
Vol.:(0123456789)1 3

Computing and Software for Big Science (2023) 7:2
https://doi.org/10.1007/s41781-023-00096-8

RESEARCH

The ATLAS EventIndex

A BigData Catalogue for All ATLAS Experiment Events

Dario Barberis1 · Igor Alexandrov2 · Evgeny Alexandrov2 · Zbigniew Baranowski3 · Luca Canali3 ·
Elizaveta Cherepanova4 · Gancho Dimitrov3 · Andrea Favareto1 · Álvaro Fernández Casaní5 · Elizabeth J. Gallas6 ·
Carlos García Montoro5 · Santiago González de la Hoz5 · Julius Hřivnáč7 · Alexander Iakovlev2 · Andrei Kazymov2 ·
Mikhail Mineev2 · Fedor Prokoshin2 · Grigori Rybkin7 · José Salt5 · Javier Sánchez5 · Roman Sorokoletov8 ·
Rainer Többicke3 · Petya Vasileva3 · Miguel Villaplana Perez5 · Ruijun Yuan7

Received: 15 November 2022 / Accepted: 24 February 2023
© The Author(s) 2023

Abstract
The ATLAS EventIndex system comprises the catalogue of all events collected, processed or generated by the ATLAS experi-
ment at the CERN LHC accelerator, and all associated software tools to collect, store and query this information. ATLAS
records several billion particle interactions every year of operation, processes them for analysis and generates even larger
simulated data samples; a global catalogue is needed to keep track of the location of each event record and be able to search
and retrieve specific events for in-depth investigations. Each EventIndex record includes summary information on the event
itself and the pointers to the files containing the full event. Most components of the EventIndex system are implemented
using BigData free and open-source software. This paper describes the architectural choices and their evolution in time, as
well as the past, current and foreseen future implementations of all EventIndex components.

Keywords  ATLAS experiment · Event catalogue · BigData catalogue · Hadoop · HBase

Introduction

The ATLAS experiment [1] at the CERN LHC accelerator
[2] is in operation since 2009; it collected during the first
two LHC data-taking periods (Run 1 between 2009 and 2013
and Run 2 between 2015 and 2018) almost 25 billion phys-
ics records (“events”). The particles accelerated by the LHC
are grouped into many “bunches” that intersect each other
every 25 ns, at a rate of 40 MHz. During each bunch cross-
ing, several independent interactions take place at almost
the same time (within 0.5 ns); therefore, the signals left in
the detector by the particles produced by those interactions
are recorded together as one “event”. The average number of
these “pile-up” interactions varied from a few in LHC Run
1 to 50–60 during LHC Run 2 and is expected to increase
further by the end of LHC Run 3 (2022–2025). In addition to
the real events, about three times as many simulated events
were generated using Monte Carlo methods.

This paper is based on work performed before 24 February 2022.

 *	 Luca Canali
	 Luca.Canali@cern.ch

1	 Dipartimento di Fisica dell’Università di Genova and INFN
Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy

2	 Joint Institute for Nuclear Research, Joliot‑Curie 6,
141980 Dubna, Russia

3	 CERN, 1211 Geneva 23, Switzerland
4	 Nikhef National Institute for Subatomic Physics

and University of Amsterdam, Science Park 105,
1098 XG Amsterdam, The Netherlands

5	 Instituto de Física Corpuscular IFIC, Centro mixto
Universitat de Valencia-CSIC, C/Catedrático José Beltrán 2,
46980 Paterna, Valencia, Spain

6	 University of Oxford, Denys Wilkinson Bldg, Keble Rd,
Oxford OX1 3RH, UK

7	 IJCLab, CNRS/Université Paris-Saclay/Université de Paris,
91405 Orsay, France

8	 University of Texas at Arlington, 701 South Nedderman
Drive, Arlington, TX 76019, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-023-00096-8&domain=pdf

	 Computing and Software for Big Science (2023) 7:2

1 3

 2   Page 2 of 21

ATLAS Data Taking and Data Processing

The LHC accelerator operates in cycles; first the protons
or ions are injected into the accelerator rings, then they are
accelerated and finally their orbits are modified to bring
the counter-rotating particle beams to intersect at the cen-
tre of each experimental apparatus. When the number of
circulating particles has decreased beyond a certain level,
they are extracted and directed towards the “beam dumps”,
where their energy is absorbed. Each such cycle is called a
“fill” for the accelerator. A continuous data-taking session
of the detector is usually referred to as a “run”, typically
lasting from a few hours to just over a day. Runs are fur-
ther divided into luminosity blocks, short time periods, up
to one minute, during which the LHC luminosity (inter-
action rate) and the detector conditions can be assumed
to be constant. Luminosity block identifiers, called LBN
(luminosity block number), are integers starting from 1
and incremented as the run progresses.

The detector read-out system and the downstream pro-
cessing chain cannot cope with the 40-MHz bunch cross-
ing rate. An online selection system (“trigger”) is needed
to select the events of interest on the basis of combinations
of signals in the detector that match the expected signa-
tures for interesting physics processes, and extract their full
information for offline processing. The trigger system had
a three-level configuration for LHC Run 1: Level 1 (L1),
implemented in programmable hardware; Level 2 (L2),
that made software-based partial reconstruction within the
“regions of interest” marked by Level 1, and finally the
Event Filter (EF), analysing the full event. For LHC Run 2
and Run 3, L2 and EF were merged into a single system, the
High-Level Trigger (HLT), implemented in software running
on commercial processors. In order to keep the possibility
to select rare physics processes, events satisfying triggers
matching common physics processes or used for monitoring
were prescaled, i.e. reduced randomly in number in order to
save output bandwidth. The trigger configurations and the
prescale factors applied to each trigger type were recorded
in the trigger database for each run [3].

Trigger decisions were stored in event data files as trig-
ger masks, where each bit corresponds to the specific set of
trigger selections (trigger chains). Depending on the trig-
ger configuration, the same bit in the trigger mask (chain
counter) may correspond to a different trigger chain. The
relation between chain name and counter is uniquely
defined in the trigger database table, indexed by the trig-
ger key (SMK). Trigger keys depend on the run number
for the data recorded by the detector and on the production
settings for Monte Carlo simulation.

The events recorded by the ATLAS detector are trans-
ferred in real time to the CERN computer centre and

processed within 48 h from the end of a run using the
ATLAS “Tier-0” cluster. This procedure consists of cal-
culating the time-dependent detector calibration and align-
ment parameters, and then using them to compute for
each event the physical quantities of interest for the final
analyses. The events can be re-processed when improved
reconstruction algorithms or detector calibration and
alignment constants become available, usually at the end
of each major data-taking period; the result is the creation
of additional versions of the same events, some of which
replace older versions.

The reconstruction processes take events in “RAW” data
format, as produced by the detector read-out system, apply
detector calibration and alignments, execute particle recon-
struction and identification algorithms and output them
in “AOD” (Analysis Object Data) format. The events are
then distributed and made available to all ATLAS members
through the World-wide LHC Computing Grid (WLCG [4]).
The events can be further selected for different analysis pur-
poses, and saved in compressed formats (“derived AOD”, or
“DAOD”) with only the events and contents that are useful
for a given analysis. These derivation processes can be run
very frequently, even monthly, as the analysis codes evolve
in time, resulting in many DAOD versions with a relatively
short lifetime as they are normally superseded by newer
ones.

Simulated interactions go through a similar processing
chain. The outputs of event generators are saved on disk
in a common format (“EVNT”). Then the detector and
read-out electronics simulation (digitization) processes are
run; pile-up interactions are also simulated and added to
the main interaction record during digitization. Finally, the
same reconstruction and derivation processes as for real data
are executed, producing events, respectively, in AOD and
DAOD formats.

Groups of statistically equivalent events (real data events
collected with the same detector conditions or simulated
events produced with the same generator, and processed by
the same software versions) are stored in files on disk or on
tape. Each file typically contains between 1000 and 10,000
events, depending on the format and balancing the need to
avoid too many small files (<1 GB) that would cause data
storage problems and at the same time too large files (>10
GB) that could have lower transfer efficiency. Every unique
file, regardless of its format, is assigned a distinct GUID
(Globally Unique IDentifier [5]), which is used to catalogue
and retrieve it. Currently ATLAS has over 100 million files
on disk, containing over 400 billion event records. Files are
grouped into datasets that can be hierarchically assembled
into containers. The distributed data management system
Rucio [6] is used to keep track of each file, dataset and con-
tainer, including their properties (metadata) and replica loca-
tions, as well as to manage the data movements between

Computing and Software for Big Science (2023) 7:2 	

1 3

Page 3 of 21  2

different storage sites and the CPU farms where the data are
processed and analysed.

Need for an Event Catalogue

Rucio is extremely efficient at managing 100 million files
stored in 120 sites world-wide and using over 200 PB of
disk space and similar quantities of tape storage space.
Rucio allows analysers to easily access data and simulation
samples using the existing organization of files in datasets
and containers, but it does not store any information about
individual events. Nevertheless there is also a need to be
able to retrieve different versions of one or a few events,
given the often reduced information contained in the last
data reduction stages, either to produce nice event displays
for publications, or to check in detail if all reconstruction
procedures worked as expected.

The EventIndex was designed for this primary use case
(quick and direct event selection and retrieval), but the same
system can fulfil several other tasks, such as checking the
correctness and completeness of data processing procedures,
detecting duplicated events that can occur for temporary
faults of the data acquisition or processing procedures, stud-
ying trigger correlations and the overlaps between selected
data streams.

The EventIndex is the second-generation event catalogue
for ATLAS. The first-generation catalogue deployed for
LHC Run 1 was called the “TAG DB” [7]. Its content was
based on the direct import of event-wise information from
ATLAS TAG files into an Oracle [8] database to facilitate
queries of all events across entire datasets, which could
speed up the analysis workflow. TAG files were thumbnails
of the AOD format files produced in the final stage of the
central production chain. The TAGs contained, in princi-
ple, sufficient information for identification and selection of
events of interest to most physics analyses for the purpose of
subsequent event skimming, i.e. the pre-selection of events
based on any of the TAG quantities before accessing the full
AOD file content. There were generally two problems with
the TAG database:

1.	 TAG information included immutable content (such
as event identification and trigger decisions) as well as
mutable content (basic physics quantities such as the
number of loose electron candidates and their kinetic
information). The inclusion of the mutable content was
problematic because in practice, recalibrations and
software improvements were made in post-processing
or reprocessing steps, which skipped the production of
new TAG files, so the TAG DB mutable content became
out-of-date (stale) for accurate event selection based on
that content. There was no easy way to refresh mutable
content without fresh TAG files.

