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to relate the vanishing of the polarisability and the susceptibility to the values of conserved
charges. Finally the perturbation equations correspond to a supersymmetric quantum
mechanical system such that the polar sector can be described in terms of Schrödinger’s
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1 Introduction

Non-linear extensions of Maxwell’s electromagnetism have a long history and they have been
extensively studied (see e.g. [1–3]). Paradigmatic examples of non-linear electrodynamics
are provided by the old idea of Born and Infeld [4, 5] in an attempt to regularise the
self-energy of the electron1 or the Euler-Heisenberg Lagrangian [7] obtained as the 1-loop
effective action resulting from integrating out a massive fermion. High energy physics
such as string theory could also be at the origin of non-linear electrodynamics in the low
energy manifestation of open strings around D-branes [8, 9]. These theories have been
used in many applications for cosmology, black hole physics, etc. A distinctive property
of these theories is that, under general assumptions, the electric interaction between
charged particles is modified at short distances so that the electric attraction or repulsion
is suppressed with respect to the Maxwellian one. This is nothing but an example of a
screening mechanism à la K-mouflage or kinetic screening [10]. In fact, although not under
this name, these screening mechanisms largely precede those for scalar fields that have
been exhaustively used for cosmological applications within the context of dark energy
and modified gravity theories in recent years [11, 12]. A common drawback of the kinetic
screening for scalar fields is that screened solutions seem to come hand in hand with the
superluminality of the perturbations [11]. Interestingly, the analogous screening within
non-linear electromagnetism exhibits the opposite behaviour, i.e., the condition to have
screening is nicely compatible with the absence of superluminal propagation. It is important
to clarify that, although we talk about non-linear electromagnetism, we do not necessarily
refer to the usual electromagnetic interaction of the standard model, i.e., the non-linear
theories that we consider could be some dark electromagnetic sector. This approach has
been pursued recently where the dark matter component of the Universe is provided with
a dark electromagnetic force featuring this screening [13, 14]. This could have interesting
cosmological applications for structure formation and could even alleviate the Hubble
tension [15].2

Amongst all electromagnetic theories, Maxwell’s is very special, not only because it is
a linear theory, but because it features two interesting symmetries, namely: conformal and
duality invariance. When non-linearly deforming Maxwell’s theory, these symmetries are
generally broken, thus losing some interesting properties of Maxwell’s theory. Although
this might not be detrimental,3 it is theoretically appealing to uncover the existence of
non-linear electromagnetism theories that preserve one or both of these symmetries. It has
been known for a long time that there is a family of non-linear electromagnetic theories
that share the property of duality invariance [17], among which we can find the Born-Infeld

1These ideas have also been considered within gravity theories as an attempt to regularise black hole or
cosmological singularities (see [6] for a review on these attempts).

2See also [16] for an earlier proposal of a net dark charge albeit not involving any screening mechanism.
3The breaking of these symmetries might even be desirable in some cases. For instance, the conformal

invariance of Maxwell electromagnetism prevents the possibility of generating primordial magnetic fields
during inflation, so one would want to break such a symmetry during inflation to be able to generate
primordial magnetic fields. On the other hand, duality invariance is associated to the conservation of the
helicity so the breaking of duality invariance is desirable in order to generate chirality.
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one. In a recent work, it has also been shown that there is one non-linear electromagnetism
that is able to preserve both symmetries, duality and conformal invariance, which has
been dubbed ModMax electromagnetism [18]. Its properties have been studied and some
extensions have also been worked out [19–22].

In this work we will focus on a family of theories based on these two remarkable theories:
the Born-Infeldised ModMax models [23]. The Born-Infeld and ModMax theories are limits
of these models. They always preserve duality invariance and restore conformal invariance
in the limiting case where the ModMax theories are selected. We will discuss the presence
or absence of screening mechanisms within this family of theories as well as its efficiency,
having in mind possible applications for cosmology and astrophysics. Once the existence
of such screened solutions is assessed, we will compute the quadratic action governing the
dynamics of the perturbations around such background solutions to study their behaviour.
In particular, we obtain the propagation speeds and masses that are relevant for potential
problems of superluminalities, strong coupling or the formation bound states. Furthermore,
we will compute the linear response of screened objects to external stimuli. One interesting
property that we uncover is that the polarisability or susceptibility can vanish depending on
the underlying model of non-linear electromagnetism. For instance for the Born-Infeldised
ModMax models, which interpolate between the ModMax theories and Born-Infeld, we
find that the polarisability in the polar (even) sector vanishes for odd multipoles. This
extends to the axial case in the Born-Infeld case only. We notice that this vanishing is
related to the appearance of conserved charges in the perturbation equations although
the relationship does not seem to be one to one. On the other hand, the vanishing of the
polarisability or the susceptibility is related to the existence of ladder operators which
allow to construct the modes of the perturbation equations from the monopole and dipole
solutions. In particular, we find that the states constructed by the raising operators are
regular and satisfy the boundary conditions for the electric or magnetic fields. In the cases
where the polarisabilities or the susceptibilities do not vanish, the tower of states cannot be
constructed with appropriate regularity properties.

This paper is arranged as follows. In a first section 2 we introduce K-mouflage in non-
linear electromagnetism. Then we focus on the perturbations around an electric spherical
solution in section 3. This allows us to calculate the linear response to an external field
at infinity in section 4. We notice that the polarisability and the susceptibility can vanish
for the Born-Infeldised theories for odd multipoles and relate the existence of a ladder of
conserved charges ultimately related to an underlying ladder structure in the perturbation
equations and the existence of conserved charges, see section 5. We then discuss our results
and conclude in section 6. Two technical appendices A and B, where the second order
action is fully derived and where the ladder structure is considered from an alternative
point of view complement our discussion.

Conventions. The field strength of the gauge field is Fµν = ∂µAν − ∂νAµ. The dual
is defined as F̃µν = 1

2ε
µναβFµν . The electric and magnetic components are Ei = F0i and

Bi = F̃0i. We will work with mostly plus signature for the metric.
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2 Vector K-mouflage

We will start by reviewing some generalities about non-linear electromagnetism and the
related screening mechanisms. We will then turn to the particular non-linear electromagnetic
theories that will be the focus of this work.

2.1 Generalities

Let us consider a theory for an Abelian gauge spin-1 field Aµ described by the Lagrangian

L = K(Y, Z) , (2.1)

with Y = −1
4FµνF

µν and Z = −1
4FµνF̃

µν the two independent Lorentz invariants which
can be expressed in terms of the electric and magnetic components as Y = 1

2( ~E2 − ~B2) and
Z = ~E · ~B.4 The field equations for the gauge field are

∇ν
(
KY Fµν +KZ F̃µν

)
= Jµ , (2.2)

where we have added the current Jµ as a source term. In addition to the dynamical
equations, we have the corresponding Bianchi identities (satisfied off-shell) derived from
gauge invariance ∇µF̃µν = 0. Let us consider now a static Jµ with compact support, i.e.,
Jµ = (ρ,~0), so that the equations reduce to

∇ ·
(
KY ~E +KZ ~B

)
= ρ , (2.3)

∇×
(
KY ~B −KZ ~E

)
= 0 . (2.4)

As well-known, these equations can be written as Maxwell’s equations inside a medium
with an electric displacement ~D and a magnetic intensity ~H given by

~D = ∂K
∂ ~E

= KY ~E +KZ ~B , (2.5)

~H = −∂K
∂ ~B

= KY ~B −KZ ~E , (2.6)

so the equations (2.4) can be written as:

∇ · ~D = ρ , (2.7)
∇× ~H = 0 . (2.8)

From these equations, we can see that a static source could, in principle, also generate
a magnetic field.5 It is not difficult to see, however, that assuming a vanishing magnetic

4In this work we will make a pure classical analysis. In this respect, the non-linear dependence on Y

and Z will come in with some scale Λ that controls the classical non-linearities. Since quantum corrections
are expected to enter with derivatives of the field strength ∂`Fn [24], there is a regime where classical
non-linearities can be relevant within the regime of validity of the EFT. In this regime we can have Fµν ∼ Λ
as long as ∂µ � Λ [13].

5At a more speculative level, one could also generate electric fields from a purely magnetic monopole
without being a dyon.
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field is consistent if we require parity invariance since this imposes a Z2 symmetry with
respect to Z, i.e., K can only depend on Z2. In that case KZ = 2Z∂K/∂Z2 that vanishes
identically for ~B = 0. For this purely electric configuration the equations simplify to

∇ ·
(
KY ~E

)
= ρ . (2.9)

In a spherically symmetric situation ρ = ρ(r), we can use Gauss’ theorem to integrate this
equation as

KY ~E = q

4πr2 r̂ , (2.10)

with q =
∫
ρd3x = 4π

∫
ρ(r)r2dr the total charge. Now the screening is easy to understand.

If K is an analytic function of Y such that K(Y ) ∼ Y at large distances r →∞ (Y → 0)
we have that

E ' q

4πr2 r →∞ , (2.11)

i.e., the Maxwellian result. As we approach the object, the non-linear terms become more
relevant and deviations with respect to the 1/r2 behaviour are expected. If, for the sake of
simplicity, we assume that K = Y (1 + Y n/Λ4n) deep inside the non-linear region, we can
introduce the screening radius defined as

r4
s = (n+ 1)1/n q2

32π2Λ4 (2.12)

and the electric field in this region acquires the following profile

E '
(
r

rs

) 4n
2n+1 q

4πr2 , (2.13)

where we clearly see the suppression factor for r � rs, provided n > 1/2. The consistency
of the EFT relies on the fact that rs � Λ−1 since the quantum corrections are expected
to become important at the scale rQC ∼ Λ−1. The paradigmatic behaviour of Born-Infeld
electromagnetism (see section 2.2) where the electric field becomes constant below rs is
recovered in the limit n→∞. In general, there can be several branches of solutions and it
is important to guarantee that the asymptotically Coulombian branch at r →∞ can be
continuously connected with the screened branch below the screening radius.

It is worth noticing that it is possible to solve the problem for an arbitrary configuration
of static charges in which case the source is given by

ρ =
∑
a

qaδ(~r − ~ra) . (2.14)

For this configuration we can integrate (2.9) to obtain

KY ( ~E2) ~E = 1
4π
∑
a

qa
|~r − ~ra|3

(~r − ~ra) , (2.15)

that can be used to obtain the electric field, provided this equation can be inverted. This
expression can be used to study the effect of nearby charges on the screening of a given
object, although we will not delve into this interesting subject here. Instead, we will now
proceed to introduce the family of non-linear electromagnetisms that we will study.

– 4 –
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2.2 The Born-Infeldised ModMax theory

In this work we will consider the class of non-linear electromagnetic theories described by
the following Lagrangian:

KMMBI = Λ4
[
1−

√
1− 2

Λ4

(
cosh γ Y + sinh γ

√
Y 2 + Z2

)
− 1

Λ8Z
2

]
, (2.16)

where γ is a dimensionless parameter and Λ the scale of non-linearities. This theory
is a generalisation of Born-Infeld theory that was obtained in [18], although only in its
Hamiltonian form. The Lagrangian was explicitly given in [19]. The above Lagrangian has
two relevant regimes, namely:

• γ � 1. In this regime, the Lagrangian reduces to the usual Born-Infeld theory [4, 5]:

KBI = Λ4

1−

√
1− 2Y

Λ4 −
Z2

Λ8

 . (2.17)

This theory is duality invariant and has a number of interesting physical properties
(absence of birefringence, no shock waves, etc.) that make it the only exceptional
non-linear electromagnetism.

• Λ→∞. In this regime, the Lagrangian reads

KMM = cosh γ Y + sinh γ
√
Y 2 + Z2 , (2.18)

that has been shown to arise as the only non-linear electromagnetism sharing the same
symmetries as Maxwell’s theory, namely: conformal and duality invariance [18]. This
Lagrangian can be obtained as a T T̄ deformation of the Maxwell Lagrangian [21].

Although the conformal invariance in (2.16) only arises as an approximate symmetry in
the ModMax regime with γ � 1, the duality invariance remains an exact symmetry and
we will see that this has important consequences for the perturbations. The breaking of
conformal invariance is important to obtain solutions with screening where the screening
radius is related to Λ−1 as we will see in section 3.3. The solution around a spherically
symmetric object of charge Q is

E = e−γ/2Λ2
√

1 + x4
(2.19)

where we have introduced the radial variable x ≡ r/rs with the following definition of the
screening radius:

rs ≡
e−γ/4

√
Q

Λ . (2.20)

– 5 –
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At small distances we have
E(x� 1) ' e−2γΛ2 (2.21)

which is the typical behaviour in Born-Infeld theory where the electric field saturates to
a constant value. The ModMax correction appears as the γ-re-dressing of the saturated
electric field. On the other hand, the asymptotic behaviour is

E(x� 1) ' e−γ/2Λ2

x2 (2.22)

that coincides with the ModMax solution. The solution then interpolates between the
ModMax behaviour at large distances and a Born-Infeld solution at small distances, in
both cases with a γ-redressing. Notice that the ModMax regime coincides with the usual
Maxwellian behaviour (up to the γ-redressing), which is a consequence of the conformal
invariance. Thus, in the pure ModMax theory, there is a global screening determined by γ. As
mentioned above, the breaking of conformal invariance introduced by the Born-Infeldisation
of the ModMax Lagrangian allows one to screen the small distances as compared to the
large distances.

An interesting property of the Born-Infeldised ModMax theory is that we can straight-
forwardly invert (2.15) and obtain the solution for a distribution of charges as

~E = e−γ ~D√
1 + e−γ ~D2/Λ4

(2.23)

with
~D = 1

4π
∑
a

qa
|~r − ~ra|3

(~r − ~ra) . (2.24)

Furthermore, for this theory there is only one branch (unlike generic non-linear electromag-
netisms where several branches can exist). Again, we see that in regions where ~D2 � Λ4

we recover the ModMax regime, while the regions where ~D is not small (e.g. near any of
the charges), the electric field saturates. In figure 1 we have plotted the electric field for
several configurations of charges and for the pure Born-Infeld theory (γ = 0). This exact
solution makes an ideal starting point to test several phenomenological and observational
consequences of these non-linear electromagnetism. We leave this route for future work and
will now proceed to the main goal of this paper.

3 Perturbations

A natural and pertinent question to ask is how perturbations behave around the screened
solutions. This will allow us to analyse their reliability and physical relevance. We will see
that, unlike the usual K-mouflage models for scalar fields where the screened branch leads
to superluminal propagation, for the spin-1 fields the screen branch precisely guarantees
subluminal propagation so that it avoids the usual obstructions for a standard Wilsonian
local and Lorentz invariant UV completion. This is not very surprising since we know
that Born-Infeld electrodynamics admits a UV completion in string theory. In this respect,

– 6 –
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Figure 1. Electric field created by several charge configurations for Born-Infeld electromagnetism.
The colour represents the screening factor with the colour-code shown in the legend. The dashed-
purple contours denote the particle screening radius and the solid purple contours delimitate the
screening region inside of which the intensity of the Maxwellian electric field is larger than that
of the Born-Infeld theory. Left panels: electric field created by a point particle in a small (upper)
and large (lower) external constant field. Middle panels: a dipole with the charges outside (upper)
and inside (lower) their respective screening radii. Right panels: two alike charges outside (upper)
and inside (lower) their respective screening radii. We see how the repulsion between the charges
deforms the screening region and even its topology changes when their screening radii overlap. This
would open a possibility to probe this type of interaction in very specific positions between alike
charges. For instance, in the cosmological scenario explored in [13–15], this effect could be tested
between galaxies or galaxy clusters dominated by charged dark matter.

screening based on spin-1 fields seems to exhibit a better theoretical behaviour than their
scalar counterpart. In this section we will derive the equations for the perturbations for
an arbitrary non-linear electromagnetic theory so our results will be completely general.
We will only commit to the family of Born-Infeldised ModMax theories in the subsequent
sections. This will permit us to signal clearly the distinctive properties of this family of
theories among all the non-linear electromagnetism theories.

We can decompose the field strength in terms of the electric and the magnetic compo-
nents with respect to a comoving observer uµ as follows

Fµν = 2E[µuν] + εµναβu
αBβ . (3.1)

– 7 –



J
H
E
P
0
2
(
2
0
2
3
)
0
0
9

If we now consider perturbations around a spherically symmetric and static electric back-
ground, the quadratic action can be written as6

S(2) = 1
2

∫
d3xdt

√
−g

[(
KY + 2YKY Y

)
δE2

r +KY δE2
Ω −

(
KY − 2YKZZ

)
δB2

r −KY δB2
Ω

]
.

(3.2)
From this expression we can immediately read off the condition for the absence of ghosts
as KY > 0 to avoid angular ghosts and KY + 2YKY Y > 0 to avoid radial ghosts. If we
further require the absence of Laplacian instabilities, we obtain the additional requirement
KY > 2YKZZ .

We can also obtain the propagation speeds (of high frequency modes) from the above
quadratic action, which will depend on the direction of propagation as well as on the
polarisation of the wave. For a wave travelling in the radial direction, so the electric and
magnetic fields oscillate in the transverse angular directions, the propagation speed is given
by the ratio of the coefficients of the angular magnetic δB2

Ω and electric δE2
Ω components

respectively, i.e.,
c2
r = 1 (3.3)

so radial modes propagate at the speed of light. This is expected because those waves are
oblivious to the radial profile of the background configuration. On the other hand, for
waves propagating along the angular directions we have two different speeds depending on
whether the electric or the magnetic field oscillates along the radial direction. These speeds
are respectively given by

c2
P = KY

KY + 2YKY Y
,

c2
A = 1− 2YKZZ

KY
, (3.4)

where P and A refer to the polar and axial nature of these waves. Although this derivation
of the propagation speeds might appear somewhat hand wavy, in appendix A we perform
the full derivation of the quadratic action for the two physical degrees of freedom where
we obtain the same propagation speeds and the axial and polar nature of the modes is
also more apparent. Notice that we have not committed to any theory so far so the above
expressions are general. We can now see how the screening is compatible with sub-luminal
propagation. In general, we expect the screening factor 1/KY to be a monotonically growing
function of r so it is reasonable to impose

∂rK−1
Y = −KY Y

K2
Y

∂rY > 0. (3.5)

For the electric background we consider we have Y = 1
2E

2 which is a monotonically
decreasing function so ∂rY < 0. We thus conclude that we must have KY Y > 0 which then
implies that c2

P < 1. Incidentally, having KY Y > 0 together with KY > 0 guarantees the
6We recall that we are imposing parity invariance so KZ = 0 for the electric background configuration.

This is the case for the theories considered in this work. Removing this requirement would result in additional
terms in the quadratic action like, e.g., the quasi-topological term L(2) ⊃ KZδ ~E · δ ~B.

