that
the linear part of M is described by the direct product of rotations. Under
these conditions, the DA of the system under consideration is the extent of
the region of phase space in which bounded motion occurs.
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Following [34] and restricting the analysis to the case of Hamiltonian sys-
tems in R4, which are relevant for accelerator physics, we consider the phase
space volume of the initial conditions that are bounded after N iterations,
namely ∫ ∫ ∫ ∫

χ(x1, px1 , x2, px2) dx1 dpx1 dx2 dpx2 , (1)

where χ(x1, px1
, x2, px2

) is the characteristic function defined as equal to one
if the orbit starting at (x1, px1

, x2, px2
) is bounded and zero if it is not.

To exclude the disconnected part of the stability domain in the integral (1),
we have to choose a suitable coordinate transformation. As linear motion is
given by the direct product of constant rotations, the natural choice is to
use the polar variables (ri, ϑi), where r1 and r2 are the linear invariants of
dynamics. The non-linear part of the equations of motion adds a coupling
between the two planes, the perturbative parameter being the distance from
the origin. Therefore, it is natural to replace r1 and r2 by the polar variables
r cosα and r sinα, respectively:

x1 = r cosα cosϑ1

px1
= r cosα sinϑ1 r ∈ [0,+∞[

α ∈ [0, π/2]
x2 = r sinα cosϑ2 θi ∈ [0, 2π[ i = 1, 2
px2

= r sinα sinϑ2 .

(2)

Substituting in Eq. (1) we obtain∫ 2π

0

∫ 2π

0

∫ π/2

0

∫ ∞
0

χ(r, α, ϑ1, ϑ2) r3 sinα cosα dΩ4 , (3)

where dΩ4 represents the volume element

dΩ4 = dr dα dϑ1 dϑ2 . (4)

Having fixed α and ϑ = (ϑ1, ϑ2), let r(α,ϑ, N) be the last value of r whose
orbit is bounded after N iterations. Then, the volume of a connected domain
in which the motion is bounded is given by

Aα,ϑ,N =
1

8

∫ 2π

0

∫ 2π

0

∫ π/2

0

[r(α,ϑ, N)]4 sin 2α dΩ3 , (5)

where
dΩ3 = dα dϑ1 dϑ2 . (6)

In this way, we exclude stable islands that are not connected to the main stable
domain. Note that, in principle, this method might also lead to excluding
connected parts. We then define the DA as the radius of the hypersphere that
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has the same volume as the stability domain

rα,ϑ,N =

(
2Aα,ϑ,N
π2

)1/4

. (7)

When Eq. (5) is implemented in a computer code, one considers K steps
in the angle α and L steps in the angles ϑi, and the dynamic aperture reads

rα,ϑ,N =

 π

2KL2

K∑
k=1

L∑
l1,l2=1

[r(αk,ϑ`, N)]4 sin 2αk

1/4

,

where ` = (l1, l2).
The numerical error is given by the discretization in angles ϑi, α, and

radius r, which gives a relative error proportional to L−1, K−1, and J−1,
respectively. This numerical error can be optimised by choosing integration
steps that produce comparable errors, i.e. J ∝ K ∝ L. In this way, neglecting
the constants in front of the error estimates, one can obtain a relative error of
1/(4J) by evaluating the J4 orbits, i.e. NJ4 iterates. The fourth power in the
number of orbits comes from the dimensionality of phase space and makes a
precise estimate of the dynamic aperture very CPU time consuming.

It is possible to reduce the size of the scanning procedure, and hence the
CPU time needed, by setting the angles θ to a constant value, e.g. zero, thus
performing only a 2D scan over r and α. This is what is generally done in
SixTrack simulations [35, 36]. In this case, the transformation (2) reads

x1 = r cosα
px1

= 0 r ∈ [0,+∞[
x2 = r sinα α ∈ [0, π/2]
px2

= 0 ,

(8)

and the original integral is transformed to∫ π/2

0

∫ ∞
0

r dr dα . (9)

Having fixed α, let r(α,N) be the last value of r whose orbit is bounded after
N iterations. Then, the volume of a connected stability domain is given by

Aα,N =
1

2

∫ π/2

0

[r(α,N)]2 dα . (10)



Springer Nature 2021 LATEX template

6 Ensemble Reservoir Computing for Dynamical Systems

We define the dynamic aperture as the radius of the sphere that has the same
volume as the stability domain1

rα,N =

(
4Aα,N
π

)1/2

. (11)

When Eq. (10) is implemented in a computer code, one considers K steps
in the angle α, and the dynamic aperture reads

rα,N =

[
1

K

K∑
k=1

[r(αk, N)]2

]1/2

, (12)

so that the numerical error is given by discretising the angle α and the radius
r, which yields a relative error proportional to K−1 and J−1, respectively. In
this case, the integration steps should also be selected to produce comparable
errors, i.e. J ∝ K. In this way, neglecting the constants which are in front of
the error estimates, one can obtain a relative error of 1/(2J) by evaluating J2

orbits, i.e. NJ2 iterates2. Note that Eq. (10) can be evaluated using higher-
order numerical integration rules as implemented in the post-processing tools
linked with SixTrack [36].

It is worth noting that, in some applications, the simplified formula

rα,N =
1

K

K∑
k=1

[r(αk, N)] , (13)

which corresponds to computing the average of r(αk, N) over the angle αk,
could be used [17].

