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A R T I C L E I N F O A B S T R A C T

A dimensional study of the momentum equations of superfluid helium is presented together with a parametric 
analysis of newly derived dimensionless numbers. The study is performed with a focus on the role of forced flows 
in the Gorter-Mellink regime. The dimensionless numbers are derived in such a way they become dependent 
solely on the total fluid velocity, heat flux, and thermophysical properties in order to facilitate their application 
to engineering problems where the velocity of the single fluid components might be difficult to measure directly. 
With a similar approach, a novel form of the superfluid Reynolds number is obtained. This form takes into 
account the velocity of a forced flow and allows to make considerations about the contribution of both forced 
flow and heat flux to the establishment of the ordinary turbulence in the normal fluid component. It is also 
presented a formula for a channel critical dimension at which the critical heat flux for the onset of superfluid 
turbulence causes ordinary turbulence too.
1. Introduction

Superfluid helium (He II) is used as a thermal vector in the cooling 
system of superconducting magnet technologies because of its extraor-

dinary heat extraction capability. The equivalent thermal conductivity 
of He II depends strongly on the magnitude of heat currents potentially 
present. In the heat flux range of magnet cooling applications, the ther-

mal conductivity of He II is several orders of magnitude larger than 
metals [1], making it a unique coolant. Fluid mechanics studies on He 
II may provide useful insights for its application fields.

He II can be thought of as a mixture of two fluid components: a nor-

mal component that behaves like a classical viscous fluid and carries all 
the thermal energy; a superfluid component that has no entropy and no 
viscosity [2]. In a particular He II fluid condition known as the Gorter-

Mellink regime [3], the temperature gradient becomes dependent on 
the cube of the heat flux due to an internal convection mechanism 
known as counterflow. This regime, which corresponds to the so-called 
superfluid or quantum turbulent state of He II, is established at heat 
fluxes higher than a critical value 𝑞𝑠,𝑐 [4], above which the dissipation 
is not only due to the viscosity of the normal component but also to the 
mutual friction between the two He II components. The Gorter-Mellink 
regime has been extensively studied at zero net mass flow (ZNMF), see 
the initial work of Vinen [5–8]. In particular, Dimotakis derived a di-

mensionless number associated with this regime without taking into 
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account the effect of a forced flow [9]. However, He II is often uti-

lized in forced flow applications such as in the refrigeration system of 
infrared telescopes [10,11]. Moreover, over the last decades, several ex-

periments, whose results were thoroughly summarized by Tough [12], 
have shown evidence of a second transition at a heat flux greater than 
𝑞𝑠,𝑐 towards another dissipative regime that corresponds to the ordinary 
turbulent state of the viscous component of He II. As will be explained 
in the next section, there exists a direct relationship between the heat 
flux and the velocity of the He II components, which represents an ad-

ditional reason for investigating the role of forced flow in the two He II 
turbulent states.

Despite several experimental and numerical studies have been pub-

lished on He II forced flow (e.g., [13,14]), the dimensional consider-

ations of the topic either apply to ZNMF conditions only or provide 
dimensionless tools in terms of unfamiliar quantities related to the fluid 
components rather than He II as a whole, due to ad-hoc experiments 
that allowed varying independently the normal and superfluid veloci-

ties [15,16]. This work aims then to clarify the dimensional relationship 
between the thermal counterflow and the forced flow velocity and to 
derive dimensionless numbers in terms of engineering-friendly param-

eters. In other words, the goal is to study dimensionally the Gorter-

Mellink regime in the presence of forced flow to enable future research 
studies on the identification of distinct He II turbulent fluid regimes. 
This will be achieved through the non-dimensionalization of the He II 
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momentum equations. Before doing so, a background on the fluid dy-

namics of He II is provided in the next section.