– 8 –
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absence of angular ghosts as well. For the axial sector we cannot conclude anything from
this analysis (for instance KZZ can be either positive or negative in a generic theory without
affecting the background), but we will show below (see eq. (3.33)) that duality invariance
imposes c2

A = K−2
Y so it is given by the screening factor. Since this factor interpolates

between 0 and 1, we find that, for duality invariant theories, c2
A < 1. This shows the

nice compatibility between screening and subluminal propagation, in contrast to the scalar
K-mouflage where the screening in turn leads to superluminalities. We should bear in
mind that we have given a general argument to motivate how screening is compatible with
sub-luminalities, but this is not a proof that any non-linear electromagnetism featuring
screening will avoid sub-luminal propagation.

If the theory admits an asymptotic region r � rs where K ∼ Y , both angular speeds
become

c2
P ' 1− 2YKY Y

KY
, (3.6)

c2
A ' 1− 2YKZZ

KY
, (3.7)

i.e., they approach the speed of light as it corresponds to the Maxwell theory. In our Born-
Infeldised ModMax theory, there is no Maxwell regime and this results in a γ-suppression of
the asymptotic propagation speed for the axial modes. Since in this work we are interested
in static perturbations, we will now proceed to the derivation of the relevant equations for
the perturbations by neglecting the time-dependence from the onset.

3.1 Perturbations around static screened objects

If we consider a static and spherically symmetric configuration, the first order perturbation
equations together with the Bianchi identities reduce to7

∇ · δ ~D = 0 , ∇× δ ~H = 0 , ∇ · δ ~B = 0 , ∇× δ ~E = 0, (3.8)

where

δ ~D = KY δ ~E +KY Y
(
~E · δ ~E

)
~E , (3.9)

δ ~H = KY δ ~B −KZZ
(
~E · δ ~B

)
~E . (3.10)

These equations imply that we can introduce two scalar potentials φ and ψ as

δ ~E = −∇φ , δ ~H = ∇ψ . (3.11)

Let us notice that the transformation properties of ~E and ~B translate into φ and ψ actually
being a scalar and a pseudo-scalar respectively. Due to these different transformation
properties and the fact that parity is not broken, they will decouple at linear order so we
can treat them separately.

7Notice that there is no source term in these equations since it has been taken into account in the
background. At the level of the action, as we show in appendix A, the background equations being satisfied,
the perturbed action is of second order implying that the perturbed equations of motion are linear with no
source terms. This is consistent with the idea of studying how the electromagnetic fields respond to external
perturbations which will be taken as the values of the perturbations at infinity.

– 9 –
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3.1.1 Polar sector

The first equation in (3.8) can be expressed as:

∂r

(
r2KY
c2
P

φ′
)

+KY∇2
Ωφ = 0 . (3.12)

In view of this equation, it is convenient to introduce the following master variable

Φ ≡ r2KY
c2
P

φ′ , (3.13)

that satisfies
∂rΦ +KY∇2

Ωφ = 0 . (3.14)

The variable Φ is very simply related to the gauge-invariant perturbation of the electric
field as follows:

δEr = −φ′ = − c2
P

r2KY
Φ , (3.15)

so it represents a useful and more physical quantity than φ. If we take the partial derivative
w.r.t. to r and use (3.13) we obtain

Φ′′ − ∂r lnKY Φ′ + c2
P

r2∇
2
ΩΦ = 0 . (3.16)

We can alternatively express this equation by re-scaling the field Φ →
√
KY Φ to get

rid of the first derivative term. Thus, if we decompose into spherical harmonics Φ =∑
`,m

√
KY Φ`(r)Y`,m we finally obtain

Φ′′` −m2
PΦ` = 0 , (3.17)

with
m2
P = c2

P `(`+ 1)
r2 + 1

4(∂r lnKY )2 − 1
2∂

2
r lnKY . (3.18)

In this derivation we have exploited the spherical symmetry of the background to get rid of
the dependence on m of the multipole components Φ` so we can easily perform the sums
over m or use this symmetry to set m = 0. The relation to the multipoles of the electric
field perturbation is then

δEr,` = − c2
P

r2√KY
Φ` , (3.19)

a relation that we will exploit later when imposing boundary conditions. Now, let us turn
to the axial sector.

3.1.2 Axial sector

The equation for the axial scalar potential ψ can be obtained from the definition of δ ~H and
the Bianchi identity ∇ · δ ~B = 0. We first express δ ~B in terms of ∇ψ as

δ ~B = 1
KY

(
∇ψ + KZZ

KY − 2YKZZ
~E · ∇ψ ~E

)
. (3.20)
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Then, the Bianchi identity leads to

∂r

(
r2

KY c2
A

ψ′
)

+ 1
KY
∇2

Ωψ = 0 . (3.21)

This equation is the same as (3.12) with the replacements KY → 1/KY and c2
P → c2

A. Thus,
we can follow the same procedure to obtain the equation

Ψ′′ + ∂r lnKY Ψ′ + c2
A

r2∇
2
ΩΨ = 0 , (3.22)

with
Ψ ≡ r2

KY c2
A

ψ′ . (3.23)

We can now decompose into spherical harmonics as Ψ = ∑
`,m

Ψ`(r)√
KY

Y`,m to obtain finally

Ψ′′` −m2
AΨ` = 0 (3.24)

with
m2
A = c2

A`(`+ 1)
r2 + 1

4(∂r lnKY )2 + 1
2∂

2
r lnKY . (3.25)

Notice that the squared masses m2
P,A of the two types of perturbations are simply obtained

by flipping the sign of the ∂2
r logKY term. This will be significant when studying the

symmetries associated to these equations in the Born-Infeldised ModMax case.

3.2 Electromagnetic duality

A remarkable property of Maxwell’s electromagnetism is its duality invariance that is a
symmetry under SO(2) rotations whose associated conserved charge gives the conservation
of helicity for photons.8 It is well-known that electromagnetic duality is a property shared
by a certain family of non-linear theories of electromagnetism among which we can find the
Born-Infeld theory and the ModMax theories [17, 27, 28]. This symmetry can be understood
as an invariance under the U(1) transformation

~D + i ~B → eiϑ( ~D + i ~B), (3.26)
~E + i ~H → eiϑ( ~E + i ~H) , (3.27)

where ϑ is the transformation parameter. This invariance implies that duality invariant
theories must fulfil the following constraint

~D · ~H = ~E · ~B . (3.28)

This constraint gives rise to the following condition on the Lagrangian:(
K2
Y −K2

Z

)
Z − 2KYKZY = Z . (3.29)

8This conservation can be broken, however, at the quantum level via an anomaly [25, 26].
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This condition is trivially satisfied for Maxwell’s theory with KZ = 0 and KY = 1 and it
also holds for the Born-Infeld Lagrangian given in (2.17). Our goal here is to obtain the
constraints that duality invariance impose on the quadratic action of the perturbations
around the screened solution. To that end, we can expand Y = Ȳ + δY and Z = δZ in the
duality constraint (3.29). At zeroth order we find

− 2ȲKYKZ = 0 . (3.30)

This is trivially satisfied for all parity-preserving theories around the electric background so
it does not give any new constraint. At first order we obtain the condition:

− 2ȲKYKY ZδY +KY
(
KY − 2ȲKZZ

)
δZ = δZ , (3.31)

where we have used the zeroth order condition (3.30). If we impose that this is satisfied
off-shell, we obtain the two conditions:

KY Z = 0 and 2ȲKZZ = K
2
Y − 1
KY

. (3.32)

Again, the first one is trivially satisfied for parity-preserving theories, while the second
one gives a non-trivial relation between the derivatives of the Lagrangian evaluated on the
background. Higher orders in the perturbations give a hierarchy of relations between higher
order derivatives of K. The only place where KZZ appears is for the propagation speed of
the transverse modes. When using the duality constraint, we obtain9

c2
A = 1− 2YKZZ

KY
= 1
K2
Y

, (3.33)

in agreement with the result for Born-Infeld. This result shows that any duality invariant
theory that reduces to Maxwell in the small field limit, has a potential strong coupling
problem for screened backgrounds in the sense that the more efficient the screening is, the
smaller the propagation speed is. In fact, we can write the following relation between the
effective coupling to charged matter and the propagation speed

cA = qeff
q

(3.34)

that explicitly shows how the screening mechanism leading to a decoupling of charges
qeff � q comes hand in hand with a small propagation speed of the same order and,
therefore, a tighter coupling from this sector. This behaviour might hint at the usual
strong/weak coupling regimes for dual theories. The situation is however improved with
respect to the scalar field case where super-luminalities are unavoidable.

9This constraint can also be obtained form the condition ~D · ~H = ~E · ~B to satisfy duality invariance. At
first order around our background configuration, this relation reduces to ~D · δ ~H = KY (KY − 2YKZZ) ~E · δ ~B
that gives (3.33).
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3.3 Conformal invariance

In addition to the duality invariance discussed in the preceding section, Maxwell’s electro-
magnetism features another symmetry that is rooted in the massless nature of the photon,
namely: conformal invariance. Imposing duality invariance restricts the class of non-linear
electrodynamics, but further requiring conformal invariance uniquely selects the ModMax
theory.10 The presence of conformal invariance can be unveiled in different manners. Per-
haps the most direct one is from the tracelessness of the corresponding energy-momentum
tensor. At the level of the Lagrangian K(Y, Z), conformal invariance can be imposed by
factorising it as K(Y,Z) = Y F(Y/Z) since Y is conformally invariant and so is the ratio
Y/Z. This factorisation implies the non-trivial constraint

K = YKY + ZKZ (3.35)

that is satisfied for both Maxwell and ModMax. Since the energy-momentum tensor for a
general non-linear electromagnetism is given by

Tµν = KY FµαFµα + gµν(K − ZKZ) (3.36)

we see that its trace
T = 4(K − YKY − ZKZ) (3.37)

indeed vanishes for theories satisfying (3.35). Perturbing around an electric background and
imposing the condition for conformal invariance δT = 0, we find the following constraint

KY Y = 0 (3.38)

that must be satisfied. This constraint is trivially satisfied by Maxwell’s electromagnetism,
but it is also non-trivially satisfied by the ModMax theories. Since the polar sector has the
propagation speed

c2
P = KY

KY + 2YKY Y
(3.39)

the constraint from conformal invariance implies that the polar sector always propagates at
the speed of light c2

P = 1, while the propagation speed of the axial sector is not affected by
this constraint. For our Born-Infeldised ModMax theory, this means that the polar sector
will propagate at the speed of light in the asymptotic region r →∞ where it approaches
the ModMax regime.

The constraint (3.38) has another consequence for the screening mechanism. If we
compute the radial derivative of the screening factor KY for the electric background, we
obtain ∂rKY = KY Y ∂rY that vanishes on-shell for conformally invariant theories. This
means that we need to break conformal invariance to have a genuine K-mouflage screening
where the field is suppressed below a certain radius. This is natural since the very appearance
of the screening scale implies the breaking of conformal invariance. Thus, for conformally
invariant theories we can have, at most, a global screening like for the pure ModMax theory.

10A family of theories where conformal invariance is retained but not duality invariance has been explored
in [29].
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4 Static linear response

Equipped with the equations for the perturbations in both the even and odd sectors (3.17)
and (3.24), we will proceed to computing the static linear response for the theories of
interest in this work. The electric polarisability of the pure Born-Infeld theory has been
obtained in [30, 31]. Here we expand that result to the general Born-Infeldised ModMax
theory (although for the polar sector there is no difference) and by also computing the
magnetic susceptibility. Furthermore, we carry out a more exhaustive discussion of the
physical results. Before going into the details of the specific models, we will rewrite the
equations in terms of the dimensionless variable x = r/rs, where rs is the screening scale as
introduced in (2.20). Then, for a generic non-linear electromagnetism we have

Φ′′` −m2
ΦΦ` = 0 , (4.1)

Ψ′′` −m2
ΨΨ` = 0 , (4.2)

where now the primes refers to differentiation with respect to the x variable and we have
introduced the dimensionless masses

m2
Φ = c2

P `(`+ 1)
x2 + 1

4(∂x lnKY )2 − 1
2∂

2
x lnKY , (4.3)

m2
Ψ = c2

A`(`+ 1)
x2 + 1

4(∂x lnKY )2 + 1
2∂

2
x lnKY , (4.4)

where the speeds of sound are defined in eq. (3.4). We should already note that these
equations resemble a couple of Schrödinger equations where the masses play the role of
the corresponding potentials. Furthermore, the terms that depend on the non-linearities
(i.e., those determined by K) precisely generate two potentials that form a super-symmetric
quantum mechanical system (see e.g. [32]) where ∂x lnKY plays the role of a superpotential.
We will come back to this resemblence in section 5.4 and 5.5. We also explore it in appendix B.

4.1 The pure ModMax theory

Despite the singular character of the ModMax theory described by (2.18), the constraint
due to duality given in (3.32) still holds. The propagation speeds have a constant profile
and are simply given by

c2
P = 1, c2

A = e−2γ . (4.5)

Since this theory produces a constant redressing of the electric charge, we see that (3.33)
still holds. Furthermore, the axial mode is always luminal, while the polar modes are
subluminal for γ > 0 and superluminal for γ < 0 in agreement with the result found in [18].
The solutions for the perturbations around the spherically symmetric electric background
are easy to obtain. For the polar modes they are exactly the same as in Maxwell’s theory,
while the axial modes are corrected by the γ-redressing.

Φ` = A`r
` +B`r

−(`+1) (4.6)
Ψ` = C`r

n+ +D`r
n− (4.7)
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with
n± = 1

2

(
1±

√
1 + 4e−2γ`(`+ 1)

)
. (4.8)

Thus, the polar sector exhibits the usual growing r` and decaying r−(`+1) solutions of
Maxwell’s electromagnetism, whereas the axial sector also exhibits a growing and a decaying
modes but corrected by the γ-re-dressing. As a matter of fact, the multipoles with ` . eγ have

n+ '
[
1 + e−2γ`(`+ 1)

]
, n− ' −e−2γ`(`+ 1)� 1 (4.9)

so the two solutions reduce to a linearly growing mode and a nearly constant mode, both
of which become independent of `. This theory does not have a screening scale, since all
scales are screened with the global γ-redressing. In particular, the electric field does not
get regularised at the position of the particle so the situation is qualitatively similar to
usual Maxwell’s theory. Since we are interested in studying the effects coming from the
non-linearites, we will not consider this case here and we will proceed to its Born-Infeldised
version directly, where the background field is regular at the position of the particle so we
can impose appropriate boundary conditions there that will in turn affect how the system
responds to external fields.

4.2 ModMax Born-Infeldised

In this case the Lagrangian is given by (2.16) and the propagation speeds read

c2
P = e2γc2

A = x4

1 + x4 (4.10)

while the masses are given by

m2
P = 1

r2
s

x2

1 + x4

[
`(`+ 1)− 5

1 + x4

]
, (4.11)

m2
A = 1

r2
s

x2

1 + x4

[
e−2γ`(`+ 1) + 2 + 5x4

x4(1 + x4)

]
(4.12)

and are shown in figure 2. At large distances x� 1, we obtain the ModMax regime with

c2
P = e2γc2

A ' 1, m2
P '

`(`+ 1)
r2 , m2

A '
e−2γ`(`+ 1)

r2 , (4.13)

while at short distances however we find the typical BI behaviour

c2
P = c2

A '
(
r

rs

)4
, m2

P '
1
r2

s

[
`(`+ 1)− 5

]
x2, m2

A '
2
r2 . (4.14)

In the following we will show that the perturbation equations for both sectors can be put
in the form of hypergeometric equations so we can solve them analytically.
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Figure 2. In this plot we show the effective masses for both the axial (yellow-green) and polar
(orange-red) sectors for Born-Infeld (left) and Born-infeldised ModMax (right) models. For both
sectors we plot the masses for multipoles from ` = 1 (darker) to ` = 20 (lighter). We observe how
the polar sector does not depend on γ and that the masses go to zero as r → 0 and reproduce the
Maxwell behaviour (dashed gray) in the asymptotic region. For the axial sector, the masses diverge
at the origin and only recover the Maxwellian asymptotic behaviour in the pure Born-Infeld case.
Furthermore, as we increase γ the masses are suppressed with respect to Born-Infeld.

4.2.1 Polar (even) sector

Let us start with the simpler polar sector. In order to analyse the solutions, it is convenient
to work with the rescaled field

Φ̃` ≡ (1 + x4)1/4Φ` (4.15)

and the radial variable z = −x4. In terms of these quantities the equation can be recast in
the form

z(1− z)Φ̃′′` + 3− z
4 Φ̃′` + `(`+ 1)− 2

16 Φ̃` = 0 (4.16)

that is nothing but the hypergeometric equation

z(1− z)u′′(z) +
[
c− (a+ b+ 1)z

]
u′(z)− abu(z) = 0 (4.17)

with parameters a = −(`+2)/4, b = (`−1)/4 and c = 3/4. Since two independent solutions11

are given by the hypergeometric function 2F1(a, b, c; z) and z1−c
2F1(1+a−c, 1+b−c, 2−c; z),

transforming back to our original master variable Φ`, we have the general solution:

Φ` = 1
(1+x4)1/4

[
A` 2F1

(
−`+2

4 ,
`−1

4 ,
3
4 ,−x

4
)

+B` x 2F1

(
−`+1

4 ,
`

4 ,
5
4 ,−x

4
)]
. (4.18)

At small scales, the solution is

Φ` ' A`
[
1 + 1

12
(
`(`+ 1)− 5

)
x4
]

+B`

[
x+ 1

20
(
`(`+ 1)− 5

)
x5
]
. (4.19)

11Since we have c = 3/4 for our hypergeometric equation, these two solutions are independent for all the
multipoles. This contrasts with, e.g., the perturbations of a Schwarzschild black hole where the parameter c
depends on the multipole ` and some degenerate cases appear.
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We will impose a boundary condition so that the electric field remains regular at the origin.12

This boundary condition also guarantees that the perturbation theory does not break down
since the background field saturates to a finite value as we have seen above. The perturbed
electric field is computed as

δ ~E = −∇φ = −∂rφ r̂ −
1
r
∇Ωφ = −

∑
`,m

[
φ′` r̂ + φ`

r
∇ΩY`,m

]
. (4.20)

We need to relate φ` with our master variable Φ`. The derivative of φ` is obtained directly
from the definition of Φ (taking into account the re-scaling of its multipolar expansion) so

φ′` = c2
P

r2√KY
Φ` ' A`x3 +B`x

4 , (4.21)

where we have used that c2
P ' x4 and KY ' 1/x2 for x � 1. In order to compute the

angular component of the electric field, we will use (3.14) to write

∂rΨ = −KY∇2
Ωφ⇒ φ` =

∂r
(√
KY Φ`

)
KY `(`+ 1) '

−A` + 1
5
(
`(`+ 1)− 5

)
x5

`(`+ 1) . (4.22)

The perturbed electric field near the origin is then given by

δ ~E ' −
∑
`,m

[(
A` +B`x

)
x2 r̂ + 1

`(`+ 1)