2.2 DA Scaling Law

All the definitions of DA estimates presented in the previous section are func-
tions of N , the turn number used to estimate the orbit stability from the results
of numerical simulations. It is evident that the definition of DA itself implies
that it is a non-increasing function of N . The key point is whether it is pos-
sible to find the functional form of this time dependence, and several studies
have shown that this is indeed the case [17, 24]. In fact, such a functional form
can be built by considering the estimate of the stability time provided by the
Nekhoroshev theorem [21, 22, 23], which is a key and very general theorem in
the theory of Hamiltonian dynamical systems.

1Note that the region providing the stability domain is confined to a surface that is 1/4 of a
circle and this has been considered in Eq. (11).

2The factor 2 in the error estimate is due to the dimensionality of the phase space
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The first models were described in [17] and then reviewed in [24] and the
two that we retained after the review read

Model 2 ⇒ D(N) = ρ∗

( κ
2e

)κ 1

lnκ N
N0

, (14)

where the free parameters are ρ∗, κ,N0, but it is customary to set N0 = 1, and

Model 4 ⇒ D(N) = ρ∗×

× 1[
−2 eλW−1

(
− 1

2 eλ

(
ρ∗
6

)1/κ ( 8
7N
)−1/(λκ)

)]κ , (15)

where the free parameters are ρ∗, κ, and possibly λ, unless it is fixed to the
value of 1/2 according to the analytic Nekhoroshev estimate. W−1 stands
for the negative branch of the Lambert-W function, a multi-valued special
function (see, e.g. [37] for a review of the properties and applications of the
Lambert function). Note that D(N) stands for rα,ϑ,N or rα,N , depending on
the numerical approach used to estimate the DA. The nomenclature of the
models presented in Eqs. (14) and (15) reflects the historical development of
these models and the nomenclature used in [24].

An example of the numerical calculation of the DA for a realistic model of
the luminosity upgrade of the CERN LHC, HL-LHC [13], and the correspond-
ing fitted scaling law using all available DA data are shown in Fig. 1, where the
excellent agreement between the numerical data and the fit model is clearly
visible. We denote by SL-ALL the fitting of Model 2 using all available DA
data.

Fig. 1: Example of DA numerical computation for a realistic model of the
HL-LHC with the corresponding fitted scaling law. The excellent agreement

between the numerical data and the fit model is clearly visible.

Note that in the rest of the paper Model 2 is the only scaling law model
used.
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2.3 DA data organisation

In this section, we present the data sets used to test the predictive model
introduced in Section 4. The first data set is obtained from a realistic model
of the HL-LHC, whereas the second one is obtained from the 4D Hénon map.

2.3.1 The HL-LHC case

The HL-LHC data set, presented in Fig. 2, is composed of 60 realisations (also
called seeds due to the underlying random generator used for the generation
of the realisations) of the magnetic field errors of the magnetic lattice of the
HL-LHC, for the collision optics with β∗=15 cm and proton energy of 7 TeV.
The 60 realisations are supposed to accurately represent the actual lattice of
the HL-LHC; for this reason, the DA computation is customarily performed
using the complete set of realisations to provide an accurate estimate of the
DA of the actual accelerator. Magnetic field errors are assigned to all magnets
that make up the ring. Initial conditions (also called particles) are distributed
in physical space to probe the orbit stability and thus determine the DA.
Different amplitudes and angles in the x − y plane are used to sample the
phase space. In the cases considered here, 11 angles, uniformly distributed in
the interval ]0, π/2[, are used, while the amplitudes are uniformly distributed
in the interval ]0, 28σ[, with 30 initial conditions defined in each 2σ interval.
Note that 30 particles are evenly distributed in each amplitude interval of 2σ,
and σ represents the root mean square (rms) beam size, which is used as a
natural unit in these studies. All initial conditions are tracked for 105 turns.
The numerical estimates of DA as a function of N are calculated according to
Eq. (10) and are shown in Fig. 2 (left).

Fig. 2: Left: Evolution of DA as a function of time for the 60 realisations of
the HL-LHC magnetic lattice. Right: Splitting of the HL-LHC data set into

training, validation, and test sets.

We build piecewise constant functions so that each DA estimate now con-
tains 103 data points, with the aim of obtaining DA estimates in constant time
steps. These 103 data points are then divided into training set, validation set,
and test set. The first ktrain = 450 data are used for training, the next kval = 50
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data for validation, and the remaining ktest = 500 data for testing. Note that
the end of the training and validation sets corresponds to N = 5.104, and the
end of the testing to N = 105 turns. A graph of the 60 piecewise constant
functions split into training set, validation set and test set is shown in Fig. 2
(right). Note that each of the 60 realisations corresponds to a different DA on
which we will train, validate, and test our ESN model.

2.3.2 The 4D Hénon map case

The 4D Hénon map is a well-known dynamical system that displays a rich
dynamical behaviour as presented in, e.g. [38]. The model used to generate
DA estimates is defined as:


xn+1

px,n+1

yn+1

py,n+1

 = R̃


xn

px,n + x2
n − y2

n + µ
(
x3
n − 3y2

nxn
)

yn
py,n − 2xnyn + µ

(
y3
n − 3x2

nyn
)
 (16)

where the subscript n denotes the discrete time and R̃ is a 4× 4 matrix given
by the direct product of two 2× 2 rotation matrices R:

R̃ =

(
R(ωx,n) 0

0 R(ωy,n)

)
, (17)

where the linear frequencies vary with the discrete time n according to

ωx,n = ωx,0

(
1 + ε

m∑
k=1

εkcos(Ωkn)

)
(18)

ωy,n = ωy,0

(
1 + ε

m∑
k=1

εkcos(Ωkn)

)
, (19)

where ε denotes the amplitude of the frequency modulation and εk and Ωk are
fixed parameters, which are taken from previous studies [24]3.

