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1. Introduction
Leptonic decays of pions and kaons are important for flavour physics precision tests of the

Standard Model (SM), since they give access to the ratio |𝑉𝑢𝑠 |/|𝑉𝑢𝑑 |. The Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements 𝑉𝑢𝑠 and 𝑉𝑢𝑑 are fundamental parameters in the SM expected to
satisfy a unitarity relation with also 𝑉𝑢𝑏, namely |𝑉𝑢𝑑 |2 + |𝑉𝑢𝑠 |2 + |𝑉𝑢𝑏 |2 = 1 [1]. With a precision
goal at the (sub-)per cent level, isospin-breaking effects in the strong and electromagnetic sector
have to be included in theoretical predictions from e.g. lattice field theory [2].

In the following we consider leptonic decays 𝑃+ → ℓ+𝜈ℓ , where 𝑃+ is a pion or kaon,
and the lepton ℓ+ a muon, including isospin-breaking effects in the strong sector (𝑚𝑢 ≠ 𝑚𝑑)
and from quantum electrodynamics (QED). To handle the problematic photon zero-momentum
modes prohibiting QED to be straightforwardly defined in a finite volume with periodic boundary
conditions, we employ the QEDL prescription [3] where the spatial zero-momentum modes are
dropped. Due to the long-range nature of QED, only the inclusive decay rate Γ [𝑃+ → ℓ+𝜈ℓ (𝛾)] =
Γ0 [𝑃+ → ℓ+𝜈ℓ] + Γ1 [𝑃+ → ℓ+𝜈ℓ𝛾] yields an infrared (IR) finite result [4]. As originally laid out
in Ref. [5], one may separately study the virtual and real radiative corrected decay rates, Γ0 and
Γ1, respectively, by adding and subtracting a perturbatively calculated quantity with the same IR
divergence. For instance, it is therefore possible to evaluate the virtual decay rate on the lattice in a
spacetime of volume 𝑇 × 𝐿3, and the real radiative decay perturbatively with a photon of mass 𝑚𝛾
and energy less than some cut-off 𝜔𝛾 , so that

Γ
[
𝑃+ → ℓ+𝜈ℓ (𝛾)

]
= lim
𝐿→∞

{
Γ0(𝐿) − Γuni

0 (𝐿)
}
+ lim
𝑚𝛾→0

{
Γuni

0 (𝑚𝛾) + Γ1(𝜔𝛾 , 𝑚𝛾)
}
. (1)

Here each term in brackets is IR-finite, with 𝐿 and 𝑚𝛾 being used as IR regulators, and Γuni
0 is a

perturbatively calculated virtual decay rate independent of the internal meson structure (hence the
superscript universal) [5, 6]. The quantity Γuni

0 (𝐿) was calculated for the first time in Refs. [6, 7].
As discussed in Section 3, Γuni

0 subtracts the logarithmic IR-divergence and finite-volume effects
through order 1/𝐿. In Ref. [8], an extension to a function Γ

(𝑛)
0 (𝐿) subtracting structure-dependent

higher-order finite-volume effects was proposed. Here we use Γ
(2)
0 (𝐿) and therefore study the

quantity

Γ
[
𝑃+ → ℓ+𝜈ℓ (𝛾)

]
= lim
𝐿→∞

{
Γ0(𝐿) − Γ

(2)
0 (𝐿)

}
+ lim
𝑚𝛾→0

{
Γuni

0 (𝑚𝛾) + Γ1(𝜔𝛾 , 𝑚𝛾)
}

≡ lim
𝐿→∞

Γlatt
𝑃 (𝐿) + lim

𝑚𝛾→0
Γ

pert
𝑃

(𝑚𝛾) , (2)

with Γ0(𝐿) evaluated non-perturbatively and at leading order in 𝛼 and 𝑚𝑢 − 𝑚𝑑 on the lattice.
The leading isospin-breaking corrections to the decay rates are defined through Γlatt

𝑃
(𝐿) =

Γtree
P

[
1 + 𝛿𝑅latt

𝑃
(𝐿) − 𝛿𝑅(2)