(
−A`
x

+ 1
5
(
`(`+ 1)− 5

)
x4
)
∇ΩY`,m

]
, (4.23)

so requiring regularity of the electric field δ ~E at the origin imposes A` = 0. Notice that the
singular term comes from the angular component of the electric field. Since the monopole
does not have any angular component, we need to treat it separately (also apparent from
the fact that the resulting expression diverges for ` = 0). The monopole represents a
re-scaling of the background charge and, as such, the associated electric field is expected to
remain finite. To see it explicitly, we can notice that the monopolar contribution to the
perturbation of the electric field is simply

δ ~E`=0 = − c2
P

r2√KY
Φ0r̂ . (4.24)

Near the origin, we have

δ ~E`=0(x→ 0) ' −x3
(
A0 +B0x

)
r̂ , (4.25)

while at infinity
δ ~E`=0(x→∞) ' −A0x+B0

x2 r̂ . (4.26)

12This boundary condition makes sense for Born-Infeld-like theories where the electric field remains finite
at the position of the particle. Since the class of theories we are considering reduce to Born-Infeld near the
origin, this is an appropriate boundary condition. For other non-linear electromagnetisms where the electric
field still diverges at the origin, even if there is an efficient K-mouflage, the boundary condition should be
re-considered.
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Both modes A0 and B0 remain finite at the origin, as expected, but the mode A0 grows
with respect to the background electric field at infinity. The mode B0 however has the
same 1/r2 tail as the background configuration (the usual Maxwelian behaviour) so it is
this mode the one that corrects the background charge. We therefore disregard A0 for the
monopole. Thus, the solutions with the appropriate boundary conditions at the origin for
all the multipoles, including the monopole, read

Φreg
` = B`

x

(1 + x4)1/4 2F1

(
−`+ 1

4 ,
`

4 ,
5
4 ,−x

4
)
. (4.27)

The constants B` are fixed by the amplitude of the external perturbation that is not relevant
for our computation of the polarisability so we do not need to specify them. For the
solutions with these boundary conditions, the asymptotic behaviour at infinity is

Φreg
` ' B`

 Γ
(

5
4

)
Γ
(
−2`+1

4

)
Γ
(
− `+1

4

)
Γ
(

5−`
4

)x−` +
Γ
(

5
4

)
Γ
(

2`+1
4

)
Γ
(
`
4

)
Γ
(
`+6

4

) x`+1

 (4.28)

so we can read off the polarisability as the ratio of the coefficients of the decaying and
growing modes13

α` =
Γ
(
−2`+1

4

)
Γ
(
`
4

)
Γ
(
`+6

4

)
Γ
(
− `+1

4

)
Γ
(

5−`
4

)
Γ
(

2`+1
4

)r2`+1
s . (4.29)

The polarisability parameterically grows as the volume of the (2`+ 1)-dimensional screened
sphere, Vs,2`+1 = π`+1/2

Γ(`+ 3
2 )r

2`+1
s , and it vanishes in the Maxwellian limit for which rs = 0, i.e.,

the screened sphere shrinks to zero.14 The polarisability can be alternatively written as

α` = 2−(2`+1/2)(`+ 1)(`+ 2)
π`+1

Γ
(
−2`+1

4

)
Γ (`− 1) Γ

(
`+ 3

2

)
Γ
(

2`+1
4

) Vs,2`+1 cos
(
`π

2

)
. (4.30)

This expression shows that the polarisability vanishes for odd multipoles above the dipole
(see also figure 3). The vanishing of the polarisability for the ` = 3 and ` = 5 multipoles
was already noticed in [31], although it was incorrectly stated that α` 6= 0 for the remaining
multipoles. The reason is that those only correspond to the first poles in the Γ functions
in the denominator of (4.29), but there are additional poles corresponding to non-positive
integers of their arguments, which give all odd multipoles above the dipole, as it is apparent
from (4.30). For the dipole, the divergent factor Γ (`− 1) prevents the vanishing of α1 and
we obtain α1 =

√
π
2 Γ(1

4)/Γ(3
4)r3

s ' 3.71r3
s , that recovers the result found in [30], barring

the different definition of the polarisability. This result shows how the dipolar polarisability
13The definition of the polarisability can depend on the quantity employed to define it. We define the

polarisability from the asymptotic behaviour of the variable Φ because it is related to the radial electric
field as Φ ∝ r2δEr and so it corresponds to the definition in terms of the asymptotic behaviour of a physical
quantity. Had we used the potential φ instead, we would have obtained a factor − `

`+1 of difference because
of the relation δEr = −φ′(r) that brings down a factor −` for the decaying solution and a factor `+ 1 from
the growing mode. This explains the difference with respect to the result found in [31].

14This also applies for the pure ModMax theory where rs is also zero despite the global screening due to γ.
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parameterically grows as the 3-dimensional volume of the screened region, which is in
analogy to the dipolar polarisability of a conducting sphere in an external homogeneous
electric field.

We can understand the vanishing of the polarisability for these modes from the properties
of the regular solution Φreg. We know that the hypergeometric function reduces to a finite
polynomial for non-positive integer a or b. If this is the case, the regular solution does
not have an asymptotically decaying mode and, thus, the polarisability vanishes. The
hypergeometric function in our regular solution (4.27) has parameters a = −(`+ 1)/4 and
b = `/4. Since b cannot be negative, the hypergeometric function will become polynomial
whenever a is a non-positive integer, i.e., for ` = 4k − 1 for k = 1, 2, 3 . . ..15 In this case, we
can use the expansion

2F1

(
−k, `4 ,

5
4 ,−x

4
)

=
k∑

n=0
(−1)n

(
k

n

)
(`/4)n
(5/4)n

(−x)4n , (4.31)

with (·)n the Pochhammer symbol. Since the pre-factor in (4.27) is a purely growing
function, we see that this regular solution is also purely growing and this explains why we
obtain vanishing polarisability for those modes, since the coefficient of the would-be decaying
mode is zero. This accounts for the vanishing of α` with ` = 3, 7, 11, . . . . Alternatively,
we can use the identity 2F1(a, b, c; z) = (1 − z)c−a−b 2F1(c − a, c − b, c; z) to express the
regular solution in the following equivalent form:

Φreg
` = B` x

(
1 + x4

)5/4
2F1

(
`+ 6

4 ,
5− `

4 ,
5
4 ,−x

4
)
. (4.32)

The prefactor is again a growing function so the decaying mode must come from the
hypergeometric function. Thus, if the hypergeometric function is polynomial, there will
not be any decaying mode and, thus, the polarisability will vanish. This will happen if b =
5−`

4 = −(k′−1) for a strictly positive integer k′, i.e., for ` = 4k′+1 so we have α` = 0 for ` =
5, 9, 13, . . . . This series completes the previous one to comprise all odd multipoles with ` > 1
for which the polarisability vanishes. Later we will relate this vanishing of the polarisability
for the odd modes with a hidden ladder structure and the nature of conserved charges.

Let us finally give the polarisability for large angular momentum `� 1. If all the Γ
functions remain regular, i.e., avoiding the even multipoles above the dipole as discussed
above, we can express the polarisability in the remarkably simple form(

α`

r2`+1
s

)
`�1
' 2−` (4.33)

that shows how the polarisability for high multipoles is exponentially suppressed, i.e., they
exhibit a strong resistance to being polarised. We will see later that the same asymptotic
form is obtained for the magnetic susceptibility in Born-Infeld.

Since the polar sector is not sensitive to the value of gamma, all the Born-Infeldised
ModMax theories share the same behaviour as the pure Born-Infeld theories. The differences
will appear in the axial sector as we show next.

15We exclude the value k = 0 because that would lead to ` = −1 that is not physical.
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4.2.2 Axial (odd) sector

For the axial sector it is convenient to perform the field redefinition

Ψ̃` ≡
x

(1 + x4)1/4 Ψ` (4.34)

so, in terms of the variable z ≡ −x4, the equation for the multipoles takes the form of the
following hypergeometric equation:

z(1− z)Ψ̃′′` + 1− 3z
4 Ψ̃′` + e−2γ`(`+ 1)

16 Ψ̃` = 0 . (4.35)

Transforming back to the original variables the solution for the axial modes is thus given by

Ψ` =
(
1 + x4

)1/4
[
A`
x

2F1

(
a−, a+,

1
4 ,−x

4
)

+B` x
2

2F1

(
b−, b+,

7
4 ,−x

4
)]

, (4.36)

with
a± = −1±

√
1 + 4`eff
8 , b± = 5±

√
1 + 4`eff
8 , (4.37)

and we have introduced `eff = e−2γ`(` + 1). In the limit of large γ (let us recall that
we are assuming positive γ for causality reasons) where `eff � 1 the dependence on the
angular momentum ` is very mild. In this regime, it is straightforward to see from the
equation (4.35) that there is an approximately conserved charge given by

Q` = (−z)1/4√1− zdΨ̃`

dz . (4.38)

These quantities are approximately conserved in the sense that dQ`
dz = O(`eff). Thus, the

solution can be written as

Ψ̃`(γ � 1) ' C` +Q`
∫ 0

z

dz
(−z)1/4√1− z

, (4.39)

where C` and Q` are determined by the boundary conditions and they contain all the
dependence on `. This solution of course reproduces (4.36) with a− = −1/4, a+ = 0,
b− = 1/2, b+ = 3/4. The constants C` correspond to the trivial charge solution Q` = 0 and
describes the contribution from the origin, i.e., the particle. In section 5.3 we will discuss in
more detail the existence of conserved charges for the perturbations and will show that, in
fact, there are hierarchies of exactly conserved charges for all the multipoles. For now, let
us notice that the introduced charge is exactly conserved for the monopole.

Let us go back to the general case and discuss the boundary conditions for our solutions.
As for the axial perturbations, we will require regularity at the origin as one of our boundary
conditions, this time for the magnetic field perturbation. At short distances x� 1 we have

Ψ` '
A`
x

+B`x
2 , (4.40)

so we see that, again, the A` modes seem more prone to a singular behaviour at the origin
and, thus, it should be set to zero. Indeed, this is the case for the magnetic field. To see it
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more explicitly, let us first notice that the magnetic field perturbation is expressed in terms
of the axial scalar potential as given in (3.20), that can be more conveniently written as

δ ~B = 1
c2
AKY

∂rψr̂ + 1
rKY

∇Ωψ . (4.41)

The radial component can be easily expressed in terms of our axial master variable from its
definition

∂rψ = r2

KY c2
A

Ψ⇒ ∂rψ` = r2

K3/2
Y c2

A

Ψ` . (4.42)

The angular component in (4.41) can be computed from the Bianchi identity directly as

∂rΨ = − 1
KY
∇2

Ωψ ⇒ ψ` = KY
`(`+ 1)∂r

( Ψ`√
KY

)
. (4.43)

With these relations, we can express the magnetic field in terms of our master variable as:

δ ~B =
∑
`,m

[ Ψ`

r2√KY
Y`,mr̂ + 1

r`(`+ 1)∂r
( Ψ`√
KY

)
∇ΩY`,m

]
. (4.44)

Using now the behaviour of Ψ` near the origin, we find

δ ~B '
∑
`,m

[(
A`
r2 +B`r

)
Y`,mr̂ + 1

r`(`+ 1)∂r
(
A` +B`r

3
)
∇ΩY`,m

]
. (4.45)

In this case, already the radial component presents a divergent behaviour at the origin for
the modes A`, while B` are regular. The angular component however remains regular at
the origin for both modes. For the monopole16 contribution a similar argument shows that
regularity at the origin requires A`=0 = 0. Thus, the regular solution for all modes is given by

Ψreg
` = B` x

2
(
1 + x4

)1/4
2F1

(
b+, b−,

7
4 ,−x

4
)
. (4.46)

The asymptotic behaviour is found to be

Ψ` ' B`

Γ
(

7
4

)
Γ (b− − b+)

Γ (b−) Γ
(

7−4b+
4

) x3−4b+ +
Γ
(

7
4

)
Γ (b+ − b−)

Γ (b+) Γ
(

7−4b−
4

) x3−4b−

 . (4.47)

Again, we can compute the magnetic susceptibility as the ratio of the coefficients of the
decaying and growing modes, so it is given by

χ` =
Γ (b+) Γ (b− − b+) Γ

(
7−4b−

4

)
Γ (b−) Γ (b+ − b−) Γ

(
7−4b+

4

)r∆b
s , (4.48)

with ∆b =
√

1 + 4`eff/4. In the limit of large γ (i.e., `eff � 1), the above expression reduces to

(
χ`
r∆b

s

)
γ�1

= −
Γ2
(

3
4

)
√
π

+O(`eff), (4.49)

16This monopolar contribution for the axial sector would be associated to the response to magnetic
monopoles and we include it for completeness.
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that is independent of `. This stems from the `-independence of the equation for the
perturbations in this regime as discussed above.

As for the polarisability, the magnetisation will present zeros for parameter values
corresponding to poles of the Γ-functions appearing in the denominator of (4.48). Since
we have an additional parameter γ that can take continuous values, it is guaranteed that
χ` will have zeros. Furthermore, for the same reason, there will be values for which χ`
diverges corresponding to the poles of the numerator in (4.48). This behaviour can be seen
in figure 3. and it can also be understood analytically. Since b+ − b− = 1

4
√

1 + 4`eff is
positive, the parameters for which the susceptibility vanishes can be easily computed as

b− = n ⇒ `eff = 2
(
3− 10n+ 8n2

)
≡ f(n) (4.50)

7− 4b+
4 = m⇒ `eff = 4

(
5− 9m+ 4m2

)
≡ g(m), (4.51)

with n,m non-positive integers. Since both polynomials f and g are positive for non-positive
values of their arguments, we can always find a value of γ for which the susceptibility
vanishes for a given value of `. As a matter of fact, there is an infinite family of values of γ
for which a given multipole vanishes. This family is found from

e−2γ = f(n)
`(`+ 1) , e−2γ = g(m)

`(`+ 1) . (4.52)

An interesting feature of the existence of these two series is that actually there is a family of
multipoles with vanishing magnetic susceptibility. Let us assume that we have a multipole
`∗ for which χ`∗ vanishes corresponding to a certain value of n = n∗ in (4.52). This will give
a rational value for the corresponding value of e−2γ∗ . Then, we can find other multipoles `′∗
with vanishing susceptibility corresponding to some values n′∗ and/or m′∗ provided one of
the two following conditions holds:

e−2γ∗ = f(n′∗)
`′∗(`′∗ + 1) , e−2γ∗ = g(m′∗)

`′∗(`′∗ + 1) , (4.53)

for some non-positive integers n′∗ and m′∗. Since e−2γ∗ is a rational number and so are
the right hand sides of the above equations, solutions may exist although the number of
solutions is not determined. In fact, the new multipole with vanishing magnetisation must
satisfy either

`′∗ = 1
2

[
−1 +

√
1 + 4f(n∗)

f(n′∗)
`∗(`∗ + 1)

]
(4.54)

or

`′∗ = 1
2

[
−1 +

√
1 + 4 f(n∗)

g(m′∗)
`∗(`∗ + 1)

]
(4.55)

so we need the quantities inside the square roots be a perfect square. In general, this only
allows for some solutions. Let us illustrate it with an example. Let us impose to have
vanishing magnetisation for the dipole χ1 = 0 and choose the value of γ so this happens
for n = 0 and we have e−2γ∗ = 3. Then, it is straightforward to check that the same value
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of e−2γ∗ is obtained for the multipoles ` = 76 and ` = 285 corresponding to m = −32 and
n = −123 respectively.

A singular case occurs when imposing vanishing magnetisation for the quadrupole and
for n = 0. For these values, we obtain e−2γ = 1, i.e., the pure Born-Infeld theory. We
further obtain that (4.54) and (4.55) reduce to

`′∗ = 2(1− 2n′∗) and `′∗ = 4(1−m′∗), (4.56)

so we have two infinite families of multipoles with vanishing magnetic susceptibility. In
fact, these two families together comprise all even multipoles. Thus, the Born-Infeld theory
stands out as the most resilient against external odd perturbations since all even multipoles
but the monopole exhibit perfect rigidity (at linear order).

The vanishing of the magnetisation for Born-Infeld can be directly seen by setting
γ = 0 in (4.48) that dramatically simplifies to

χBI
` =

Γ
(
−2`+1

4

)
Γ
(
`+3

4

)
Γ
(
`+5

4

)
Γ
(
− `−2

4

)
Γ
(
− `−4

4

)
Γ
(

2`+1
4

)r(2`+1)/4
s . (4.57)

From this expression we can see how the magnetic susceptibility vanishes for all even
multipoles in Born-Infeld in a more direct manner. Similarly to the electric polarisability, the
zeros of the above expression coincide with the poles of the Γ-functions in the denominator
that occur when their arguments are some negative integers. This occurs when either
` − 2 = 4k or ` − 4 = 4k for k = 1, 2, 3, . . . , that are the two series obtained in (4.56)
and which, together, scan all even modes. A perhaps more transparent form of χBI

` is the
following

χBI
` = 2−(4`+1)/4

`
√
π

Γ
(
−2`+1

4

)
Γ (`+ 2)

Γ
(

2`+1
4

) sin
(
`π

2

)
r(2`+1)/4

s , (4.58)

that makes more apparent the vanishing of the magnetisation for even multipoles above
the monopole. As for the polarisability, the vanishing of the magnetic susceptibility can
be understood from the modes that turn the hypergeometrical functions in the regular
solutions into polynomials. Since the analysis fully parallels the one performed for the polar
sector, we will not repeat it here. Let us however mention that the vanishing of χBI

` for
even multipoles relates to the existence of a ladder structure and the nature of conserved
charges in the subsequent sections.

We can also take the limit of small γ and large (even) angular momentum in (4.47) to
obtain (

χ`
r∆b

s

)
' π2−(`+1)`γ (4.59)

which shows how the vanishing of the magnetization for the even multipoles only occurs in the
Born-Infeld theory, while in the general Born-Infeldised ModMax, the magnetisation acquires
a correction due to γ. Although this result is only valid for small γ, it shows once again the
remarkable properties of Born-Infeld theory among generic non-linear electromagnetisms.
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Finally we can take the limit of large angular momentum `� 1 limit for Born-Infeld
to obtain the simple law (

χBI
`

r
(2`+1)/4
s

)
`�1
' 2−` (4.60)

valid for the odd modes. This expression for the asymptotic magnetisation coincides with
the one obtained for the polarisability in (4.33), although for the even modes in that case.
This shows that the polarisability and the magnetisation in Born-Infeld follow the same
asymptotic law for large ` and for alternating multipoles where the corresponding quantity
does not vanish (see figure 3). This simple relation between the electric polarisability and
the magnetic susceptibility can also be deduced from the following remarkable relation that
holds for all multipoles:

χBI
`

α`
= `− 1
`+ 2 tan

(
`π

2

)
. (4.61)

This relation makes apparent the alternating of the multipoles with vanishing polarisability
and susceptibility as it corresponds to the zeros and singular points of the tangent function.