The 4D Hénon map is a simplified model of a circular accelerator. In par-
ticular, it describes the effects of a sextupole and octupole magnet on the
transverse particle motion through the quadratic, due to the sextupole, and
cubic, due to the octupole, non-linear terms. Being a simplified accelerator
model, it allows one to track particles up to a much larger number of turns, and
for more amplitudes and angles, namely 100 amplitudes and angles uniformly
distributed in the interval ]0, 0.25[ and ]0, π/2[ respectively. The 4D Hénon

3Note that all εk are of order 10−4. Therefore, even if ε is large, the effective modulation of the
frequencies shown in Eqs. (18) and (19) is very small.
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map data set is composed of 60 cases, for 20 different values of ε uniformly dis-
tributed in the interval [0, 20[ and µ ∈ {−0.2, 0, 0.2}, covering up to 108 turns.
Similarly to the HL-LHC data set, we build piecewise-constant functions so
that each case yields 1000 data points. The first ktrain = 450 data are used for
training, the next kval = 50 data for validation, and the last ktest = 500 data
for testing. Note that we used the same number of training, validation, and
test data for the HL-LHC case. The 60 piecewise constant functions divided
into training set, validation set, and test set are shown in Fig. 3.

Fig. 3: Splitting of the 4D Hénon map data set into training, validation, and
test sets. The sudden drop in DA visible for N ≈ 103 occurs when ε > 15.

Note that because of the larger number of amplitudes and angles consid-
ered, the DA data are smoother than those of the HL-LHC case. Furthermore,
each of the 60 cases generated in this data set corresponds to a different
dynamics for which we will train, validate, and test our ESN model.

3 Echo State Networks

In this section, we present some general concepts about ESN. More specifi-
cally, we introduce the mathematical framework of continuous-time leaky ESN
applied to supervised learning tasks.

3.1 Shallow ESN

Shallow ESN are a class of Recurrent Neural Networks using the Reservoir
Computing approach [30]. In this type of neural network, the data input is
fed into a single, random, and non-trainable network, called the reservoir.
The reservoir is eventually connected by trainable weights to the ESN output.
The use of ESN for time series prediction has become widespread due to its
inexpensive training process and its remarkable performance in the modelling
of dynamical systems [39].
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Contrary to feedforward neural networks, ESN do not suffer from vanishing
or divergent gradients (caused by the fact that the parameters of neural net-
works remain almost constant or lead to numerical instabilities), which induces
poor performance of the training algorithm [40].

ESN can be defined for discrete- or continuous-time systems. The reservoir
dynamics can be defined with or without the leaking rate parameter, which
can be considered as the speed of the reservoir update dynamics. We introduce
the definition of a shallow leaky ESN in continuous time as in [41]. We consider
the case of networks with continuous-time t, K inputs, Nr reservoir neurons,
and M outputs. Note that we will use small letters to indicate vectors and
capital letters to indicate matrices. We define by u = u(t) ∈ RK the input data
and xtrain = xtrain(t) ∈ RM the training data that we want to learn with the
ESN model. The ESN output is denoted by xout = xout(t) ∈ RM , while the
internal reservoir activation state is given by x = x(t) ∈ RNr . Furthermore, we
define the input weight matrix W in ∈MNr×K(R), the reservoir weight matrix
W ∈ MNr×Nr

(R), and the output weight matrix W out ∈ MM×(Nr+K)(R).
The discretised (by the Euler method) time dynamics of a leaky ESN is given
by:

xk = F (xk−1, uk) = (1− a∆t)xk−1 + ∆tf(W inuk +Wxk−1) (20)

xout
k = g(W out[xk; uk]) (21)

where ∆t = δ/c with δ the size of the Euler discretization step and c a global
time constant, a the leaking rate, f a sigmoid function, g the output activation
function, [.; .] denotes vector concatenation, xk the update of the reservoir
activation state at discrete time k and xout

k the ESN output at the same time k.
In the case of a linear readout, i.e. when g is the identity function, we can

rewrite Eq. (21) in matrix notation as:

Xout = W outX (22)

where Xout ∈ MM×(ktrain−BI)(R) contains the M ESN outputs xout at every
time step k = BI, . . . , ktrain and where X ∈ M(Nr+K)×(ktrain−BI)(R) contains
the concatenation of the input u and the activation state of the reservoir x at
every k = BI, . . . , ktrain, namely

X =

(
uBI . . . uktrain
xBI . . . xktrain+1

)
, (23)

where BI denotes the Burn-In data, i.e. the number of input data we want to
discard at the beginning of the training phase.
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The optimal output weight matrix W out can be found by solving the
following minimisation problem:

W out = argminJ(W out)

= argmin
1

M

M∑
i=1

( T∑
k=BI

(xout
ik − xtrain

ik )2 + β‖wout
i ‖2

)
,

(24)

where J denotes the cost function we want to minimise and ‖wout
i ‖ is the

Euclidean norm of the ith row of W out.
The solution of the minimisation problem stated in Eq. (24) can be found

efficiently using linear regression with Tikhonov (Ridge) regularisation [42]:

W out = XtrainXT (XXT + βI)−1 (25)

where the superscript T denotes the transpose, I ∈M(Nr+K)×(Nr+K)(R) is the
identity matrix, and Xtrain ∈ MM×(ktrain−BI)(R) is the training data matrix,
which contains the M training data xtrain at time step k = BI, . . . , ktrain.

