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Abstract: We present a new method for numerically computing generic multi-loop Feynman inte-

grals. The method relies on an iterative application of Feynman’s trick for combining two propagators.

Each application of Feynman’s trick introduces a simplified Feynman integral topology which depends

on a Feynman parameter that should be integrated over. For each integral family, we set up a system of

differential equations which we solve in terms of a piecewise collection of generalized series expansions

in the Feynman parameter. These generalized series expansions can be efficiently integrated term by

term, and segment by segment. This approach leads to a fully algorithmic method for computing

Feynman integrals from differential equations, which does not require the manual determination of

boundary conditions. Furthermore, the most complicated topology that appears in the method of-

ten has less master integrals than the original one. We illustrate the strength of our method with a

five-point two-loop integral family.
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1 Introduction

The computation of multi-loop Feynman integrals is a crucial component in generating predictions for

particle processes at high-energy colliders such as the LHC. Many modern techniques for computing

Feynman integrals rely on the differential equation method [1, 2]. This method involves setting up a

system of differential equations for the master integrals of a Feynman integral family, and solving the

differential equations either analytically or numerically. Analytic solutions can often be found in terms

of special classes of iterated integrals such as multiple polylogarithms [3, 4] or generalizations thereof

(see e.g. [5, 6]), but are hard to obtain in general. In addition, there are many Feynman integrals

which do not evaluate to well-studied classes of iterated integrals. Therefore, renewed interest has been

expressed in solving differential equations numerically without reference to an intermediate function

space.

Many works in the literature have studied methods for solving differential equations for Feynman

integrals numerically (see e.g. [7–11]). In this paper, we employ the strategy outlined in [12]. In

this approach, differential equations are repeatedly solved in terms of generalized power series expan-

sions (which may contain powers of logarithms) along connected line segments in phase-space. The

Mathematica package DiffExp [13] provides a public implementation of the method that works on

user-provided differential equations. (Another recent public implementation is the SeaSyde [14] Ma-

thematica package.) The approach yields a precise and efficient way of computing Feynman integrals

at any point in phase-space, given an initial set of boundary conditions as input. The computation

of boundary conditions can be performed analytically in special limits with the aid of expansion by

regions [15–17], but generally requires some manual work.

In [18] the Mathematica package AMFlow was presented which is based on the method of auxiliary

mass flow [8, 19]. The package uses expansion by regions to automatically determine boundary condi-

tions in a special limit of infinite complex mass, and a customized series solution solver to transport the

boundary conditions to physical points in phase-space. The result is an efficient and fully automated
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package for computing Feynman integrals numerically at high precision. In [20] we explored a differ-

ent automated strategy which relies on sector decomposition [21–23] to compute boundary conditions

in the Euclidean region for a special basis of (quasi-)finite master integrals [24]. We then obtained

results in physical regions by transporting the boundary conditions with DiffExp. This strategy is

fully automated as well, but it is not able to obtain results at a precision as high as AMFlow.

The main result of the present paper is a new automated approach for computing Feynman

integrals numerically, which relies on repeatedly combining two propagators using Feynman’s trick:

1

Dνi
i D

νj
j

=
Γ(νi + νj)

Γ(νi)Γ(νj)

∫ 1

0

dx
xνi−1(1− x)νj−1

(Dix+Dj(1 − x))νi+νj
, (1)

where νi and νj are assumed to be positive integers. We will show that the integration with respect to

the Feynman parameter x can be performed by solving an associated system of differential equations

in terms of generalized series expansions, and by integrating the series expansions term by term. This

method has the computational advantage that the first application of Feynman’s trick typically gives a

simplified integral family with less master integrals than the original family [25]. This is generally not

the case for the auxiliary mass flow method, which introduces (complex) masses on the propagators.

The reduction of the number of master integrals in our approach simplifies the integration by parts

(IBP) reduction, which can present a bottleneck in complex calculations.

We remark that the use of (1) was also considered in [26] and [25] in the context of simplifying

Feynman integral computations. In [26], the trick was used to study differential equations of elliptic

Feynman integrals by deferring the elliptic type integration to the last integration parameter. In [25],

the formula was shown to simplify an integral family when the combined propagators Di and Dj

have the same internal loop momentum, and the method was called the ‘internal reduction method’.

Furthermore, it was already observed in [25] that this procedure reduces the number of master integrals.

This paper expands on previous ideas in a number of novel ways. Firstly, we discuss how (1) can

be employed recursively, and how the necessary integrations can be performed by solving differential

equations with series expansion methods. Furthermore, we present a formula for resolving poles in

dimensional regularization which is needed to regulate the integrand, and we discuss how to apply it

to an integrand which is in a generalized series representation. We also discuss some first steps into

obtaining iδ-prescriptions for the Feynman parameters, in order to obtain results outside the Euclidean

region.