Let us notice that the numerator is never singular because (2` + 1)/4 is never an
integer so the Born-Infeld theory does not possess multipoles that are infinitely deformed
by external perturbations. This is however not the case for the general expression (4.48)
with an arbitrary γ. Since both b+ and (7− 4b−)/4 are positive, the only possible diverging
factor comes in (4.48) from Γ(b− − b+) whose poles are

b− − b+ = −n⇒ `eff = 1
4
(
16n2 − 1

)
(4.62)

with n a non-positive integer. Thus, we can fix γ to have a divergent magnetisation for a
given multipole ` as

e−2γ = (4n+ 1)(4n− 1)
4`(`+ 1) . (4.63)

The diverging character of the magnetisation can be associated to an unbounded linear
response to the external field and, thus, these particular theories are expected to be prone
to instabilities. From the perspective of the solutions, this divergent response is due to
the absence of decaying modes, which is in line to the presence of instabilities. However,
before definitely concluding the unstable character of these theories, a more careful analysis
should be performed.

The relations between the polarisability and the magnetisation for Born-Infeld may
be traced back to the duality invariance. Of course, this is not all the story because the
generic Born-Infeldised ModMax theories are duality invariant but do not exhibit the same
properties. Instead, it seems to be the coincidence of the propagation speeds in both sectors
(that is related to the absence of birefringence in these theories) that leads to the remarkable
properties of Born-Infeld. However, duality invariance may be enough to explain why the
vanishing of the polarisability and the magnetisation occurs for odd and even modes in the
polar and the axial sectors respectively.

So far, the vanishing of the electric polarisability and the magnetic susceptibility for
certain multipoles have been obtained by direct computation of the solutions with the
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Figure 3. Upper left panel: electric polarisability (red) and magnetic susceptibility (green) as a
function of ` for the pure Born-Infeld theory (although α` is the same for all the Born-Infeldises
ModMax theories). We can see the asymptotic behaviour 2−`. Upper right panel: magnetic
susceptibility as a function of the continuous variable `eff for Born-Infeldised ModMax. Solid and
dashed denote positive and negative values respectively. In this plot we can see the `eff-independence
for small `eff as well as the spikes corresponding to those theories exhibiting vanishing and diverging
susceptibilities as discussed in the main text. Bottom: dependence of the magnetic susceptibility
on γ for odd (left) and even (right) multipoles. Increasing values of ` go from bottom to upper.
We corroborate how all the multipoles approach the asymptotic value χ` ' −Γ2( 3

4 )/
√
π that is

independent of both γ and the multipole. On the other hand, for small values of γ we observe that
the even multipoles go to zero as χ` ∝ `γ, while the odd multipoles go to a constant value, as it
corresponds for Born-Infeld.

appropriate boundary conditions. We have shown how the vanishing of the static linear
responses for certain multiples can be traced back to the corresponding hypergeometric
functions reducing to polynomials. In the remaining of this work we will delve deeper into
the special properties of the hypergeometric functions that conform the space of solutions for
the perturbations and unveil novel manners to understand the vanishing of the polarisability
and magnetisation from a more physical point of view. In particular, we will construct
ladder operators connecting different multipoles and we will use them to generate a hierarchy
of conserved charges.
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5 Ladder structure

In this section we aim at finding ladder operators for the space of solutions of the perturbation
equations that will connect different `-modes. The ladder structure will serve to obtain
a hierarchy of symmetries and their corresponding conserved charges from the obvious
conserved quantities that are obtained for the monopole and the dipole for the axial and
polar sectors respectively. The factorization method that we will employ for the identification
of the ladder operators resemble the exhaustive classification carried out in the seminal
work by Infeld and Hull in 1951 [33], although, as we will see, we will need to introduce
some tweaks since our system of equations present some remarkable peculiarities. In our
treatment, we have also taken inspiration from similar studies recently carried out within
the context of de Sitter and black hole physics [34–36]. However, unlike those studies, we
will show the existence of two ladder structures that, in turn, do not connect adjacent
`-modes. Rather, there is a wide ladder that connects modes with ` and `+ 4 and a narrow
ladder that establishes an automorphism (or a sort of duality) for the first four modes.

5.1 Polar ladder

In order to find the ladder operators we will start from the hypergeometric form of the
equations (4.16) that we reproduce here:17

z(1− z)Φ′′` + 3− z
4 Φ′` + `(`+ 1)− 2

16 Φ` = 0 . (5.1)

The first step will be to introduce the following family of Hamiltonians

H` ≡ −z(1− z)
[
z(1− z)∂2

z + 3− z
4 ∂z + `(`+ 1)− 2

16

]
(5.2)

whose kernels coincide with the space of solutions of our equation.18 The goal is then to
find a set of operators A−` and A+

` that factorize these Hamiltonians as

A−` A
+
` = H` + ε1`,

A+
` A
−
` = H`+n + ε2`, (5.3)

with n some integer number and εi,` some (in principle different) scalars, i.e., they do not
contain differential operators nor do they depend on the variable z. In order to find such
operators, we will make the following Ansatz:

A−` ≡ z(z − 1)∂z +W1,`(z), (5.4)
A+
` ≡ −z(z − 1)∂z +W2,`(z), (5.5)

17In the remaining of the paper we will drop the tilde for the master variables to simplify the notation.
18Notice that, since z is non-positive, the factor 1− z does not introduce any new singular point. The

singular point z = 0 is the original one that we use to impose the appropriate boundary conditions.
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with Wi`(z) two functions to be determined from the factorization in (5.3). By imposing
such a factorisation we then find

A−` A
+
` = H` + 1

4z(z − 1)
(
1− 7z − 4W1,` + 4W2,`

)
∂z

+
[
W1,`W2,` + 1

16z(z − 1)
(
2− `(`+ 1) + 16W ′2,`

)]
, (5.6)

A+
` A
−
` = H`+n + 1

4z(z − 1)
(
1− 7z − 4W1,` + 4W2,`

)
∂z

+
[
W1,`W2,` + 1

16z(z − 1)
(
(2 + `+ n)(1− `− n)− 16W ′1,`

)]
, (5.7)

that should allow to identify εi,`. Since they cannot contain differential operators, a first
condition is obtained by requiring the vanishing of the coefficients of ∂z in the above
expressions, that turn out to be the same. Thus, we must have

W2,` = 7z − 1
4 +W1,`. (5.8)

On the other hand, since εi,` cannot depend on z, they must differ at most by a constant
that we will denote ε1,` − ε2,` ≡ C`. Thus, by subtracting the last terms in (5.7) and
using (5.8) we find that the following condition must hold

z(z − 1)
(
28 + n+ 2`n+ n2 + 32W ′`

)
= C` . (5.9)

The solution of this differential equation is given by

W`(z) = − 1
32
(
28 + n+ 2`n+ n2

)
z + C`arctanh(1− 2z) + c` , (5.10)

with c` another integration constant. Regularity of the function W` at the origin requires
C` = 0. Thus, we finally obtain the factorization:

A−` A
+
` = H` + ε` , A+

` A
−
` = H`+n + ε` , (5.11)

with

ε` = (n+ 2`− 3)(n+ 2`+ 5)(n2 − 16)
1024 z2

+ 8`2 + 2`(4 + n(5− 8c`)) + n(1 + n)(5− 8c`)− 100
128 z − c`

4 + c2
` . (5.12)

Since this quantity cannot depend on z, additional (non-trivial) conditions are obtained from
cancelling the coefficients of z2 and z. Notice that the regularity condition imposing C` = 0
is also necessary to be able to cancel the z-dependence. The vanishing of the coefficient
of z2 leads to the three solutions n = 4, n = 3 − 2` or n = −5 − 2`. The latter is not
physical because our ladder structure requires n > 0 and the latter solution would connect
` → −5− `, which is unphysical. Thus, we have the first two possibilities. On the other
hand, the vanishing of the coefficient linear in z finally determines c` so the factorization
is completed. We have thus obtained two possible factorisations that we analyse in more
detail in the following.
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5.1.1 Big polar ladder

We will first study the solution with n = 4 that gives a ladder whose steps connect ` and
`+ 4. This choice leads to the ladder operators

A−` ≡ z(z − 1)∂z −
`+ 6

4

(
z − `

2`+ 5

)
, (5.13)

A+
` ≡ −z(z − 1)∂z −

`− 1
4

(
z − `+ 5

2`+ 5

)
, (5.14)

that satisfy the relations

A−` A
+
` = H` + ε`, A+

` A
−
` = H`+4 + ε` , (5.15)

with
ε` = `(`+ 6)(`+ 5)(`− 1)

16(2`+ 5)2 . (5.16)

The obtained operators are non-local,19 although in the large angular momentum limit they
take the approximately local form

A−` ' z(z − 1)∂z −
`

4

(
z − 1

2

)
, (5.17)

A+
` ' −z(z − 1)∂z −

`

4

(
z − 1

2

)
, (5.18)

and they become hermitian-conjugate to each other. The non-locality of the ladder operators
is not surprising and, in fact, it is a common feature. For instance, in the 3-dimensional
Coulomb problem, the radial function R(r) is determined by the following Hamiltonian (in
appropriate units):

HC R(r) ≡ −R′′(r) +
[
`(`+ 1)
r2 − q

r

]
R(r). (5.19)

This Hamiltonian admits the factorisation

HC = A+
`,CA

−
`,C −

q2

4`2 = A−`+1,CA
+
`+1,C −

q2

4(`+ 1)2 (5.20)

with the ladder operators
A±`,C ≡ ∓∂r + `

r
− q

2` . (5.21)

The remarkable difference with our ladder is that, while in the Coulomb problem the ladder
connects adjacent multipoles, our ladder climbs from ` to `± 4.

An interesting feature of the resulting factorisation is that ε` vanishes for ` = 0 and
` = 1 and this means that

kerA−0 A+
0 = kerH0 and kerA−1 A+

1 = kerH1 , (5.22)
19The non-local character we refer to here has to do with the non-polynomial `-dependence that denotes

the non-local nature of the operators in the angle variables. The operators are local in the radial variable.
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a property that will obstruct the construction of all the higher multipoles from the first ones
by using the ladder operators, as we will discuss in more detail in section 5.3. From (5.15),
we can also obtain the following useful intertwining relations

A+
` H` = H`+4A

+
` , A−` H`+4 = H`A

−
` . (5.23)

Thus, we have that if H`ϕ` = 0, then A+
` ϕ` is a solution of H`+4, i.e., A+

` raises ϕ` by four
`-steps. Likewise, A−` ϕ`+4 solves H` if H`+4ϕ`+4 = 0 so A−` lowers four `-steps. We thus
have the natural actions (see figure 4)

A+
` : ϕ` → ϕ`+4 , (5.24)

A−` : ϕ`+4 → ϕ` . (5.25)

Using these natural actions together with (5.23) allows to define the following diagonal
operator:

2A` ≡ A+
`−4A

−
`−4 −A

−
` A

+
` = ε`−4 − ε` . (5.26)

This operator measures the non-commutativity of the operations one-step-down → one-
step-up and one-step-up → one-step-down. We can also compute the non-commutativity of
jumping on a step (action of A`) and then going one step up (A+

` ) or down (A−`−4):

A`+4A
+
` −A

+
` A` = 1

2
(
2ε` − ε`−4 − ε`+4

)
A+
` ≡ λ+(`)A+

` , (5.27)

A`−4A
−
` −A

−
` A` = −1

2
(
2ε`−4 − ε`−8 − ε`

)
A−` ≡ λ−(`)A−` . (5.28)

We can verify the relation λ+(`) = −λ−(` − 4). In the limit of high angular momentum
`� 1, we find λ+ ' λ− ' −1/4 so it becomes independent of ` in this regime.

The ladder structure unveiled above permits to organize the multipoles into multiplets
formed by

(~ΦL)i ≡ Φ4L+i−1 (5.29)

and we can introduce the operators(
Â+

L

)
ij
≡ A+

4L+i−1δij (5.30)

that act on the multiplets as
Â+
L
~ΦL = ~ΦL+1 , (5.31)

which resembles the more traditional action of a ladder operator connecting adjacent
multipoles.

5.1.2 Small polar ladder

The second solution for the factorization with n = 3− 2` gives rise to a ladder with finer
steps. This ladder connects ` with `+ n = 3− `. Since ` ≥ 0, this ladder only reaches up to
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` = 3 and provides an automorphism for the first four multipoles. The ladder operators in
this case read

a−` ≡ z(z − 1)∂z + `− 5
4

(
z − `+ 1

2`− 3

)
, (5.32)

a+
` ≡ −z(z − 1)∂z + `+ 2

4

(
z − `− 4

2`− 3

)
, (5.33)

and the Hamiltonian factorises as

a−` a
+
` = H` + ε`, a+

` a
−
` = H3−` + ε` , (5.34)

with
ε` = (`− 5)(`− 4)(`+ 2)(`+ 1)

16(2`− 3)2 . (5.35)

As the big ladder, this small ladder operators are non-local, but its large ` limit gives the
approximately local mutually hermitic-conjugate operators

a−` ' z(z − 1)∂z + `

8
(
2z − 1

)
, (5.36)

a+
` ' −z(z − 1)∂z + `

8
(
2z − 1

)
. (5.37)

For this small ladder we now have that ε` vanishes for ` = 4 and ` = 5, but this ladder
is only defined for ` ≤ 3 so we will not have any identification of kernels as we found for the
big ladder. We can further obtain the useful relations

a+
` H` = H3−`a

+
` , a−` H3−` = H`a

−
` , (5.38)

that show how the small ladder connects the solutions of the first four multipoles so
that a+

` ϕ` and a−` ϕ3−` solve the equations corresponding to H3−` and H` respectively.
Furthermore, the fact that ε3−` = ε`, as can be explicitly checked, allows to obtain the
following commutation relations:

a+
3−`a

−
3−` − a

−
` a

+
` = ε3−` − ε` = 0 . (5.39)

In this case we obtain that these operators realise an Abelian algebra. This small ladder
satisfies the following additional relation

a+
3−`a

+
` = −a−` a

+
` (5.40)

that has no analogue in the big ladder. We then have that, for physical solutions ϕ`

a+
3−`a

+
` ϕ` = −a−` a

+
` ϕ` = −ε`ϕ` . (5.41)

This means that we only need to use one set of operators, either the plus or the minus,
to move within the first four steps, while the wider ladder constructed with A−` and A+

`

allows us to move to higher `’s. In combination, they allow, in principle, to reach any level
starting from the first two levels. However, as commented above and will be shown below,
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φ1 φ2φ0 φ3

a+0 , a−3

a−0 , a+3

a−1 , a+2

a+1 , a−2
φℓ φℓ+4φℓ−4

A+
ℓA+

ℓ−4

A−
ℓ−4 A−

ℓ

↺Aℓ ↺Aℓ+4↺Aℓ−4

Figure 4. In this figure we show the natural action of the small (left) and big (right) ladders. The
operators a+

` and a−
3−` act on the same spaces and their images are also in the same space and so

they are redundant in the sense explained in the main text. For the big ladder, there is no analogous
relation and we can define the operator A` to describe the difference between climbing down and
then up from climbing up first and then down. Notice that, since the two ladders have different
images, they commute.

the non-trivial kernels of the big ladder operators for the first multipoles represents an
obstruction for this construction.

Finally, the small ladder acts as a permutation of the multiplet components of ~Φ0 by
means of the following anti-diagonal operator:

â+ =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (5.42)

that encodes the action of a+
` on the elements of ~Φ0.

5.2 Axial ladder

In order to obtain a ladder for the axial sector we will follow the very same steps as for
the polar sector. We start from the hypergeometric form of the perturbation equations
eq. (4.35) that we reproduce here

z(1− z)Ψ′′` + 1− 3z
4 Ψ′` + e−2γ`(`+ 1)

16 Ψ` = 0 (5.43)

and introduce the family of Hamiltonians

H` ≡ −z(1− z)
[
z(1− z)∂2

z + 1− 3z
4 ∂z + e−2γ`(`+ 1)

16

]
(5.44)

whose kernels span the space of solutions of the axial sector multipoles. We then look for
operators B+

` and B−` that factorize H` as

B−` B
+
` = H` + δ1` ,

B+
` B
−
` = H`+n + δ2` , (5.45)
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for some integer n and scalar functions δ1` and δ2`. We will make an analogous Ansatz:

B−` ≡ z(z − 1)∂z +W1,`(z) , (5.46)
B+
` ≡ −z(z − 1)∂z +W2,`(z) , (5.47)

and, after requiring the factorisation (5.45), we obtain that the two functions W1,` and W2,`
must be related as

W2,` = 5z − 3
4 +W1,` , (5.48)

while the regular solution for W` ≡W1,` is now

W`(z) = − 1
32
[
20 + e−2γn

(
1 + 2`+ n

)]
z + c` . (5.49)

With this solution, we find that δ1,` = δ2,` ≡ δ` is given by

δ` =
240 + e−4γn2(n+ 2`+ 1)2 − 32e−2γ

[
n(n+ 1) + 2`(n+ `+ 1)

]
1024 z2

+
e−2γ

[
8`2 + n(1 + n)(7− 8c`) + 2`(4 + 7n− 8nc`)

]
− 20

128 z − 3c`
4 + c2

` . (5.50)

We can then choose c` to remove the term linear in z as

c` = 8`2 + 7n(n+ 1) + 2`(7n+ 4)− 20e2γ

8n(1 + 2`+ n) . (5.51)

However, the above expression shows that only certain values of γ lead to the desired
factorisation since now we need to have

240 + e−4γn2(n+ 2`+ 1)2 − 32e−2γ
[
n(n+ 1) + 2`(n+ `+ 1)

]
= 0 (5.52)

for some integer n. This is not sufficient however. We can solve the above equation for e−2γ

so we obtain the two branches

e−2γ± = 4
n2(n+ 2`+ 1)2

[
8n(n+ 1) + 16`(n+ `+ 1) (5.53)

±
√

64`2(`+ 1)2 + 64`(`+ 1)(2`+ 1)n+ (1 + 68`(`+ 1))n2 + 2(2`+ 1)n3 + n4
]
.

In order to have a ladder structure, the obtained value for γ must be independent of ` so
we must further impose

d
d`e
−2γ± = 0 . (5.54)

Now, we could consider the case of an `-dependent step for the ladder, but we are seeking
for a ladder of fixed step so we further require that n does not depend on `. We thus
solve (5.54) for some integer n. We find that the branch e−2γ− does not have solutions
while the positive branch e−2γ+ has one solution for n = 4 that is in turn unique and gives
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γ+ = 0. To show this, we can take the derivative w.r.t. ` of (5.52) keeping both γ and n
independent of ` so we obtain the following equation:

n = 4eγ (5.55)

whose unique solution is in fact γ = 0 and n = 4. This solution indeed gives an `-independent
value for n so it fulfils all our requirements. Thus, we find that there is only one value of
γ that allows for a ladder structure with fixed step in the axial sector. Remarkably, the
obtained value for the parameter γ selects nothing other than the Born-Infeld theory. In
other words, among all the Born-Infeldized ModMax theories, only Born-Infeld exhibits
a ladder structure in both the polar and the axial sectors with the required properties.
Furthermore, when we replace γ = 0 in (5.52), the equation reduces to

(n2 − 16)(n+ 2`− 3)(n+ 2`+ 5) = 0, (5.56)

so we obtain the same two ladder structures as in the polar case connecting `→ `+ 4 and
`→ 3− `. This adds to the collection of remarkable properties of Born-Infeld theory. In
the following we will analyse these two ladders obtained for Born-Infeld theory in detail.
Most of the properties are shared with the polar ladders, so we will save repeating the
same discussions and will simply quote the main expressions. There are, however, some
interesting differences that will in turn be at the heart of the different behaviour of the
polarisability and the magnetisation found in the preceding sections.