The learning phase is carried out on the so-called training set, which con-
tains the ktrain training data xtrain. A sketch of the training phase of the ESN
is provided in Fig. 4.

Fig. 4: Sketch of the training procedure for a shallow leaky ESN. The size of
the matrices has been arbitrarily selected. E denotes the square of the

Euclidean norm error between the ESN output xout
k and the training data

xtrain
k , k = BI, . . . , ktrain.

After training, the ESN hyperparameters, defined in Section 4, are tuned
using kval validation data. Finally, the ESN is tested using the ktest data to
check the ability of the ESN to predict new data. The validation and test
procedures are detailed in Section 4. As stated in Eq. (24), only the output
weight matrix W out is trained, while the input and reservoir matrices W in and
W are randomly generated, as explained in detail in Section 4.
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3.2 Deep ESN

A deep ESN is an ESN composed of L stacked reservoirs, as shown in the
sketch of the deep ESN training phase in Fig. 5.

Fig. 5: Sketch of the training procedure for deep ESN with L reservoirs.

In this case, W (l) denotes the lth reservoir weight matrix, W in(l) the lth

input weight matrix, x
(l)
k the local internal reservoir state vector, and xk the

global internal reservoir state vector. Equations (20) and (21) for a shallow
ESN read now

x
(l)
k = (1− a∆t)x

(l)
k−1 + ∆tf(W (l−1)x

(l−1)
k +W (l)xk−1) l > 1

(26)

xout
k = g(W out[xk; uk]) ,

where xk is the concatenation of all x
(l)
k .

4 ESN predictive model for DA evolution

In the previous section, we have introduced the definition of a shallow leaky
ESN and its extension as a deep ESN. In Eqs. (20) and (26) we can already
identify some parameters (called hyperparameters) of the ESN predictive
model. These are the leaking rate a, the number of stacked reservoirs L, the
dimension Nr of the reservoir matrix W and the activation function f usu-
ally set as the hyperbolic tangent function tanh. In Appendix A, we give a
sufficient condition on the spectral radius ρ of the reservoir matrix W , which
can also be considered as a hyperparameter, that guarantees the Echo State
Property (ESP).

Other hyperparameters are often introduced in the implementation of ESN
equations. Specifically, the sparsity ratio s of the reservoir matrix W , i.e. the
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fraction of 0 elements in the reservoir matrix W and BI (as in [43]), which
corresponds to the number of time steps of the input data that are discarded.
Furthermore, the regularisation parameter β in Eq. (25) also needs to be opti-
mised and is also considered a hyperparameter of the ESN model. Setting large
values for β is generally used to avoid overfitting and may improve prediction
in the test set. To complete the definition of the predictive model of the ESN,
we must assign a value to all hyperparameters, knowing that the performance
of the model strongly depends on the choice of their values.

It is a common procedure in ESN training to perform an optimisation of
these hyperparameters, which is usually done by grid search methods [44], in
the validation set. The validation procedure considered here is based on an
ensemble approach to deal with the randomness of the reservoirs. Eventually,
once the predictive model has been trained and validated, we can test it in the
test set with unseen data.

4.1 ESN ensemble validation approach

The ensemble validation approach used in our studies is based on the principle
of minimising the average of the Relative Root Mean Square Error (RRMSE)
of Nd dynamics predicted (i.e, 60 seeds for the HL-LHC dataset and 60 cases
for the 4D Henon map) for NW different randomly generated reservoirs and
various hyperparameters values on the validation set. Note that for each of the
Nd dynamics, we predict a mean over the NW reservoirs. Additionally, each
of the Nd dynamics contains different input/training/validation/test data, so
that each prediction is performed independently of the others. We define this
RRMSE on the validation set RRMSEval as:

RRMSEval =
1

Nd

Nd∑
i=1

100

√√√√∑kval
k=1(xout−i

mean,k − x
val−i
k )2∑kval

k=1(xval−i
k )2

 (27)

where kval is the number of validation data, xout−i
mean is the mean over the NW

reservoirs for the ith dynamics at time k, and xval−i
k is the validation data at

the same time k for the same ith dynamics.
This procedure aims to build a robust predictive model in which all hyper-

parameters are fixed. The search of the hyperparameters values minimizing the
RRMSEval is done over a domain Sh. Each of the hyperparameters is updated
one by one using the value in Sh, which minimises RRMSEval. Furthermore,
as mentioned above, this ensemble validation method requires the generation
of different random matrices W and W in. This is done by sampling their ele-
ments from a uniform pseudorandom distribution in (0, 1) and scaling them to
the interval (-0.5,0.5) so that they also have negative elements. The procedure
for generating W in and W is detailed in Algorithm 1, while a pseudocode of
the general ensemble validation procedure is presented in Algorithm 2.

Note that the functions Training() and Prediction() implement the
equations presented in Section 3.
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Algorithm 1 Generation of the random matrix Win and W .

Require: ρ spectral radius we want to set to W̃ = ∆t‖W‖ + (1-a∆t)I, K
input size, Nr reservoir size

Ensure: W in input weight matrix, W reservoir weight matrix
1: Random initialisation of W in

i,j ∼ U (0,1) - 0.5 , i = 1, . . . , Nr, j = 1, . . . ,K,
Wi,j ∼ U (0,1) - 0.5 , i, j = 1, . . . , Nr

2: Compute spectral radius ρrand of W̃
3: Scale W = ρ/ρrand W

Algorithm 2 Validation.

Require: Sh domain of search of an hyperparameter h, NW random different
pairs of (W in,W ), Nd dynamics we want to validate with the associated
inputs data u, training data xtrain and validation data xval.