The remainder of the paper is organized as follows. In section 2 we set up conventions, and we

review the Feynman parametrization and Feynman’s trick for combining propagators. In section 3

we describe the heart of our method, which is to perform the integrals in (13) by making use of

differential equations and series solution methods. We describe in section 3.2 how to regulate the

Feynman parameter integrals in our approach when the master integrals are not finite in ε, and in

section 3.3 we discuss first steps into crossing threshold singularities in our approach, in order to obtain

results directly in physical regions. Lastly, we discuss in section 4 two non-trivial pedagogical two-loop

examples which serve as a proof of concept for our method. Finally, we summarize our methods and

results in section 5.
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2 Preliminaries

Here we review a few general definitions of Feynman integrals. For a thorough review, see e.g. [27].

The main object of interest is a family of Feynman integrals given by

Iν1,...,νn ({si,mi}, d) =

∫





l
∏

j=1

ddkj

iπ
d
2





n
∏

j=1

1

D
νj
j

. (2)

Here {si,mi} schematically denotes the set of external scales and internal masses on which the integral

family depends. We work in dimensional regularization d = dint − 2ε, where dint is a positive (even)

integer. In the remainder of this paper, we will typically leave the dependence on the external scales,

masses and dimension implicit. The propagator exponents νi are assumed to be integers, and we will

denote their sum by ν = ν1+ . . .+νn. Typically some of the exponents are taken to be negative, which

gives numerator factors. We use the convention Dj = −q2j +m2
j − iδ, where qj denotes the momentum

of the j-th propagator. The momentum qj can be written as a linear combination of l loop momenta

ki and E external momenta pj , such that

qj =
l

∑

n=1

ajnkn +
E
∑

n=1

bjnpn , (3)

for some integers ajn and bjn. The Feynman iδ-prescription tells us how to deform around poles in

the integration region, and can be viewed as adding an infinitesimally small complex mass in the lower

half-plane to each propagator.

It is well known that IBP relations exist between Feynman integrals whose propagator exponents

are related by integer shifts [28, 29]. Furthermore, Feynman integrals in different dimensions may be

related through dimensional raising and lowering relations [30, 31]. In order to perform IBP reductions

in closed-form, the propagators Dj should form a basis for the span of dot products of the form ki ·kj ,

and ki · pj . A minimal set of independent integrals may be found in terms of which all other integrals

can be expressed, which is called a basis of master integrals. Finding the basis of master integrals can

be done through IBP-reduction programs such as LiteRed [32], Reduze [33], FIRE [34] and KIRA [35].

The computational complexity of the IBP reductions is typically closely connected to the number of

master integrals that the integral family has.

2.1 Feynman parametrization

It is common to write Feynman integrals in the so-called Feynman parametrization. For brevity, we

will assume in the following that all propagator exponents ν1, . . . , νn are positive, and that we do

not necessarily have a basis of propagators and numerators suitable for IBP reduction. For the case

with numerators, we refer the reader to [32]. First, we consider the following formula, which was first

observed by Feynman, and which we will refer to as Feynman’s trick:

1

Dν1
1 . . .Dνn

n
=

Γ(ν)

Γ(ν1) . . .Γ(νn)

∫ 1

0

dn~x
xν1−1
1 . . . xνn−1

n δ
(

1−
∑n

j=1 xj

)

(x1D1 + . . .+ xnDn)ν
, (4)

where ν = ν1+ . . .+ νn. Upon plugging the formula into (2), we may integrate out the loop momenta,

which gives the Feynman parametrization:

Iν1,...,νn =
Γ(ν − ld/2)
∏n

j=1 Γ (νj)

∫





n
∏

j=1

dxj x
νj−1
j





Uν−(l+1)d/2

Fν−ld/2
δ



1−
n
∑

j=1

xj



 . (5)
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The graph polynomial U is of degree l in the Feynman parameters xi, and F is of degree l+1. These are

also called the first and second Symanzik polynomials. The Symanzik polynomials can be constructed

from the graph G of the Feynman integral. It holds that

U =
∑

T∈T (G)

∏

ei /∈T

xi , F0 =
∑

(T1,T2)∈T2(G)





∏

ei /∈(T1∪T2)

xi



 s(T1,T2),

F = −F0 + U
(

∑

xim
2
i

)

− iδ . (6)

The sum goes over the spanning trees T (G) of G, and the spanning 2-forests T2(G) of G. We have

added a −iδ to F , which takes care of the Feynman prescription.

More generally, we may wish to consider Feynman integrals with generalized propagators, which

are quadratic functions in the internal and external momenta. In this case a graph representation

may not exist for the Feynman integral, but the Symanzik polynomials can still be defined through

determinants. We refer the reader to [27, 36] for explicit formulas.