2. Superfluid dynamics

The normal fluid is characterized by the density 𝜌𝑛 and the super-

fluid by 𝜌𝑠, which are related to the total density 𝜌 of the liquid by

𝜌 = 𝜌𝑛 + 𝜌𝑠. (1)

The mass flux density of He II thus can be expressed as

𝜌𝐯 = 𝜌𝑛𝐯𝑛 + 𝜌𝑠𝐯𝑠, (2)

where 𝐯, 𝐯𝑛, and 𝐯𝑠 are the velocities of the fluid, and its normal and 
superfluid components. As the normal component is the energy carrier 
of He II, the conductive heat flux 𝑞 is equal to

𝐪 = 𝜌𝑠𝑇 𝐯𝑛 = 𝜌𝑠𝑠𝑇 𝐯𝑛𝑠, (3)

where 𝑠 is the specific entropy, 𝑇 is the temperature, and 𝐯𝑛𝑠 is the 
relative velocity between the fluid components. Because of the two-

motion nature of He II, a ZNMF does not imply that the fluid is static. 
Instead, from Eq. (2) follows that the two components can still flow in 
opposite directions giving rise to the thermal counterflow. The coun-

terflow mechanism contributes to the thermo-mechanical effect — a 
phenomenon for which establishing a temperature gradient in He II 
causes a pressure difference and vice versa [17]. If the relative veloc-

ity 𝐯𝑛𝑠 is below a certain critical value (i.e., very low heat flux) [18], 
the fluid mechanics of He II is well represented by Landau’s two-fluid 
model [19] and He II is in the Landau regime. Above the critical value, 
quantum vortices arise in the fluid and the superfluid component en-

ters the turbulent regime [18] or Gorter-Mellink regime. As the relative 
velocity of the two components is related to the heat flux (Eq. (3)), re-

arranging Eqs. (3) and (1) at ZNMF yields an expression for the critical 
heat flux for the onset of quantum turbulence:

𝐪𝑠,𝑐 =
𝜌𝑠𝜌

𝜌𝑛
𝑠𝑇 𝐯𝑠,𝑐 , (4)

where 𝐯𝑠,𝑐 is the critical superfluid velocity, which was empirically 
demonstrated to be in relationship with the characteristic dimension 
of the geometry as [20]

𝑣𝑠,𝑐 ≃𝐷
− 1

4 , (5)

where 𝐷 is in cm and 𝑣𝑠,𝑐 is in cm/s.

The quantum turbulence is caused by a viscous-like mechanism be-

tween the superfluid and normal components of He II. This mechanism 
produces a force called mutual friction force [3]. Since the mutual fric-

tion force affects significantly the thermo-fluid dynamics of He II, it is 
necessary to include it in the two-fluid model to come up with a general 
system of equations that characterizes He II macroscopically. This sys-

tem is constituted by the Hall-Vinen-Bekharevich-Khalatnikov (HVBK) 
equations [21,22]. The HVBK equations can be considered as a general-

ization of Landau’s two-fluid model involving also quantum turbulence. 
The steady-state incompressible momentum equation for the superfluid 
reads

(
𝐯𝑠 ⋅𝛁

)
𝐯𝑠 = 𝑠𝛁𝑇 − 1

𝜌
𝛁𝑝+ 𝐠+

𝜌𝑛

2𝜌
𝛁𝑣2

𝑛𝑠
+𝐴𝐺𝑀𝜌𝑛𝑣

2
𝑛𝑠
𝐯𝑛𝑠, (6)

where 𝐴𝐺𝑀 is the Gorter-Mellink coefficient, which is roughly propor-

tional to 𝑇 3, 𝑝 is the pressure, and 𝐠 is the gravity vector. The terms 
on the RHS of Eq. (6) represent in order the thermo-mechanical effect, 
the pressure drop, the acceleration of gravity, a diffusive term deriving 
from He II chemical potential, and the mutual friction force. By ma-

nipulating the HVBK equations it is possible to derive a heat transport 
equation for superfluid helium [1]:

d𝑇 = − 𝑏𝜇
𝑞 −

𝐴𝐺𝑀𝜌𝑛
𝑞3, (7)
2

d𝑥 𝑠2𝜌2𝑇𝑑2 𝑠4𝜌3
𝑠
𝑇 3
Cryogenics 129 (2023) 103628

where 𝑏 is a constant that depends on the geometrical configuration of 
the helium channel. The terms on the RHS represent respectively the 
viscous and turbulent contributions to the temperature gradient along 
the channel. The Landau regime is associated with small geometries 
and negligible heat fluxes (i.e., negligible turbulent term), whereas the 
Gorter-Mellink regime is associated with relatively high heat currents 
(i.e., negligible viscous term). If the viscous term is neglected, the fol-

lowing steady-state heat transport equation is obtained:

d𝑇
d𝑥

= −𝑓 (𝑇 , 𝑝)𝑞𝑛, (8)

where 𝑓 (𝑇 , 𝑝) is the heat conductivity function and is defined as

𝑓 (𝑇 , 𝑝) =
𝐴𝐺𝑀𝜌𝑛

𝑠4𝜌3
𝑠
𝑇 3 . (9)