Ensure: H set of all the fixed hyperparameters h (Nr, L, BI ρ, β,∆t) which
minimise in average RRMSEval for the Nd dynamics and NW reservoirs.

1: for h ∈ H do
2: for hval ∈ Sh do
3: for i = 1 to Nd do
4: xout−i

mean = 0
5: for j = 1 to NW do
6: W out = Training(u−i, xtrain−i, hval, (W in,W )j)
7: xout−i = Prediction(hval, (W in,W )j , W out)
8: xout−i

mean +=xout−i

9: end for
10: xout−i

mean = xout−i
mean / NW

11: RRMSEval
hval

+= 100

√∑kval
k=1 (xout−i

mean,k−x
val−i
k )2∑kval

k=1 (xval−i
k )2

12: end for
13: RRMSEval

hval
= RRMSEval

hval
/Nd

14: end for
15: hval = arg min(RRMSEval

hval
)

16: Set h := hval and update H
17: end for

4.2 ESN ensemble test approach

Once the parameters and hyperparameters of the ESN predictive model have
been tuned using training set and validation set, we can test our ESN model
for the prediction of not previously used data, i.e. DA values at a larger time.
We denote by ktest the number of data in the test set we try to predict.

The algorithm 3 describes the test procedure for a single dynamics, i.e. a
single realisation of the HL-LHC magnetic lattice or a single case for the 4D
Hénon map data set. We can loop the procedure to perform the prediction in
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Algorithm 3 Test

Require: NW number of different pairs of (W in,W ), xtest test data of size
ktest, H = {Nr, ∆t, ρ, a, BI, L, β} have been tuned using the kval data
in the validation set with the corresponding output weight matrix W out.

Ensure: xout
mean mean of the predicted outputs over the NW reservoirs,

RRMSEtest between xout
mean and xtest

1: xout
mean = 0

2: for j = 1 to NW do
3: xout = Prediction(H, (W in,W )j , W out)
4: xout

mean += xout

5: end for
6: xout

mean /= NW

7: RRMSEtest = 100

√∑ktest
k=1 (xout

mean,k−x
test
k )2∑ktest

k=1 (xtest
k )2

the test set for the Nd dynamics. Note that, contrary to the validation, here
the prediction is performed in the test set for data not previously used.

5 Results and Discussion

In this section, we present the DA predictions obtained with our ESN-based
predictive model. In particular, we compare these predictions with those of the
fitted scaling law presented in Eq. (14) and used in [24]. We recall that the ESN
output xout

mean is the mean prediction over NW = 100 random reservoirs. The
validation and testing methods are those introduced in Section 4. We tested
the proposed approaches with the HL-LHC data sets and the 4D Hénon map
presented in Section 2.

5.1 DA Predictions for the HL-LHC data set

5.1.1 Validation of the ESN

In this stage, we search for the set of hyperparameters H that minimises, on
average over the Nd = 60 seeds and NW = 100 randomly generated reservoirs,
the RRMSE in the validation set. Here, the number of predicted dynamics is
equal to the number of seeds. We also recall that the number of validation
data is kval = 50 and the definition of RRMSEval is presented in Algorithm
2. The optimal hyperparameters are determined one by one by a grid search
over a wide range of possible parameter values, and the search domains Sh of
the hyperparameters are listed in Table 1.

Figure 6 shows RRMSEval as a function of the various hyperparameters in
Sh. The values of the hyperparamters are updated one-by-one with those that
minimise RMMSEval. As we can see, a shallow ESN with a small number of
neuronsNr provides the best results. Stacking more reservoirs does not improve
the predictions. In fact, adding reservoirs or increasing the number of neurons
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Table 1: Search domains Sh of the various hyperparameters h. Note that the
hyperparameters h are tuned one by one while the others are kept constant.

h Sh

Nr {20, 40, 60, . . . , 200}
L {1, 2, 3}
ρ {0.1, 0.2, . . . , 0.9, 0.99}
BI {0, 25, 50, . . . , 200}
β

{
2× 10−10, 2× 10−8, . . . , 2× 10−2, 2× 10−1

}
∆t

{
9× 10−7, 9× 10−6, . . . , 9× 10−2, 9× 10−1

}
makes the model overfit, so it cannot predict correctly in the validation set.
This can be explained by the small number of features that the ESN must
learn and by the characteristics of the DA data, which are not enough.

Regarding the other hyperparameters, the optimum spectral radius value
initially set to 0.1 is updated to 0.99 and satisfies the ESP. Furthermore, since
the optimal value of Nr is smaller than 100, it can be considered small, which
justifies setting the sparsity ratio s = 0 so that all elements of W are non-
zero. Then, we decided to choose the activation function f = tanh, since it is
the most used in ESN, and the leaking rate a = 1 to simplify the equations
described in (26). Eventually, the values of β and ∆t initially set to 2.10−1

and 9.10−2 are updated to 2.10−2 and 9.10−3 respectively. The values of the
hyperparameters updated after validation and used for the prediction stage in
the test set are summarised in Table 2.

Table 2: Set H of the hyperparameters tuned after validation using HL-LHC
DA data.

Nr β ρ a BI L ∆t f s

20 2.10−2 0.99 1 0 1 9.10−3 tanh 0

5.1.2 The ESN model

Once the ESN has been trained and validated, we can test it with the test set
for data not previously used using the hyperparameters reported in Table 2.
We recall that the number of test data is ktest = 500, i.e. half of the total
number of data used. In Fig. 7, we show the mean prediction xout

mean in the test
set together with the envelope (i.e. minimum and maximum) of the predictions
xout that are associated with the NW = 100 randomly generated reservoirs for
an arbitrary seed (number 1). We also plot the distribution of the prediction
of DA at N = 105 turns (end of the test set).