2.2 Iterating Feynman’s trick

Let us derive an alternative form of the Feynman parametrization by repeatedly applying (4) to

combine two propagators. For example, we may choose to combine every time the leftmost two

propagators, which we will do next. More generally, we may choose to combine propagators in some

other sequence, which we will do for our examples. Let us consider the following set of generalized

propagators

D12 = x1D1 + (1− x1)D2 ,

D123 = x2D12 + (1− x2)D3 ,

. . .

D1...n = xn−1D1...(n−1) + (1− xn−1)Dn . (7)

Next, we define a set of integral families I
(κ)
~ν , such that for κ = 0 we have the original family, and

for each successive step κ we combine two propagators. Like before, we will assume in the following

that all propagator exponents are positive, and we leave out the numerator factors which are needed

to obtain a basis for IBP reductions. We define the integral families by

I(κ)ν1,...,νn−κ
=

∫





l
∏

j=1

ddkj

iπ
d
2



D−ν1
1...(κ+1)

n
∏

j=κ+2

D
−νj−κ

j for 0 ≤ κ < n− 2,

I(n−1)
ν =

∫





l
∏

j=1

ddkj

iπ
d
2



D−ν
1...n . (8)

We have chosen our conventions such that the integrals I
(κ)
~ν depend on the (unintegrated) Feynman

parameters x1, . . . , xκ. We remark that an integral I
(κ)
~ν can be represented as a Feynman diagram if

we combine propagators with the same internal momentum [25]. For example, suppose that

D1 = −(k + p)2 +m2
1 , D2 = −(k + q)2 +m2

2 . (9)

Then we have

xD1 + (1− x)D2 = −(k + P )2 +M2 , (10)
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where P = xp + (1 − x)q and M2 = xm2
1 + (1 − x)m2

2 − x(1 − x)(p − q)2. Note that I
(n−1)
ν can be

loosely seen as a generalized tadpole diagram, which evaluates to:

I(n−1)
ν =

∫





l
∏

j=1

ddkj

iπ
d
2



D−ν
1...n =

Γ(ν − ld/2)

Γ (ν)

Ũν−(l+1)d/2

F̃ν−ld/2
, (11)

where Ũ and F̃ are obtained from U and F by letting:

x1 → x′

1 =

n−1
∏

i=1

xi ,

xj → x′

j = (1− xj−1)

n−1
∏

i=j

xi for j = 2, . . . , n− 1 ,

xn → x′

n = (1 − xn−1) . (12)

In short, this follows from observing that D1...n = x′

1D1 + . . . + x′

nDn. More generally, if we choose

to repeatedly combine propagators in some different way, we can look at the generalized tadpole

propagator to understand how the Feynman parameters are rescaled from the standard Feynman

parametrization.

Using (4), we may write

I(κ−1)
ν1,...,νn−(κ−1)

=
Γ(ν1 + ν2)

Γ(ν1)Γ(ν2)

∫ 1

0

dxκ x
ν1−1
κ (1− xκ)

ν2−1I
(κ)
ν1+ν2,ν3,...,νn−κ

, (13)

where ν1 and ν2 are assumed to be positive. If we iterate the recursion, we obtain

Iν1,...,νn =
Γ(ν)

Γ (ν1) . . .Γ (νn)





n−1
∏

j=1

∫ 1

0

dxj x
µj−1
j (1− xj)

νj+1−1



 I(n−1)
ν ,

=
Γ(ν − ld/2)

Γ (ν1) . . .Γ (νn)





n−1
∏

j=1

∫ 1

0

dxj x
µj−1
j (1− xj)

νj+1−1





Ũν−(l+1)d/2

F̃ν−ld/2
, (14)

where µj = ν1 + . . . + νj , and ν = µn. This result could have also been obtained directly from (5)

by performing the change of variables in (12) (including the Jacobian determinant). This makes it

clear that (13) implements a recursion identity that leads to (an alternate form of) the Feynman

parametrization. Note that we have the following special cases when ν1 and/or ν2 is zero

I
(κ−1)
0,0,ν3,...,νn−(κ−1)

= I
(κ)
0,ν3,...,νn−κ

,

I
(κ−1)
ν1,0,ν3,...,νn−(κ−1)

= lim
xκ→1

I(κ)ν1,ν3,...,νn−κ
,

I
(κ−1)
0,ν2,ν3,...,νn−(κ−1)

= lim
xκ→0

I(κ)ν2,ν3,...,νn−κ
. (15)

We elaborate on these limits at the end of section 3.2.

3 Direct integration through differential equations

3.1 Main method

Now that we have obtained the recursion identities in (13) and (15), we will discuss how each step

in the recursion can be performed by solving a system of differential equations. First, we add a set
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of numerator factors to each family I
(κ)
~ν , in order to have a complete linearly independent set of

propagators for the IBP reduction. Let us denote the set of master integrals by ~I(κ). We may then

obtain a closed-form linear system of differential equations of the form [1, 37]

∂xκ
~I(κ) = Mxκ

~I(κ) . (16)

Note that the master integrals ~I(κ) and the corresponding differential matrix Mxκ
, depend on Feynman

parameters x1, . . . , xκ, and on the external scales and internal masses of the original integral family.

