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1. Introduction

Quantum Chromodynamics (QCD) at finite temperature plays a fundamental rôle in many
fields of research, from the cosmological evolution of the early universe to the interpretation of
the experimental results at relativistic heavy-ion colliders in nuclear and particle physics. As the
temperature increases, due to asymptotic freedom, the theory undergoes a crossover from a confined
phase with hadronic degrees of freedom, in which chiral symmetry is spontaneously broken, to a
deconfined and chirally symmetric phase in which the relevant degrees of freedom are quarks and
gluons.

The purpose of this talk is to present the results on the mesonic screening spectrum, obtained
in Ref. [1], in the extremely high temperature regime, i.e. from 𝑇 ∼ 1 GeV up to ∼ 160 GeV.
With respect to that work, here we additionally report the study of the degeneracy between various
channels of the screening masses in presence of chiral symmetry restoration, as suggested by the
corresponding Ward Identities which are reported in Sec. 3.2, for recent reviews on the subject see
Ref. [2, 3]. The exploration of such a high temperature regime has been possible thanks to the
strategy implemented to renormalize the theory on the lattice. This strategy exploits the knowledge
of a non-perturbative definition of the renormalized coupling defined in a finite volume. This
strategy was first used in the SU(3) Yang-Mills theory where it allowed a precise determination of
the Equation of State over two orders of magnitude in the temperature [4, 5].

2. Strategy and lattice set-up

Typically, at zero temperature the scale on the lattice is set by using a hadronic scale 𝑀had.
This scale is chosen to satisfy the relation 𝑎 ≪ 1/𝑀had ≪ 𝐿 where 𝑎 and 𝐿 are the lattice spacing
and the lattice extent respectively. When we simulate the theory at finite temperature the additional
scale 𝑇 as to be accommodated on the lattice. If the temperature is much larger than the hadronic
scale, the relation to be satisfied becomes

𝑎 ≪ 1
𝑇

≪ 1
𝑀had

≪ 𝐿 , (1)

and the computational effort for such numerical simulation is prohibitively expensive.
To overcome this problem we consider a renormalisation of the theory based on a non-

perturbative definition of the renormalized coupling in a finite volume, �̄�2
𝑆𝐹

(𝜇𝑆𝐹), where 𝜇𝑆𝐹 =

1/𝐿𝑆𝐹 and 𝐿𝑆𝐹 is the lattice extent. Here, we refer to the Schrödinger Functional (SF) definition of
the renormalized coupling [6], but other choices are possible as well. The key idea is then to relate
finite volume setup with Schrödinger Functional boundary conditions [7–9] with finite temperature
ones with periodic boundary conditions by requiring

𝑇 = 𝜇𝑆𝐹 −→ 𝐿0 = 𝐿𝑆𝐹 , (2)

where 𝐿0 is the lattice extent in the compact direction. Finally the lines of constant physics are set
by fixing the value of the renormalized coupling at finite lattice spacing to be

�̄�2
𝑆𝐹 (𝑔

2
0, 𝑎/𝐿0) = �̄�2

𝑆𝐹 (1/𝐿0) , 𝑎/𝐿0 = 𝑎𝑇 ≪ 1 . (3)
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The combination of these definitions with step-scaling techniques allows us to explore a wide range
of temperatures without the need of simulating very large physical volumes. Moreover, the use
of this strategy is supported by the fact that finite volume effects are exponentially suppressed for
sufficiently large 𝐿𝑇 . For this reason, in our study we have always kept 𝐿𝑇 between 20 and 50, see
appendix C of Ref. [1] for the details.

In the present study, this strategy has been implemented to simulate QCD with 𝑁 𝑓 = 3 quarks
in the chiral limit at 12 values of the temperature, between ∼ 1 GeV and 160 GeV. Monte Carlo
simulations were performed over lattices with extent 𝐿/𝑎 = 288 in the spatial directions and with
3 or 4 different values of the lattice spacings (𝐿0/𝑎 = 4, 6, 8 and 10) to allow a continuum limit
extrapolation. We considered shifted boundary conditions in the temporal extent with shift vector
𝝃 = (1, 0, 0) [10–13]. Even if the use of shifted boundary conditions is not crucial for this work,
it gives us milder discretization errors and allowed us to share the cost of generating gauge field
configurations with the project which aims at the computation of the Equation of State [13].