𝑃
(𝐿)

]
and Γ

pert
𝑃

(𝑚𝛾) = Γtree
P 𝛿𝑅

pert
𝑃

(𝜔𝛾 , 𝑚𝛾) where the tree level decay
rate is given by [1]

Γtree
𝑃 =

𝐺2
𝐹

8𝜋
|𝑉𝑞1𝑞2 |2 𝑚2

ℓ

(
1 −

𝑚2
ℓ

𝑚2
𝑃

)2

𝑚𝑃 𝑓𝑃
2 . (3)

Here, 𝐺𝐹 is the Fermi constant, 𝑉𝑞1𝑞2 is the CKM element associated to the decaying meson 𝑃
comprised of valence quarks 𝑞1,2, and 𝑓𝑃 is the isospin-symmetric decay constant of 𝑃. Introducing
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the combination 𝛿𝑅𝑃 = 𝛿𝑅latt
𝑃

(𝐿) − 𝛿𝑅
(2)
𝑃
(𝐿) + 𝛿𝑅pert

𝑃
(𝜔𝛾 , 𝑚𝛾), the ratio |𝑉𝑢𝑠 |2/|𝑉𝑢𝑑 |2 can be

obtained from the ratio of inclusive kaon and pion decay rates according to

|𝑉𝑢𝑠 |2
|𝑉𝑢𝑑 |2

=
Γ

[
𝐾+ → 𝜇+𝜈𝜇 (𝛾)

]
Γ

[
𝜋+ → 𝜇+𝜈𝜇 (𝛾)

] (
𝑚2
𝜋 − 𝑚2

𝜇

𝑚2
𝐾
− 𝑚2

𝜇

)2
𝑚3
𝐾

𝑚3
𝜋

(
𝑓𝜋

𝑓𝐾

)2 1
1 + 𝛿𝑅𝐾 − 𝛿𝑅𝜋

. (4)

The ratio of decay constants as well as 𝛿𝑅𝐾 𝜋 = 𝛿𝑅𝐾 − 𝛿𝑅𝜋 can be predicted from the lattice [2],
with the remaining parts taken from experiments. In the following we will focus on our calculation
of 𝛿𝑅𝐾 𝜋 . For further details, we refer the reader to our paper Ref. [9]. So far, there is only one other
lattice prediction for this quantity, by the RM123/Southampton (RM123S) collaboration [10, 11].

2. Calculating 𝛿𝑅𝐾𝜋 on the lattice
We consider the leptonic decay 𝑃+ → ℓ+𝜈ℓ , with associated Euclidean 4-momenta in the rest

frame of 𝑃+, 𝑝 = (𝑖𝑚𝑃, 0), 𝑝ℓ = (𝑖𝜔ℓ , pℓ) and 𝑝𝜈 = (𝑖𝜔𝜈 ,−pℓ). We further denote polarisations of
the final state leptons by 𝑟 and 𝑠, which have to be summed over to get the non-polarised decay rate.
The finite-volume decay rate in the full QCD+QED theory can thus be written Γ0(𝐿) = K |M|2

where the kinematical factor K and the QCD+QED squared matrix element |M|2 =
∑
𝑟 ,𝑠 |M𝑟𝑠 |2

are given by

K =
𝐺2
𝐹

16𝜋
��𝑉𝑞1𝑞2

��2 1
2𝑚𝑃

(
1 −

𝑚2
ℓ

𝑚2
𝑃

)
, M𝑟𝑠 = Z

〈
ℓ+, 𝑟, pℓ ; 𝜈ℓ , 𝑠, p𝜈

��𝑂𝑊 ��𝑃+, 0
〉
. (5)

Here we introduced the four-fermion operator 𝑂𝑊 entering the effective Hamiltonian responsible
for the decay, and its renormalisation factor Z. We do not enter into the details regarding the
renormalisation procedure here, and refer the reader to Ref. [11].