2.	 The TAG database structure was, for simplicity, dictated
by the TAG files because the skimming functionality
was based on being able to produce TAG files from the
database. This meant that mutable content could not be
easily separated from the immutable content, so all con-
tent was put into single database tables with hundreds
of columns. To enable fast queries based on any of the
content every column was indexed, which was a very
heavy implementation on the database side, requiring a
lot more storage than was ever actually used due to the
first problem. While the mutable content became a dead
weight on the system, there were many use cases for the
immutable content which were utilized.

An inherent problem with the TAG DB was the dependence
of the system on the ATLAS production processing chain to
produce TAG files with each iteration of recalibration and soft-
ware improvements which was rarely fulfilled (except in full
reprocessing after years of data taking). This fundamental flaw
was completely avoided in the EventIndex catalog described
in this paper by using a far superior workflow: it deploys its
own data collection jobs (not part of the central production
chain) and is able to collect event metadata from files at any
stage of event processing (not just AODs). We also decided
to avoid the mutable content in the new EventIndex since the
Run 2 analysis model has its own mechanisms for event skim-
ming and to expand instead on the many use cases utilizing the
immutable content as will be described in later sections. Since
the data collection and storage were completely revamped, it
was decided to explore the (then) new BigData technologies
that were becoming increasingly popular and promising in
terms of scalability with respect to data volumes, and start
developing the new EventIndex in advance of the start of LHC
Run 2 [9, 10].

This paper is organized mainly following the data flow
through the EventIndex components. "Requirements and
Global Architecture" describes the use cases and the overall
system architecture; "Data Production" and "Data Collection"
explain the selection of datasets to index, the indexing method
and the index data collection components; "Data Storage in
Hadoop and HBase" and "Data Storage in Oracle" describe
the current data storage methods in Hadoop [11], HBase [12]
and Oracle. "System Monitoring" and "Operations and Perfor-
mance" cover system operations and monitoring. Finally, "Sys-
tem Evolution" outlines the developments towards a higher
performance system for LHC Run 3 and beyond.

Requirements and Global Architecture

We begin by briefly giving an overview of the use cases
for the collected EventIndex records. Details of the utili-
ties implemented to satisfy these use cases are described

	 Computing and Software for Big Science (2023) 7:2

1 3

 2   Page 4 of 21

in later sections. These cases originated from experience
gained from the LHC Run 1 catalogue and from experts
within the collaboration who recognized that the informa-
tion consolidated in the EventIndex system could facilitate
investigations across datasets much more easily than through
processing event files.

Use Cases and Functional Requirements

The main use case, and in fact the raison d’être of the
EventIndex, is the so-called “event picking”. Often in the
course of a physics analysis it is necessary to retrieve full
information about one or a few events, either to generate
event displays for publications (see examples in [13]), or
to inspect its properties and verify the correctness of its
reconstruction procedure. A person who needs to search,
select and/or retrieve one or more events out of the many
billions of ATLAS events needs a complete catalogue of
all events, in all processing versions, including the pointers
to the event locations. This catalogue, similarly to the cata-
logues of (paper) book libraries, needs to contain enough
information (“metadata”) about each event to be useful for
the search, and at the same time it needs to provide reason-
ably fast queries, at least for the most common cases.

Several other use cases can be served by a complete event
catalogue. A second group of use cases are related to data
quality assurance. Production consistency and complete-
ness checks can be run, for example counting the number
of events in the input and output datasets for any processing
task and making sure that all events have been processed,
and there is no data duplication in the output datasets. Run-
ning indexing jobs on all produced data provides in addition
a check that all output files are stored correctly on disk and
are available for further analysis.

Further use cases are related to the calculations of over-
laps among trigger chains within a given dataset, and and
among derived datasets. With the complete trigger informa-
tion for each event stored in the catalogue, it is possible to
count the number of events that satisfied each trigger chain
and also measure the overlaps among trigger chains. Simi-
larly, it is possible to select particular events on the basis of
combinations of their properties, such as the trigger or the
instantaneous luminosity (interaction rate), and then count
their occurrences or retrieve them directly for full analysis.

Not all event processing tasks output the same number
of events they had in input. The derivation procedures take
all fully reconstructed events as input and output only the
selected events that are useful for one or a few particular
analyses. As there are almost 100 derivations that run on
ATLAS events, it is useful to have the possibility to check
the amount of overlaps between derivation streams, in order
to reduce if/when possible their number and hence the pro-
cessing time and the disk space for the output datasets.

Differently from the trigger stream overlap checks that are
done within a specific dataset, the derivation overlap check
involves a number of different but related datasets; related
in the sense that all these derived datasets must have been
produced from the same parent one.

EventIndex Record Contents

The EventIndex stores only “immutable” event parameters,
i.e. those that do not depend on the processing version,
excluding all physics parameters of the simulated or recon-
structed events.

In order to satisfy the use cases, each event record needs
to contain three blocks of information:

1.	 Event identification Each instance of a given event
can be uniquely identified by the combination of run
number, event number, trigger stream, data format and
processing version; therefore, this information has to be
included in each event record. In addition, the data type
(real or simulated data), time stamp, LHC conditions,
luminosity block number (only for real data) and (for
simulated events only) event weight and simulation pro-
cess identifier are included as they can be useful to trace
possible processing problems and for future reference.

2.	 Trigger information Trigger masks for the L1, L2 (only
for LHC Run 1) and HLT triggers, the trigger key (SMK,
used to decode the trigger masks) and the prescale key
(with information on the trigger prescale settings). The
SMK can be used together with the trigger database [3]
to decode the trigger records of each event and show
which trigger chains led to the event being recorded.

3.	 Location information The GUID of the file that con-
tains this event and the internal pointers within that
file, for the file that is currently indexed and also for
the upstream files in the processing chain (provenance).
The GUID can be passed to Rucio to identify, locate
and retrieve the file containing a given event in order to
extract it or analyse it directly. The provenance record is
useful to reduce the number of datasets that have to be
indexed; for example, the pointers to the RAW datasets
can be obtained by indexing the corresponding AOD
datasets.

Performance Requirements

The catalogue must sustain a record ingestion rate that is at
least as large as the real data production rate (1 kHz during
LHC Run 2), plus the simulated data processing rate (about
the same when averaged over a year). Given the foreseen
increase of trigger rates by the end of LHC Run 3 to over 3
kHz and the corresponding increase in simulation produc-
tion computing power, the catalogue for LHC Run 3 needs

Computing and Software for Big Science (2023) 7:2 	

1 3

Page 5 of 21  2

to withstand an ingestion rate of 10 kHz at least, allowing for
some contingency in case of operation backlogs. The query
rate is very small compared to the ingestion rate, but all data
are equally important and all queries are different, so it is
necessary to have a flat internal structure and caching does
not help much. User queries for small data samples are done
through client code with a command-line interface, or through
web services, requiring that the response times for simple que-
ries be compatible with human response expectations (below
1 s); queries for large amount of data or computations of
global counts, trigger overlaps or derived dataset overlaps can
be executed as batch processes but need to return their results
within (roughly) an hour, and never fail, in order to be useful.

System Architecture

The information flow through the EventIndex system is lin-
ear, so it was natural to match the system architecture to
the data flow [10]. One needs first to extract the relevant
metadata from the event data files and store them in a cen-
tral store, which client programs can query to perform their
tasks. The EventIndex system is therefore partitioned into a
number of components:

–	 Data production. This component takes care of extracting
the metadata from each data file as soon as it is produced
at CERN or on any of the ATLAS Grid sites, format them
for transfer to the central store and send this information
to CERN.

–	 Data collection: This component deals with the data
transfer infrastructure, the metadata completeness checks
for each dataset, assembling the information produced by
all files in a given dataset and formatting it for storage,
including decoding the trigger information and present-
ing it in an optimized format for fast searches.

–	 Data storage. This is the core system. It includes the
setup of the EventIndex data storage cluster in Hadoop,
the code to import the data and internally index them,

and the web service providing the command line and
graphical interfaces for the clients. As a subset of the
EventIndex data are also replicated to an Oracle database
for access performance reasons, this component includes
also the support for the Oracle store, the data import code
and the graphical interface for the users.

–	 Monitoring. All servers and all processes have to be con-
stantly and automatically monitored. This component
collects, stores and displays the relevant information, and
sends automatic alerts in case of service interruptions or
malfunctioning. Regular functional tests are also sub-
mitted in order to monitor the performance for the most
common use cases.

Figure 1 shows a schema of this global architecture. Thanks
to the partitioning and to the clear interfaces between com-
ponents, it is possible to implement, evolve and upgrade
each component independently of the other ones. The data
production and data collection components already went
through a couple of upgrades; the data storage component
was upgraded to a newer base technology in advance of the
start of LHC Run 3 in 2022 (see "System Evolution").

This architecture allows the development of additional
services that satisfy more complex needs, such as the Event
Picking Server [14] that will automate most of the actions
needed for event picking (see "System Evolution").

Only a few components depend on ATLAS data structures,
namely the Producer, which has to read ATLAS data files, and
the storage schema; other experiments could use the same
infrastructure by just replacing those components with theirs.

Data Production

The data production system includes all tasks that are exe-
cuted at the sites where the datasets to be indexed reside,
in order to collect information from the event files and
transfer it to the central EventIndex servers.