At finite temperature the topological susceptibility is expected to be proportional to 𝑇−8 in the
theory with 𝑁 𝑓 = 3 quarks [14–16]. As a consequence, only the zero-topology sector is relevant
if the temperature is sufficiently large. For this reason, since, even at the lowest temperature we
simulated, the probability to visit a gauge field configuration with non-zero topology is extremely
small, we restrict our calculation to the zero-topology sector.

3. Numerical results

The definition of mesonic screening masses is related to the large-distance behaviour of screen-
ing correlation functions of fermionic bilinears. In particular, when projecting on the lowest
Matsubara frequency, the correlation functions read

𝐶O (𝑥3) =

∫
𝑑𝑥0𝑑𝑥1𝑑𝑥2 ⟨O𝑎 (𝑥)O𝑎 (0)⟩ ∼

𝑥3→∞
𝑒−𝑚O 𝑥3 , (4)

where 𝑚O is the screening mass related to the interpolating operator O𝑎 (𝑥) = 𝜓(𝑥)Γ𝑇𝑎𝜓(𝑥) and𝑇𝑎

are the traceless generators of the flavor group (in this work Γ = {1, 𝛾5, 𝛾𝜇, 𝛾𝜇𝛾5}). The spectrum
of the mesonic screening masses presents two distinct features: on one hand, for asymptotically high
temperatures, all these masses are expected to approach the value 𝑚free = 2𝜋𝑇 , which corresponds
to the energy of two free quarks, with thermal mass 𝜋𝑇 . On the other hand, if in the high temperature
regime chiral symmetry is restored, a degenerate pattern arises leading to chiral multiplets. The
1-loop order correction to the free theory value has been computed by matching the dimensionally
reduced effective field theory to QCD at 1-loop in perturbation theory. It is independent of the
mesonic operator O𝑎 and its expression reads [17]

𝑚𝑃𝑇
O = 2𝜋𝑇

(
1 + 0.032739961 · 𝑔2

)
. (5)

For this reason, besides the theoretical and physical interest, related to the fact that these masses
can be used as ideal probes of chiral symmetry restoration in the quark-gluon plasma, our lattice
calculation represents a test of the reliability of the 1-loop order perturbative result over more than
two orders of magnitude in the temperature.
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Figure 1: Left: Temperature dependence of the pseudoscalar mass normalized to the free theory value 2𝜋𝑇 ,
after subtracting the known leading terms. Right: the mass difference between the vector and pseudoscalar
masses normalized to 2𝜋𝑇 . In both cases the temperature dependence is parametrized by plotting as a
function of �̂�4.

3.1 Vector-Pseudoscalar spectrum

In this section we discuss the main result that we obtained for the vector and the pseudoscalar
spectrum. The difference between these two masses encodes spin-dependent terms of the screening
masses. The effective field theory analysis predicts spin-dependent terms to be 𝑂 (𝑔4) in the
renormalized coupling [18, 19].

In order to compare with the perturbative result, we parametrize our findings by using the pertur-
bative definition of the renormalized coupling, in the MS scheme, evaluated at the renormalization
scale 𝜇 = 2𝜋𝑇

1
�̂�2(𝑇)

=
9

8𝜋2 ln
2𝜋𝑇
ΛMS

+ 4
9𝜋2 ln

(
2 ln

2𝜋𝑇
ΛMS

)
, (6)

where ΛMS is taken from Ref. [20]. Notice that the renormalized coupling is just a convenient func-
tion of the temperature, used to parametrize our results, driven by the observed leading logarithmic
dependence on 𝑇 of the screening masses in the effective field theory.