Next define |M|2 = Z2 4𝑚2
ℓ

(
1 − 𝑚2

ℓ
/𝑚2

𝑃

)
|A𝑃 |2. Plugging this into Γ0(𝐿) = K |M|2 and

expanding to leading order in isospin breaking effects yields

𝛿𝑅latt
𝑃 = 2

(
𝛿A𝑃

A (0)
𝑃

+ 𝛿ZZ0
− 𝛿𝑚𝑃

𝑚
(0)
𝑃

)
, (6)

where 𝛿A𝑃 are the isospin-breaking corrections in the decay amplitude A𝑃, and similar definitions
hold for 𝛿𝑚𝑃 and 𝛿𝑍𝑃. The isospin-symmetric quantities are Z0 A (0)

𝑃
= Z0 〈0| 𝐴0 |𝑃〉 (0) =

𝑖 𝑚𝑃
(0) 𝑓𝑃, where 𝐴0 = 𝑞2𝛾0𝛾5𝑞1 is the zeroth component of the axial current. From the mass-

independence of Z, it follows that the difference 𝛿𝑅𝐾 𝜋 is given by

𝛿𝑅𝐾 𝜋 = 2

(
𝛿A𝐾

A (0)
𝐾

− 𝛿𝑚𝐾

𝑚
(0)
𝐾

)
− 2

(
𝛿A𝜋

A (0)
𝜋

− 𝛿𝑚𝜋

𝑚
(0)
𝜋

)
−

[
𝛿𝑅

(2)
𝐾
(𝐿) − 𝛿𝑅(2)

𝜋 (𝐿)
]
+

[
𝛿𝑅

pert
𝐾

(𝜔𝛾 , 𝑚𝛾) − 𝛿𝑅pert
𝜋 (𝜔𝛾 , 𝑚𝛾)

]
. (7)

We can get an understanding of the various isospin-breaking contributions 𝛿A𝑃 by expanding
the squared matrix element around the iso-symmetric point according to |M|2 =

��M (0) ��2+𝛿f |M|2+
𝛿nf |M|2. The term 𝛿f |M|2 corresponds to the leading isospin-breaking corrections not involving
the final-state lepton in the decay, which are diagrammatically depicted in diagrams (a)–(e) in

3
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Figure 1: The leading connected isospin-breaking corrections to the decay 𝑃+ → ℓ+𝜈ℓ , where 𝑃+ has
valence quarks 𝑞1 and 𝑞2. The filled circles represent the meson interpolating operator, the squares the weak
current and the diamonds scalar insertions.

Fig. 1. As can be seen, the leptonic parts are factorised. Conversely, 𝛿nf |M|2 contains the non-
factorisable diagrams (f)–(g). The remaining diagram, (h), does not need to be considered as
it has purely perturbative nature and thus cancels in the difference in (2). Note that we employ
an electroquenched approximation where sea quarks are neutral. These neglected disconnected
diagrams are expected to be small [11].

2.1 Extracting 𝛿𝑅𝐾 𝜋 from correlators
The non-perturbative quantities needed for 𝛿𝑅latt

𝑃
in (6) can be extracted from Euclidean

correlation functions on the lattice. We denote the finite time-extent by 𝑇 , and here choose the
meson to be created at time −𝑡, the weak current to be at the origin and the lepton a time-separation
𝑡ℓ away from the weak current. The factorisable contributions, which do not couple to the leptons,
can be obtained by studying the two correlators

𝐶PP(𝑡) =
∫

𝑑3x 〈0| T
{
𝐴0(0, 0) 𝜙†(−𝑡, x)

}
|0〉 , (8)

𝐶PA(𝑡) =
∫

𝑑3x 〈0| T
{
𝜙(0, 0) 𝜙†(−𝑡, x)

}
|0〉 , (9)

where 𝜙 is a pseudoscalar meson interpolator with the appropriate flavour structure. The above
correlators are defined in the full theory, i.e. QCD+QED, but we will expand them around the iso-
symmetric point through leading order in isospin breaking. Performing spectral decompositions
of the above correlators in the iso-symmetric limit, and retaining only the leading forward and
backward propagating exponentials, yields

𝐶
(0)
PP (𝑡) = |𝑍𝑃 |2

2𝑚 (0)
𝑃

[
𝑒−𝑚

(0)
𝑃
𝑡 + 𝑒−𝑚

(0)
𝑃

(𝑇 −𝑡)
]
+ . . . , (10)