Fig. 1   Global architecture of the EventIndex system, as implemented
at the end of LHC Run 2. The blue ovals indicate temporary or per-
manent data blocks or files; the green hexagons correspond to differ-
ent storage technologies. The pink rectangles contain continuously

running processes. The black arrows show the flow of EventIndex
data; the blue arrows show the flow of information related to data
processing. Further details are explained in "System Architecture"

	 Computing and Software for Big Science (2023) 7:2

1 3

 2   Page 6 of 21

Dataset Selection

As soon as new ATLAS data are processed on the CERN
Tier-0 cluster [15] and the corresponding AOD datasets
are available, jobs are launched to extract the EventIndex
information for all “physics” datasets; calibration, test and
monitoring streams are excluded. From this indexing step,
information on the location of each event in RAW format
is also extracted.

Many more ATLAS datasets are produced using the
ATLAS resources of the WLCG Grid, and other additional
resources that can be available from time to time. They
include the whole simulation chain, from event genera-
tion to detector simulation, then event reconstruction and
selection for analysis; real events are also re-reconstructed
from time to time on the Grid, and all analysis selections
also take place in a distributed fashion.

All AOD datasets are indexed, and for real data all
types of derived AODs (DAODs) are indexed too. For the
simulated data only some types of DAODs are indexed, if
requested by the analysis groups that use them. In addition,
all EVNT datasets are also indexed.

Datasets produced on the Grid are selected for indexing
according to the following criteria, based on information
obtained from the ATLAS metadata database AMI [16]:

–	 The dataset is marked in AMI as complete and vali-
dated for use in analysis or further processing.

–	 The dataset is marked as long-lived, to avoid indexing
transient datasets that are only used in internal steps of
the production procedure.

–	 The dataset is part of a regular production processes
and not just used for checks or validations of the soft-
ware or the trigger configurations.

Selected datasets should then pass additional checks, to
exclude datasets that have a “bad” status in Rucio, are
known for problems or have other signs of corrupted data
that may cause import jobs to crash or result in excessive
computing resource consumption.

Indexing Job Submission

Datasets that were selected for indexing have to be pro-
cessed by the Production and Distributed Analysis system
(PanDA) [17]. PanDA takes the list of new datasets and
generates jobs that run a predefined “transformation” (a
script containing a sequence of algorithms to be executed
on a data file [18]) on the WLCG Grid.

The transformation used and its configuration in general
depend on the data format of the dataset and the type of data
(simulated or real); for example, the trigger information,

which constitutes a large fraction of the EventIndex data, is
collected for each event only from datasets in AOD format as
it will not change with subsequent processings of the same
event. The progress of these jobs can be monitored through
a dedicated dashboard; if necessary jobs can be aborted or
rerun.

Producer Transformation

The Producer is in charge of extracting the EventIndex infor-
mation from the actual input files, store it into temporary
files and send them to a central location at CERN. It has to
be able to run using the ATLAS production infrastructure
on all available production facilities (the Tier-0 cluster at
CERN and the WLCG Grid), so it is implemented in a way
very similar to standard ATLAS data processing programs
using the ATLAS transformation framework running within
the Athena software framework [19].

Python was chosen as the implementation language for
the Producer code, as it only accesses the header records
of each event. The python interfaces to the Athena classes
methods written in C++ do not change between releases, so
the Producer code can be rather stable.

The producer input can be one or several files in the
ATLAS specific ROOT format [20, 21], such as those in
AOD, DAOD and EVNT datasets.

The EventIndex transformation class implements all
required methods by the Athena framework to initial-
ize a job, execute the event loop (process the events) and
finalize the job. The current implementation runs using a
serial processing model, so the input data structure (file
and event ordering) is preserved without needing further
post-processing.

The EventIndex producer has two separate steps, both
running within the transformation. In the first step, it reads
events (execute method), extracts information and saves the
relevant information into a temporary file. When all events
are read, the second step starts (finalize method), in which
the output file is transferred to a central store at CERN.
Besides the EventIndex information itself, some additional
environment and processing information is stored: the
PanDA task and job identification, input dataset name, total
number of files and events, starting and ending processing
times as well as identification (GUID) and number of events
for each file read.

This second step provides a good opportunity to check for
inconsistencies in ATLAS data files as soon as they are pro-
duced. Currently the transformation looks for event unique-
ness within each file, so duplicate events that could result
from failures in previous processing steps, are detected here
allowing quick notification to ATLAS.

Computing and Software for Big Science (2023) 7:2 	

1 3

Page 7 of 21  2

Data Collection

The data collection system receives and validates the infor-
mation extracted by the producers, assures its completeness,
and orchestrates the EventIndex data transfer from the pro-
ducers that run on the WLCG Grid to the Hadoop cluster at
CERN. Depending on the number of processed events, each
indexing job produces between 100 kB and a few MB of
information to be transferred to the central servers.

Messaging System

Messaging is a key component of the data collection sys-
tem. In the original implementation of the producer trans-
formation [22], the output file was serialized and packed into
JSON messages, sent to ActiveMQ brokers [23] at CERN
using the STOMP protocol [24].

Two different types of messages were used in the messag-
ing based data collection architecture:

1.	 Data messages, containing the produced data. They
ranged from 1 to 10 kB and were tagged in a way that
all messages from the same producer were consumed
by the same consumer. Larger payloads were split into
10-kB chunks and sent as independent messages; the
consumer processes were then recombining them into a
single file.

2.	 Status messages, allowing the tracking of the indexing
processes. They were sent to a different queue, where
they were collected. The produced information was vali-
dated by means of the status messages.

Although this architecture was reliable and fully functional,
there were concerns regarding its ability to cope with peaks
of production activities, as all information was kept in the
brokers until it was consumed. During peak times, this could
lead to a considerable growth in the number of messages
that the brokers have to keep until they can be delivered and
consumed.

The current system still uses the messaging system for
Control Messages, which are similar to the original status
messages. In this way the amount of data flowing through
the ActiveMQ servers was reduced from a few megabytes
(dominated by the data messages) to a few tens of kilobytes
per job (just the control message).

Object Store

Alternatives to minimize the impact of the expected
increases of data-taking rates on the messaging architecture
were investigated [22], resulting in the replacement of data
messages by temporary objects written into an Object Store

[25]. Figure 2 describes this approach. A temporary object
is created by each producer job, containing the information
that the producer transformation ("Producer transforma-
tion") extracted from the processed files. Once the object
is written into the S3 Object Store [26] at CERN, a Control
Message containing a summary of the information and the
URI of the object is sent to a new entity, the EventIndex
Data Collection Supervisor ("Supervisor"), that orchestrates
all data collection activities.

The information sent through the messaging mechanism
has therefore been drastically reduced from several mega-
bytes to tens of bytes for each job, keeping the brokers in a
well-performing status. If a producer, for any reason, is not
able to write the data into the object store, there is a fallback
solution based on the CERN large-data store EOS [27] also
at CERN, using the xrdcp protocol [28].

Index Record Format

Two different file formats were used to store the output from
the producer, adapted to the specific needs of the processing.

Initially a SQLite3 [29] format was reused from other
Athena tools, with data stored in key:value pairs using only
one table with two columns, “key” (TEXT) and “value”
(BLOB). “Value” is the serialized representation of a
python object using cpickle, so arbitrary objects can be
saved and retrieved into the database, allowing a flexible
“blackboard” style storage of key:value pairs. The producer
transformation used several key: value pairs to store general
information like the number of files and events processed,
date and time of processing, job and task identification, file
GUIDs, input collection name (dataset name), etc. Events
were saved consecutively as an ordered tuple with key
“Entry N” where N is the entry number. This file format
was successfully used by the first producer implementation,
but when it was decided that the file was going to be sent “as
is” to the S3 Object Store it was soon realized that it was not
the best format for the new needs.

The current producer uses a format based on the Google
Protocol Buffer [30] with gzip [31] compression. This for-
mat allows the consumers to read the files easily and the size
reduction achieved by the compression allows faster transfer
times and requires fewer resources in the S3 Object Store.

This format contains a Stream of Protocol Buffer (Proto-
Buf) messages (SPB) compressed using the gzip library on
the fly. The uncompressed file starts with a “magic” fixed_
uint32 value (0x6e56c8c7) so it can be identified quickly.
Since ProtoBuf messages do not have type information, all
messages have extra prepended information to identify the
message type; two fixed_uint32 integers containing the type
and message version and its length are added before the mes-
sage itself.

	 Computing and Software for Big Science (2023) 7:2

1 3

 2   Page 8 of 21

The file can contain six different message types: Header,
Trailer, BeginGUID, EndGUID, TriggerMenu and EIEvent:

1.	 Header: contains global information about the process-
ing step, like task and job identifications, input dataset
name and start processing time.

2.	 Trailer: contains global information collected during the
processing, like number of files read, total number of
events and end processing time.

3.	 BeginGUID: marks the start of a new input file being
processed. These messages contains the input file unique
global identifier (GUID), and the start processing time
besides some other ATLAS metadata information like
the processing version, the stream and project names.

4.	 EndGUID: marks the end of the input file processing. It
contains the number of events read for this file and the
end processing time.

5.	 TriggerMenu: contains the trigger menu used during
data taking for the next collection of events. This mes-
sage is sent once per file read and whenever the trigger
menu changes.

6.	 EIEvent: this is the main part of the EventIndex. It con-
tains the event record described in "EventIndex Record
Contents" like the run number, event number, trigger
mask, time of data taking, etc.

The EventIndex file contains one Header message at the
beginning and one Trailer message at the end. Between
them, one or several sequences of processed files which
begin with BeginGUID and end with EndGUID. For each
processed file one or more TriggerMenu messages and a
sequence of EIEvent records are written.

Although the protocol buffer format tries to store the
information using the least space possible, the compression
factor obtained is greater than 86%, as consecutive EIEvent
messages usually contain very similar (and partially equal)
information, so the compressor can reduce the space very
significantly.

Supervisor

The Data Collection Supervisor is in charge of tracking
all data collection steps. It validates the produced data and
informs the consumers about the presence of data to be
transferred into the Hadoop cluster at CERN. It also allows
following the indexing progress of datasets and containers
thanks to its web interface.

The Supervisor receives messages sent by each pro-
ducer job with information about what has been processed.
This information includes among other things: the dataset
name, the task and job identifiers, the location of the pro-
duced object store, the GUIDs of the processed files, and
the number of events and the number of different event
identifiers processed per file. The supervisor collects this
information, and it is thus able to know which datasets are
being indexed by which tasks in which system.