5.2.1 Big axial ladder

The explicit expressions for the big ladder are given by

B−` ≡ z(z − 1)∂z −
`+ 5

4

(
z − `+ 3

2`+ 5

)
, (5.57)

B+
` ≡ −z(z − 1)∂z −

`

4

(
z − `+ 2

2`+ 5

)
. (5.58)

These ladder operators permit to write the factorisations

B−` B
+
` = H` + δ`, B+

` B
−
` = H`+4 + δ`, (5.59)

with
δ` = (`+ 5)(`+ 3)(`+ 2)`

16(2`+ 5)2 . (5.60)

As for the polar case, we have the intertwining relations

B+
` H` = H`+4B

+
` , B−` H`+4 = H`B

−
` , (5.61)

from which it is immediate to obtain that H`+4(B+
` ψ`) = 0 if H`ψ` = 0 so the solutions for

multipoles separated by four ` units can be connected via this big ladder. All the same
properties and relations discussed for the big polar ladder apply to this ladder as well so we
will not repeat it and we will proceed directly to small axial ladder.
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5.2.2 Small axial ladder

For the small ladder we obtain

b−` ≡ z(z − 1)∂z −
`− 4

4

(
z + `− 2

3− 2`

)
, (5.62)

b+` ≡ −z(z − 1)∂z −
`+ 1

4

(
z + `− 1

3− 2`

)
, (5.63)

that produce the factorisation

b−` b
+
` = H` + δ`, b+` b

−
` = H3−` + δ`, (5.64)

with
δ` = (`− 4)(`− 2)(`− 1)(`+ 1)

16(2`− 3)2 . (5.65)

The same multiplets structure as in the polar case can therefore be introduced for the axial
sector. In this case we also have the commutation relations

b+3−`b
+
` = −b−` b

+
` = 0, (5.66)

so that we again have a redundancy among the operators of the small ladder.
The difference with the polar sector is that δ` vanishes now only for ` = 0 for the big

ladder and for ` = 1 and ` = 2 for the small ladder. This means that the small ladder will
have non-trivial kernels in the space of solutions and it will prevent the construction of all
the higher multipole solutions starting from the lowest ones. This is distinctive of the axial
sector, since the polar sector presents trivial kernels only in the big ladder, while the small
ladder permits to move between the first four multipoles without obstructions. We will
show these obstructions more explicitly in the next section.

Before concluding this section, we cannot resist to observe that the ladder structures
that we have unveiled in both the polar and the axial sector for the Born-Infeld theory have
a striking relation with the dimension of spacetime. The big ladder connects multipoles that
are separated by the number of dimensions20 while the small ladder establishes the same
relation as the Hodge dual for differential forms in four dimensions. It will be interesting
to obtain the ladders in an arbitrary dimension to see if similar coincidences occur, thus
signalling an underlying connection between the size of the steps of the ladders and the
dimensionality of the spacetime. We will not explore this surmise any further here and will
proceed to discussing the existence of conserved charges.

5.3 Conserved charges

We are now ready to undertake the construction of conserved charges. We will commence
by observing how the commutation relations (5.23) may serve the purpose of generating
a hierarchy of conserved charges from a known one. Let us assume that we have a

20The fact that the big ladder connects ` and `+ 4 is related to the fourth power introduced in the radial
coordinate redefinition z = −x4.
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charge generator I` which satisfies [I`, H`] = 0. Then, we can construct the generator
I`+4 ≡ A+

` I`A
−
` that commutes with H`+4, as can be seen by a direct computation:21

[I`+4, H`+4] = A+
` I`A

−
` H`+4 −H`+4A

+
` I`A

−
`

= A+
` I`H`A

−
` −A

+
` H`I`A−` = A+

` [I`, H`]A−` = 0 . (5.67)

Analogously, we can construct I3−` ≡ a+
` I`a

−
` that satisfies[

I3−`, H3−`
]

= a+
`

[
I`, H`

]
a−` = 0 . (5.68)

Thus, these two hierarchies allow to construct a hierarchy of conserved charges for all
multipoles from the conserved charge of a given multipole. These hierarchies of conserved
charges can indeed be obtained by noticing that the equations for the monopole of the axial
sector and dipole of the polar sector can be written in the form of a conservation law since
in both cases the non-derivative term of the equations vanish. In particular, this means
that both will admit a constant mode solution. For these cases, it is trivial to obtain a
conserved charge.

We will exploit this fact to construct the hierarchy of conserved charges and obtain
them by climbing down the ladder from an arbitrary angular multipole ` until reaching the
lower multipole `′ for which the conserved charge exists. In practice, we will have `′ = 0, 1
and this will provide the associate charge for the higher multipoles. For instance, if we have
a conserved charge for the monopole generated by Q0, then we can define the conserved
charge at level ` = 4k with k = 1, 2, 3, . . . as Q` ≡ Q0A

−
1 · · ·A

−
4(k−1). We can proceed

analogously for a charge in the dipole and we should notice that the last ladder operator
should be replaced by the corresponding small ladder operator for the multipoles that are
connected to ` = 2 and ` = 3 so we can eventually reach the monopole or the dipole. Let
us see how this works explicitly for each sector. Before proceeding, it is convenient to make
a couple of important remarks about the ladder operators.

Near the origin, all the ladder operators take the approximate form ±z∂z +w` with w`
some constant that only depends on `. On the other hand, the solutions for the multipoles
have the generic expression near the origin ∼ c1 + c2z

1/4 where c1 and c2 correspond to the
singular and the regular modes respectively. The action of the ladder operators close to
the origin reduces to (±z∂z + w`)(c1 + c2z

1/4) ∼ w`c1 + (w` ± 1/4)c2z
1/4, i.e., the ladder

operators transform regular modes into regular modes and singular modes into singular
modes. On the other hand, at large z, the ladder operators take the asymptotic form
±z2∂z + v`z with v` some constants, while the solutions for the multipoles in this region
reduce to power laws. Thus, the action of the ladder operators in this region amounts to
raising one power of z.

21It may be worth noticing that our family of Hamiltonians depend explicitly on z and so do the conserved
charges that we will unveil. It is however possible to change coordinates to avoid this issue, although other
properties are more obscure in the transformed coordinates. In principle, one should check if and how
the introduced Hamiltonians generate time evolution (i.e., translation along z in our case) and use the
appropriate condition [I, H] + ∂zI = 0 for conserved charges that depend explicitly on the coordinate. All
these issues will not be important for us because we will use an alternative procedure to construct the
conserved charges.

– 35 –



J
H
E
P
0
2
(
2
0
2
3
)
0
0
9

5.3.1 Polar sector

We will start by analysing the dipole that exhibits an obvious conserved charge and we
will then proceed to the monopole where, although less evident, it is also possible to find a
conserved charge.

Dipole. The equation for the polar perturbations with ` = 1 can be written as

d
dz

[
z3/4
√

1− z
dΦ1
dz

]
= 0 (5.69)

so it is immediate to identify a conserved charge generated by:22

Q1[Φ1] = z3/4
√

1− z
Φ′1(z). (5.70)

Recalling that the solution of the multipole near the origin behaves as Φ1 ' c1 + c2z
1/4

with C1 and C2 the singular and regular solutions respectively, we can obtain the relation
Q1 ≡ Q1[Φ1] = 1

4C2 so we see that the regular (physical) solution carries a non-trivial
charge, while the singular mode is identically annihilated by Q1. We can then express the
solution for the dipole as23

ϕ1 = c1 + 4Q1z
1/4

2F1

(
−1

2 ,
1
4 ,

5
4 , z

)
. (5.71)

As explained above, the ladder operators connect regular modes to regular modes so we can,
in principle, generate all the physical solutions connected with the dipole via the ladders
from the dipole with a non-trivial charge and this charge should eventually determine the
conserved charges of all those multipoles. There can however be some obstructions if the
kernel of some ladder operators have a component on the space of solutions, i.e., if the
kernels of the ladder operators and the Hamiltonians have a non-trivial intersection. We
have already discussed above that this is the case, so let us see how it affects the construction
of the hierarchy of charges.

By employing the small ladder we can generate the ` = 2 multipole as

ϕ2 = a+
1 ϕ1 (5.72)

that, together with the big ladder, permits to obtain all the multipoles Φ4k−2 with k =
1, 2, 3, . . . from the dipole. Since neither a+

1 nor A±1 have kernels on the space of solutions,
this path will be safe. On the other hand, climbing up with the big ladder directly from ϕ1

22This generator commutes with the ` = 1 level Hamiltonian in the sense that
[
Q1,

H1
(1−z)3√z

]
= 0.

Alternatively, we can define the Hamiltonian H̃1 ≡ z3/4
√

1−zH1 with the same kernel as H1 so the equation

becomes dΦ1
dρ = 0 with the coordinate ρ defined by d

dρ = z3/4
√

1−z
d
dz . Thus, Q1 is the generator of translations

along this coordinate and the conserved charge is the corresponding momentum, i.e., this is the cyclic
coordinate adapted to the symmetry.

23We use ϕ` for the space of solutions of the corresponding multipole equation, while Φ` denotes the
multipole variable not necessarily on-shell, so Φ`|on−shell = ϕ`.
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to generate the tower of multipoles Φ4k+1, does exhibit this obstruction since the constant
mode c1 (that is associated to a trivial charge Q1 = 0) clearly belongs to the kernel of
A+

1 = −z(z − 1)∂z so we cannot raise it with the big ladder. Fortunately, this constant
mode that forms the kernel of A+

1 is the singular mode and the regular mode corresponding
to a non-trivial charge Q1 6= 0 gives the physical regular solution. Incidentally, this means
that the image of A+

1 is the regular mode of Φ5. Since the higher ` operators in the tower
have trivial kernels in the space of solutions, we can raise the relevant physical solution to
all those multipoles. We can be more explicit and construct the ` = 5 solution as

ϕ5 = A+
1 ϕ1 = (1− z)3/2z1/4Q1, (5.73)

where the singular mode with trivial charge has been projected out and we obtain the
regular solution for ` = 5 as associated to a non-trivial Q1. Furthermore, we see that A+

1
has generated a purely growing solution which means that its polarisability will vanish due
to the absence of a decaying mode. Recalling that all raising operators are linear operators
with polynomial coefficients, all the higher order multipoles connected to ` = 1 via the
repeated application of the corresponding raising operators A+

4k+1 will also be purely growing
functions and, hence, the polarisability of the multipoles with ` = 4k + 1 for k = 1, 2, 3, . . .
will also vanish. This shows the advertised direct relation between the vanishing of the
polarisability for all these multipoles and the regularity of the ` = 1 solution as being
ascribed to having a non-trivial charge Q1.

We can now construct the two hierarchies of conserved charges connected with the
dipole. The first hierarchy corresponds to the multipoles ` = 4k − 2 with k = 1, 2, 3, . . . ,
i.e., ` = 2, 6, 10, . . . . The conserved charges for these multipoles are defined as

Q4k−2Φ4k−2 ≡ Q1a
−
1 A
−
2 · · ·A

−
4k−6Φ4k−2. (5.74)

It is pleasant to see how the conservation of these charges permits to connect the presence
of an asymptotically decaying mode for these multipoles with the value of the corresponding
charge. The decaying solution behaves asymptotically as Φdec

` ∼ z(1−`)/4. Since each ladder
operator essentially acts as raising one power of z in this asymptotic zone, we have that
a−1 A

−
2 · · ·A

−
4k−6Φ4k−2 ∼ zkΦ4k−2 ∼ z3/4, which is not annihilated by Q1 = z3/4(1−z)−1/2∂z.

Thus, the solutions with a decaying tail necessarily have a non-trivial charge Q4k−2 6= 0.
Since the singular mode has Q1 = 0, we conclude that the regular solutions for this tower
of multipoles have decaying modes and, hence, their polarisability does not vanish.

The second tower of conserved charges occurs for ` = 4k + 1, i.e., ` = 5, 9, 13, . . . .
Following the same procedure, we can aim at constructing the conserved charges for these
multipoles as

Q4k+1Φ4k+1 ≡ Q1A
−
1 A
−
2 · · ·A

−
4k−3Φ4k+1. (5.75)

However, an obstruction occurs again because the kernel of the lowering operator A−1
precisely corresponds to the regular sector of ` = 5. This is corroborated by solving the
equation A−1 Φ5 = 0 whose solution is Φ5 ∝ (1 − z)3/2z1/4, precisely the regular solution
given in (5.73). This has two important consequences. Firstly, although the regular solution
for ` = 5 expressed in (5.73) is nicely achievable from the regular solution of the dipole,
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the fact that is annihilated by A−1 impedes climbing back down. This means that the
tower of multipoles connected with ` = 5 via the big ladder cannot climb all the way down
to the dipole, but it ends at ` = 5. If we start from an arbitrary multipole ` = 4k + 1
with k = 1, 2, . . . and climb down with A−` , when reaching ` = 5, the regular solution
is projected out and we end up in the singular sector of the dipole with Q1 = 0. Since
the hierarchy of charges for these multipoles is generated precisely by translating it into
the dipolar charge, we conclude that Q4k+1 = 0 with k = 1, 2, . . . for the charges defined
above. Let us emphasise however that the regular solutions for this tower of multipoles
are connected to the non-trivial charge Q1 6= 0 since they can be obtained by climbing up
the ladder, although the connection is not both ways. This fact stems from having ε1 = 0
so A−1 A+

1 = H1.

Monopole. It is less evident to see that the monopole also has a conserved charge. To
see that, we first notice that we can introduce an appropriate integrating factor to write
the ` = 0 equation as

d
dz

[
z5/4
√

1− z
d
dz

( Φ0
z1/4

)]
= 0, (5.76)

from where it is immediate to identify the conserved charge generated by

Q0[Φ0] = z5/4
√

1− z
d
dz

( Φ0
z1/4

)
. (5.77)

From the solution of the monopole near the origin Φ0 ' c0 + c1z
1/4 we see that now it is

the physical regular solution that is annihilated by the generator, while the singular mode
gives a non-vanishing charge. Thus, we can express the solution in terms of Q0 ≡ Q0[Φ0] as

ϕ0 = c0z
1/4 − 4Q0 2F1

(
−1

2 ,−
1
4 ,

3
4 , z

)
, (5.78)

and regularity selects the trivial charge sector in this case. It turns out that the regular mode
(Q0 = 0) spans the kernel of A+

0 so A+
0 projects out the regular mode sector. The situation

is worse than what occurred for the dipole, because here we do encounter an obstruction
to generate the physical solutions for the multipoles Φ4k from the monopole via the big
ladder. Since the ladder operators connect regular modes with regular modes and singular
modes with singular modes, we have that the image of A+

0 is the singular sector of ` = 5.
Since the monopole is connected with the multipoles ` = 4k for k = 1, 2, 4, . . . via the

big ladder we can construct the corresponding tower of conserved charges as

Q4kΦ4k ≡ Q0A
−
0 · · ·A

−
4k−4Φ4k. (5.79)

However, the non-trivial kernel of A−0 has an important consequence. Since this kernel is
given by the singular sector of ` = 4, we can still climb all the way down to the monopole from
an arbitrary Φ4k. This is how all the physical modes are connected although the connection
is not both way. Since the regular solution for the monopole has trivial charge, we conclude
that all the physical solutions for the multipoles in this tower have trivial charge. The
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situation is similar to the multipoles reached from the dipole by the action of the big ladder
except that here the connection is downwards only and there it was exclusively upwards.

Similarly, the monopole is connected with the multipoles ` = 4k + 3 by going to ` = 3
with a+

0 and then climbing up with the big ladder. The tower of charges for these multipoles
is then constructed as

Q4k−1Φ4k−1 ≡ Q0a
−
0 A
−
3 · · ·A

−
4k−5Φ4k−1, (5.80)

with the understanding that the big ladder operators only appear for k ≥ 2. For this tower
of multipoles there are no obstructions from the kernels of the ladders so it is a safe two
way path. We can now apply again an argument based on the conservation of these charges
to relate the decaying mode with the physical solutions. We now have that, asymptotically,
a−0 A

−
3 · · ·A

−
4k−5Φ4k−1 ∼ z−1/2, which is not annihilated by Q0. This means that a decaying

mode at infinity requires a non-trivial charge. Since, as we have seen, the regular mode
requires a trivial charge, we conclude that the physical solutions for multipoles ` = 4k−1 do
not contain decaying modes. This shows again how the physical condition selecting a trivial
charge for the monopole relates to the vanishing of the polarisability for the odd multipoles
` = 4k − 1, i.e., ` = 3, 7, 11, · · · as we obtained more directly in the preceding sections.

We can see the explicit construction of the above general argument for the lowest
multipoles. With ϕ1 we can generate the ` = 3 modes by acting with the small ladder

ϕ3 = a+
0 ϕ0 . (5.81)

It is straightforward to confirm that this solutions coincides with the one obtained in (4.36).
The corresponding conserved charge is given by

Q3[Φ3] ≡ Q0a
−
0 Φ3 (5.82)

that is on-shell conserved for the ` = 3 multipoles by construction.24 For the solution
ϕ3 = a+

0 ϕ0 we find

Q3 ≡ Q3[ϕ3] = Q0a
−
0 a

+
0 ϕ0 = Q0ε0ϕ0 = 5

18Q0. (5.83)

Examining the explicit solution

ϕ3 = a+
0 ϕ0 = c0

12z
1/4(3z − 5) + 3

8Q0 2F1

(
−5

2 ,
1
2 ,

3
4 , z

)
(5.84)

we conclude that the regular solution for ` = 3 (given by the mode c0) is connected to the
trivial charge of the monopole sector. This can be justified on physical grounds because
the monopole solution simply corresponds to a shift of the background charge so it can be
eliminated from the perturbative sector. Furthermore, we observe that regularity selects

24Let us notice that the conservation equation Q3[Φ3] = Q3 is now higher order so we are introducing
spurious solutions that must be eliminated from the physical space (by imposing the solution to belong to
the kernel of H3 for instance). This subtlety is not relevant for us here because we want to connect the
conserved charge of ` = 0 with that of ` = 3. A similar situation occurs for the higher multipoles.
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the solution whose hypergeometric solution is polynomial so its polarisability vanishes.
Applying the same reasoning as above, the solutions obtained by raising the regular ϕ3
solution with the big ladder A+

` will always generate purely growing solutions and, therefore,
all multipoles with ` = 4k − 1 for k = 1, 2, 3, . . . will have vanishing polarisability.