𝐶
(0)
PA (𝑡) = 𝑍𝑃A (0)

𝑃

2𝑚 (0)
𝑃

[
𝑒−𝑚

(0)
𝑃
𝑡 − 𝑒−𝑚

(0)
𝑃

(𝑇 −𝑡)
]
+ . . . , (11)

where 𝑍𝑃 = 〈𝑃, 0|𝜙†(0) |0〉 and the ellipses contain sub-leading exponentials. It is from the above
spectral decompositions that the iso-symmetric quantities in (6) can be fitted. Defining 𝛿𝐶PA(𝑡) as
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the leading isospin-breaking contribution to𝐶PA(𝑡) gives the factorisable correction 𝛿fA𝑃 from the
leading finite-𝑇 behaviour of the ratio

𝛿𝐶PA(𝑡)
𝐶

(0)
PA (𝑡)

=
𝛿fA𝑃

A (0)
𝑃

+ 𝛿𝑍𝑃
𝑍𝑃

− 𝛿𝑚𝑃

𝑚
(0)
𝑃

𝑓𝑃𝐴(𝑡) + . . . , (12)

𝑓𝑃𝐴(𝑡) = 1 + 𝑚 (0)
𝑃

{
𝑇

2
−

(
𝑡 − 𝑇

2

)
coth

[
𝑚

(0)
𝑃

(
𝑡 − 𝑇

2

)]}
. (13)

A similar procedure can be used for 𝐶PP(𝑡).
What remains is to determine the non-factorisable contribution 𝛿nfA𝑃. In a fashion similar to

above, we define a correlation function 𝐶𝑃ℓ (𝑡) containing the meson, the weak current as well as
the leptonic part. This can be appropriately traced with spinors to yield a scalar object. However,
the lepton propagator between the weak current at the origin and the external lepton at 𝑡ℓ affects
the finite-𝑇 behaviour severely. By constructing projectors onto either the forward or backward
propagating signal, the numerical analysis can be simplified. For brevity, we refrain from defining
this correlator in detail, and simply show the leading finite-𝑇 behaviour when projecting onto the
forward propagating lepton, namely

𝛿𝐶𝑃ℓ (𝑡)
𝐶𝑃ℓ (𝑡)

=
𝛿nfA𝑃

A (0)
𝑃

𝑓𝑃ℓ (𝑡) + . . . , 𝑓𝑃ℓ (𝑡) =
1
2

{
1 + 𝜅ℓ − (1 − 𝜅ℓ) coth

[
𝑚

(0)
𝑃

(
𝑡 − 𝑇

2

)]}
, (14)

where 𝜅ℓ parametrises the backward propagating signal.
We thus see that all the ingredients needed for 𝛿𝑅latt

𝑃
in (6) can be obtained from Euclidean

correlation functions on the lattice. We do simultaneous correlated fits of the factorisable and
non-factorisable correlators, respectively. We choose optimal fit ranges through a genetic algorithm
for the factorisable case, and construct 𝛿𝑅𝐾 𝜋 from these using AIC-based model averaging as in
e.g. Refs. [12, 13]. This approach results in a distribution of possible 𝛿𝑅𝐾 𝜋 , from which we choose
our prediction as the median and estimate the associated statistical and systematic uncertainties.

2.2 Simulation details
For the simulations needed to generate the correlators discussed above we make use of Grid [14]

and Hadrons [15]. We have temporal and spatial extents 𝑇/𝑎 = 96 and 𝐿/𝑎 = 48, respectively, and
use domain-wall fermions close to the physical point for 𝐿𝑠/𝑎 = 24 and 𝑎𝑀5 = 1.8 [16]. We use
60 statistically independent QCD gauge configurations generated using the Iwasaki action [17] by
the RBC/UKQCD collaboration. Our valence- and sea-quark masses are �̂�𝑢 = �̂�𝑑 = 0.00078 and
�̂�𝑠 = 0.0362, where hat denotes lattice units. The ensemble pion mass is 𝑚𝜋 = 139.15(36) MeV,
and the inverse lattice spacing 𝑎−1 = 1.7295(38) GeV. We thus have a single lattice spacing and
volume.