As part of the file and dataset metadata information,
Rucio stores the number of events that they contain. This
information is used to track the progress of dataset index-
ation. Furthermore, since each job sends the number of
events that it has processed per file, this information can
be compared against the one provided by Rucio to identify
possible inconsistencies.

Fig. 2   Architecture of the EventIndex Data Collection system based
on Object Store. The data flow is described in "Supervisor". The thick
arrows indicate the flow of EventIndex data from the Producers to the
Consumers, going through the Object Store; the red arrow marks the
messages sent by the Producers to the Supervisor through the mes-
sage broker; the light dotted green and the blue arrow correspond,

respectively, to the information stored by the Supervisor in the Object
Store about the location of all objects related to a given dataset, and
the signal sent to the Consumers that all data for a dataset is available
in the Object Store; the dark green arrow marks the messages sent
back by the Consumers to the Supervisor to signal the completion of
a given dataset transfer

Computing and Software for Big Science (2023) 7:2 	

1 3

Page 9 of 21  2

The supervisor also retrieves the information of the
indexing tasks before they achieve a final state. To do this,
the supervisor has to contact and decode the information
provided by two different monitoring systems: conTZole
[32] if the tasks is running in Tier-0, and PanDA Moni-
toring [33] if the task is running through PanDA on the
WLCG Grid. Both monitoring systems provide informa-
tion on the progress of tasks, like the number of jobs,
number of events processed, status of the task and jobs,
etc. Once the task has reached a final successful status,
all the collected information from the jobs, from the task
monitoring system, and from Rucio can be cross-checked:

–	 Each successful job should have produced and sent a
message to the supervisor.

–	 Each file should have been processed by at least a job.
–	 The number of processed and produced events per file

should match the number of events in the file according
to Rucio.

When those checks are satisfied, the supervisor can assure
the completeness and correctness of the produced infor-
mation; then a validation object is created and stored in
the Object Store. Among other information, the validation
object contains the URIs of the produced Object Store
objects that allowed the validation, as well as, for each
object, the list of the files that were processed in that job
and should be considered as valid. The consumers are
informed through the messaging system about the valida-
tion objects that they should consume; they first retrieve
the validation objects, process them retrieving from the
Object Store the information that should be consumed and
put into Hadoop. When all data have been consumed, they
notify the supervisor about it, signalling once again how
many events have been consumed. With this last message,
the supervisor can mark the dataset as indexed.

Inconsistencies in the number of events, unprocessed
files, lost or delayed messages, can be identified thanks to
this validation procedure. A dataset that is not validated
is kept in a validation queue, where the validation will be
retried in after receiving possible delayed messages.

With all these pieces of information from different sys-
tems the supervisor is able to:

–	 Monitor the progress of the tasks that index each dataset;
–	 Identify failed production tasks;
–	 Declare obsolete indexing tasks that have problems and

are going to be replaced by other tasks;
–	 Detect if any messages were lost;
–	 Identify inconsistencies between the processed files and

the information retrieved from Rucio;
–	 Complete missing pieces of information in Rucio in the

rare cases when they occur;

–	 Notify, through email if needed, about datasets that have
duplicated event numbers detected at job level, i.e. within
the few files of the dataset that were processed by the
same job;

–	 Identify failed data transfers due to the death or discon-
nections of the consumers from the brokers;

Figure 2 shows the data collection process with the interac-
tions between the different components and the information
flow.

Consumers

The Consumers are in charge of storing the EventIndex data
in the final data store. They run centrally at CERN and in the
current system there are as many consumers as messaging
brokers, as this is sufficient for the current production rates.
They are stateless independent entities that can be scaled up
in case of necessity.

Consumers wait for validation messages from the Super-
visor, containing references to the actual EventIndex data
objects to be ingested. These objects are read from the
Object Store with data encoded with Protocol Buffers [30]
format. The data are then formatted for the current produc-
tion schema, and stored in Hadoop files. These files are
organized in directories named after each dataset container,
and the current granularity is to write a file per dataset,
but this is also configurable in the validation object. Each
file contains data organized by key containing RunNum-
ber–EventNumber, and its related value encoded in a CSV
schema with all the event information. Information about
the status of the processing is communicated back to the
Supervisor, starting with the acknowledgment of the request.
When all the objects are consumed and the file is written,
the result is sent back with a control message again. In case
of any failure, details are included. It must be noted that the
granularity of the validation data can vary from a single
object reference, to thousand of them belonging to a par-
ticular dataset.

This procedure is repeated for all validation messages
produced for a dataset container. At this point the validation
of the complete dataset is possible, and a different control
message will trigger the final validation of a dataset con-
tainer. This procedure writes a control text file in the Hadoop
file system, containing all the URLs of the individual dataset
files that were validated. This file is used by Oracle ("Data
Storage in Oracle") to know which data have to be imported.

An individual Consumer typically processes a mean
of 15 kHz (events processed per second), and we have
observed a maximum of 28 kHz. The current implemen-
tation of the Consumer is a multi-threaded Java program,
with thread pools using the Future pattern [34] in order to
save resources, and exploit parallelism among internal data

	 Computing and Software for Big Science (2023) 7:2

1 3

 2   Page 10 of 21

access and transformation tasks. The setup of the Hadoop
writing channels and the input/output largely dominates the
processing time, with the CPU used on data mangling and
schema transformation taking a small percentage of the time.
The Consumer design allows to easily include new data sink
plugins, and it has been extended to support new data back-
ends like Kudu [35], and now HBase/Phoenix [12, 36].

Data Storage in Hadoop and HBase

Data Formats in Hadoop

All data are stored in Hadoop MapFile format [37] on the
Hadoop file system provided by CERN. The MapFile format
is a basic Hadoop storage format with two related Sequence-
Files [38] (another basic Hadoop storage format), one with
data, the other being an index. Both SequenceFiles consist
of key:value pairs ordered by key. In the data file the values
are the payload, in the index file the values are the positions
of the keys in the data file. The index file contains a fraction
of the keys so that it can be kept in memory. The MapFiles
allow fast random data access by the key that we use to
query the data.

Some MapFiles contain full Event Index records, others
contain various derived entities and records. This mecha-
nism is transparent to the users, as all MapFiles are treated
in the same way. Search results are also stored as MapFiles
to be available for later reuse.

All MapFiles are registered in the Catalog, which is
implemented as an HBase [12] table. The Catalog contains
all information about each MapFile, its status, properties,
history and relations to other MapFiles.

MapFiles can be searched in three ways:

1.	 Key-based search on (sequence of intervals of) keys.
This method gives almost immediate results. The pri-
mary key for MapFiles containing event records consists
of the RunNumber–EventNumber pair, that is unique
within each MapFile, as it corresponds to a dataset.
Derived MapFiles can have different primary keys.
Further, more detailed selections can follow after the
key-based search.

2.	 Full Map/Reduce search. The search clause may contain
Java code or complete Java classes implementing the
Mapper and Reducer steps of the Map/Reduce process.

3.	 Full scan search. It is the slowest way, but it is useful to
understand the details of the search process.

Most search and formatting options can contain any legal
Java code using MapFile variables.

Compression of MapFiles

Due to growing storage space, we had to consider com-
pressing the data file of each MapFile.

In the record-compressed SequenceFile format, each
record is compressed separately, but the keys are not com-
pressed. With the default codec (the “deflate” format) the
space savings are in our case a factor of 2 to 4, depending
on the data type.

Using the block-compressed SequenceFile format,
groups or blocks of keys and records are compressed
together. The block size for compression - the size of
uncompressed keys plus values that become compressed
together - is configurable. In our case, with the default
block size (128 MB) and compression codec we reduced
the file size by a factor 10.

For any tool reading the files as standard MapFiles, the
change of compression type of the SequenceFiles is trans-
parent. In block-compressed format, to read one record
one has to read the whole block; however, querying the
data we did not see measurable differences relative to the
record-compressed data files. We decided to use the block-
compressed format, so that the average size per event was
reduced to 100 bytes, with the largest datasets so far (100
million events) residing in 10 GB files, still a manageable
size.

Data Import to MapFiles and Copy to HBase

The Consumers ("Consumers") write in Hadoop one sequen-
tial file for each dataset. These files are converted into Map-
File format and copied into their dedicated space. All those
MapFiles are then registered in the Catalog, which is imple-
mented as an HBase table.

After each successful dataset import, the event informa-
tion (without trigger record, for space and performance rea-
sons) is uploaded to an auxiliary HBase table for fast event
lookup operations.

All import and search operations are also registered in the
system journal, together with all relevant information. The
journal is also implemented as an HBase table. The full data
flow within the Hadoop system is shown in Fig. 3.

Duplicate Event Detection

After each import, the MapFiles consistency is verified and
all potential problems are notified to the relevant users. The
most important inconsistency is the presence of the events
stored several times in the same dataset MapFile, which is
usually a consequence of a problem in the previous stages
of data processing. When duplicated events are found, the
production managers are automatically notified by email.

Computing and Software for Big Science (2023) 7:2 	

1 3

Page 11 of 21  2

Trigger Decoding

The trigger record for each event is transferred as a bitmap,
where each bit corresponds to a trigger chain. In order to
store the trigger data in Hadoop in an easily searchable
and retrievable way, it has to be decoded with the help of
the trigger mask for the given dataset, which in turn can
be retrieved from the trigger database using the trigger key
(SMK) of the dataset. The trigger tables are available in
different databases: the COMA (COnditions MetadatA)
database [39] contains all trigger information for real data
and the MonteCarlo Trigger DB (TriggerDBMC) in Oracle
contains the data for MC simulation.

The EventIndex replicates the trigger tables from COMA
and TriggerDBMC to HBase tables and then uses them for
trigger decoding [40]. If the SMK is absent in the event
record, it is possible to obtain it from the run number for the
real data and from the reconstruction tag for MonteCarlo
simulation. This information is also replicated to the HBase
tables in the Hadoop store.

The trigger decoding data flow is presented in Fig. 4. The
trigger masks from event records are decoded [40] using
HBase tables, converting chain counters to chain names. The
list of trigger chain names obtained after decoding are then
stored in updated event records. The information obtained
is used for trigger-based selections or to calculate trigger
overlaps, helping the trigger chain optimization.