The pseudoscalar mass has been parametrized with a quartic polynomial in the renormalized
coupling

𝑚𝑃

2𝜋𝑇
= 𝑝0 + 𝑝2�̂�

2 + 𝑝3�̂�
3 + 𝑝4�̂�

4 . (7)

The leading coefficients 𝑝0 and 𝑝2 are found to be in agreement with the free theory and the 1-loop
order contribution respectively. For 𝑝3 and 𝑝4 we found 𝑝3 = 0.0038(22) and 𝑝4 = −0.0161(17).
The temperature dependence of the pseudoscalar mass is shown in Figure 1 on the left as a function
of �̂�4, after subtracting the known leading terms, i.e. the tree-level and the 1-loop perturbative
result. The subtracted data have a linear behaviour in �̂�4 over more than two orders of magnitude in
the temperature.
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Figure 2: Temperature dependence of the pseudoscalar (red curve) and the vector (blue curve) screening
masses as a function of �̂�2. The black dashed line represents the 1-loop order perturbative result.

On the right panel of Figure 1 we show the temperature dependence of the mass difference
between the vector and the pseudoscalar masses, by plotting it as a function of �̂�4. By fitting our
results with fit ansatz

(𝑚𝑉 − 𝑚𝑃)
2𝜋𝑇

= 𝑠4�̂�
4 (8)

we find 𝑠4 = 0.00704(14). While the effective field theory predicts these terms to start at 𝑂 (�̂�4), we
have found spin-dependent terms to be of this order over more than two orders of magnitude in the
temperature. These terms are still clearly visible even at the highest temperature we simulated, a
fact that cannot be explained by the current 1-loop order perturbative calculation in Eq. (5), which
predicts the pseudoscalar and the vector masses to be degenerate.

By taking into account the parametrization for the pseudoscalar mass and the one for the spin-
dependent terms, the best parametrization for the vector mass is given by the quartic polynomial

𝑚𝑉

2𝜋𝑇
= 𝑝0 + 𝑝2�̂�

2 + 𝑝3�̂�
3 + (𝑝4 + 𝑠4)�̂�4 . (9)

In Figure 2 the temperature dependence of the vector and the pseudoscalar masses is shown. We
notice that 𝑂 (�̂�4) terms play a relevant rôle in the low temperature regime: On one hand, this
contribution explains how the pseudoscalar mass accidentally approaches the free theory value at
low temperatures, given the results at 𝑇 ∼ 1 GeV. What happens, in fact, at low temperature is that
the quartic term in the parametrization of the pseudoscalar mass, see Eq. (7), compensates the ∼ 𝑔2

term. On the other hand, given the parametrization in Eq. (9), at low temperature the deviation
of the vector mass from the free theory result is only due to the spin-dependent term 𝑠4�̂�4. These
results call for a matching between the effective field theory and QCD at higher order in perturbation
theory.

5
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3.2 Continuum chiral Ward identities and Chiral symmetry restoration

At low temperature the axial non-singlet symmetry of the chiral group is spontaneously broken
and the axial singlet symmetry is broken by the anomaly. However, when the temperature is high
enough, the situation is quite different. On one hand, at high temperature the chiral condensate
is expected to drop to zero leading to the restoration of the axial non-singlet symmetry. On the
other hand, at very high temperature, since the topological susceptibility is suppressed with the
temperature, the topological charge distribution is extremely narrow and peaked at 𝑄 = 0. In terms
of the screening spectrum, this restoration pattern translates into the formation of chiral multiplets
with degenerate masses. This degeneracy can be made explicit by a set of useful Ward Identities.
Assuming there is no spontaneous breaking of chiral symmetry, the following Ward Identities can
be easily derived

O = 𝐴𝑏
𝜇 (𝑧)𝑉𝑐

𝜈 (𝑦) → ⟨𝑉𝑎
𝑘 (𝑧)𝑉

𝑎
𝑘 (𝑦)⟩ = ⟨𝐴𝑎

𝑘 (𝑧)𝐴
𝑎
𝑘 (𝑦)⟩ ,

O = 𝑃𝑏 (𝑧)𝑆0(𝑦) → 2 ⟨𝑃𝑎 (𝑧)𝑃𝑎 (𝑦)⟩ = −1
2
⟨𝑆0(𝑧)𝑆0(𝑦)⟩ ,

O = 𝑆𝑏 (𝑧)𝑃0(𝑦) → 2 ⟨𝑆𝑎 (𝑧)𝑆𝑎 (𝑦)⟩ = −1
2
⟨𝑃0(𝑧)𝑃0(𝑦)⟩ , (10)

where on the left we provide the interpolating operator used to obtain the Ward Indentity and on the
right the consequences of such Ward Identity, obtained by taking into accout the variation of the
operator O under axial non-singlet transformations. On the other hand by considering axial singlet
transformations, using the same notation, we obtain