The correlators are created using sequential propagators, with 96 Coulomb gauge-fixed wall
sources per configuration. The muon momentum pℓ fixed in the direction (1, 1, 1) is injected
via twisted boundary conditions, and the muon propagator is evaluated for 8 different source-sink
separations. With the weak current at time 0, these are 𝑡ℓ ∈ {12, 16, 20, 24, 28, 32, 36, 40}. The
photons are implemented in QEDL, with the photon fields sampled from a Gaussian distribution,
and we use a renormalised local vector current.
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2.3 Defining the iso-symmetric theory
The bare parameters of the full QCD+QED theory can be unambiguously determined by

requiring that a complete set of experimental hadronic masses be reproduced. Once determined, any
physical quantity can be predicted. Determining the isospin-breaking corrections to an observable,
on the other hand, requires the definition of an iso-symmetric point. Consider a physical observable
𝑋 𝜙. This can be separated into three terms according to 𝑋 𝜙 = 𝑋 (0) + 𝛿𝑋𝛾 + 𝛿𝑋SIB, where 𝑋 (0) is
the iso-symmetric quantity, 𝛿𝑋𝛾 contains the electromagnetic corrections where 𝛼 ≠ 0, and 𝛿𝑋SIB

includes the strong isospin-breaking effects from 𝑚𝑢 ≠ 𝑚𝑑 for 𝛼 = 0. Such a separation, however,
requires additional conditions and constitutes the choice of a scheme. Therefore, when comparing
predictions of isospin-breaking corrections, scheme ambiguities have to be taken into account. This
is particularly important since the ambiguities in principle can be of the same size as the predictions
themselves. Relations between different schemes can be obtained due to the small numerical size of
isospin-breaking effects, which implies that unphysical theories to a good approximation are within
a linear deviation from the physical point.

In our calculation we have 3 flavours. Denoting lattice units by a hat, we tune our parameters
in the full theory to reproduce the ratios

�̂�𝑃

�̂�Ω−
=
𝑚PDG
𝑃

𝑀PDG
Ω−

, (15)

where 𝑃 = 𝜋+, 𝐾+, 𝐾0 and PDG denotes the Particle Data Group values from Ref. [1]. In addition,
we can define the lattice spacing as 𝑎 = (�̂�Ω−)/𝑀PDG

Ω− . To define the iso-symmetric point we employ
the same scheme as the BMW collaboration in Ref. [18]. In short, this is done by considering non-
physical, neutral, purely connected mesons with quark content 𝑞𝑞 and masses 𝑀�̄�𝑞, which are
combined into the three variables (in the full theory)

𝑀2
𝑢𝑑 =

1
2

(
𝑀2
�̄�𝑢 + 𝑀2

𝑑𝑑

)
, Δ𝑀2 = 𝑀2

�̄�𝑢 − 𝑀2
𝑑𝑑
, 2𝑀2

𝐾𝜒 = 𝑀2
𝐾 + + 𝑀2

𝐾 0 − 𝑀2
𝜋+ . (16)

The scheme is then defined by requiring that the meson masses above coincide in the full theory
and QCD, as well as imposing the conditions (�̂� (0)

𝑢𝑑
/�̂�Ω−)2 = (�̂�𝑢𝑑/�̂�Ω−)2 , (�̂� (0)

𝐾𝜒
/�̂�Ω−)2 =

(�̂�𝐾𝜒/�̂�Ω−)2 and (Δ�̂� (0)/�̂�Ω−)2 = 0 between the full and iso-symmetric theories.