Derived Statistics and Correlation Tables

After the dataset import and successful verification, several
derived tables are created automatically:

–	 The dataset overlap table contains the numbers of com-
mon events between different datasets in the dataset deri-
vation chain.

–	 The trigger overlap table contains for each dataset the
number of trigger chain pairs which were fired simultane-
ously.

–	 The trigger statistics table contains for each dataset the
number of fired trigger chains of each type. While this
table is created separately, it can be seen as a subtable of
the trigger overlaps table.

All derived tables can be interrogated with the standard tools
because they are implemented as normal MapFiles. Overlap
tables can be also visualized as Graphs (see Fig. 5).

Command Line Interface

Several commands were implemented to give access to the
stored data:

–	 Catalog (catalog) to search and modify Catalog
entries.

–	 EventIndex (ei) to search all datasets using either direct
searches or complex Map/Reduce jobs. The EventIndex
command allows the use of any legal Java code as a
search or result clause.

–	 EventLookup (el) for fast search of the physical data-
sets corresponding to an event (specified as a pair of run
number and event number).

–	 TriggerInfo (ti) to perform search and analyses of the
trigger information.

–	 Inspector (inspect) to see the actual content of a Map-
File.

Commands to access the EventIndex store are avail-
able directly in the CERN Hadoop cluster for the data

Fig. 3   The overall data flow within the Hadoop system. The sequen-
tial files, one per dataset, written by the Consumers are imported into
MapFile format and registered in the Catalog. A subset of the infor-
mation is stored also in the event lookup table in HBase. Consistency
checks are applied and derived information is saved also in Mapfiles.
Trigger decoding information is imported from Oracle to HBase for
local use. All actions are recorded in the journal

Fig. 4   Trigger information decoding data flow. The EventIndex infor-
mation in the Hadoop file system (HDFS) contains the trigger key for
each event, which is used to retrieve the copy of the relevant trigger
table stored in HBase. The event trigger mask is then decoded using
this trigger table and the result is stored back with the event record in
Hadoop

	 Computing and Software for Big Science (2023) 7:2

1 3

 2   Page 12 of 21

management tasks. The (client) commands that do not mod-
ify the store contents are available to all ATLAS members in
the standard locations, on the CERN Linux machines as well
as in the ATLAS CVMFS [41] environment that is available
world-wide. The remote invocations go through a Tomcat
[42] based web service.

Web Interface

All provided commands are also available via a Tomcat-
based standard REST [43] Web Service. On top of the sim-
ple form-based interface corresponding to the command
arguments, high level graphical and interactive Web Ser-
vices have been implemented. They offer several graphical
ways (histograms, Venn diagrams, Graphs, etc.) to display
the data contents and their relations, as shown in Fig. 5.

Event Lookup or “Event Picking”

Event lookup is the most important and heavily used func-
tionality. It returns the GUIDs and optionally the stream
type, dataset name and other parameters for user speci-
fied sets of real or simulated events, identified by run and
event numbers. The search can be narrowed by specifying

the trigger stream, data format and version. By default, the
lookup is performed in the HBase table, the best performing
back-end. It is also possible to run identical queries against
the MapFiles from which the data are ingested into the
HBase table, as described in "Data import to MapFiles and
copy to HBase", and which were historically the first event
lookup implementation.

Comment on Free and Open‑Source Software

When it became necessary to convert all MapFiles to the
block compressed SequenceFile format (see "Compression
of MapFiles"), it turned out that random access queries
were not working on the block compressed files. Thanks
to the availability of the source code, we were able to fully
investigate the issue and track it down to a bug in a Map-
File method. Having resolved the problem and incorporated
the patched version into the EventIndex, we contributed the
patch to the Hadoop project; the patch was accepted and
we also had a chance to learn the Hadoop project practices.

The Hadoop project software is released under the
Apache License 2.0 [44], which is a free software license
according to the Free Software Definition [45], and this
turned out to be a crucial point. Hadoop has created an

Fig. 5   Screenshot of the EventIndex Graphical Web Service. It allows
the navigation of graphs of data entities. Datasets with event overlaps
are shown in this example. The graph can be further explored, other
relations can be shown and operations on the vertices and edges can

be executed—either from the web service itself or by calling other
ATLAS services. The example shows possible actions available for a
dataset and the tabular view of the dataset trigger statistics

Computing and Software for Big Science (2023) 7:2 	

1 3

Page 13 of 21  2

efficient infrastructure and stimulating atmosphere for pro-
ject contributors with easy access to the full build and test
environment, the use of modern compilers and build tools,
extensive use of unit testing and of advanced code quality
assurance tools, systematic and consistent use of an issue
tracker, an automated contribution testing system, and expert
and friendly contribution reviewers.

It is worth mentioning that, apart from Oracle (see "Data
Storage in Oracle"), all the software we use is free and open-
source software.

Data Storage in Oracle

The initial implementation of the EventIndex store in
Hadoop showed several important shortcomings by the end
of 2015, the first year of LHC Run 2. With the versions
of Hadoop and HBase and the hardware setup provided by
CERN that we could use at that time, all queries became
substantially slower as the amount of stored data increased.
Simple event lookup queries for 10 events started taking
over 1 min instead of the expected sub-second response, and
counting events across large datasets (100 million events)
took tens of minutes.

In addition to optimizing the Hadoop cluster setup, it was
then decided to explore the possibility of storing a subset of
the real data information in an Oracle database, exploiting
this well-known technology to support the most important
and time-consuming use cases, primarily event picking for
real data events. For each real data event, the event record
without trigger information, which constitutes 80% of the
data volume, is copied to an Oracle database. Locating this
data in existing Oracle servers also allows us to easily con-
nect to other metadata in existing complementary reposito-
ries like the COMA [39] and AMI [16] systems, which store
metadata related to runs and datasets, respectively.

Data Structures

A relational model was found to be well suited to the task
[46]. The simple relationship of datasets to events lends
itself to a very simple relational table structure as shown in
Fig. 6. The two leftmost tables (in blue) store each indexed
dataset and its events, respectively, driving the core func-
tionality of the system as well as serving some secondary
use cases. In ATLAS, datasets are uniquely identified by a
string concatenating 6 fields, each of which is stored as a
separate column in the Datasets table:

1.	 Project name: A string encoding the LHC beam type
with the year of data taking,

2.	 RunID: The run number,
3.	 Stream name: Events passing specific triggers are writ-

ten to one or more data streams,
4.	 Data format: The stage of processing at which the data

are indexed (usually AOD),
5.	 AMI Tag: a string encoding the processing steps these

events have undergone, i.e. effectively the processing
version for the events in this run and stream.

6.	 Production Step: A short string to distinguish between
an intermediate or final processing stage.

Since the Datasets table is the parent table for all other
tables of the schema, this table has an integer primary key
associated with each indexed dataset name as is common
in relational database design.

For each dataset, all events are stored in the Events
table. We store up to 3 GUIDs per event, which we found
to be sufficient. References are numbered starting at 0 (the
GUID of the indexed file), with subsequent references 1
and/or 2 used for its upstream file formats. Since available
GUID types (RAW, AOD, and DAOD) are common to all
events in the dataset, GUID types are stored only once in
the Datasets table (another advantage of relational design).

Fig. 6   Relational tables of the EventIndex Oracle (EIO) schema. The
“Datasets” table contains one row for each imported dataset. The
unique events for each dataset are stored in the “Events” tables and
its duplicated events (if any) are stored in the “Event Duplicates”

table. Aggregated information about each dataset is stored in “LBN
Counts” (a count of events per Luminosity Block) and “Dataset Over-
laps” (the number of common events between datasets of the same
run number)

	 Computing and Software for Big Science (2023) 7:2

1 3

 2   Page 14 of 21

Also, at the event level, we store the event’s luminosity
block number (LBN) and LHC bunch crossing identifier
(BCID), which are useful for use cases described in "Web
Interface".

The Event Duplicates table keeps the list of all duplicated
events found. Duplication can (and has been shown to) occur
at any stage in processing. In the initial 2015 loading of the
data, hundreds of datasets were found with duplicate events;
using data stored in this table combined with event counts at
each stage of processing (from the AMI database), we could
identify the stages at which duplication occurred. Subse-
quent refinements in upstream systems have considerably
reduced the occurrence of duplicated events in current data.

The Dataset Overlaps table stores the number of events
in common between different datasets of the same run. This
data serve a secondary use case of providing these overlaps
to experts in DAOD production for refinement of the ATLAS
Derivation Framework [47].

The LBN Counts table stores the event counts and the
number of associated unique GUIDs by LBN. Data in this
table have multiple secondary uses including many forms of
integrity checks, determining the probable LBN for an event,
investigating missing events and files, and understanding the
splitting of luminosity blocks at file boundaries.

Both the ’Overlaps’ and the ’LBN Counts’ table con-
tent could be computed dynamically using the data in the
two primary tables, but we chose to materialize this data
in these tables since the computation can take more than a
few seconds, the data volume is minimal, and some of the
aggregated data are used in multiple services.

When a new dataset appears in Hadoop storage, it is con-
sidered for import into Oracle if the run exists in the COMA
system (which contains only runs of potential physics inter-
est), and if the Stream meets similar selection criteria (e.g.
there are no known use cases for indexing datasets in calibra-
tion streams). If the dataset passes these requirements, the
“Import process” stage imports the dataset and its events
into “Staging tables” which are similar to the final tables,
but without indexes or constraints. The “Oracle scheduler
Jobs” stage runs verification checks such as checking that the
events are consistent with belonging in the same dataset and
flagging if any duplicate events are found. If the data pass
verification checks, the data are moved to the “Destination
Tables”, writing any duplicate events to a separate table,
while keeping one copy for the Events table.

Subsequently, supplemental information is added to
the Datasets table including data from other repositories
(COMA and AMI) as well as aggregated information from
Events table loading. This includes dataset status flags,
various relevant dates, event counts both within the system
as well as related counts in ATLAS file systems (upstream
dataset files), counts of unique GUIDs associated with the
dataset, and counts of total and unique duplicated events. In

addition, the datasets with Run, Stream, and Data Format in
common are ranked by dataset creation date, which is use-
ful to help users find the latest processing of a set of events.
These columns are used to enhance various services, and/or
are included in user interfaces and reports.