In summary, we have shown how the vanishing of the polarisability for odd multipoles
can be connected to the vanishing of the conserved charges of the ` = 0 and ` = 1
sectors. While the tower with ` = 4k + 1 have vanishing charges because the image of
A−1 is the singular sector with trivial charge (although the physical dipolar mode has non-
trivial charge), the multipoles with ` = 4k − 1 have vanishing charge because the physical
monopolar solution has vanishing charge. In the previous section we obtained the two
towers of multipoles with vanishing polarisability by simply considering the multipoles for
which the regular solution at the origin are expressed in terms of hypergeometric functions
that reduce to polynomials. Now, we have seen that these two series can be associated to
the vanishing of the conserved charges Q0 and Q1, although for different reasons.

5.3.2 Axial sector

The story for the axial sector closely resembles the polar sector, although with some
differences which, in turn, lead to the absence of asymptotically decaying modes for the
physical solutions of even multipoles instead of odd multipoles as occurred in the polar
sector. The axial sector also exhibits an obvious conserved charge, but this time for the
monopole. The dipole also contains a conserved charge although not so evidently. Let us
start with the obvious case.

Monopole. The equations (5.43) with ` = 0 can be recast in the form

d
dz

[
z3/4√1− zdΨ0

dz

]
= 0 (5.85)

so we have the conserved quantity generated by25

Q0[Ψ0] = z3/4√1− zΨ′0(z). (5.86)

Near the origin we have Ψ0 ' c0 + c1z
3/4 with c0 and c1 the singular and regular modes

respectively. We then have that Q0 exactly annihilates c0 so the physical solution has
a non-vanishing charge. We can then write the solution for the monopole in terms of
Q0 ≡ Q0[Ψ0] to obtain

ψ0 = c0 + 4
3Q0z

3/4
2F1

(1
2 ,

3
4 ,

7
4 , z

)
. (5.87)

By acting with the small ladder we can construct the solution for ` = 3 as

ψ3 = b+0 ψ0, (5.88)

25One can check that this generator satisfies
[
Q0,

H0
z3/2(1−z)3

]
= 0. We can also introduce the coordinate

dρ ≡ 1
z3/4√1−zdz and the Hamiltonian H̃0 ≡ z3/4√1− zH0 so [Q0, H̃0] = 0 and Q0 generates ρ-translations.
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Figure 5. This diagram summarises how the solutions for the different multipoles in the polar
sector are related via the ladder operators as well as their relation to the conserved charges discussed
in the main text. The dashed lines denote the relations where non-trivial kernels are present. Since
the ladder operators connect regular modes with regular modes and singular modes with singular
modes, the fact that a given ladder operator has one of these sectors in its kernel implies that its
image must live on the kernel of its complementary ladder operator. In this diagram we observe that
the physical solutions in the towers of odd multipoles (second and fourth columns) have vanishing
charges. However, this happens for different reasons. In the second column, this occurs because the
kernel of A−

1 annihilates the regular solution so the charge is associated to the singular solution of
the dipole that is trivial. On the other hand, the fourth column does not contain kernels for the
ladder, but the regular solution in that tower selects a vanishing charge for the monopole. These are
precisely the multipoles with vanishing polarisability.

and from here we can climb up with the big ladder to generate all the multipoles Ψ4k+3.
All the involved operators do not have non-trivial kernels, so all these multipoles are nicely
connected. On the other hand, if we raise the monopole solution using the big ladder
operator directly, we obtain

ψ4 = B+
0 ψ1 = Q0z

1/4√1− z. (5.89)

We see again here that the raising operator projects out the sector with a trivial monopolar
charge (the mode c0). In this case, the mode with the trivial charge corresponds to the
singular mode so B+

0 is able to raise the physical solution and, furthermore, its image also
belongs to the regular sector of ` = 4. This situation is analogous to what occurred for
the dipole of the polar sector. Once more, we have obtained that the physical mode of the
monopole (with a non-trivial charge) is raised to the physical solution for ` = 4 that is a
purely growing function so it has no decaying mode at infinity. The same reasoning applied
for the polar sector then shows that, by raising to higher multipoles, we thus establish
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that the vanishing of the magnetic susceptibility for the multipoles Φ4k is associated to a
non-trivial charge for the monopole.

The hierarchy of conserved charges is constructed as in the polar sector. For the two
towers connected with the monopole we have

Q4kΨ4k ≡ Q0B
−
0 · · ·B

−
4k−4Ψ4k, (5.90)

Q4k−1Ψ4k−1 ≡ Q0b
−
0 B
−
3 · · ·B

−
4k−5Ψ4k−1. (5.91)

The first tower of charges encounters the same obstruction as in the polar sector due to the
fact that the kernel of B−0 coincides with the regular solutions of ` = 4. Thus, descending
with the big ladder in the tower of multipoles Ψ4k we will hit ` = 4 where the regular mode
cannot descend any further. In addition, the image of B−0 is the singular sector of the
monopole that has trivial charge, so all the charges Q4k will be trivial. Let us emphasise
once again, that we can still connect all the physical solutions with the monopole via B+

0 ,
although the connection is only in one direction. Since the regular mode of the monopole
has non-trivial charge, we arrive at the conclusion that the physical modes of the tower
Φ4k originate from the non-trivial charge of the monopole. Furthermore, since ψ4 does not
have a decaying mode, we obtain that the physical modes of the multipoles Φ4k will lack an
asymptotically decaying mode and, thus, we establish a link between their trivial charge
and the vanishing of the corresponding magnetisation.

Concerning the second tower of charges Q4k−1, there are no obstructions from the
kernels of the ladder operators so this route is two ways. In this case, we can resort to the
conservation of the charges to show the presence of decaying modes for the physical solutions.
The asymptotically decaying mode behaves as z−`/4 so b−0 B−3 · · ·B−4k−5Ψ4k−1 ∼ z1/4 that
is not annihilated by Q0, thus showing how the mode with non-trivial charge can have a
decaying tail. Since physical solutions have non-trivial charges, these will have decaying
modes and, therefore, non-vanishing magnetisation.

Dipole. Although less evident, the axial dipolar sector also contains a conserved quantity.
This becomes apparent by noticing that the equation (5.43) (with γ = 0) for ` = 1 can be
written as d

dz

[
z1/4(1− z)3/2 d

dz
Ψ1√
1− z

]
= 0, (5.92)

so that it is immediate identify the following conserved charge:

Q1[Ψ1] ≡ z1/4(1− z)3/2 d
dz

Ψ1√
1− z

. (5.93)

Proceeding as before, we can express the dipole in terms of Q1 ≡ Q1[Ψ1] as

ψ1 = c1
√

1− z + 4
3Q1z

3/4
2F1

(1
4 , 1,

7
4 , z

)
. (5.94)

This expression shows that the non-physical mode has trivial charge, while the physical
mode has a non-trivial charge. We can then go to ` = 2 by using the small ladder

ψ2 = b+1 ψ1 = Q1z
3/4. (5.95)
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Figure 6. This is the analogous diagram of 5 for the axial sector. The main difference with the
polar sector is that the small ladder also exhibits non-trivial kernels in the axial sector. An analogous
discussion applies here for the relation between the charges of the monopole and the dipole and the
vanishing magnetisation, this time for the even multipoles.

This in turn reproduces the regular solution and we then see that the non-trivial charge
of the monopole generates the regular solution for the quadrupole, as expected since the
ladders connect regular modes with regular modes. Then, we can use the big ladder to
generate all higher multipoles with ` = 4k + 2 that, in view of the above expression, will
comprise purely growing functions and, therefore, will give rise to vanishing magnetization
by virtue of the absence of decaying modes. We have thus recovered the result that all even
multipoles have vanishing magnetic susceptibilities and we can ultimately link this property
to the nature of the conserved charges of the monopole and the dipole.

As it happened for the polar sector, some ladder operators for the monopole and the
dipole have non-trivial kernels and this obstructs the construction of a two way connection
of all the higher multipoles with the ladders starting only from those two. The situation is
analogous to the case of the polar sector already discussed, so we will spare the details for the
axial sector to the reader. The situation is however illustrated in diagram 6 and a summary
of both sectors is provided in table 1. Let us simply emphasise that the vanishing of the
magnetisation for the even multipoles is associated to the vanishing of the charges for the
regular solutions, but this time due to the obstruction of non-trivial kernels for both towers.

5.4 Ladder supersymmetric structure

The ladder structure discussed in the previous section can be understood in terms of
supersymmetric quantum mechanics (see e.g. [32, 37] for an introduction). To see how the
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Polar sector Φ Axial sector Ψ

Hamiltonian −z(1−z)
[
z(1−z)∂2

z+ 3−z
4 ∂z+ `(`+1)−2

16

]
−z(1−z)

[
z(1−z)∂2

z+ 1−3z
4 ∂z+ `(`+1)

16

]
Susceptibility α` = Γ(− 2`+1

4 )Γ( `4)Γ( `+6
4 )

Γ(− `+1
4 )Γ( 5−`

4 )Γ( 2`+1
4 )r

2`+1
s χBI

` = Γ(− 2`+1
4 )Γ( `+3

4 )Γ( `+5
4 )

Γ(− `−2
4 )Γ(− `−4

4 )Γ( 2`+1
4 )r

(2`+1)/4
s

α4k+1 =α4k−1 = 0 χBI
4k =χBI

4k−2 = 0

Charges Q0 = z5/4
√

1−z∂z
Φ0
z1/4 Q0 = z3/4√1−z∂zΨ0

Q1 = z3/4
√

1−z∂zΦ1 Q1 = z1/4(1−z)3/2∂z
Ψ1√
1−z

A+
` =−z(z−1)∂z− `−1

4

(
z− `+5

2`+5

)
B+
` =−z(z−1)∂z− `

4

(
z− `+2

2`+5

)
Big Ladder A−` = z(z−1)∂z− `+6

4

(
z− `

2`+5

)
B−` = z(z−1)∂z− `+5

4

(
z− `+3

2`+5

)
ε` = `(`+6)(`+5)(`−1)

16(2`+5)2 δ` = (`+5)(`+3)(`+2)`
16(2`+5)2

a+
` =−z(z−1)∂z+ `+2

4

(
z− `−4

2`−3

)
b+` =−z(z−1)∂z− `+1

4

(
z+ `−1

3−2`

)
Small Ladder a−` = z(z−1)∂z+ `−5

4

(
z− `+1

2`−3

)
b−` = z(z−1)∂z− `−4

4

(
z+ `−2

3−2`

)
ε` = (`−5)(`−4)(`+2)(`+1)

16(2`−3)2 δ` = (`−4)(`−2)(`−1)(`+1)
16(2`−3)2

Table 1. In this table we summarise the main expressions for both the polar and the axial sectors
for the pure Born-Infeld theory.

supersymmetric structure arises we will focus on the polar sector, although the axial sector
can be treated in an analogous manner (see appendix B). Let us recall the ladder operators
written as

A−` = z(1− z)∂z +W1,`, A+
` = −z(1− z)∂z +W2,` (5.96)

where W1,` and W2,` are the functions obtained in section 5, but whose specific form is not
relevant here. The important fact is that the ladder operators factorise the Hamiltonian as

A−` A
+
` = H` + ε`, (5.97)

A+
` A
−
` = H`+4 + ε`. (5.98)

In order to unveil the supersymmetric structure of the system, we introduce a Hamiltonian
defined as the direct sum H` = (A+

` A
−
` )⊕ (A−` A

+
` ), i.e.,

H` =
(
A+
` A
−
` 0

0 A−` A
+
`

)
. (5.99)

When this operator acts on the vector φ` = (ϕ`+4, ϕ`), with ϕ` ∈ Ker H` and ϕ`+4 ∈
Ker H`+4, it gives H`φ` = ε`φ`, i.e., φ` is an eigenvector of H` with eigenvalue ε`. This
allows to introduce the super-charge operators

Q−` =
(

0 0
A−` 0

)
, Q+

` =
(

0 A+
`

0 0

)
(5.100)
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that generate the Hamiltonian via anticommutation {Q−` ,Q
+
` } = H` and commute with

it [H`,Q−` ] = [H`,Q+
` ] = 0. These operators also anticommute {Q−` ,Q

−
` } = {Q+

` ,Q
+
` } = 0.

Thus, they generate a set of supersymmetric conserved charges at each level ` and, further-
more, we have that

(
H`,Q−` ,Q

+
`

)
realise the closed superalgebra sl(1|1) with H` the even

sector and (Q−` ,Q
+
` ) the odd sector. Moreover, given a Q`, we can construct the operators of

other levels by acting with the ladder operators. The role of this underlying supersymmetry
will be unravelled in further work. We will however show how the polar sector can be recast
in the form of a Schrödinger equation with a paradigmatic supersymmetric potential.

5.5 Pöschl-Teller potential for the polar sector

The nature of the modes can be further studied by having a closer look at the mode
equations. We focus on the polar case and the results obtained here will be rederived from
another point of view in the appendix B. We can rewrite the equation for the polar modes
by introducing the rapidity variable

x2 ≡ sinh θ (5.101)

and redefining the modes as

Φ` →
(sinh(2θ)

tanh3 θ

)1/8
Φ` . (5.102)

After these two transformations, the equation for the perturbations read

− d2Φ`

dθ2 −
( 3

16 sinh2 θ
+ 2

cosh2 θ

)
Φ` = −

(2`+ 1
4

)2
Φ` (5.103)

where we can recognise the form of a generalised hyperbolic Pöschl-Teller potential [32]
so we can in turn identify the solutions of our equations with the bound states of this
potential. Let us explore this relation in more detail. The generalised hyperbolic Pösch-
Teller potential corresponds to a 2-parameter family of Hamiltonians HPT (α, β) that admit
the decomposition HPT (α, β) = A†α,βAα,β with

Aα,β = d
dθ +Wα,β(θ), (5.104)

A†α,β = − d
dθ +Wα,β(θ), (5.105)

and the super-potentials
Wα,β = α tanh θ − β

tanh θ , (5.106)

for some constants α and β. The explicit form of the Hamiltonian is then

HPT (α, β) = A†α,βAα,β = − d2

dθ2 −
α(α+ 1)
cosh2 θ

+ β(β − 1)
sinh2 θ

+ (α− β)2, (5.107)

while its super-symmetric partner is

H
(s)
PT (α, β) = Aα,βA

†
α,β = − d2

dθ2 −
α(α− 1)
cosh2 θ

+ β(β + 1)
sinh2 θ

+ (α− β)2, (5.108)
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which satisfies H(s)
PT (α, β) = HPT (−α,−β) = HPT (α + 1, β − 1) + 4(α − β + 1). If we

compare (5.107) with our equation (5.103) we find that we must have α(α + 1) = 2 and
β(β− 1) = −3/16 to map the equations into a Pösch-Teller potential. These equations have
the solutions α = 1,−2 and β = 1/4, 3/4. The constant term (α−β)2 can always be absorbed
into a shift of the eigenvalues of the Hamiltonian so we can relate our equations (5.103) to
a set of four different Pösch-Teller potentials, namely:

HI ≡ HPT (1, 3/4), HII ≡ HPT (1, 1/4), HIII ≡ HPT (−2, 1/4), HIV ≡ HPT (−2, 3/4) .
(5.109)

In terms of these Hamiltonians, we can write the perturbation equations (5.103) in the
following equivalent forms:

HI Φ` = −`(`+ 1)
4 Φ`, (5.110)

HII Φ` = −(`− 1)(`+ 2)
4 Φ`, (5.111)

HIII Φ` = −(`− 4)(`+ 5)
4 Φ`, (5.112)

HIV Φ` = −(`− 5)(`+ 6)
4 Φ`. (5.113)

Notice that the vanishing eigenvalue of the first potential corresponds to the monopole
while the zeroth-energy eigenvalue of the second one corresponds to the dipole. The third
and fourth potentials have vanishing eigenvalue for ` = 4 and ` = 5 respectively, which are
four `-steps away from the monopole and the dipole, i.e., they are connected via the big
ladder. However, let us notice that the ladder operators connecting these multipoles have
non-trivial kernels on the space of solutions. We will come back to this point later. In the
language of super-symmetric quantum mechanics, the vanishing of the ground state energy
is usually referred to as unbroken super-symmetry. The eigenvalues of the generalised
Pösch-Teller potentials can be obtained algebraically by exploiting the super-symmetric
structure and are given by26

En(α, β) = (α− β)2 − (α− β − 2n)2 = 4n(α− β − n) (5.114)

for integer values of n. For our particular cases we then have

EI,n ≡ En(1, 3/4) = n(1− 4n) = −`(`+ 1)
4 , (5.115)

EII,n ≡ En(1, 1/4) = n(3− 4n) = −(`− 1)(`+ 2)
4 , (5.116)

EIII,n ≡ En(−2, 1/4) = −n(9 + 4n) = −(`− 4)(`+ 5)
4 , (5.117)

EIV,n ≡ En(−2, 3/4) = −n(11 + 4n) = −(`− 5)(`+ 6)
4 . (5.118)

26See e.g. eq. (245) in [32]. In appendix B we show how to obtain the eigenvalues by algebraic methods.
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We can then solve these equations for ` to obtain:

I : ` = −4n, ` = 4n− 1, (5.119)
II : ` = 1− 4n, ` = 2(2n− 1), (5.120)

III : ` = −(5 + 4n), ` = 4(n+ 1), (5.121)
IV : ` = −2(3 + 2n), ` = 4n+ 5. (5.122)

For each case, we select the physical solutions as those with positive values of ` when
n = 0, 1, 2, . . . . Thus, we generate the following series of multipoles:

I : ` = 0, 3, 7, . . . (5.123)
II : ` = 1, 2, 6, 10, . . . (5.124)

III : ` = 4, 8, 12, . . . (5.125)
IV : ` = 5, 9, 13, . . . (5.126)

It is interesting to note that these four cases reproduce the structure discussed in the
previous section and summarised in figure 5. For each sector we retrieve the big ladder with
the action of Aa and A†a where a =I,II,III and IV. Since these operators relate eigenfunctions
with adjacent values of the quantum number n, we conclude from the relations (5.119)–
(5.122) that they connect multipoles separated by four `-steps. The case I starts with the
monopole (that gives the ground state of the corresponding Hamiltonian) that is obtained
from the first series in (5.119) for n = 0. Then we need to jump to the second series for
n > 0 that reproduces ` = 3 and all the multiples connected to it by a shift ∆` = 4. For the
Hamiltonian II, the ground state is obtained from the first series and it corresponds to the
dipole, while for n > 0 the physical solutions are obtained from the second series that gives
` = 2 and those shifted by ∆` = 4. For the cases III and IV, the first series are non-physical
and only the second ones are admissible, which start at ` = 4 and ` = 5. We have thus
obtained all the possible multipoles. We can see that the modes that are connected by the
small ladder correspond in this representation to the first multipoles of the series for I and
II. On the other hand, the first multipoles for III and IV correspond to the multipoles
which exhibit non-trivial kernels for the big ladder as schematised in figure 5. Thus, we
have reobtained the result that one has to provide the solutions of four multipoles in order
to generate the entire space of solutions for all the multipoles via the ladder operators. In
the representation in terms of the Pösch-Teller potentials, this stems from the four different
potentials. We can then understand the obstruction found from the existence of non-trivial
kernels for the big ladder operators for the monopole and the dipole in terms of the four
different potentials that we need in order to reproduce all the multipoles.