As mentioned above, we will denote by xout
mean the ESN mean prediction

and only plot this mean value to avoid overloading the graphs with the values
generated by NW random reservoirs. To have a complete view, Fig. 8 shows
the predictions of Nd = 60 seeds in the train set, validation set and test set.
Vertical dashed lines indicate the end of the train set and validation set for
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Values of constant hyperparameters:
L = 1, ρ = 0.1, BI = 2 × 102,
β = 2 × 10−1, ∆t = 9 × 10−2.

Values of constant hyperparameters:
Nr = 20 ρ = 0.1, BI = 2 × 102,
β = 2 × 10−1, ∆t = 9 × 10−2.

Values of constant hyperparameters:
Nr = 20, L = 1, BI = 2 × 102,
β = 2 × 10−1, ∆t = 9 × 10−2.

Values of constant hyperparameters:
Nr = 20, L = 1, ρ = 0.99, β = 2 × 10−1,

∆t = 9 × 10−2.

Values of constant hyperparameters:
Nr = 20, L = 1, ρ = 0.99, BI = 0,

∆t = 9 × 10−2.

Values of constant hyperparameters:
Nr = 20, L = 1, ρ = 0.99, BI = 0,

β = 2 × 10−2.

Fig. 6: RRMSEval as a function of the various hyperparameters in Sh.

ESN (left graph) and SL (right graph). The scaling law fit is performed using
the first kfit = ktrain + kval = 500 DA data. Note that ESN and SL share the
same test set. Figure 9 shows the distribution of the RRMSEtest values defined
in Algorithm 3, for both the ESN model and SL.
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Fig. 7: Left: Numerical DA data, prediction of DA xout
mean, average,

minimum, and maximum over the NW = 100 randomly generated reservoirs
as a function of time. Right: distribution for the NW = 100 randomly

generated reservoirs at N = 105. The seed used for both plots is number 1.

Fig. 8: DA predictions for ESN (left) and SL (right) for Nd = 60 seeds.

Fig. 9: Distribution of RRMSEtest for Nd=60 seeds for ESN and SL.

We report in Table 3 the mean, maximum, minimum, and standard
deviation of RRMSEtest for the predictions of ESN and SL over Nd = 60 seeds.

The ESN model and SL generate predictions whose distributions have
essentially the same mean and minimum values. However, some outliers appear
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Table 3: Mean, maximum, minimum, and standard deviation of the
RRMSEtest distribution.

Mean Max Min Std

ESN 0.37 0.94 0.06 0.20
SL 0.42 1.78 0.07 0.35

in the SL distribution, which affect the maximum and standard deviation val-
ues. This contributes to the generation of more stable predictions by ESN, i.e.
without outliers, and significantly lower values of the standard deviation and
maxima.

5.1.3 The SL-ESN model

In this section, we consider whether ESN predictions can possibly be used
to replace the tracking simulations that generated the data in the test set.
In this sense, we fit the SL to the kfit data plus the ESN predictions in the
test set. We denote this fit procedure by SL-ESN and compare it with the
results of SL-ALL, which represents the best results that can be achieved with
the SL approach4. The idea is to check the quality of the approximation of
SL-ESN in the test set, in view of further prediction beyond this set. The
predictions provided by SL-ESN and SL-ALL for the Nd = 60 seeds can be
seen in Fig. 10 and the distribution of RRMSEtest is shown in Fig. 11, while the
mean, maximum, minimum, and standard deviation of RRMSEtest in Table 4.

Fig. 10: Predictions for SL-ESN (left) and SL-ALL (right) for Nd = 60 seeds.

As it might be expected, all indicators of the distribution of RRMSEtest for
SL-ESN are significantly larger than those for SL-ALL, as the first approach
fits the prediction of ESN, not the real DA data. In fact, SL-ESN is essentially
equivalent to ESN alone and hence more stable than SL alone as far as outliers
are concerned. In other words, the SL-ESN seems to be an effective surrogate
model that improves the predictions given by the SL only.

4We recall that SL-ALL denotes the fit obtained by using all the available DA data, namely
kfit + ktest.
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Fig. 11: Distribution of RRMSEtest for Nd = 60 seeds for SL-ESN and
SL-ALL.

Table 4: Mean, maximum, minimum, and standard deviation of the
RRMSEtest distribution.

Mean Max Min Std

SL-ESN 0.33 1.01 0.10 0.21
SL-ALL 0.21 0.64 0.06 0.13

After having evaluated the accuracy of the SL-ESN model in the test set,
we can check if it can replace the tracking simulations in this set. To do so, we
compute predictions beyond the test set and up to N = 108 turns. Since we do
not have real DA data in this time interval, we cannot compute any metrics,
and we use the envelope, i.e. minimum and maximum, of the predictions given
by SL-ESN and SL-ALL to check whether SL-ESN approximates well the
predictions given by SL-ALL beyond the test set. We plot the envelope of
the predictions given by SL-ESN and SL-ALL beyond the test set in Fig. 12
(left), and we also show the relative error εr defined as εir = (DAiSL−ALL −
DAiSL−ESN)/DAiSL−ALL where i is max or min (right).