A number of additional database optimization techniques
deployed in this system, which further minimize storage
volume (beyond relational normalization mentioned previ-
ously), transaction volume and database load, and optimize
query performance for use cases, strongly deserve mention:

–	 The Events table is “list” partitioned by DATASET _ID.
The main advantage is that sets of events can be deleted
by simply dropping the associated partition. This oper-
ation is needed more often than we initially expected
because datasets are sometimes re-indexed because of
constituent file loss on the grid (which invalidates the
associated GUIDs).

–	 For the Events table we use Oracle’s “basic” compression
for table data and key compression on its primary key
index. Moreover for data loading we use Oracle’s direct
data load interface. In combination, storage utilization
is reduced by a factor of about 3.5 which has the added
advantage of reducing similarly the I/O footprint for writ-
ing data, undo and redo to the storage subsystem.

–	 Up to three GUID reference columns per event in the
source data are 36-character strings (for example
“21EC2020-3AEA-4069-A2DD-08002B30309D”). In
our Events table, we store these columns using the non-
standard “RAW” data type, reducing the 36 bytes of stor-
age per GUID to 16 bytes. This considerably decreases
the Events table per-row volume without loss of func-
tionality: when the GUID columns are queried, an Oracle
function easily converts them back to the original CHAR
type (event lookup is always by EventID, not by GUID).

After optimization, the storage volume is ∼ 20 bytes per
event, a factor of 10 reduction from the initial 210 bytes
per event for this data imported from Hadoop. This reduc-
tion, however, is only for the table segments. Adding the
primary key index overhead, the reduction factor drops to
5 (the size of the parent table is negligible, only 8 MB). So
overall, including indexes, storing 25 × 109 events requires
less than 1 TB of space (rather than 5 TB). The savings of
4 TB of disk space, in itself, is not the foremost point but
has a knock-on effect which is particularly beneficial for
query performance: it enables the caching of a larger frac-
tion of the database rows into the database data cache (buffer
pool) which yields real performance gains in query response
(around 10 ms for simple queries). In summary, using a rela-
tional model and a number of carefully chosen techniques
available in Oracle RDBMS results in an impressive mini-
mization of resources while exceeding performance goals.

Computing and Software for Big Science (2023) 7:2 	

1 3

Page 15 of 21  2

Web Interface

The central part of the user interface is the EIO (Event Index
in Oracle) Browser shown in Fig. 7, which allows users to
easily find indexed datasets and their properties.

The browser offers dynamic filtering of datasets by any of
the dataset name fields and/or other dataset characteristics.
With each iteration of selection criteria, the system shows
the number of remaining datasets meeting the criteria and
displays the remaining criteria. Once the user has selected
their dataset(s) of interest, they can choose from the follow-
ing services:

–	 Event Lookup serves the primary use of returning GUIDs
for user specified events (RunID/EventID pairs). In the
absence of a user specified dataset version, GUIDs from
the highest EIO-derived ranked dataset are returned. The
report provides additional details about the events found
as well as information to help determine why events were
not found.

–	 The Dataset Report includes a table displaying details
about each selected dataset: the collected and derived
information in the Datasets table. EIO event counts are
compared to counts of the corresponding upstream data-
set files which helps to understand event losses/filtering
at each stage of processing. Links are provided to related
AMI dataset and COMA run reports and to other EIO
services described herein.

–	 The Dataset Overlaps Report shows the count and per-
centage of events in common between selected datasets
of any run that is useful for the resource optimization of
the offline production of DAOD [47]. Results are dis-
played in a colour-enhanced 2-D matrix (as in Fig. 8)
showing datasets which overlap by more than a 70%
threshold. This threshold and a choice of two overlap
computation algorithms are configurable in the interface.

–	 The Duplicate Event Report displays all copies of events
with any duplicated event identifiers in a dataset. It shows
clearly the LBN(s) where duplication occurred and the
associated GUIDs, from which, combined with event
counts at each stage in processing, we can unambigu-
ously determine the processing stage in which the dupli-
cation occurred.

–	 A Missing Event Report can be generated when a dataset
has fewer unique events than expected. The cause may
be intentional filtering or an unintentional error resulting
in in-file event loss or entire files of events being lost;
reports show event counts (and computed losses) at each
processing stage. If those events have been completely
processed and indexed in another version of process-
ing, the report shows lost event ranges and associated
LBN(s).

–	 The Count by BCID Report displays event counts in each
LHC bunch crossing (BCID). During collision opera-
tions, one clearly observes the correlation in the peaks of
recorded events with BCID with the LHC fill configura-
tion of the run.

Fig. 7   The EIO dataset browser entry page. Users can set search fil-
ters by clicking on predefined options or typing in the text boxes on
the left, and then select the kind of report by choosing from the menu
on the right. The reports are described in "Web Interface"

Fig. 8   The EIO dataset overlaps report, as an example of the func-
tionalities provided by the EIO dataset browser. This report shows the
count and percentages of events in common between selected data-
sets, as described in "Web interface"

	 Computing and Software for Big Science (2023) 7:2

1 3

 2   Page 16 of 21

–	 The Count by LB and GUID Reports both display event
and GUID counts along with EventID ranges per LBN
which have been aggregated in the LBN Counts table.
The GUID Report further shows the distribution of LBNs
by GUID for selected LBN ranges: this is a useful cross
check of event in-file metadata, which on occasion had
incorrect counts causing problems in the ATLAS lumi-
nosity accounting software. This report has been helpful
to identify incorrect in-file metadata since this system
gets this information via a completely different path.

System Monitoring

The successful operation of the EventIndex system depends
on a number of different components. Each component
has different sets of parameters and states and requires a
dedicated approach for monitoring. A first version of the
EventIndex monitoring tools [22] based on Kibana [48] was
developed in late 2014, but it suffered from performance
issues, so a new version based on InfluxDB [49] as data
store and Grafana [50] for the display was developed [51].

The monitoring infrastructure consists of two parts, pro-
ducer and viewer. The producer part is responsible for col-
lecting data and transferring them to the database; it includes
the scheduler, a number of Python scripts and the database.
The scheduler uses a cron utility to run the Python scripts
at fixed times. The Python scripts collect data from CERN
and Grid sites and insert them into the database. Several
different modules monitor different system sub-components:
Data Production, Consumer Processes, Hadoop Imports,

Hadoop Cluster, Trigger Database, Web Interface, Server
Status, Event Picking Tests and Data Volumes. Each of these
modules requires a different approach for data collection and
processing, thus every module has its own Python script and
scheduler to run it. The viewer part is responsible for the
graphical presentation of data. Figure 9 shows the functional
schema of the EventIndex monitoring system and the data
flow.

Grafana supports different back-end databases; it was
decided to use InfluxDB as a front-end database because
support for InfluxDB+Grafana is provided by the CERN-
IT Monitoring group. Although the group policy does not
allow writing data directly to InfluxDB, an HTTP endpoint
to the middleware that moves data to the database is pro-
vided for records in JSON format. This JSON format has a
common part that is the same for all databases supported by
the CERN-IT Monitoring group, and custom parts that are
different for each database and carry the specific information
for each service to be monitored.

The visualization component has a status dashboard for
all modules, dashboards for the most important parameters
of each module and links to the module details pages. The
current status for each module is calculated using its own
algorithm based on the module critical parameters. The sta-
tus can have one of following values:

–	 “available” (green)—the module works correctly
–	 “degraded” (yellow)—the module has some non-critical

problem
–	 “unavailable” (red)—the module has a critical problem
–	 “N/A” (white)—monitoring data are not available for this

module.

Fig. 9   Functional schema for the monitoring system of the EventIn-
dex components. Several modules collect information from multiple
sources about the status of EventIndex processes (top-left), functional

and performance tests (bottom-left) and the computing infrastructure
(top-right) and store this information in an InfluxDB database; the
data are then displayed in Grafana dashboards

Computing and Software for Big Science (2023) 7:2 	

1 3

Page 17 of 21  2

The details page of each component usually contains addi-
tional dashboards. The status of each EventIndex service
is also fed into the global ATLAS service monitoring view
that the computing operation shifters check periodically; in
case of problems, the experts are notified and can intervene
promptly.

Operations and Performance

Before the start of LHC Run 2 operations, we indexed all
LHC Run 1 datasets in AOD format on the Tier-0 cluster. In
this way we collected information on the RAW dataset prov-
enance and on the trigger parameters of each Run 1 event.
After that, real time operations started. The indexing jobs are
distributed on all sites available to ATLAS, selecting primar-
ily those that are closest to the input dataset location from
the network point of view, as shown in Fig. 10. The index-
ing jobs are fast, as the producer transformation only reads
the header of each event and takes between 10 and 50 ms/
event, depending on whether the trigger record is needed or
not; each job indexes several files and runs for 30 to 60 min.
The total CPU consumption of EventIndex Producer jobs is
well below 10−4 of the total CPU power used by the ATLAS
experiment world-wide.

The percentage of jobs failing has been around 7% , with
the main causes of errors being problems related to the input
files and the sites operation, such as corrupted files, sites
with storage or disk configuration issues, stage-in problems,
etc. The indexing jobs are the first jobs run on just-produced
datasets, so they are useful to detect at an early stage any
problem with data corruption or unavailability. After con-
tacting site administrators and the ATLAS data management

operations team, the problems are usually solved promptly,
so that simply re-running the problematic jobs is sufficient
to achieve consistency.

The number of stored event records increased approxi-
mately linearly as shown in Fig. 11. Some datasets, espe-
cially those with type DAOD, do not have an infinite lifetime
but are periodically replaced by newer versions generated
with better calibrations or improved algorithmic code; after
some time the old versions are deleted. The down steps in
Fig. 11 correspond to periodic clean-up operations that
remove the information regarding obsoleted datasets.