3. Non-dimensionalization of the superfluid momentum equation

3.1. Superfluid dimensionless numbers

The procedure requires all the dimensional variables to be trans-

formed into non-dimensional ones by means of characteristic quantities. 
The parameters chosen in this study are selected to take advantage of 
equations valid for superfluid helium, as it will be clear later in this 
section. Let us consider Eq. (6) and substitute the variables with the 
following dimensionless parameters:

𝐯∗
𝑠
=

𝐯𝑠
𝑣𝑠,0

, (10a)

𝛁∗ =𝐷𝛁, (10b)

𝑝∗ = 𝑝

Δ𝑝0
, (10c)

𝑇 ∗ = 𝑇

Δ𝑇0
, (10d)

𝐯∗
𝑛𝑠
=

𝐯𝑛𝑠
𝑣𝑛𝑠,0

, (10e)

𝐠∗ = 𝐠
𝑔0

, (10f)

where 𝑣𝑠,0, 𝐷, Δ𝑝0, Δ𝑇0, 𝑔0 and 𝑣𝑛𝑠,0 are characteristic parameters. In 
particular, 𝐷 is the characteristic dimension of the channel filled with 
helium, Δ𝑝0 is the pressure drop along the channel, Δ𝑇0 is the tempera-

ture difference with respect to the bath, 𝑔0 is the acceleration of gravity. 
The dimensionless form of Eq. (6) becomes then

(
𝐯∗
𝑠
⋅𝛁∗)𝐯∗

𝑠
=
𝑠Δ𝑇0
𝑣2
𝑠,0

𝛁∗𝑇 ∗ −
Δ𝑝0
𝜌𝑣2

𝑠,0

𝛁∗𝑝∗ +
𝑔0𝐷

𝑣2
𝑠,0

𝐠∗ +
𝜌𝑛

2𝜌

𝑣2
𝑛𝑠,0

𝑣2
𝑠,0

𝛁∗𝐯∗2
𝑛𝑠

+𝐴𝐺𝑀𝜌𝑛𝐷
𝑣3
𝑛𝑠,0

𝑣2
𝑠,0

𝐯∗3
𝑛𝑠
. (11)

The velocity 𝑣𝑠,0 can be related to 𝑣𝑛𝑠,0 and a characteristic total fluid 
velocity 𝑣0 through Eq. (2) and the definition of 𝑣𝑛𝑠,0:

𝑣𝑠,0 = 𝑣0 −
𝜌𝑛

𝜌
𝑣𝑛𝑠,0. (12)

Also, 𝑣𝑛𝑠,0 can be expressed as a function of a characteristic heat flux 𝑞0
through Eq. (3):

𝑣𝑠,0 = 𝑣0 −
𝜌𝑛𝑞0
𝜌𝜌𝑠𝑠𝑇𝑏

, (13)

where 𝑇𝑏 is the bath temperature. This trick allows us to determine 
the dimensionless numbers in terms of parameters that are more eas-

ily obtainable (i.e., total velocity of the fluid and heat flux applied). 
Substituting Eq. (13) into Eq. (11) yields the final form of the non-

dimensionalized equation:

( ∗ ∗) ∗ ∗ ∗ ∗ ∗ −2 ∗ ∗ ∗2 ∗3
𝐯
𝑠
⋅𝛁 𝐯

𝑠
=𝛁 𝑇 − 𝛁 𝑝 + 𝐠 +𝛁 𝐯

𝑛𝑠
+ 𝐯

𝑛𝑠
, (14)
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where ,  , , , and  are the dimensionless numbers of the equation. 
In particular,  and  are the equivalent superfluid versions of the Euler 
and Froude numbers in the classical Navier-Stokes equations, whereas 
, , and  are associated with terms that are proper of He II. The 
dimensionless numbers read as follows:

 =
Δ𝑇0𝜌2𝜌2𝑠𝑠

3𝑇 2
𝑏(

𝜌𝜌𝑠𝑠𝑇𝑏𝑣0 − 𝜌𝑛𝑞0
)2 , (15a)