The existence of a super-potential allows to write the ground state as

Φ(0)
α,β = N exp

[
−
∫
Wα,β(θ)dθ

]
= N cosh−α θ sinhβ θ, (5.127)

with N some constant. This state can be easily shown to be annihilated by Aα,β and, in
fact, it arises as the solution of the equation Aα,βΦ(0)

α,β = 0. Near the origin we obtain
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Φ(0)
I ∼ Φ(0)

IV ∼ θ3/4 and Φ(0)
II ∼ Φ(0)

III ∼ θ1/4. Taking into account the re-scaling (5.102) and
the definition (5.101) we see that the ground states of I and IV reproduce the solutions with
a regular boundary condition at the origin employed in our computation of the polarisability,
while III and IV give the singular (constant) mode. This again relates the behaviour at the
origin with the vanishing polarisability, since I and IV precisely contain the multipoles with
vanishing polarisability. On the other hand, the asymptotic behaviour is Φ(0)

α,β ∼ e(β−α)θ,
which means that only Φ(0)

I and Φ(0)
II are normalisable (they have β − α < 0), while Φ(0)

III
and Φ(0)

IV are not (they have β − α > 0). In this case, we can relate the normalisability of
the ground state with the existence of non-trivial kernels since the ladders with non-trivial
kernels correspond to the cases with a normalisable ground state.

Since the supersymmetric partners of the obtained Hamiltonians relate to Pösch-Teller
potentials as

H
(s)
I = HPT (2,−1/4), H(s)

II = HPT (2,−3/4), H(s)
III = HPT (2,−1/4), H(s)

IV = HPT (2,−3/4),
(5.128)

our perturbation equations (5.103) can also be expressed in terms of the supersymmetric
partners in the following form:

H
(s)
I Φ` = −`(`+ 1)

4 Φ`, (5.129)

H
(s)
II Φ` = −(`− 1)(`+ 2)

4 Φ`, (5.130)

H
(s)
III Φ` = −(`− 4)(`+ 5)

4 Φ`, (5.131)

H
(s)
IV Φ` = −(`− 5)(`+ 6)

4 Φ`, (5.132)

so again we can associate the solutions for the multipoles Φ` to eigenfunctions of these
super-symmetric partners.

We have thus obtained four supersymmetric systems associated to the perturbation
equations. The super-symmetric Hamiltonians are given by

Ha =
(
Ha 0
0 H

(s)
a

)
=
(
A†aAa 0

0 AaA
†
a

)
, (5.133)

and the associated super-charges are

Qa =
(

0 0
Aa 0

)
, Q†a =

(
0 A†a
0 0

)
, (5.134)

with a =I, II, III, IV. We then obtain as usual for super-symmetric quantum mechanical
systems that (Φn, AaΦn) are eigenfunctions of Ha with eigenvalues En,a. As explained
above, the operator Aa connects adjacent values of n which corresponds to ∆` = 4 in full
analogy with the eigenfunctions (φ`+4, φ`) of (5.99), thus showing the full correspondence
of both formulations. In the more detailed treatment presented in terms of the Pösch-Teller
potential we have unveiled that the system actually exhibits four supersymmetric structures
that endow the multipole equations with four copies of the sl(1|1) Lie super-algebra.
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The associated super-symmetric quantum system allows to interpret the regularity
conditions considered for our computation of the electric polarisability and magnetisation in
terms of the normalisability of the wave functions for associated Schrödinger equations. Let
us also mention that the axial sector also admits a map to Pösch-Teller potentials and, in
that case, Born-Infeld again stands out as a singular theory. Here we content ourselves with
showing how the perturbations for the polar sector can be mapped into the paradigmatic
class of super-symmetric Hamiltonians provided by the generalised hyperbolic Pösch-Teller
potentials and a more exhaustive exploitation of the associated super-symmetric quantum
system will be presented elsewhere.

6 Discussion and conclusions

Theories with non-linear kinetic interactions have a number of interesting properties one of
which is the presence of screening mechanisms based on derivative self-interactions of the K-
mouflage type. In this work we have considered the oldest example of this type of screening
in the general framework of non-linear electromagnetism. We have obtained the equations
governing both polar (electric) and axial (magnetic) static perturbations around spherically
symmetric screened objects and shown that the effects of the non-linearities are encoded
into the corresponding anomalous propagation speeds and effective masses. Although
we have obtained the perturbation equations for general non-linear electromagnetism, we
have focused on the class of Born-Infeldised ModMax theories that interpolate between
Born-Infeld at small distances and ModMax at large distances. This theory has exact
duality invariance, while conformal invariance only arises approximately in the ModMax
regime. We have shown that duality invariance leads to a non-trivial relation between the
propagation speed of the axial perturbation and the screening factor so that the larger
the screening factor the smaller the propagation speed. This points towards a potential
strong coupling problem deep inside the screened region, which is in line with the usual
strong/weak coupling regimes of dual theories.

After obtaining the equations for the perturbations we have shown how they can be
recast into the form of hypergeometric equations that allow to obtain analytical solutions.
The ModMax parameter γ only appears in the axial sector, while the equations for the polar
sector are oblivious to it. We impose boundary conditions so that the perturbed electric
and magnetic fields remain finite at the position of the particle. This is motivated by the
regularised behaviour near the particle granted by the Born-Infeld regime that operates in
that zone. In the polar sector, we have computed the electric polarisability of the object
and we have found that the odd modes above the dipole have vanishing polarisability. For
the axial perturbations we compute the magnetic susceptibility that now depends on γ. We
have analysed the behaviour of the magnetisation and we have shown that some values of
γ lead to the vanishing of the susceptibility for some multipoles. When reducing to the
pure Born-Infeld, the perturbations have a remarkably singular behaviour that leads to
the vanishing of the susceptibility for all even modes. For this theory, there is a simple
expression that relates the electric polarisability and the magnetic susceptibility. In view
of our results, the Born-Infeld electromagnetism emerges as the theory that presents most
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resistance to deformation by external perturbations. These results are reminiscent of the
vanishing of the Love numbers for black holes. Our case is significantly different as there is
no horizon around the point charges. We also find that the vanishing polarisabilities and
susceptibilities (for Born-Infeld) are not valid for all multipoles but only for odd and even
`’s respectively. Nevertheless one can surmise that there should be some loose analogy as
the screening sphere around the point charge could be seen as a fuzzy boundary separating
an inside region where the electric field is nearly constant from an outside region where
Maxwell’s theory applies. In this sense, the vanishing polarisabilities and susceptibilities
could be envisaged as properties of the fuzzy “object” of size the screening radius under
external perturbations. We will return to this issue in future work.

As in the black hole case, the vanishing of the polarisability and the susceptibility can
be understood in terms of ladder operators [36, 38]. We have unveiled a structure of ladder
operators that split into two ladders, namely: a big ladder connecting multipoles separated
by ∆` = 4 and a small ladder that acts as an automorphism between the first four multipoles
connecting `→ 3− `. This ladder structure further shows the singular nature of Born-Infeld
since it is the only theory that allows for the existence of the ladder in both sectors. Based
on the unveiled ladder and the existence of conserved charges for the monopole and the
dipole in both sectors, we have constructed a hierarchy of charges for all multipoles. By
using these charges and the ladder we have established a relation between the regular
solutions relevant for the computation of the polarisability and magnetization and the
charges. We have also discussed how the presence of non-trivial kernels for some low-` ladder
operators obstructs to raise some solutions to higher moments as well as trivialising some
charges of high angular momentum. Finally, we have discussed the relation of our results
with known results of supersymmetric quantum mechanism. We have written the equations
for the perturbations in the form of a supersymmetric system with certain super-charges
that, together with the Hamiltonian, realise the sl(1|1) Lie super-algebra. Furthermore, we
have explicitly shown that the equations of the polar sector can be re-written in the form
of a Schrödinger equation with four paradigmatic Pöschl-Teller potentials, that represents a
classical example of solvable potentials using super-symmetric methods. Borrowing known
results on these potentials, we have been able to reproduce the big ladder.

The results obtained in this work call for further exploration to clarify some of the
intriguing relations that we have obtained. A study that is worth pursuing is how the
ladder operators arise within more general theories of non-linear electromagnetism. Our
results suggest that the existence of these ladders is not a generic feature of non-linear
electrodynamics. Already our analysis shows that the ladder in the axial sector only
seems to exist for the Born-Infeld theory. Although one might be tempted to ascribe
it to its duality invariance, this cannot be the answer, since the general Born-Infeldised
ModMax theory treated here is also duality invariant but we have not been able to construct
an analogous ladder. Rather, it seems that the existence of the ladder structure relies
on the absence of birefringence, which is a distinctive feature of Born-Infeld theory and
one of the properties that make it the only exceptional non-linear electromagnetism. It
would be interesting to provide an alternative characterisation of Born-Infeld theories in
terms of admitting a ladder structure. In relation to this, the existence of the ladder
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structure and the related symmetries may be understood in term of the isometries of the
effective metric that governs the dynamics of the perturbations. Another intriguing question
concerns the seemingly non-standard ladder that we have obtained conformed by a small
ladder and a big ladder. We are not aware of any other system where a similar structure
emerges. This particular ladder structure arises in Born-Infeld electromagnetism and it
would be interesting to find to what extent it can be extended to arbitrary dimensions and
more general set-ups. Furthermore, we have only superficially touched the connection to
super-symmetric quantum mechanics, but a deeper exploration would be worthwhile that
could, for instance, exploit the non-standard ladder structure from the super-symmetric
quantum mechanical system to provide new classes of solvable potentials. Finally, the
duality invariance of Born-Infeld points to the possibility of having a related (dual) ladder
structure for magnetic backgrounds. We have already commented how this duality can be
behind the remarkably simple relations that we have found for both sectors such as the
vanishing of the polarisability and the magnetisation for odd and even modes respectively.
In this respect, dyons represent very interesting objects in this subject and, hence, exploring
their relation to the ladder structures could unveil new phenomena. For instance, selfdual
objects might exhibit a stronger resilience to external stimuli with vanishing polarisability
and magnetisation for both even and odd modes above the dipole. Along these lines, a
more thorough analysis of the role played by duality invariance is desirable as well as an
analysis of the symmetries exhibit by the system in relation to the ladders. For instance,
finding out how these symmetries relate the quasi-normal modes of both sectors or to what
extent the potential problem of strong coupling found here affects the viability of the EFT.
We hope to return to these issues in future work.
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A Non-static quadratic action

In this appendix, we will derive the general quadratic action for non-static perturbations
around a screened object. This complements the discussion of the corresponding action as
discussed in the main text. For this object we will study the electromagnetic perturbations
that we will split as

δAµ = (a0,~a). (A.1)

The quadratic action can be written as

S = 1
2

∫
d4x

[
KY (~e2 −~b2) + 2KZ~e ·~b+KY Y ( ~E · ~e)2 +KZZ( ~E ·~b)2 + 2KY Z( ~E · ~e)( ~E ·~b)

]
(A.2)

where ~e = ~∇a0 − ~̇a and ~b = ~∇× ~a are the perturbed electric and magnetic fields. Let us
start by considering the parity-preserving case so we will have KZ = KY Z = 0. In that case,
we can express the quadratic action as

S = 1
2

∫
d4x

[
KY (~∇a0 − ~̇a)2 −KY (~∇× ~a)2 +KY Y ( ~E · (~∇a0 − ~̇a))2 +KZZ( ~E · (~∇× ~a))2

]
(A.3)

The spherical symmetry of the problem allows us to use spherical harmonics that provide
representations of SO(3). The temporal component will be decomposed in spherical
harmonics

a0 =
∑
`,m

a`,m(t, r)Y`,m(θ, φ) (A.4)

while the spatial perturbations will be expanded in vector spherical harmonics

~a =
∑
a,`,m

aa`,m(t, r)~Ya`,m(θ, φ) (A.5)

with
~Y1
`,m ≡ Y`,m

~r

r
, ~Y2

`,m ≡ r~∇Y`,m, ~Y3
`,m ≡ ~r × ~∇Y`,m. (A.6)

The background configuration can be expressed as ~E =
√

4πE(r)~Y1
00. The gradient of a0

takes the form
~∇a0 =

∑
`,m

(
a′`,m ~Y1

`,m + a`,m
r

~Y2
`,m

)
(A.7)

so we obtain the perturbed electric field

~e =
∑
`,m

[(
a′`,m − ȧ

(1)
`,m

)
~Y(1)
`,m +

(a`,m
r
− ȧ(2)

`,m

)
~Y(2)
`,m − ȧ

(3)
`,m

~Y(3)
`,m

]
. (A.8)

The magnetic field is given by

~b= ~∇×~a=−
∑
`,m

[
`(`+1)

r
a3
`,m

~Y1
`,m+ 1

r

(
ra3
`,m

)′
~Y2
`,m+ 1

r

(
a1
`,m−(ra2

`,m)′
)
~Y3
`,m

]
. (A.9)
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We can now compute the projection of the perturbed fields along the direction of the
background electric field as:

~E · ~e =
√

4πE(r)Y00
∑
`,m

(
a′`,m − ȧ1

`,m

)
Y`,m, (A.10)

~E ·~b =
√

4πE(r)Y00
∑
`,m

`(`+ 1)
r

a
(3)
`,mY`,m. (A.11)

Equipped with the above expressions and using the orthogonality relations of the vector
spherical harmonics, we can express the quadratic action as

S = 1
2
∑
`,m

∫
dtr2dr

[(
KY + 2YKY Y

)
|e(1)
`,m|

2 + `(`+ 1)KY |eΩ|2

−
(
KY − 2YKZZ

)
|b(1)
`,m|

2 − `(`+ 1)KY |bΩ|2
]

(A.12)

with |eΩ|2 = |e(2)
`,m|2 + |e(3)

`,m|2. In terms of the vector potential components we find

S = 2`+1
2

∑
`

∫
dtr2dr

[(
KY +2YKY Y

)(
a′`−ȧ

(1)
`

)2
+`(`+1)KY

((a`
r
−ȧ(2)

`

)2
+(ȧ(3)

` )2
)

−
(
KY −2YKZZ

)(`(`+1)
r

a3
`

)2
−`(`+1)KY

((1
r

(
ra3
`

)′)2
+
(1
r

(
a1
`,m−(ra2

`,m)′
))2

)]
(A.13)

We have used the rotational symmetry of the background to perform the sum over m so we
have evaluated at m = 0 and we have omitted the m-dependence to simplify the notation.
From this action, we see that, due to the transformation properties under parity, the pertur-
bation a3

` decouples from the rest. We will commence our analysis for this simpler sector.

Axial sector. Let us then write down the action for the axial sector

S = 2`+ 1
2

∑
`

∫
dtr2dr

[
`(`+ 1)KY

(
ȧ

(3)
`

)2
−
(
KY − 2YKZZ

)(`(`+ 1)
r

a3
`

)2

−`(`+ 1)KY
(1
r

(
ra3
`

)′)2
]

= 1
2
∑
`

∫
dtdr

[
KY

(
ȧ2
T − a′2T

)
−
(
KY − 2YKZZ

)`(`+ 1)
r2 a2

T

]
(A.14)

where we have defined aT ≡ r√
(2`+1)`(`+1)

a3
` . We can now introduce the tortoise coordinate

dr? ≡ KY dr so the action can finally be expressed as

S = 1
2
∑
`

∫
dtdr?

[(
ȧ2
T −

1
KY

a′2T

)
−
(
KY − 2YKZZ

)`(`+ 1)
r2(r?)

a2
T

]
(A.15)

where now the prime stands for ∂r? . Alternatively, we can canonically normalise aT →
aT /
√
KY so the action reads

S = 1
2
∑
`

∫
dtdr

[(
ȧ2
T − a′2T

)
−m2

Ta
2
T

]
(A.16)

– 53 –



J
H
E
P
0
2
(
2
0
2
3
)
0
0
9

with

m2
A ≡

`(`+ 1)
r2 c2

A + 1
4(∂r logKY )2 + 1

2∂
2
r logKY , c2

A = 1− 2YKZZ
KY

(A.17)

the effective mass and sound speed for the perturbation. In the static limit, this action
reproduces the equation for ψ`, which coincides with aT .

Polar sector. Let us now turn to the polar sector. We will fix a gauge with a
(2)
` = 0.

Furthermore, we will introduce an auxiliary field φ to linearise the action in the non-
dynamical field a` so we have

S = 2`+1
2

∑
`

∫
dtr2dr

[
2
(
KY +2YKY Y

)(
a′`− ȧ

(1)
` −

1
2φ
)
φ+ `(`+1)

r2 KY
(
a2
`−(a(1)

` )2
)]
.

(A.18)
We can obtain the equations for a` and a(1)

` :

`(`+ 1)KY a` = ∂r
[
r2(KY + 2YKY Y

)
φ
]
, (A.19)

`(`+ 1)KY a(1)
` = r2(KY + 2YKY Y

)
φ̇. (A.20)

When replacing these solutions into the action, we find

S = 2`+1
2

∑
`

∫
dtdr

(r2√KY c−2
P√

`(`+1)
φ̇

)2

−
(

1√
KY `(`+1)

∂r
(
r2KY c−2

P φ
))2

−r2KY c−2
P φ2

 ,
(A.21)

with
c−2
P ≡ 1 + 2YKY Y

KY
. (A.22)

We can now introduce the field
Φ ≡ r2KY c2√

`(`+ 1)
φ (A.23)

to express the action as

S = 2`+ 1
2

∑
`

∫
dtdr

[ 1
KY

(
Φ̇2 − (∂rΦ)2

)
− `(`+ 1)

r2KY
c2
PΦ2

]
. (A.24)

Upon canonical normalisation Φ→ K1/2
Y Φ we finally find

S = 2`+ 1
2

∑
`

∫
dtdr

[
Φ̇2 − (∂rΦ)2 −m2

PΦ2
]
, (A.25)

with
m2
P ≡

c2
P `(`+ 1)

r2 + 1
4(∂r logKY )2 − 1

2∂
2
r logKY , (A.26)

and with the speed of sound for the polar perturbation given in (A.22). Again, this equation
reproduces the equations for Φ` obtained in the main text in the static limit.
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B An alternative approach to the ladder operators

In the main text we have uncovered a supersymmetric structure for the perturbation
equations. In this appendix, we will give an alternative approach to the same problem.
In fact static solutions in the axial and polar cases can be obtained as a zero-eigenvalue
problem for two Hamiltonian operators. In the axial case (+) and the polar case (-) we
have H±ψ± = 0 , i.e., we are looking for zero modes of

H± = − d2

dr2 +m2
± (B.1)

with
m2
± = `(`+ 1)c2

±
r2 + 1

4(∂r lnKY )2 ± 1
2∂

2
r lnKY , (B.2)

where c+ = cA and c− = cP (see eq. (3.4). In ModMax theories, the two velocities are
constant and in the Born-Infeldised ModMax they are simply proportional as can be seen
form equations (4.5) and (4.10).