Fig. 12: Left: Envelope, i.e. minimum and maximum values of the SL-ESN
and SL-ALL predictions extrapolated beyond the test set. Right: Relative

error εr of the minimum and maximum DA predictions up to N = 108 turns.
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The two envelopes almost overlap until N = 108 turns, with εmax
r and εmin

r

that are below 1%. From this observation we conclude that we may only need
to perform the tracking simulation until the end of the validation so that the
tracking in the test set could be spared. In fact, the predictions provided by
SL-ESN are very similar to those of SL-ALL. In this way, we could use the
ESN predictions to replace the tracking in the test set. This result is in line
with what was found in [45], i.e. that the addition of synthetic points obtained
by using Gaussian Processes improved the quality of the fitted SL model.

Running the SixTrack code [35, 36] and the ESN model on the same CPU
architecture, we have a speed-up of a factor 20 by replacing the tracking sim-
ulations on 5 × 10 4 turns, representing the test set, with the prediction of
the DA values by ESN. This evaluation of CPU time reduction can be easily
improved by a trivial parallelisation of the ESN over the 100 reservoirs. Of
course, the actual gain depends on several details, such as the model under
consideration and the definition of the times that define the validation and test
sets. It is worth stressing that whenever an actual accelerator lattice is used
for the numerical DA computations, the CPU time needed depends not only
on the number of turns used for the tracking, but also on the size of the accel-
erator, which corresponds approximately to the number of magnets comprised
in the lattice, and on the characteristics of the magnetic field errors included
in the accelerator model. In this respect, the computational gain implied by
the proposed approach is even more relevant for the case of large future col-
liders, such as the Future Circular Hadron Collider (FCC-hh) under study at
CERN [46, 47].

5.2 DA Predictions for the Hénon map data set

To check the robustness of the current strategy, we apply it to a new system,
which is the 4D Hénon map introduced in Section 2.

5.2.1 The ESN model

Hyperparameters have been determined using the same approach as for the
HL-LHC data and are reported in Table 5. In this case, we also use Nd = 60,
but we have to stress that the various dynamics differ between them much
more than the dynamics of the HL-LHC case. In fact, changes in the values
of ε and µ lead to radically different dynamical behaviours, whereas the HL-
LHC realisations are much closer to each other, representing minor variations
of the same dynamical behaviour.

Only the values of ∆t and β are different from those of the HL-LHC case.
Note that the value of β found is much lower than that of HL-LHC. This
means that the model is less overfitting than with the HL-LHC data, especially
because the Hénon DA data are much smoother.

In Fig. 13, we plot the Nd = 60 DA predictions given by ESN and SL.
For ESN, we recall that we used ktrain = 450 and kval = 50 data, and for SL
we used the kfit = 500 data. Furthermore, test set is the same for both ESN
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Table 5: Set H of the hyperparameters tuned after validation using Hénon
map DA data.

Nr β ρ a BI L ∆t f s

20 9.10−6 0.99 1 0 1 0.004 tanh 0

and SL. As we can see, the SL predictions in the test set do not perform well,
whereas those provided by the ESN fit the training/validation/test data much
better.

Fig. 13: DA predictions for ESN (left) and SL (right) for Nd = 60 seeds.

In Fig. 14 we compare the distributions of RRMSEtest for ESN and SL,
and the first is clearly much narrower and closer to zero than the latter. This
behaviour is easily explained by considering the fact that the scaling law is
an asymptotic law that aims to describe the long-term behaviour of the DA
(using very few model parameters). Therefore, it is not effective in reproducing
the detailed behaviour of the DA for low numbers of turns. Our ESN model is
able to fit both the short-term and long-term behaviour simultaneously, thus
explaining the observed better performance.

Fig. 14: Distribution of RRMSEtest for Nd=60 seeds for ESN and SL.
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The mean, maximum, minimum, and standard deviation of RRMSEtest for
the two approaches are reported in Table 6.

Table 6: Mean, maximum, minimum, and standard deviation of the
RRMSEtest distribution.

Mean Max Min Std

ESN 1.13 1.89 0.59 0.28
SL 3.17 5.85 1.25 1.18

The table shows, in a quantitative way, the differences observed in the his-
togram of the distributions. In fact, the RRMSE of the ESN is on average about
3 times lower than that of the SL, which is a significant improvement compared
to the case of HL-LHC. Several reasons can explain this behaviour. First, the
DA data for the Hénon map are much smoother than those of the HL-LHC
data set, which improves training and limits overfitting of the ESN. Second,
as already mentioned, the behaviour of the Nd dynamics is very diverse, and
the SL, with only two free parameters, is clearly disadvantaged with respect
to the ESN. Moreover, since the SL is an asymptotic law, its performance has
been downgraded by including low-turn DA data.

5.2.2 The SL-ESN model

We repeat the procedure to check if the ESN predictions can replace the track-
ing simulation in the test set. As previously, we compare SL-ESN with SL-ALL.
The predictions given by SL-ESN and SL-ALL for the 60 cases can be seen
in Fig. 15, the distribution of RRMSEtest is shown in Fig. 16, and the mean,
maximum, minimum, and standard deviation of RRMSEtest are reported in
Table 7.

Fig. 15: Predictions for SL-ESN (left) and SL-ALL (right) for Nd = 60 seeds.

In this case, the SL-ESN performs equally well as the SL-ALL. In fact, the
mean of RRMSEtest is the same. Furthermore, fitting the SL to the predictions
of the ESN allows us to improve the accuracy of the ESN and the SL. Taking
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Fig. 16: Distribution of RRMSEtest for Nd = 60 seeds for SL-ESN and
SL-ALL.

Table 7: Mean, maximum, minimum, and standard deviation of the
RRMSEtest distribution.