Let us assume we have boundary conditions for the master integrals ~I(κ) at a given point in phase-

space, and for some numeric values of the Feynman parameters x1, . . . , xκ. In the remainder of the

paper, we will typically choose xj = 11/23 for all j. The precise choice is not important, as long as

the external scales, masses, and xj do not lie on a singularity of the differential equations. Note that

boundary conditions in step κ = n− 1 can be obtained by evaluating (11) in a chosen numerical point

for the external scales, masses, and Feynman parameters.

We may use DiffExp [13] to obtain a solution for the master integrals ~I(κ) in the interval 0 < xκ <

1, while keeping all other variables at a fixed numerical value. The solution is obtained as a piece-wise

collection of generalized series expansions up to a given order, on a covering set of line segments. We

seek to use this representation to perform the integrals in (13). In principle, this is straightforward

since we may integrate the series expansions term-by-term and segment by segment in an efficient

manner. We may also use the series expansion representation to evaluate the limits in (15). However,

there are some obstacles which we discuss next.

The first obstacle is that the integrals which appear on the right-hand side of (13) and (15) may not

necessarily correspond to the choice of master integrals ~I(κ). Therefore, we should use IBP relations to

write all integrals in terms of the given master integrals. Since we have representations for the masters

in terms of collections of generalized series expansions, we have to convert the IBP coefficients to the

same representation as well, which can be done in an automatic way.

A second obstacle comes from the (dimensional) regularization of the integrals. In particular,

integrals of the form (13) do not converge in general when ε is close to zero. Instead, it may be

necessary to obtain the result by analytically continuing from larger values of ε. Practically, this can

be achieved through a formula for resolving the poles (18). Similarly, the limits in (15) have to be

taken in a way that is consistent with dimensional regularization. We explain in more detail how to

deal with these issues in section 3.2.

The last difficulty is the need for iδ-prescriptions to perform the transport past (threshold) sin-

gularities in the bulk of the interval 0 < xκ < 1. If we choose our kinematics in the Euclidean

region, there are no such singularities by definition. If we choose kinematics in physical regions, there

are singularities and it is necessary to make choices which are in correspondence with the Feynman

prescription. We will discuss this point further in section 3.3.

Taking care of the previously mentioned subtleties, we may use (13) and (15) to obtain new

boundary conditions for the master integrals ~I(κ−1). By iterating this procedure, we eventually obtain

numerical results for the master integrals of the original integral family ~I = ~I(0).

3.2 Regularization

Let us consider the regularization of (13). In general, Feynman parameter integrals may not converge

when ε is close to zero, due to the presence of non-integrable singularities at the integration boundaries

xκ = 0 and xκ = 1. There may also be singularities in the bulk of the integration region 0 < xκ < 1,

which can be integrated over by deforming the contour using suitable iδ-prescriptions. We will discuss

this case in section 3.3.
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Singularities at the boundary can be dealt with using sector decomposition. What makes our

computation different from normal is that our integrand is represented by a collection of series expan-

sions along a partitioning of the interval xκ ∈ [0, 1]. Let us first distinguish two ways to deal with the

dimensional regulator ε in the series expansion approach. The first option is to work order-by-order in

ε. DiffExp was originally written with this approach in mind. However, we found it difficult to apply

regularization formulas while the series expansions are in this representation. Instead, we may find a

(quasi-)finite basis of master integrals for the differential equations [24], which can be done using for

example the functionality in Reduze 2 [33]. Non-integrable singularities at the boundary disappear

when choosing (quasi-)finite master integrals for each family I
(κ)
~ν . A downside to this approach is that

finite basis integrals may contain high degree numerators and dots, or may be shifted in dimension,

and therefore may require more complicated IBP reductions.

The second option for the transport with DiffExp is to use a fixed numeric value for ε. By repeating

the computation multiple times for different values of ε, it is possible to reconstruct the dependence

on ε up to a given order [18]. Although DiffExp has not been designed with this approach in mind,

the package also works on a differential matrix with a numeric value plugged in for ε.1 The ε-sampling

approach is furthermore suitable for analytic regularization of the poles [38], which we discuss next.

Let us consider an integral of the form

∫ c

0

dxxa+bεg(x, ε) . (17)

Here we assume that a and b are rational numbers, that b 6= 0, and that the upper bound is chosen

such that there are no non-integrable singularities in the interval 0 < x ≤ c, except possibly at x = 0.

Furthermore, we assume that g(x, ε) is a Taylor series in x with a non-zero finite part, and whose

coefficients may depend on ε. When a ≤ −1 and ε → 0, there is a non-integrable singularity at x = 0.