O = 𝑃0(𝑧)𝑆0(𝑦) → ⟨𝑆0(𝑧)𝑆0(𝑦)⟩ + ⟨𝑃0(𝑧)𝑃0(𝑦)⟩ = 𝑁 𝑓 ⟨𝑄𝑃0(𝑧)𝑆0(𝑦)⟩ ,
O = 𝑃𝑎 (𝑧)𝑆𝑎 (𝑦) → ⟨𝑆𝑎 (𝑧)𝑆𝑎 (𝑦)⟩ + ⟨𝑃𝑎 (𝑧)𝑃𝑎 (𝑦)⟩ = 𝑁 𝑓 ⟨𝑄𝑃𝑎 (𝑧)𝑆𝑎 (𝑦)⟩ , (11)

where the r.h.s vanishes if the topological charge distribution becomes very narrow at large temper-
ature and only the 𝑄 = 0 topological sector contributes to the path integral.

The main consequence of these sets of Ward Identity is the degeneracy of the related screening
masses, which produces the standard degeneracy picture represented in Figure 3.

For the purpose of this study, the relevant Ward Identities are the first one in Eq. (10) and the
second one in Eq. (11), i.e. the ones involving only flavor non-singlet interpolating operators. In
Figure 4 on the left we show the mass difference between the vector and the axial-vector masses
as a function of �̂�2. For all the temperatures the mass difference is compatible with the expected
restoration pattern (blue horizontal line) within the statistical error, which is a clear signal of axial
non-singlet symmetry restoration from 1 GeV up to ∼ 160 GeV. Analogously, on the right we
provide the mass difference between the pseudoscalar and the scalar masses. As shown in the
figure, the mass difference obtained by restricting the calculation to the zero-topology sector, is
compatible with the expected behaviour if 𝑄 = 0 of the r.h.s. of Eq. (11) (red horizontal line).

4. Conclusions

In this talk we have shown how the use of a non-perturbative definition of the renormalized
coupling in a finite volume, combined with step-scaling techniques provides a solid strategy to

6
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Figure 3: Degeneracy pattern of the mesonic sector of the screening masses if the axial non-singlet symmetry
is not spontaneously broken and if only the 𝑄 = 0 topological sector contributes to the path integral.
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ĝ2

−0.002

−0.001

0

0.001

0.002

0 0.5 1 1.5 2 2.5 3

(m
P
−
m
S
)/
2π
T

ĝ2

Figure 4: Left: mass difference between the vector and the axial channels. Right: mass difference between
the pseudoscalar and the scalar channels.

simulate QCD at very high temperature with a moderate computational effort. The applicability
of this strategy is also strengthened by the fact that in the high temperature regime finite volume
effects are exponentially suppressed for large 𝐿𝑇 .

The successful implementation of this strategy allowed us to study in great detail the mesonic
screening spectrum for the first time from𝑇 ∼ 1 GeV up to∼ 160 GeV. The temperature dependence
of these masses showed a non-trivial behaviour which cannot be explained by the current 1-loop
order perturbative result. In particular, 𝑂 (�̂�4) terms are needed both in the high and in the low
temperature regime in order to explain the vector and the pseudoscalar screening masses and
their difference. In general, our results are consistent with the effective field theory predictions,
however the 1-loop matching is reliable only for temperatures well above the highest temperature
we considered.

Moreover, by studying the scalar and the axial-vector channels we observed no signal of chiral
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symmetry breaking in the entire range of temperature. The numerical results are also supported
by Ward Identities obtained in presence of chiral symmetry. The degeneracy between the vector
and the axial-vector channel is consistent with the restoration of the axial non-singlet symmetry in
the high temperature regime, while the degeneracy between the pseudoscalar and the scalar masses
agrees with the fact that only the zero-topological sector contributes to the path integral.
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