Mean Max Min Std

SL-ESN 0.71 1.57 0.26 0.33
SL-ALL 0.72 1.29 0.35 0.24

into account the average, SL-ESN is almost 2 times and 4 times more accurate
than ESN and SL, respectively. Similarly to the HL-LHC case, the standard
deviation and maximum RRMSEtest of SL-ESN are much lower than those of
SL, which shows a certain robustness of the conclusions that SL-ESN helps
improve SL.

To further check whether the ESN predictions can replace the tracking
simulation in the test set, we perform the prediction beyond the test set up to
N = 1011 turns. As previously, we do not have the real DA data in this range,
so we cannot compute any metrics. We plot the envelope of the predictions
given by SL-ESN and SL-ALL in Fig. 17.

Fig. 17: Left: Envelope, i.e. minimum and maximum values of the SL-ESN
and SL-ALL predictions extrapolated beyond the test set. Right: Relative

error εr of the minimum and maximum DA predictions up to N = 1011 turns.
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The two envelopes of the predictions almost overlap until N = 1011, and
the relative errors εmax

r and εmin
r are below 1.5%, as for the case HL-LHC.

This indicates, once again, that the tracking simulation in the test set could
be replaced by the ESN predictions.

6 Conclusions

In this article, we have presented the results obtained with an ensemble
approach to ESN reservoir computing for the prediction of the dynamic aper-
ture of a circular hadron accelerator. In particular, we have compared the
performance of ESN with that of a scaling law based on the Nekhoroshev
theorem to predict the evolution of the dynamic aperture over time. This anal-
ysis has been carried out on two data sets that have been generated using
numerical simulations performed on realistic models of the transverse beam
dynamics in the HL-LHC and on a modulated 4D Hénon map with quadratic
and cubic non-linearities.

We have shown that the average accuracy in the test set of the scaling law
used to fit the ESN predictions was better than that of the scaling law alone. In
particular, we have observed that the standard deviation of the RRMSE of the
scaling law combined with the ESN is much lower than that of the scaling law
alone. This leads to more reliable predictions. The fact that this observation
is confirmed for both data sets gives us confidence that the combination of the
scaling law and the ESN is the best approach.

A consequence of this result is that the tracking performed in the test set
can be avoided by replacing it with the predictions of the ESN. In fact, for
both the HL-LHC and Hénon map data sets, the predictions of the scaling
law combined with the ESN and of the scaling law fitted to the entire data
set are close to the percent level, even for numbers of turns three orders of
magnitude beyond that of the test set. The gain in CPU time depends on the
size of the accelerator and the complexity of its model. However, it is clear
that the proposed approach is particularly appealing for hadron colliders of
the post-LHC era that are currently being studied.

The study presented here represents only the beginning of a research area
that could be further developed in the future given the promising results
obtained. The partition of available data into training, validation, and test
data sets should be studied in more detail to assess whether such a parti-
tion could be obtained using an appropriate algorithm. The established link
between dynamic aperture and models for the evolution of intensity in hadron
rings and the evolution of luminosity in hadron colliders could be further devel-
oped by using the promising results discussed in this paper. Investigations on
the possibility of using ESN to improve the modelling of beam lifetime and
luminosity evolution should be seriously considered and pursued. Finally, the
predictive power of ESN could be applied to indicators of chaos, which are
dynamical observables computed over the orbit of an initial condition to estab-
lish whether the motion is regular or chaotic, to improve their performance.
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This would be another important topic that could bring important insight to
the field of non-linear beam dynamics.
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Appendix A The Echo State Property

An important prerequisite for the output-only training is the so-called Echo
State Property (ESP), which guarantees that initial conditions have an effect
that vanishes over time. We use the results presented in [48] to recall the defini-
tion of ESP and a new sufficient condition that can be used in practice. In fact,
satisfying the ESP allows us to guarantee that the reservoir activation state
xk−1 is uniquely determined by any left-infinite input sequence . . . , uk−2, uk−1.

To define ESP, we require the compactness condition, that is, we assume
that the states and inputs belong to compact sets X ⊂ RNr ,U ⊂ RK and
that F (xk−1, uk) ∈ X and uk−1 ∈ U , ∀k ∈ Z. In practice, the ESN inputs
will always be bounded, so the compactness of U is guaranteed. Furthermore,
for bounded sigmoid functions f , such as tanh, the state space X is also
compact. We define U−∞ = {u−∞ = (. . . , u−1, u0), uk ∈ U ∀k ∈ Z} and
X−∞ = {x−∞ = (. . . , x−1, x0), xk ∈ X ∀k ∈ Z}, which are the sets of infinite
left input and reservoir activation state sequences.

Definition 3.1 (ESP). A network F : X × U → X with the compactness
condition has the ESP with respect to U if for any left input sequence u−∞ ∈
U−∞ and any two state sequences x−∞, y−∞ ∈ X−∞ compatible with u−∞

(i.e. xk = F (xk−1, uk),∀k ≤ 0), then for all k ≥ 0, ‖xk − yk‖ ≤ δk, where δk
denotes a small value.

Definition A is not easily applicable in practice. Thus, we introduce the
following Theorem A that should be used in practise as it provides a sufficient
condition to satisfy the ESP in the case of a leaky ESN:

Theorem 3.1 (Sufficient condition of the ESP). If the spectral radius of
the matrix

W̃ =
∆t

c
W +

(
1− a∆t

c

)
I

is smaller than 1, then the leaky ESN with f = tanh satisfies the ESP for all
inputs. However, this condition is only sufficient, but not necessary. In other
words, setting ρ(W̃ ) ≥ 1 does not necessarily lead to poor performance of
leaky ESN.
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