We may resolve it by (possibly repeatedly) applying the following integral identity:

∫ c

0

dxxa+bεg(x) =

∫ c

0

dx
xa+bε+1

(1 + a+ bε)

(

(2 + a+ bε)

c
g(x) −

(

1−
x

c

)

g′(x)

)

, (18)

which is similar to the formula for extracting poles in the sector decomposition approach (see e.g.

[39]). It is clear that this formula increases the overall scaling exponent in the limit x → 0, such that

repeated application of the formula resolves non-integrable singularities.

We discuss next how to apply this formula to integrate results from DiffExp. The solutions from

DiffExp are given as a collection of line segments. In particular, there is a segment around x = 0,

and a segment around x′ = 1− x = 0. For illustrative purposes, we will consider the segment around

x = 0, but the discussion is the same for the segment at the upper integration boundary with local

line parameter x′. We decompose the expansions in the following way:

g(x) = g0(x, ǫ) + xa1+b1εg1(x, ε) + . . .+ xak+bkεgk(x, ε) , (19)

where g0(x, ǫ) is a Taylor series in x, and where each contribution xai+biεgi(x, ε) with i = 1, . . . , k,

leads to an integration of the form of (17). We may assume that a numerical value for ε is already

plugged into each gi(x, ε). The exponents ai and bi may be read off from the indicial equations of the

differential equations.

1However, because DiffExp uses Mathematica’s SeriesData format, it is not able to work with very small values of ε.

In particular, the SeriesData representation stores many redundant zero coefficients when a power series is multiplied

by an overall fractional power x
bε. For the examples in section 4, we chose the values in (27).
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The fact that a decomposition of the form of (19) is possible, and that there are no contributions

with ai ≤ −1 and bi = 0, was established empirically by computing a number of examples. Further-

more, we might expect logarithms in the expansions, but we did not observe these in our examples.

(However, logarithms of the type log(x) may be obtained by expanding in ǫ.) Lastly, we found in our

examples that the exponents ai and bi were always integers.

After performing the decomposition, we may apply (18) at integrand level to each factor in (19)

until we reach a form where every ai ≥ 0. Afterwards, we can perform the integration as usual.

Lastly, we remark on how to perform the limits in (15) for integrals which do not depend on one

of the combined propagators. To evaluate the limits, we take the segment centered at x = 0 or at

x′ = 1− x = 0, and we filter out the finite coefficient of the Taylor series g0(x, ǫ) in (19). This means

we put any contributions of the form xai+biεgi(x, ε) with bi 6= 0 to zero (even when ai < 0).

3.3 Threshold singularities

When crossing threshold singularities (with DiffExp) it is necessary to provide iδ-prescriptions (con-

tour deformations) which are in agreement with the Feynman prescription. Since our method involves

solving differential equations of Feynman parameters, instead of external scales and masses, it is not

always clear how to proceed with a suitable choice of iδ. One option is to first compute a point in

the Euclidean region (when a Euclidean region exists for the given integral family.) One may then

obtain results in the physical region by transporting from the Euclidean region using the system of

differential equations of the (original) integral family.

Alternatively, we may seek to compute results directly in the physical region with our method.

Let us first recall that if a graph representation exists for an integral family, we may identify possible

thresholds by drawing unitarity cuts. In practice, we can use a simple automatic strategy which was

also employed in [20]. We take the set of external legs pj and compute all possible subsets (including

the empty set.) Next, we do the same for the set of all internal masses mj . Lastly, we generate a list

of all iδ-prescriptions of the form

s−M2 + iδ , (20)

where s is a sum of momenta, and M is a sum of internal masses. We then provide DiffExp with the

resulting set of iδ-prescriptions. The list is overcomplete (and includes pseudo-thresholds), but any

redundant prescriptions will be of no effect. For topologies which contain combined propagators, a

graphical representation often still exist and we can employ the above strategy on the (generalized)

external momenta and masses (cf. (10)). In this case, s and M will depend on the unintegrated

Feynman parameter(s).

If we choose to combine only propagators which have the same loop momenta in the first steps

of the iteration, we have a diagrammatic representation for the integral families in these steps. For

example, for the two-loop examples in section 4 we eventually obtain a (generalized) sunrise topology

(see Figure 7). In the final steps of the iteration, we have to combine propagators with different loop

momenta, and here we do not currently have a general understanding of which iδ-prescriptions to

give to DiffExp. We note that we do not always cross physical thresholds for every integration. For

example, in section 4.1 we compute a non-planar double pentagon family in a kinematic point that

lies outside the Euclidean region. However, we found that we do not cross any physical thresholds

during the transports of x4, x5, x6 and x7. We elaborate on this point in section 4.1.