3. Finite-volume effects
The finite-volume effects in the decay rate Γ

(𝑛)
0 (𝐿) are contained in the correction 𝛿𝑅 (𝑛)

𝑃
(𝐿)

defined through

Γ
(𝑛)
0 (𝐿) = Γtree

𝑃

[
1 + 𝛿𝑅 (𝑛)

𝑃
(𝐿)

]
, (17)

𝛿𝑅
(𝑛)
𝑃

(𝐿) = 2
𝛼

4𝜋

𝑌𝑃 (𝐿) +
𝑛∑︁
𝑗=0

1
(𝑚𝑃𝐿) 𝑗

𝑌𝑃, 𝑗

 . (18)

The universal𝑌𝑃 (𝐿) contains the infinite-volume contribution as well as the logarithmic divergence
in 𝐿. The numerical coefficients 𝑌𝑃, 𝑗 in general depend on the structure of the decaying mesons.
However, it was proven in Ref. [6] that through order 1/𝐿 the coefficients are universal, i.e. structure-
independent, and they were determined within point-like scalar QED.
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The structure-dependent contributions at higher order can be determined using the approach
in Ref. [8]. At present, the coefficients are known fully through order 1/𝐿2 and can be found in
Ref. [8]. The structure dependence in 𝑌𝑃, 2 is encoded in the on-shell axial-vector form factor
𝐹𝑃
𝐴

from the real radiative decay 𝑃 → ℓ𝜈ℓ𝛾, which is known experimentally [1], from chiral
perturbation theory [19] and the lattice [20]. However, it was shown in Ref. [8] that due to the
smallness of 𝐹𝑃

𝐴
, the structure-dependence at order 1/𝐿2 is only a per cent level contribution to

𝑌𝑃, 2, implying that 𝑌𝑃, 2 ≈ 𝑌pt
𝑃, 2 is a good approximation.

At order 1/𝐿3, only the point-like approximation𝑌pt
𝑃, 3 of the full coefficient𝑌𝑃, 3 = 𝑌

pt
𝑃, 3+𝑌

sd
𝑃, 3 is

currently known. The structure-dependent piece𝑌 sd
𝑃, 3 has yet to be determined, which is complicated

due to non-local effects arising at order 1/𝐿3 in QEDL [8]. The point-like result is

𝑌
pt
𝑃, 3 =

32𝜋2𝑐0 [2 + (𝑚ℓ/𝑚𝑃)2]
[1 + (𝑚ℓ/𝑚𝑃)2]3 . (19)

Here 𝑐0 = −1 is a finite-volume coefficient. As a final remark on the finite-volume expansion, all
the point-like contributions at order 1/𝐿4 and higher vanish as is easily shown using the approach
in Ref. [8].

In our analysis we subtract 𝛿𝑅 (2)
𝑃

(𝐿) from 𝛿𝑅latt
𝑃

(𝐿) to yield 𝛿𝑅𝐾 𝜋 as in (7). At our simulated
volume 𝐿/𝑎 = 48 we then use the point-like contribution 𝛿𝑅 (3) , pt

𝑃
(𝐿) − 𝛿𝑅 (2)

𝑃
(𝐿) as a systematic

error. Denoting 𝛿𝑅 (𝑛)
𝐾 𝜋

(𝐿) = 𝛿𝑅 (𝑛)
𝐾

(𝐿) − 𝛿𝑅 (𝑛)
𝜋 (𝐿) we find at the simulation point for 𝐿48 = 48𝑎

𝛿𝑅
(1)
𝐾 𝜋

(𝐿48) ≈ −0.00468 , 𝛿𝑅
(2)
𝐾 𝜋

(𝐿48) ≈ −0.00730 , 𝛿𝑅
(3) , pt
𝐾 𝜋

(𝐿48) ≈ −0.00337 . (20)

The relative shift in going from 1/𝐿2 to 1/𝐿3 is roughly −54%, which means that we have a large
systematic error from not knowing the full coefficient 𝑌𝑃, 3. We are currently studying possible
ways to determine the unknown structure-dependent 𝑌 sd

𝑃, 3.
Finally, we present the importance of analytical knowledge of the finite-volume dependence

for the infinite-volume extrapolation. For this we use the published 𝛿𝑅𝐾 𝜋 data of Ref. [11], which
was kindly provided to us by the authors. The data was produced for non-physical pions and kaons
of masses 𝑚𝜋 ≈ 320 MeV and 𝑚𝐾 ≈ 580 MeV, respectively, and for several volumes. We here
investigate the impact on the infinite-volume extrapolation of this data from the recent observation
that the structure-dependence in 𝑌𝑃, 2 is negligible, which was not known at the time of Ref. [11].