 =
Δ𝑝0𝜌𝜌2𝑠𝑠

2𝑇 2
𝑏(

𝜌𝜌𝑠𝑠𝑇𝑏𝑣0 − 𝜌𝑛𝑞0
)2 , (15b)

 =
𝜌𝜌𝑠𝑠𝑇𝑏𝑣0 − 𝜌𝑛𝑞0

𝜌𝜌𝑠𝑠𝑇𝑏

√
𝑔0𝐷

, (15c)

 =
𝜌𝜌𝑛𝑞

2
0

2
(
𝜌𝜌𝑠𝑠𝑇𝑏𝑣0 − 𝜌𝑛𝑞0

)2 , (15d)

 =
𝐴𝐺𝑀𝜌𝑛𝜌

2𝑞30𝐷

𝜌𝑠𝑠𝑇𝑏
(
𝜌𝜌𝑠𝑠𝑇𝑏𝑣0 − 𝜌𝑛𝑞0

)2 . (15e)

It is interesting to notice that, in absence of heat currents,  and 
become their respective numbers for ordinary fluids (𝐸𝑢 = Δ𝑝0∕𝜌𝑣02, 
𝐹𝑟 = 𝑣0∕

√
𝑔0𝐷). The condition 𝜌𝑛𝑞0 = 0 nullifies the dimensionless num-

bers that originate directly from the relative motion of the He II compo-

nents (i.e.,  and ). On the contrary,  becomes |||𝜌𝑛𝑞0=0 = 𝑠Δ𝑇0∕𝑣02, 
which looks much like the Euler number. This similarity provides an 
additional insight into the fountain effect [23] and indicates that 
represents the relationship between the thermo-mechanical force and 
the inertial force of the superfluid stream.

At ZNMF, the superfluid component may still move because of the 
counterflow mechanism, which is confirmed by setting 𝑣0 = 0 in the di-

mensionless numbers. In particular, it might be interesting to highlight 
the relationship found between  and the dimensionless number of Di-

motakis [9], who non-dimensionalized a general momentum equation 
in pure counterflow (i.e., ZNMF). Dimotakis obtained a number associ-

ated with the mutual friction term equal to 𝐷𝑖 = 𝜌𝑠𝐴𝐺𝑀𝑣𝑛𝑠,0𝐷, which 
can be written as well as

𝐷𝑖 = 𝛼 (1 − 𝛼)|||𝑣0=0, (16)

where 𝛼 is the superfluid density fraction and  is calculated at ZNMF. 
Computing the roots of 𝛼 for |||𝑣0=0 = 𝐷𝑖 reveals that there exists no 
real value of 𝛼 that allows this condition. This is due to the nature of 
the two numbers: 𝐷𝑖 was derived by merging the momentum equations 
of both fluid components of He II, whereas  is herein derived from the 
superfluid component equation only.

3.2. Parametric analysis

It is now possible to compare the dimensionless numbers among 
each other by varying the characteristic parameters. Since some ther-

mophysical properties appear in Eqs. (15), the dimensionless numbers 
must depend on the pressure as well. However, since no major differ-

ence has been observed in their behavior in the range of pressures of 
helium cooling applications (i.e., between the 𝜆-point and atmospheric 
pressure), the pressure is simply set to the saturated vapour one and 
the properties are evaluated at 𝑇𝑏. In the Gorter-Mellink regime the mu-

tual friction force is expected to be one of the dominant terms. For this 
reason, the following considerations are made with respect to Eq. (15e).

Fig. 1 shows the relative importance of  with respect to  as a 
function of two characteristic parameters. The range of colors conveys 
information about how many orders of magnitude a dimensionless num-

ber is higher (or lower) than the other. This is obtained by calculating 
the common logarithm of the ratio between the two dimensionless num-

bers under investigation. If a ratio contains more than two characteristic 
3

parameters, the other ones are kept constant at values specified in the 
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Fig. 1. Relative magnitude between  and  as a function of the total velocity 
𝑣0 and heat flux 𝑞0 at 1.9 K and 𝐷 = 1 cm. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

caption of the figure. Fig. 1 shows the relevance of the pressure drop 
term in the momentum equation as a function of the characteristic heat 
flux 𝑞0 and velocity 𝑣0. The characteristic pressure drop Δ𝑝0 is expressed 
as a function of 𝑣0 through an empirical equation derived from data 
collected by Fuzier [24]. Fuzier et al. conducted He II forced flow ex-

periments in a 1 m long tube with an internal diameter of 1 cm [25]. 
They proved the importance of the pressure drop term in the He II 
heat transport for non-negligible flow velocities and a 100 kW/m2 heat 
flux. Fig. 1 confirms this outcome with regards to the superfluid mass 
transport as well, that is, the role played by the pressure drop in the 
superfluid momentum equation.