Let us introduce the two supersymmetric operators A± and the associated superpotential
W

A± = − d

dr
±W , W = 1

2∂r lnKY . (B.3)

Then the two Hamiltonian can be written as

H+ = −A−A+ + `(`+ 1)c2
+

r2 ,

H− = −A+A− + `(`+ 1)c2
−

r2 .

When ` = 0, we see that the two Hamiltonians are supersymmetric conjugates. When ` 6= 0,
the property is lost.

Eigenvalue problem. It is useful to change coordinates and define the mapping dr
dz±

= r
c±

This is a differential equation and we focus on the case where the map r(z±) is one-to-one.
The coordinate z is different for the two cases as c± are not equal in general. We find that

H+ = c2
+
r2

[
−
(
B− −

d ln dz+
dr

dz+

)
B+ + `(`+ 1)

]
,

H− = c2
−
r2

[
−
(
C− −

d ln dz−
dr

dz−

)
C+ + `(`+ 1)

]
, (B.4)

where we have introduced two pairs of new operators

B± = − d

dz+
± U , C± = − d

dz−
∓ V , (B.5)

as a function of z± respectively where

U = 1
2
d lnKY

dz+
, V = 1

2
d lnKY

dz−
. (B.6)
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Notice the change of ± to ∓ between B± and C±. The zero modes are now solutions to(
B− −

d ln dz+
dr

dz+

)
B+ψ+ = `(`+ 1)ψ+ ,(

C− −
d ln dz−

dr

dz−

)
C+ψ− = `(`+ 1)ψ− . (B.7)

This is simply an eigenvalue problem for two factorised operators.
A first and natural approach to the eigenvalue problem is in two steps, i.e., we decompose

the eigenvalue problem for the factorised operators in (B.7) into two eigenvalue problems.
So we define the eigenstates and eigenvalues

B+φ+ = λ+φ+ , C+ϕ+ = µ+ϕ+ ,(
B− −

d ln dz+
dr

dz+

)
φ− = λ−φ− ,

(
C− −

d ln dz−
dr

dz−

)
ϕ− = µ−ϕ− , (B.8)

where the eigenvalues are not determined and will be specified by imposing that the
wave function vanishes at the origin. Let us now assume that the pairs of operators are
diagonalisable in the same basis of eigenfunctions φλ and ϕµ respectively. This implies that
in such a basis

B+φλ = λ+φλ , C+ϕµ = µ+ϕµ ,(
B− −

d ln dz+
dr

dz+

)
φλ = λ−φλ ,

(
C− −

d ln dz−
dr

dz−

)
ϕµ = µ−ϕµ . (B.9)

In both cases, the pairs of operators in the equations above are diagonalisable in the same
basis if they commute. This happens when

U + 1
2
d ln dz+

dr

dz+
= −c−1

+ + d ln c+
dz+

= u , V − 1
2
d ln dz−

dr

dz−
= −c−1

− + d ln c−
dz−

= v , (B.10)

with u and v two constants and where we have used that d ln dz±
dr

dz±
= −c−1

± + d ln c±
dz±

. When
these two conditions are satisfied, the spectral problem can be easily analysed.

The spectrum of duality invariant theory. In duality invariant theories (see sec-
tion 3.2) we have the condition

c+KY = 1 (B.11)

which allow to rewrite the operators U and V in eq. (B.6) as a function of c+. Hence, the

pair of operators B+ and B−−
d ln dz+

dr
dz+

commute when c+ is, or can be treated as a, constant.
For the ModMax theories, the two speeds c± are constant and therefore the two pairs of
operators can be diagonalised in the same basis. For the Born-Infeldised ModMax theories,
the two speeds are proportional and therefore the two pairs of operators commute when c±
is nearly constant, i.e., around the origin and at infinity. In this case, we will generalise
the setting and allow for space-dependent eigenvalues. This will allow us to analyse the
spectrum in terms of new supersymmetric operators.
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ModMax. The ModMax models are duality invariant and such that c± are constant.
Hence, we can diagonalise the pairs of operators simultaneously, i.e.,

−dφλ
dz+

= λ+φλ , −dϕµ
dz−

= µ+ϕµ ,(
− d

dz+
+ c−1

+

)
φλ = λ−φλ ,

(
− d

dz−
+ c−1
−

)
ϕµ = µ−ϕµ , (B.12)

from which we deduce that the eigenvalues are such that

λ− = λ+ + c−1
+ , µ− = µ+ + c−1 . (B.13)

Then, from (B.7) we need to solve the pair of quadratic equations

λ+(λ+ + c−1
+ ) = `(`+ 1) , µ+(µ+ + c−1

− ) = `(`+ 1) (B.14)

corresponding to the eigenmodes with z± = c± ln r

φ+ = α+e
−λ+

+z+ + α−e
−λ−+z+ , ϕ+ = β+e

−µ+
+z− + α−e

−µ−+z− , (B.15)

where we have

λ±+ =
−1±

√
1 + 4c2

+l(l + 1)
2c+

, µ±+ =
−1±

√
1 + 4c2

−l(l + 1)
2c−

, (B.16)

which coincides with eq. (4.6) taking into account the relation between r and z± variables.

Generalised eigenvalue problem. In this more complex family of models, the two
eigensystems (B.9) are now(

− d

dz+
+ U

)
φλ = λ+φλ ,

(
− d

dz−
− V

)
ϕµ = µ+ϕµ ,(

− d

dz+
+ U + c−1

+

)
φλ = λ−φλ. ,

(
− d

dz−
+ 3V + c−1

−

)
ϕµ = µ−ϕµ . (B.17)

where we have used the duality invariance of the theory eq. (B.11) and the fact that for
theories like the Born-Infeldised ModMax one the ratio c+/c− is constant, see eq. (4.10).
We can immediately see that when c± are constant, the spectrum can be obtained in the
same way as already explained for the ModMax model.

When the velocities c± are not constant anymore, we can in fact adapt the method
to find exact solutions by simple integration. This is achieved by requesting that the
eigenvalues become radius dependent instead of constant. In a sense this method ressembles
the variation of the constant way of solving first order differential equations applied to
second order differential equations with factorised operators. In the following we will obtain
new differential equations for the eigenvalues which are exact and valid for any duality
invariant theories for which c+/c− is constant. Eventually these equations will be equivalent
to Schrödinger equations for supersymmetric operators which will be directly related to the
Pöschl-Teller potentials obtained in the main text.
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So we impose that λ± and µ± become functions of space. First of all we have the
identities

λ− = λ+ + c−1
+ , µ− = µ+ + 4V + c−1

− , (B.18)

which are still valid even when the eigenvalues are space-dependent. The eigenmode
equations become now a pair of differential equations for the eigenvalues

−dλ+
dz+

+
(
λ+ + c−1

+

)
λ+ = `(`+ 1) ,

−dµ+
dz−

+
(
µ+ + 4V + c−1

−

)
µ+ = `(`+ 1) , (B.19)

where we have used eq. (B.17). Once these equations have been solved, the modes themselves
are simply obtained by integration φλ ∝ e

∫
dz+(U−λ+) and ϕµ ∝ e

∫
dz−−(V+µ+). In general

there are two solutions for λ+ and µ+ implying two solutions for the modes. As the space of
solutions is a vector space of dimension two, this is enough to obtain the complete solutions.
So we can write the modes as

ψ+ = a+e
∫
dz+(U−λ+

+) + a−e
∫
dz+(U−λ−+) , (B.20)

where λ±+ are the two solutions to the eigenvalue problem and a± are constant coefficients.
Similarly we have

ψ− = b+e
∫
dz−−(V+µ+

+) + b−e
∫
dz−−(V+λ−−) , (B.21)

where µ±+ are also the two eigenvalues.

Supersymmetric eigenvalue problem. The two differential equations for the eigenval-
ues (B.19) satisfy a Riccati equation which can be linearised by defining λ+ = −d ln l+

dz+
, µ+ =

−d lnm+
dz−

which gives two second order and linear differential equations

d2l+
d2z+

− c−1
+
dl+
dz+
− `(`+ 1)l+ = 0 , (B.22)

d2m+
d2z−

− (4V + c−1
− )dm+

dz−
− `(`+ 1)m+ = 0 . (B.23)

By further redefining the functions as l+ = u+f+, m+ = u−f−, where u+ = e
1
2

∫
dz+c

−1
+ ,

u− = e
1
2

∫
dz−(c−1

− +4V ) and introducing

W+ = 1
2c+

, W− = 1
2c−

+ 2V , (B.24)

it is possible to write the eigenvalue equations as Schrödinger equations

− d2f±
dz2
±

+
(
`(`+ 1) +W 2

± −
dW±
dz±

)
f± = 0 . (B.25)

We recognise two pairs of supersymmetric quantum mechanics problems and the associated
supersymmetric operators

Q± = − d

dz±
−W± , Q†± = d

dz±
−W± . (B.26)
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The Hamiltonian is given in terms of the supersymmetric operators

H± = Q†±Q± , (B.27)

such that
H±f± = −`(`+ 1)f± , (B.28)

i.e., we are looking for bound states of supersymmetric quantum mechanics. We will see
explicitly below how this is linked to the Pöschl-Teller potentials in the Born-Infeld case.

Born-Infeldised ModMax. Let us now focus on models like the Born-Infeldised Mod-
Max. In this case we have

c+ = e−γ
x2

√
1 + x4

, c− = x2
√

1 + x4
, (B.29)

so the relation between the z and radial variable r is
dz+
dx

= e−γ
x√

1 + x4
, (B.30)

where x = r/rs, rs being the screening radius. The last equation can be integrated which
allows to obtain the velocities as

c+ = e−γ tanh(2eγz+) , c− = tanh(2z−) , (B.31)

where the variables z± play an analogous role to rapidities and the superpotentials W± as

W+ = eγ

2
1

tanh(2eγz+) , W− = −3
2

1
tanh(2z−) + 2 tanh(2z−) . (B.32)

We can now study the spectrum of the Born-Infeldised ModMax theories. To do so, we
shall introduce a family of supersymmetric quantum mechanics which generalises the usual
reflectionless models.

Natanzon potentials. As a mathematical aside, let us notice that the two potentials
W± belong to the general family of superpotentials

Wa,b = a

t
+ bt , t = tanh κz . (B.33)

The Born-Infeldised ModMax superpotentials can be obtained by setting a+ = eγ

2 , b+ =
0, a− = 1

2 − κ−, b− = κ− and κ+ = 2eγ , κ− = 2. It is then possible to define the ladder
operators

Qa,b = − d

dz
−Wa,b , Q†a,b = d

dz
−Wa,b , (B.34)

such that
Ha,b ≡ Q†a,bQa,b = − d2

dz2 +W2
a,b −

dWab

dz
= − d2

dz2 + Va,b , (B.35)

where we have introduced the potential Va,b that has the explicit form

Va,b = (a+ b)2 + a(a+ κ)
s2 − b(b+ κ)

c2 , (B.36)

where c = cosh κz and s = sinh κz.
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There is an interesting set of symmetries enjoyed by this potential. These symmetries
correspond to changing a→ −a− κ and b→ −b− κ. These transformations only change
the potential by a constant and we can obtain the following families of related potentials:

Va,b = V−a−κ,b + (2b− κ)(2a+ κ), (B.37)
Va,b = Va,−b−κ + (2a− κ)(2b+ κ), (B.38)
Va,b = V−a−κ,−b−κ − 4κ(a+ b+ κ), (B.39)

which allows to obtain eigenvectors of the Hamiltonian defined by Va,b from eigenvectors
of the related potentials with the corresponding substitutions. In the following we denote
by ã = −κ− a, b̃ = −κ− b and we obtain the new eigenvalues c̃(a, b) from the eigenvalues
c(a, b) of Ha,b. We then find the following families of eigenvalues:

cI(a, b) = c(a, b), (B.40)
cII(a, b) = c(ã, b) + (2b− κ)(2a+ κ) , (B.41)
cIII(a, b) = c(ã, b̃)− 4κ(κ+ a+ b) , (B.42)
cIV(a, b) = c(a, b̃) + (2a− κ)(2b+ κ) . (B.43)

This constructs four sets of eigenvalues and eigenvectors for Ha,b.
For arbitrary values of a and b, we will find eigenvalues and eigenvectors for bound

states of the Hamiltonian Ha,b. From eq. (B.35) we obtain the explicit ladder identity

Qa,bQ
†
a,b = 4κ(a+ b− κ) +Ha−κ,b−κ . (B.44)

Notice that the action of Qa,bQ†a,b lowers the parameters of the Hamiltonian by κ.
As usual in supersymmetric systems, we introduce the vacuum state as being in the

kernel of the supersymmetric operator Qα,β for a given choice of the indices (α, β). Here
we introduce the vacuum state by the property

Qa−nκ,b−nκ|f I
0〉 = 0 , (B.45)

where n is an integer which is not specified yet. Explicitly the wave function reads
f I

0(x) = e−
∫
dxWa−nκ,b−nκ(x) . We can also introduce the excited states using the ladder

operators
|f I
n〉 = Q†a,bQ

†
a−κ,b−κ . . . Q

†
a−(n−1)κ,b−(n−1)κ|f

I
0〉 . (B.46)

Using the recursion relation (B.44) we find that this excited state is an eigenstate of Ha,b,
i.e. we have

Ha,b|f I
n〉 = cn(a, b)|f I

n〉 , (B.47)

with

cn(a, b) = 4κ
n−1∑
j=0

((a− jκ) + (b− jκ)− κ) = 4nκ(a+ b− κn) . (B.48)

Finally notice that the wave function is given explicitly by

f I
n(z) = (| sinh κz|)−(a−nκ)/κ(cosh κz)−(b−nκ)/κ , (B.49)
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which is an even function. As the ladder operators are odd, the excited states are either
odd or even depending on the parity of n. Using the constancy of the Wronskian of the
mode equation, we can always construct a second independent solution as

f̃ I
n(z) = Df I

n(z)
∫
dz′±(f I

n(z′))−2dz′ (B.50)

where D is the Wronskian. The two set of functions f I
n = fn and f̃ I

n form a basis for the
space of solutions.

We can now then construct three more series of eigenvectors and eigenvalues defined by

Qã−nκ,b̃−nκ|f
II
0 〉 = 0 , (B.51)

Qã−nκ,b̃−nκ|f
III
0 〉 = 0 , (B.52)

Qã−nκ,b̃−nκ|f
IV
0 〉 = 0 , (B.53)

where n is an integer which is not specified yet. Analogously, we can also introduce the
excited states using the ladder operators constructed out of the tilded quantities

|f II
n 〉 = Q†

ã,b̃
Q†
ã−κ,b̃−κ . . . Q

†
ã−(n−1)κ,b̃−(n−1)κ|f

II
0 〉 , (B.54)

|f III
n 〉 = Q†

ã,b̃
Q†
ã−κ,b̃−κ . . . Q

†
ã−(n−1)κ,b̃−(n−1)κ|f̃

III
0 〉 , (B.55)

|f IV
n 〉 = Q†

ã,b̃
Q†
ã−κ,b̃−κ . . . Q

†
ã−(n−1)κ,b̃−(n−1)κ|f

IV
0 〉 , (B.56)

whose eigenvalues are simply

cII(a, b) = −(2a+ κ(2n+ 1))(−2b+ κ(2n+ 1)) , (B.57)
cIII(a, b) = −4κ(n+ 1)(a+ b+ (n+ 1)κ) , (B.58)
cIV(a, b) = (2a− κ(2n+ 1))(2b+ κ(2n+ 1)) . (B.59)

As a result we have four ladders of eigenstates for the Natanzon potentials.

The eigenvalues of the Born-Infeldised ModMax theories. We can now apply
this formalism to the Born-Infeldised Mod-Max theories. In this case we have a+ + b+ =
eγ

2 , a− + b− = 1
2 and we get the relation between the eigenvalues

cI,II,III,IV(a+, b+) = e2γcI,II,III,IV(a−, b−) (B.60)

where the ones for the polar case are simply

cI(a−, b−) = 4n(1− 4n) , (B.61)
cII(a−, b−) = −2(2n− 1)(4n− 1) , (B.62)
cIII(a−, b−) = −4(n+ 1)(4n+ 5) , (B.63)
cIV(a−, b−) = −2(2n+ 3)(4n+ 5) , (B.64)
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which solves the eigenvalue problem with

I : ` = −4n, ` = 4n− 1, (B.65)
II : ` = 1− 4n, ` = 2(2n− 1), (B.66)

III : ` = −(5 + 4n), ` = 4(n+ 1), (B.67)
IV : ` = −2(3 + 2n), ` = 4n+ 5. (B.68)

For each case, we select the physical solutions as those with positive values of ` when
n = 0, 1, 2, . . . . Thus, we generate the following series of multipoles:

I : ` = 0, 3, 7, . . . (B.69)
II : ` = 1, 2, 6, 10, . . . (B.70)

III : ` = 4, 8, 12, . . . (B.71)
IV : ` = 5, 9, 13, . . . (B.72)

We have therefore obtained the spectrum of the Born-Infeldised Mod-Max theories in
agreement with the results presented in section 5.5.

Let us comment briefly on the behaviour of the solutions close to the origin. We have
explicitly

f I,IVn (z−; a−, b−) ∼ z−a−/κ−− (B.73)

and
f II,III
n (z−; a−, b−) ∼ z−ã−/κ− , (B.74)

where a−
κ−

= −3
4 ,

ã−
κ−

= −1
4 . The associated solutions (B.21) scale like

ψI,II,III,IV
−n (z−) ∼ c1/2

− u−f
I,II,III,IV
n (B.75)

where c− ' z− and u− ∼ z−3/4
− implying

ψI,IV−n (z−) ∼ z1/2, ψII,III
−n (z−) ∼ constant. (B.76)

As z− ∼ x2
−, we retrieve that the modes vanish linearly at the origin or are constant. This

selects the spectrum I and IV as the physical ones. This corresponds to the odd values of `
and corresponds to the vanishing polarisabilities.

Let us now turn to the axial case. In this case the eigenvalue problem can be rewritten as

cI,II,III,IV(a−, b−) = −`(`+ 1) (B.77)

or equivalently
`eff = cI,II,III,IV(a−, b−). (B.78)

We only consider the cases I and IV as they lead to regular solutions. In the case I by
putting n = m− 1 we retrieve `eff = 4(4m2 − 9m+ 5) which is one of the series of values
where the susceptibility vanishes. This can be achieved only when

γm,` = 1
2 ln `(`+ 1)

4(m− 1)(4m− 5) (B.79)
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The second series of vanishing susceptibilities are obtained by solving in the case IV for
n = m− 2 giving

γm,` = 1
2 ln `(`+ 1)

2(2m− 1)(4m− 3) (B.80)

as found in the main text.
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