In Figs. 2(a)–(b) the volume-dependence of the pion and kaon data for 𝛿𝑅𝑃 is shown, with
different orders of 𝛿𝑅 (𝑛)

𝑃
(𝐿) subtracted. The circular points in the figures correspond to the results

of Ref. [11] where the universal 𝛿𝑅 (1)
𝑃

(𝐿) are subtracted (labelled 1/𝐿 subtracted). As can be
seen, a linear extrapolation to the infinite-volume limit (dashed line) describes the data well. In
Ref. [11] the point-like approximation of 𝛿𝑅 (2)

𝑃
(𝐿) was then subtracted, which here corresponds

to the square points, and due to the residual slope the authors of Ref. [11] concluded that there
is significant structure-dependence at order 1/𝐿2. However, from Ref. [8] we now know that the
structure-dependence in 𝑌𝑃, 2 is negligible, so that the slope of the 1/𝐿2 subtracted data in Fig. 2
must be from the 1/𝐿3 coefficient. We therefore also subtract the point-like 𝛿𝑅pt, (3)

𝑃
(𝐿) to yield

the diamond points, and perform a fit of the form 𝑎 + 𝑏/𝐿3 to those points (solid line in the figure).
The 1/𝐿3 ansatz for the volume-dependence describes the data well and estimates the remaining
1/𝐿3-dependence. Using the fitted curve and adding back the analytically known coefficients yields

7
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(a) (b)

Figure 2: The volume dependence of 𝛿𝑅𝑃 for (a) pions and (b) kaons, subtracted with 𝛿𝑅 (𝑛)
𝑃

(𝐿) for different
𝑛. The lattice data points are from Ref. [11].

the remaining solid lines, which also give a good description of the data. This means that a sizeable
1/𝐿3 dependence mimics a 1/𝐿2 behaviour in the range of volumes in the figure.

Although the infinite-volume extrapolations for the dashed and the solid curves do not agree
in the figure, we stress that this difference can be washed out in predictions of 𝛿𝑅𝐾 𝜋 . For instance,
the numerical analysis to obtain the final value of 𝛿𝑅𝐾 𝜋 in Ref. [11] involves several steps beyond
the infinite-volume extrapolation, such as a simultaneous chiral extrapolation to physical meson
masses, and the difference observed here might be well within the associated uncertainties. In
conclusion, analytical knowledge of the finite-volume dependence is crucial when extrapolating to
infinite volume, and there is clear need to determine the full coefficient 𝑌𝑃, 3.

4. A prediction for 𝛿𝑅𝐾𝜋
We now present our prediction for the leading isospin-breaking to ratio of light leptonic decays,

𝛿𝑅𝐾 𝜋 = −0.0086(3)stat.

(
+11
−4

)
fit
(5)disc.(5)quench.(39)vol. . (21)

As can be seen the dominant contribution comes from the finite-volume uncertainty. Further details
on the error budget is provided in our paper [9]. This value for 𝛿𝑅𝐾 𝜋 can be compared to those
from RM123S [11] and chiral perturbation theory (𝜒PT) [21], which respectively are

𝛿𝑅RM123S
𝐾 𝜋 = −0.0126(14) , 𝛿𝑅

𝜒PT
𝐾 𝜋

= −0.0112(21) . (22)

All three values are in agreement, although our error bars are very large due to the finite-volume
systematics. It is clear that the finite-volume issue has to be resolved in the future.

5. Conclusions
In these proceedings we have presented the RBC/UKQCD prediction for the leading isospin-

breaking corrections to leptonic decays of pions and kaons, encoded in 𝛿𝑅𝐾 𝜋 . Further details on
our calculation are presented in Ref. [9]. Knowledge of this quantity is essential for future flavour

8
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physics precision tests of the Standard Model, particularly as it is required for testing CKM-matrix
unitarity at (sub-)per cent precision.
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