More generally, we may need to cross physical thresholds of integral families that do not have a

diagrammatic depiction. On the one hand, we could choose to compute boundary conditions for the
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last diagrammatic topology in the iteration using another method such as auxiliary mass flow, or by

deriving boundary conditions manually using expansion by regions. On the other hand, we believe

that a suitable contour prescription exist in principle for each Feynman parameter. For example, we

managed to obtain consistent results in the physical region of the sunrise integral family with our

method, after trying a few different choices of iδ-prescriptions. To get consistent results, we also

included a small −iδ in the second Symanzik polynomial appearing in the boundary conditions of the

generalized tadpole topology (cf. (6), (11)).

We hope that a more rigorous analysis in the future will shed further light on the general choice

of iδ-prescriptions for the Feynman parameters, especially when computing integral families that do

not have a diagrammatic representation.

4 Pedagogical examples

In this section, we define two integral families which we will use for our examples. The computation

of the second integral family will be discussed in detail in section 4.1. For the examples, we have

opted to flip the sign of the momentum and mass in the propagators compared to section 2. The first

example family is defined by

Itopo7
ν1,ν2,ν3,ν4,ν5,ν6,ν7,ν8,ν9 =

∫

ddk1

iπ
d
2

ddk2

iπ
d
2

D−ν8
8 D−ν9

9

Dν1
1 Dν2

2 Dν3
3 Dν4

4 Dν5
5 Dν6

6 Dν7
7

, (21)

where d = 4− 2ε, and where the propagators are given by

D1 = (k1 + p3)
2 −m2

2 , D4 = k22 , D7 = (k1 − k2)
2 ,

D2 = k21 , D5 = (k2 − p2)
2 , D8 = (k1 − p2)

2 ,

D3 = (k1 − p1 − p2)
2 , D6 = (k2 − p1 − p2)

2 , D9 = (k2 − p3)
2 , (22)

where D8 and D9 are assumed to be numerators (ν8, ν9 ≤ 0). The top sector is depicted in Figure 1.

The kinematics is given by

p21 = p22 = p23 = 0 , p1 · p2 = s/2 , p1 · p3 = (t− s+m2
1)/2 , p2 · p3 = −t/2 , (23)

where the momenta satisfy the conservation identity p1 + p2 + p3 + p4 = 0.

p1

p2 p3

p4

m1

m2

Figure 1: A double box topology named topo7 which in this paper is dressed with one massive

external leg and one massive propagator.

Our second example is of higher complexity, and defined by

I5p
ν1,ν2,ν3,ν4,ν5,ν6,ν7,ν8,ν9,ν10,ν11 =

∫

ddk1

iπ
d
2

ddk2

iπ
d
2

D−ν9
9 D−ν10

10 D−ν11
11

Dν1
1 Dν2

2 Dν3
3 Dν4

4 Dν5
5 Dν6

6 Dν7
7 Dν8

8

, (24)
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where d = 4− 2ε, and where the propagators are

D1 = (k2 − p1 − p2 − p3 − p4)
2
, D5 = (k1 − p1)

2
, D9 = (k2 − p1 − p2)

2
,

D2 = (k2 − p1 − p2 − p3)
2
, D6 = k21 , D10 = (k1 − p1 − p2 − p3 − p4)

2
,

D3 = k22 , D7 = (k1 − k2 + p3)
2
, D11 = (k2 − p1)

2
,

D4 = (k1 − p1 − p2)
2
, D8 = (k1 − k2)

2
. (25)

We assume that D9, D10 and D11 are numerators (ν9, ν10, ν11 ≤ 0). The kinematics is given by:

p21 = p22 = p23 = p24 = 0 , p1 · p2 = s12/2 , p1 · p3 = s13/2 , p1 · p4 = s14/2 ,

p2 · p3 = s23/2 , p2 · p4 = −(s12 + s13 + s14 + s23 + s34 − s55)/2 , p3 · p4 = s34/2 , (26)

where the momenta are conserved according to p1 + p2 + p3 + p4 + p5 = 0. The family is depicted in

Figure 2.

p1

p2

p3

p4

p5

s55

Figure 2: A double pentagon topology named 5p which in this paper is dressed with one massive

external leg.

4.1 Non-planar double pentagon family

In the following section we describe the application of our method to the non-planar double pentagon

family I5p

~ν , with a focus on the computational aspects of the calculation. We obtained our results using

the ε-sampling strategy, which we borrowed from [18]. More specifically, we considered a set of small

numerical values {εi} inserted for the dimensional regulator ε, and we performed the computation

every time for a fixed εi. At the end, we reconstructed our results as a power series in ε up to order

ε4.