The current amount of disk space used by the Event Index
data in the Hadoop cluster is shown in Fig. 12. Most of the
disk space is used by real data and MC AODs, which contain
the trigger records. The event generator datasets (EVNT)
and derived analysis formats (DAOD) contain many more
event records, but without trigger information, as it is either
not yet available (in case of the generator-level EVNT data-
sets) or retrievable from the corresponding AOD datasets
(for the derived formats DAOD).

The Hadoop system runs a variety of tasks, importing and
cataloguing data, running consistency checks, establishing
links between related datasets, and last but not least respond-
ing to user queries. Figure 13 shows the daily access statis-
tics of the major Hadoop services. Accesses count all data
handling procedures, including data import, user queries and
functional tests.

Figure 14 shows the response times of the Hadoop server
to event lookup queries selecting 10, 100, 1000, 10k and 50k
events out of a dataset with one million records as a function
of time. The event lookup is performed through the el client
command, selecting randomly different events each time in

Fig. 10   Distribution of the EventIndex Producer jobs run each week
between the start of operations in May 2015 and January 2022. Jobs
run on the CERN Tier-0 system that indexes all real data as soon as
they are produced and reconstructed are indicated in green; jobs run
world-wide on the ATLAS Grid resources are shown in purple

Fig. 11   Event records (top) and datasets (bottom) stored in the
Hadoop system between May 2015 and February 2022. Each plot
shows separately real data in red, simulated data in blue and their sum
in black

	 Computing and Software for Big Science (2023) 7:2

1 3

 2   Page 18 of 21

order to avoid using cached results. The occasional glitches
are due to other activities on the servers at the time of the
queries. The response times are dominated by the query time
for low numbers of events, and by the transmission time of
the output for large numbers of events.

The response times of the Hadoop server to queries
retrieving information on all events from datasets contain-
ing 50k, 100k, 1M and 10M events are shown in Fig. 15 as
a function of time. These queries are performed through the
ei client command. The response times are dominated by
the setup time of the Map/Reduce job for low numbers of
events, and by the transmission time of the output record for
large numbers of events.

The EventIndex data stored in Oracle increase in size in
parallel to the growth of the main Hadoop store, as shown
in Fig. 16. Due to the relational database nature of Oracle,
a large amount of indexes is stored together with the actual
payload data, so that a similar amount of disk space is used
by actual payload data and the indexes.

Most of the event picking requests are for single events
in RAW format; other requests are placed from time to
time from physics analysis groups who need to extract their
complete highly selected data sample for further processing

and/or more detailed analyses; so far the EventIndex system
could cope very well with all requests.

Figure 17 shows the statistics of the event picking jobs
run between January 2019 and June 2021. During this period
9.5% of the jobs were automatically “closed” and resched-
uled to another site while waiting for the input file (or files)
to be staged from tape, and 6.5% of the jobs failed after
waiting for the input file(s) for more than 3 days; resubmit-
ting the same jobs normally works, as the wait time is then
doubled. The tape reading queues work in FIFO mode, so it
is not possible to assign a higher priority to tasks requesting
a single file as opposed to staging large datasets needed by
production activities.

System Evolution

The described storage implementation reflects the state
of the art for BigData storage tools in 2012–2013 when
the project started, but several different options appeared
since, even within the Hadoop ecosystem. With the

Fig. 12   Data volume used in the Hadoop cluster, split by data type,
June 2021

Fig. 13   Access statistics of the Hadoop system between May 2015
and June 2021. The statistics is dominated by internal processes, like
data imports, event counts and consistency checks, plus the regular
functional and performance tests

Fig. 14   Response times of the EventIndex Hadoop server to event
lookup queries selecting 10, 100, 1000, 10k and 50k events out of a
dataset with 1 million records as a function of time, recorded between
April and December 2021. Note the occasional longer response times
due to other activities in the Hadoop cluster

Fig. 15   Response times of the EventIndex Hadoop server to queries
using Map/Reduce jobs to retrieve information on all events from
datasets containing 50k, 100k, 1M and 10M events as a function of
time, recorded between February and June 2021. The discontinuity
corresponds to a day of Hadoop cluster maintenance, during which no
statistics were collected

Computing and Software for Big Science (2023) 7:2 	

1 3

Page 19 of 21  2

increase of data-taking and simulation production rates
foreseen for LHC Run 3 (2022–2025) and even more for
LHC Run 4 (High-Luminosity LHC, from 2028 onwards),
a re-design of the core systems is needed. In order to be
safe, a new system should be able to absorb a factor 10
more event rate than the current one, i.e. 100 billion real
events and 300 billion simulated events each year.

Investigations on several structured storage formats for
the main EventIndex data to replace the Hadoop MapFiles
started a few years ago [52]. Initially it looked like Apache
Kudu [35] would be a good solution, as it joins BigData
storage performance with SQL query capabilities [53].
Unfortunately Kudu did not get a sufficiently large support
in the open-source community and CERN decided not to
invest hardware and human resources in this technology.

HBase had been evaluated as the main data store at the
beginning of the project, but was discarded at that time

because of performance restrictions. Nowadays instead,
it is able to hold the large amounts of data to be recorded,
with a much-improved data ingestion and query perfor-
mance thanks to the increased parallelization of all opera-
tions. Additional tools like Apache Phoenix [36] can pro-
vide SQL access to HBase tables, if the tables are designed
appropriately upfront, which can be done in our case.

HBase works best for random access, which is perfect
for the event picking use case where we want low latency
access to a particular event to get its location information.
Use cases where we need information retrieval (trigger
info, provenance) for particular events are served by fast
HBase gets, with good performance. In addition, analytic
use cases where we need to access a range of event infor-
mation for one or several datasets (derivation or trigger
overlaps calculation), can be solved with scans on these
data. They can be optimized with a careful table and key
design in order to maintain related data close within the
storage, reducing access time.

HBase is a column-family grouped key:value store, so
we can benefit from dividing the event information in dif-
ferent families according to the data accessed in separated
use cases; for example we can maintain event location,
provenance, and trigger information in different fami-
lies. Further analytic use cases on larger amounts of data
are not foreseen, but still can be achieved running Map/
Reduce or Spark jobs on the HBase files, as they are stored
in the Hadoop file system.

Apache Phoenix is a layer over HBase that enables
SQL access and provides an easy entry point for users
and other applications. Although HBase is a schema-less
storage, Apache Phoenix requires a schema and data typ-
ing to provide its SQL functionalities; nevertheless schema
versioning and dynamic late binding for the same tables
are supported as well.

EventIndex data rarely need schema changes, so we
can benefit from Phoenix access, designing the required
schema and tables accordingly. The table schemas and
their relations [54] closely resemble those implemented
for the Oracle version of the data store ("Data Storage in
Oracle").

While updating the core storage system, other compo-
nents can be revised and if necessary updated or replaced:

–	 The Producer implementation is currently done in
python with a single thread. It will be upgraded to
work with the latest data analysis software and exter-
nal libraries like stomp.py [55], boto [56] and Protocol
Buffers [30].

–	 The Data Collection system will use modern data pro-
cessing technologies like Spark [57]. It will also allow
to simplify all procedures, reducing data duplication

Fig. 16   Disk storage size used by EventIndex tables in the Oracle
cluster. Almost half of the disk space is taken by the large amount of
indexes stored alongside the main data to optimize the read perfor-
mance

Fig. 17   Event picking jobs run each week world-wide between Janu-
ary 2019 and January 2022

	 Computing and Software for Big Science (2023) 7:2

1 3

 2   Page 20 of 21

and using common job management tools over the
stored data.

–	 The Supervisor will be expanded to cover the entire
workflow, from the selection of datasets to be indexed
to the storage of data in HBase.

–	 The detection of duplicated events and the calculation
of statistics for each dataset will be done “on the fly”
during the import process.

–	 A new implementation of the Trigger Counter will
make direct use of the Hbase/Phoenix infrastructure,
which provides fields and families to store the six trig-
ger masks of the event.

–	 A graph database layer working on top of any SQL
database has been implemented to deliver a graphi-
cal and highly interactive view of the EventIndex data
stored in the Phoenix SQL database. Thanks to its
SQL genericity, this layer can work with all ATLAS
data stored in SQL databases, thus providing a global
navigable overview of all ATLAS data. All data are
accessed directly via the standard Gremlin API [58]
and the interactive graphical Web Service.

A prototype of the new storage and associated systems
showed timing performances for data ingestion and for
lookup well within our specifications.

A new tool was developed since 2021: the Event Pick-
ing Service [14]. It consists in a web service that can
receive a list of events to be retrieved, with some optional
specifications like the trigger stream and the data type to
search for, and it will take care of all operations that were
previously done by hand: query the EventIndex store to
find the GUIDs of the files containing these events, sub-
mit the PanDA jobs to retrieve the events, retry the jobs
if necessary, store the outputs in a central and safe loca-
tion, inform the requester of the status of operations. It is
useful to submit “massive” event picking requests, with
numbers of requested events in excess of 10 thousand, for
particular physics analyses that require dedicated recon-
struction processes to be run on relatively small samples
of pre-selected events.

Conclusions

The ATLAS EventIndex was designed to hold the cata-
logue of all ATLAS events in advance of LHC Run 2 in
2012–2013, and all system components were developed
and deployed in their first implementation as described in
this paper by the start of Run 2 in 2015. As any software
project, it went through several stages of development and
optimization through the years. Thanks to the partitioned
project architecture, each new component version could be
tested in parallel with the production version and phased

in when its performance was considered stable, and better
than the previous version. The EventIndex operation and
performance during and after the LHC Run 2 period has
been satisfactory.

The significant increases in the data rates expected in
LHC Run 3 and the subsequent HL-LHC runs required a
transition to a new technology for the main EventIndex data
store. A new prototype based on HBase event tables and que-
ries through Apache Phoenix was tested and showed encour-
aging results. A good table schema was designed and the
basic functionality was ready for operation in advance of the
start of LHC Run 3 in 2022. We are now working towards
improved performance and better interfaces; according to
our expectations, this system will be able to withstand the
input data rates foreseen for LHC Run 4 and beyond.