It is easy to evaluate the entity of the number associated with the 
thermo-mechanical effect by using the definition of the heat conductiv-

ity function (Eq. (9)). Combining the  and  numbers yields then

 =
Δ𝑇0

𝑓 (𝑇 , 𝑝)𝑞30𝐷
. (17)

If we consider again Eq. (7), it is clear from Eq (17) that  and 
tend to equal each other for high heat fluxes, that is, when the viscous 
contribution can be neglected in Eq. (7). This evidence reveals that, 
for sufficiently high heat fluxes, the thermo-mechanical effect counts 
as much as the mutual friction force in the dynamics of the superfluid 
component. This result confirms the validity of the main assumption of 
the single fluid model proposed by Kitamura [26].

Since both the  and  numbers depend on the characteristic length 
𝐷, their ratio is not affected by this parameter. Fig. 2 shows their re-

lation as a function of the temperature and heat flux. It is clear that, 
apart from very low heat fluxes, the acceleration of gravity plays a lit-
tle role in the superfluid dynamics. It also appears that the  number is 
most significant at around 1.876 K. The presence of peak values is due 
to the shape of the heat conductivity function. However, the tempera-

ture at which the maximum occurs is modified by the other parameters 
appearing in the numbers ratio. It is important to notice how the mu-

tual friction force is by far the most dominant term in the vicinity of the 
lambda temperature, which is clearly due to the combination of both 
the steep rise of the Gorter-Mellink coefficient 𝐴𝐺𝑀 and the diminish-

ing 𝜌𝑠 as the temperature approaches 𝑇𝜆.

The energy diffusion term associated with the  number is often 
neglected in the two-fluid model [3,27,1,28], as its contribution is con-

sidered to be a small part in the total effect deriving from the relative 

motion of the He II fluid components. This is confirmed by Fig. 3, which 
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Fig. 2. Relative magnitude between  and  as a function of the temperature 
𝑇𝑏 and heat flux 𝑞0 .

Fig. 3. Relative magnitude between  and  as a function of the temperature 
𝑇𝑏 and heat flux 𝑞0 for 𝐷 = 1 cm.

shows that the contribution of the mutual friction grows with the heat 
flux value and distinctly dominates. Obviously, since  does not depend 
on the characteristic length, the mutual friction becomes less influen-

tial for small geometries. The  number appears to be most significant 
at around 1.855 K, which is independent of 𝐷.

4. Ordinary and quantum turbulence

A similar approach can be applied to the normal component momen-

tum equation, which carries an additional dissipative term associated 
with the viscosity of He II. The normal component velocity can be ex-

pressed in terms of the heat flux and total velocity of the fluid as

𝑣𝑛,0 = 𝑣0 +
𝑞0

𝜌𝑠𝑇𝑏
. (18)

A novel version of the modified Reynolds number first proposed by 
Staas et al. [29] can be derived then:

𝐷
(
𝜌𝑠𝑇𝑏𝑣0 + 𝑞0

)

4

 =
μs𝑇𝑏

, (19)
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where 𝜇 is the dynamic viscosity.  takes into account the effect of a 
forced flow on the He II fluid regime. It follows that ordinary turbulence 
can be achieved through a combination of both the total fluid flow 
and thermal counterflow. Similarly to Eqs. (15b) and (15c), in absence 
of heat currents the counterflow mechanism ceases and  takes the 
form of the ordinary Reynolds number (𝑅𝑒 = 𝐷𝜌𝑣0∕𝜇). On the other 
hand, at ZNMF (𝑣0 = 0), Eq. (3) can be applied and  becomes the 
modified Reynolds number by Staas (𝑅𝑒𝑠 =𝐷𝜌𝑣𝑛∕𝜇). Since the normal 
fluid velocity 𝑣𝑛 is proportional to the heat flux applied (Eq. (3)), it 
follows that ordinary turbulence can be triggered simply by enhancing 
sufficiently the thermal counterflow. It is worth investigating whether 
there is any condition at which this critical heat flux matches the one 
for the onset of quantum turbulence. As well as in ordinary turbulence, 
also in He II the dimensions of a channel are expected to affect the fluid 
regime transition. Therefore, there must exist a relationship between 
the characteristic dimension of a channel and the critical heat flux for 
the onset of the normal fluid turbulence, as discussed below.