We aimed to reach a precision of 40 digits for the finite part of all master integrals of the uncom-

bined integral topology defined in (24). To do so, we proceeded with some small trial and error. We

found it sufficient to choose numerical values

εi = (−1)i/(50 + i) where i = 1, . . . , 40 , (27)

and to perform the evaluation of all integrals at a precision of 60 digits. Our samples εi are relatively

large in magnitude, because DiffExp can currently not handle very small samples. Note that when

reconstructing the dependence on ε up to a given order, there is a precision loss involved. We recon-

structed our results a few times by leaving out a sample from the full set. By comparing the different

results, we found a variation that was within the desired precision of 40 digits for the finite part. A
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Table 1: We iterate Feynman’s trick seven times to reduce the non-planar double pentagon topology

to a trivial form. Each step κ combines two propagators in the input column. The new combined

propagator is given in the output column. The number of master integrals of the integral family with

the combined propagator(s) is given in the last column. A large reduction of master integrals is seen

for each iteration.

κ input output Number of master integrals

0 - uncombined 142

1 {D1, D2} D12 = D1x1 + (1 − x1)D2 69

2 {D4, D5} D45 = D4x2 + (1 − x2)D5 32

3 {D7, D8} D78 = D7x3 + (1 − x3)D8 16

4 {D12, D3} D123 = D12x4 + (1 − x4)D3 8

5 {D45, D6} D456 = D45x5 + (1 − x5)D6 4

6 {D123, D456} D123456 = D123x6 + (1 − x6)D456 2

7 {D123456, D78} D12345678 = D123456x7 + (1− x7)D78 1

more systematic analysis for how to choose the precision of the evaluations, the values for εi, and the

number of samples, is described in [18].

Our computation required seven iterations, where we repeatedly combine two propagators. We

provide the order in which the propagators are combined in Table 1. The ancillary file 5-point-

FT-iteration.wl contains the definitions of the topologies with combined propagators. There exists

a diagrammatic representation for the integral families in steps κ = 0, . . . , 5, which are depicted in

figures 2, 3, 4, 5, 6, 7. In step κ = 5, we have a generalized sunrise family, which is computed with

two further iterations where the topologies do not have a diagrammatic representation anymore. The

integral family I
5p,(κ=7)
ν in step κ = 7 can be loosely viewed as a generalized tadpole with a single

master integral, which evaluates to a combination of (rescaled) Symanzik polynomials and gamma

functions (cf. (11)). We obtain the first boundary conditions by setting all external scales and

Feynman parameters to numerical values. In particular, we consider the point s14 = 3, s13 = −11/17,

s23 = −13/17, s12 = −7/17, s34 = −7/13, s55 = −1, and we set all Feynman parameters to the value

xj = 11/23. We then use DiffExp to transport in x7, and to obtain a generalized series representation

in the interval 0 < x7 < 1. By integrating the series representation in accordance with Feynman’s trick

(1), we obtain boundary conditions for the integral family in step κ = 6. We repeat the procedure of

transporting and integrating, until we reach the last Feynman parameter integration in step κ = 1.

After performing the last integration, we obtain numerical results for all master integrals of the

original family (κ = 0) defined in (24). These results may also be used as boundary conditions for

the differential equations of the original integral family, which allows one to reach other points in

phase space without going through the iteration again. We remark that we did not cross any physical

thresholds for the first transports in the Feynman parameters x7, . . . , x4. This can be motivated by

the fact that the second Symanzik polynomial, obtained from the generalized tadpole in step κ = 7,

is positive in our kinematic point with xi = 11/23 for i = 1, 2, 3, and with 0 < xj < 1 for j = 4, . . . , 7.

For the transports of x3 and x1 we found that we have to cross physical thresholds, while for the
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transport in x2 we did not observe any physical thresholds. We chose iδ-prescriptions for x3 and x1 in

the manner described in section 3.3. The result for one of the 142 most complicated master integrals is

given below at the numerical point s14 = 3, s13 = −11/17, s23 = −13/17, s12 = −7/17, s34 = −7/13,

s55 = −1:

I5p
13111111000 =

1

ε−4

(

− 80991.44634941832815855134956686330134244459
)

+
1

ε−3

(

− 1176854.140501650857516200908950071824160111−

303701.8453350029342400125918254935316349429i
)

+
1

ε−2

(

− 13432835.8477692962185637394931604891797674−

4251651.64965980166114774272201533676580580i
)

+
1

ε−1

(

− 111346171.63704503288070435527859004232921−

32927342.395688330300021665788556801968176i
)

+
(

− 763045644.5561305442093867867513427731742−

183231121.4048774146788661490531205282119i
)

+ε
(

− 4428755434.16119754697555927652734791719−

816059490.912195429388068459166197648719i
)

+ε2
(

− 23085640630.259889520777994526537639199−

3082908606.7551294811504215473642629605i
)

+ε3
(

− 110164352209.7092412652451256610943938−

10252510409.42185691550687766152353640i
)

+ε4
(

− 497649560130.015209279192098631531920−

30796992268.3516086870566559550754104i
)

. (28)

We have numerically cross-checked the master integrals with AMFlow.

4.2 Computational complexity

The main advantage of our method is that the integral families with combined propagators typically

have significantly fewer master integrals for each step in the iteration. We also remark that there is a

significant overlap between the master integrals of different steps in the iteration. This feature could be

utilized in a future specialized integration code. We motivate with four different examples in Table 2

that the computational complexity of our method is in many cases reduced compared to auxiliary mass

flow [18]. In particular, if we assume that the same algorithms are used to perform the IBP reductions

and the transportation of boundary conditions from the differential equations, we expect that the

computational complexity is mostly determined by the maximal number of master integrals appearing

in the computation of the Feynman integrals. Our example family 5p serves as an ideal candidate to

showcase a significant reduction in the computational complexity compared to the auxiliary mass flow

method. We found in this case that the CPU hours for performing the IBP-reductions are reduced by

a factor of 66 between our method and auxiliary mass flow.

There are a few possible caveats to the above analysis. Firstly, in our current implementation

it takes relatively long to compute the series expansions with DiffExp in the intervals 0 < xj < 1.
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Table 2: The maximal number of master integrals appearing in the computation of a few integral

families.

Integral family No deformation Combined propagators AMFlow

topo7 31 19 31

topo7 with m1 = 0, m2 = 0 8 12 21

5p 142 69 191

5p with s55 = 0 108 69 174

Furthermore, the integration and regularization of the series expansions (cf. (18) and (13)) takes some

time in our current implementation. For example, the final transport with DiffExp and the subsequent

integration took 340 CPU hours in total for the 5p integral family. The whole bottom-up iteration

for the 5p integral family took 700 CPU hours (which includes the computation of all 40 numerical

samples in the dimensional regulator.) We expect that incorporating ideas from the differential solver

used in AMFlow will improve the performance of DiffExp significantly.

5 Conclusion

In this work we demonstrated a novel method for computing Feynman integrals. The method is

similar to the direct integration method, in which the Feynman parametrization is integrated one

Feynman parameter at a time. However, in our approach each integration is done numerically by

solving a system of differential equations of a simplified Feynman integral family. The solutions are

obtained in terms of generalized series expansions, which are subsequently integrated term-by-term.

We furthermore showed that non-integrable singularities at the integration boundaries can be dealt

with using a regularization formula. This leads to a computationally efficient and precise method for

performing Feynman parameter integrals numerically. Lastly, we have made a first exploration of how

to obtain results outside the Euclidean region with our method. (Although a full understanding of the

necessary contour deformations of the Feynman parameters is left for the future.)

The approach discussed in this paper gives a fully algorithmic way to numerically compute master

integrals belonging to a generic Feynman integral family. Furthermore, we expect that our method

is computationally more efficient than auxiliary mass flow, as it typically requires the computation of

integral families with fewer master integrals (see Table 2). This significantly reduces the complexity

of the IBP reductions which are required. As a proof of concept, we have discussed in detail the com-

putation of a non-planar double pentagon integral family using our method. We leave the publication

of a general public code that implements our method to a future publication.
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Appendix A: Feynman trick iterations of the double pentagon family

p1

p2

p3

p4x1

−p1 − p2 − p3 − p4x1

D1x1 + (1− x1)D2

Figure 3: Step κ = 1: Combining propagators for the first time, reducing the complexity of the initial

topology 5p.

p3

(1− x2)p2 + p4x1

−p1 − p2 − p3 − p4x1

D1x1 + (1 − x1)D2

p1 + p2x2

D4x2 + (1 − x2)D5

Figure 4: Step κ = 2: Combining propagators for the second time, reducing the complexity further.

(1− x2)p2 + (1− x3)p3 + p4x1

−p1 − p2 − p3 − p4x1

D1x1 + (1 − x1)D2

p1 + p2x2

D4x2 + (1 − x2)D5

p3x3

D
7 x

3
+
(1

−
x
3 )D

8

Figure 5: Step κ = 3: Combining propagators for the third time, reducing the complexity further.
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−p1 + (p1 + p2 + p3 + p4x1)x4 − p3x3 − p2x2

p1 + p2x2

D4x2 + (1− x2)D5

p3x3 − (p1 + p2 + p3 + p4x1)x4

D
7 x

3
+
(1

−
x
3 )D

8

(D1x1 + (1 − x1)D2)x4 + (1− x4)D3

Figure 6: Step κ = 4: Combining propagators for the fourth time, reducing the complexity further.

−p3x3 + (p1 + p2 + p3 + p4x1)x4 − (p1 + p2)x5

p3x3 − (p1 + p2 + p3 + p4x1)x4 + (p1 + p2)x5

D
7 x

3
+
(1

−
x
3 )D

8

(D1x1 + (1− x1)D2)x4 + (1− x4)D3

(D
4 x

2
+
(1

−
x
2 )D

5 )x
5
+
(1

−
x
5 )D

6

Figure 7: Step κ = 5: Combining propagators for the fifth time, reducing the complexity further,

and giving a sunrise topology. Further iterations do not have a diagrammatic representation.
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