By utilizing Eq. (4) as heat flux,  becomes

𝑠,𝑐 =
𝜌𝐷

(
𝜌𝑛𝑣0 + 𝜌𝑠𝑣𝑠,𝑐

)
𝜇𝜌𝑛

, (20)

which is the superfluid Reynolds number computed at the application 
of the critical heat flux for the onset of quantum turbulence. Equating 
Eq. (20) to the critical Reynolds number 𝑅𝑒𝑠,𝑐 for the onset of ordi-

nary turbulence yields an expression for the velocity at which ordinary 
turbulence is achieved in the presence of counterflow:

𝑣0,𝑐 =
𝜇𝑅𝑒𝑠,𝑐𝜌𝑛 − 𝜌𝜌𝑠𝐷𝑣𝑠,𝑐

𝜌𝜌𝑛𝐷
. (21)

Finally, by substituting Eq. (5) into Eq. (21) and setting it equal to zero, 
it is possible to obtain an expression for a critical characteristic dimen-

sion at which the critical heat flux for the onset of quantum turbulence 
at ZNMF is sufficient to trigger ordinary turbulence too:

𝐷𝑐 ≃ 𝑎

( 1 − 𝛼

𝛼
𝑅𝑒𝑠,𝑐𝜈

) 4
3
, (22)

where 𝜈 is the kinematic viscosity, and 𝑎 is equal to 10−10∕3 s4∕3∕m5∕3

and arises because of the units of measure of Eq. (5). Fig. 4 shows how 
𝐷𝑐 varies with the temperature below the 𝜆-point for 𝑅𝑒𝑠,𝑐 = 1200, the 
generally accepted value of critical Reynolds number for flow in a tube 
from the comprehensive experimental study by Staas [29]. The ther-

mophysical properties in Fig. 4 are computed at the saturated vapor 
pressure. 𝐷𝑐 rises towards the 𝜆-point as the superfluid density fraction 
tends to zero.

5. Conclusions

In this work, a dimensional study of the He II momentum equa-

tions was presented to emphasize the role of a forced flow in the 
Gorter-Mellink regime. A non-dimensionalization of the equations was 
performed such that novel dimensionless numbers were derived as a 
function of macroscopic quantities only. In particular, the numbers 
depend on the total fluid velocity, heat flux, and thermophysical prop-

erties of He II, without considering the velocity of the single fluid 
components. A parametric analysis of these numbers was then carried 
out to understand the weight of the various terms in the superfluid 
momentum equation. Comparative figures showed that the most signif-

icant terms are the pressure drop, the mutual friction force, and the 
thermo-mechanical effect, confirming the assumptions of other authors 
in the attempt of simplifying the equations for analytical and numer-

ical models [26,28]. The other terms (i.e., diffusive and gravitational 
terms) should not be neglected in the numerical modeling of He II only 
in cases where heat currents are little or absent. In the case of pure coun-

terflow or weak forced flows, the pressure drop term can be neglected 

too. Utilizing an experimental correlation between the pressure drop 
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Fig. 4. Critical characteristic dimension 𝐷𝑐 as a function of the temperature at 
the saturated vapor pressure.

and the total velocity allowed a direct comparison between the pres-

sure drop term and the mutual friction force, which revealed a range of 
velocities and heat fluxes where the two terms have similar orders of 
magnitude. This evidence supports Fuzier’s explanation of the discrep-

ancy found between their numerical model and experimental data for a 
specific range of velocities [25], which was correctly attributed to a re-

gion where the pressure and temperature gradients are comparable in 
magnitude in the He II heat transport.

Following a similar approach, a superfluid Reynolds number was de-

rived to take into account the effect on the He II fluid regime of both 
the thermal counterflow and forced flow. The novel Reynolds number 
represents an alternate form for non-negligible forced flow velocities 
of the one derived by Staas [29]. By manipulating the number and ex-

ploiting analytical and empirical equations it was possible to obtain a 
simple formula that defines a critical characteristic dimension of a chan-

nel at which the critical heat flux for the onset of quantum turbulence 
at ZNMF initiates the normal fluid turbulence.
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