Acknowledgements  This work was done as part of the distributed
computing and databases applications research and development pro-
gramme of the ATLAS Collaboration, and we thank the collaboration
for its support and cooperation. Part of this work was funded through
PRIN Project “STOA-LHC 20108T4XTM”, CUP: I11J12000080001,
of the Italian Ministry of Education, University and Research (MIUR).
In Spain, MICINN partially supported this work under grants
FPA2016-75141-C2-1-R and PID2019-104301RB-C21, which include
FEDER funds from the European Union.

Author contributions  All authors contributed to the development of
the EventIndex software and system operations. All authors reviewed
the manuscript.

Funding  Open access funding provided by CERN (European Organiza-
tion for Nuclear Research)

Declarations 

Conflict of interests  The authors declare that they have no competing
interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Collaboration ATLAS (2008) The ATLAS experiment at the
CERN Large Hadron Collider. JINST 3:S08003. https://​doi.​org/​
10.​1088/​1748-​0221/3/​08/​S08003

	 2.	 Evans L, Bryant P (2008) LHC machine. JINST 3:S08001. https://​
doi.​org/​10.​1088/​1748-​0221/3/​08/​S08001

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1088/1748-0221/3/08/S08001

Computing and Software for Big Science (2023) 7:2 	

1 3

Page 21 of 21  2

	 3.	 Collaboration ATLAS (2020) Operation of the ATLAS trigger
system in Run 2. JINST 15:P10004. https://​doi.​org/​10.​1088/​1748-​
0221/​15/​10/​P10004

	 4.	 LHC Computing Grid: Technical Design Report. Document
LCG-TDR-001, CERN-LHCC-2005-024. 20 June 2005. ISBN
978-92-9083-253-9

	 5.	 GUID: http://​guid.​one
	 6.	 Barisits M, Beermann T, Berghaus F et al (2019) Rucio: scientific

data management. Comput Softw Big Sci 3:11. https://​doi.​org/​10.​
1007/​s41781-​019-​0026-3

	 7.	 Malon D et al (2012) An extensible infrastructure for querying
and mining event-level metadata in ATLAS. J Phys Conf Ser
396:052053. https://​doi.​org/​10.​1088/​1742-​6596/​396/5/​052053

	 8.	 Oracle: https://​www.​oracle.​com
	 9.	 Barberis D et al (2014) The future of event-level information

repositories, indexing, and selection in ATLAS. J Phys Conf Ser
513:042009. https://​doi.​org/​10.​1088/​1742-​6596/​513/4/​042009

	10.	 Barberis D et al (2014) The ATLAS Eventindex: an event cata-
logue for experiments collecting large amounts of data. J Phys
Conf Ser 513:042002. https://​doi.​org/​10.​1088/​1742-​6596/​513/4/​
042002

	11.	 Hadoop: https://​hadoop.​apache.​org
	12.	 HBase: https://​hbase.​apache.​org
	13.	 ATLAS Event Displays: https://​twiki.​cern.​ch/​twiki/​bin/​view/​Atlas​

Public/​Event​Displ​ayRun​2Coll​isions
	14.	 Alexandrov E et al. (2021) Development of the ATLAS Event

picking server. In: Proc. 9th Int. Conf. “Distributed Computing
and Grid Technologies in Science and Education” (GRID’2021),
Dubna (Russia). https://​doi.​org/​10.​54546/​MLIT.​2021.​35.​43.​001

	15.	 Elsing M et al (2010) The ATLAS Tier-0: overview and opera-
tional experience. J Phys Conf Ser 219:072011. https://​doi.​org/​10.​
1088/​1742-​6596/​219/7/​072011

	16.	 Fulachier J et al (2017) ATLAS Metadata Interface (AMI), a
generic metadata framework. J Phys Conf Ser 898:062001. https://​
doi.​org/​10.​1088/​1742-​6596/​898/6/​062001

	17.	 Barreiro Megino FH et al (2017) PanDA for ATLAS distributed
computing in the next decade. J Phys Conf Ser 898:052002.
https://​doi.​org/​10.​1088/​1742-​6596/​898/5/​052002

	18.	 Stewart GA et al (2014) ATLAS job transforms: a data driven
workflow engine. J Phys Conf Ser 513:032094. https://​doi.​org/​
10.​1088/​1742-​6596/​513/3/​032094

	19.	 Stewart GA et al (2016) Multi-threaded software framework devel-
opment for the ATLAS experiment. J Phys Conf Ser 762:012024.
https://​doi.​org/​10.​1088/​1742-​6596/​762/1/​012024

	20.	 Duellmann D (2003) The LCG POOL project: General overview
and project structure. In: Proc. Computing in High Energy and
Nuclear Physics (CHEP03), La Jolla, Ca, USA. https://​arxiv.​org/​
abs/​physi​cs/​03061​29

	21.	 Brun R, Rademakers F (1997) ROOT—an object oriented data
analysis framework. Nucl Inst Meth Phys Res A 389:81–86.
https://​doi.​org/​10.​1016/​S0168-​9002(97)​00048-X

	22.	 Fernández Casaní A et al (2017) ATLAS EventIndex general data-
flow and monitoring infrastructure. J Phys Conf Ser 898:062010.
https://​doi.​org/​10.​1088/​1742-​6596/​898/6/​062010

	23.	 ActiveMQ: http://​activ​emq.​apache.​org
	24.	 STOMP: https://​stomp.​github.​io
	25.	 Fernández Casaní A et al (2021) A reliable large distributed object

store based platform for collecting event metadata. J Grid Comp
19:39. https://​doi.​org/​10.​1007/​s10723-​021-​09580-0

	26.	 Mesnier M, Ganger GR, Riedel E (2003) IEEE Communications
Magazine 41. 84-90 ISSN 0163-6804

	27.	 EOS: https://​eos-​docs.​web.​cern.​ch
	28.	 Xrdcp: https://​xrootd.​slac.​stanf​ord.​edu
	29.	 SQLite3: http://​www.​sqlite.​org/​sqlite.​html
	30.	 Google Protocol Buffers (Google’s Data Interchange Format):

http://​code.​google.​com/​apis/​proto​colbu​ffers

	31.	 Gzip: https://​www.​gzip.​org
	32.	 Ueda I et al (2011) ATLAS operations: experience and evolution

in the data taking era. J Phys Conf Ser 331:072034. https://​doi.​
org/​10.​1088/​1742-​6596/​331/7/​072034

	33.	 PanDA Monitoring: https://​bigpa​nda.​cern.​ch
	34.	 Future pattern: https://​docs.​oracle.​com/​javase/​7/​docs/​ api/​java/​

util/​concu​rrent/​Future.​html
	35.	 Kudu: https://​kudu.​apache.​org
	36.	 Phoenix: https://​phoen​ix.​apache.​org
	37.	 Hadoop MapFile: https://​hadoop.​apache.​org/​docs/​ r2.6.​2/​api/​org/​

apache/​hadoop/​io/​MapFi​le.​html
	38.	 Hadoop SequenceFile: https://​hadoop.​apache.​org/​docs/​r2.6.​2/​api/​

org/​apache/​hadoop/​io/​Seque​nceFi​le.​html
	39.	 Gallas EJ et al (2014) Utility of collecting metadata to manage

a large scale conditions database in ATLAS. J Phys Conf Ser
513:042020. https://​doi.​org/​10.​1088/​1742-​6596/​513/4/​042020

	40.	 Mineev M, Prokoshin F and Yakovlev A (2018) Trigger informa-
tion data flow for the ATLAS EventIndex. In: Proceedings of the
VIII International Conference “Distributed Computing and Grid-
technologies in Science and Education” (GRID 2018), Dubna
(Russia), http://​ceur-​ws.​org/​Vol-​2267/​104-​107-​paper-​18.​pdf

	41.	 CVMFS: https://​cernvm.​cern.​ch/​fs
	42.	 Tomcat: https://​tomcat.​apache.​org
	43.	 REST: https://​restf​ulapi.​net
	44.	 Apache License 2.0: http://​www.​apache.​org/​licen​ses/​LICEN​

SE-2.0
	45.	 Free Software Definition: https://​www.​gnu.​org/​philo​sophy/​free-​

sw.​html
	46.	 Gallas EJ et al (2017) An Oracle-based event index for ATLAS.

J Phys Conf Ser 898:042033. https://​doi.​org/​10.​1088/​1742-​6596/​
898/4/​042033

	47.	 Catmore J et al (2015) A new petabyte-scale data derivation
framework for ATLAS. J Phys Conf Ser 664:072007. https://​doi.​
org/​10.​1088/​1742-​6596/​664/7/​072007

	48.	 Kibana: https://​www.​elast​ic.​co/​produ​cts/​kibana
	49.	 InfluxDB: https://​www.​influ​xdata.​com
	50.	 Grafana: https://​grafa​na.​com
	51.	 Alexandrov E et al. (2018) BigData Tools for the Monitoring of

the ATLAS EventIndex. In: Proc. VIII Int. Conf. “Distributed
Computing and Grid-technologies in Science and Education”
(GRID’2018), Dubna (Russia), http://​ceur-​ws.​org/​Vol-​2267/​91-​
94-​paper-​15.​pdf

	52.	 Baranowski Z et al (2017) A study of data representation in
Hadoop to optimize data storage and search performance for the
ATLAS EventIndex. J Phys Conf Ser 898:062020. https://​doi.​org/​
10.​1088/​1742-​6596/​898/6/​062020

	53.	 Baranowski Z et al (2019) A prototype for the evolution of
ATLAS EventIndex based on Apache Kudu storage. EPJ Web
Conf 214:04057. https://​doi.​org/​10.​1051/​epjco​nf/​20192​14040​57

	54.	 Cherepanova E et al. (2021) The ATLAS EventIndex using the
HBase/Phoenix storage solution. In: Proc. 9th Int. Conf. “Distrib-
uted Computing and Grid Technologies in Science and Education”
(GRID’2021), Dubna (Russia). https://​doi.​org/​10.​54546/​MLIT.​
2021.​68.​25.​001

	55.	 A Python client library for accessing messaging servers using the
STOMP protocol: https://​github.​com/​jason​rbrig​gs/​stomp.​py

	56.	 An Amazon Web Services (AWS) Software Development Kit
(SDK) for Python: https://​github.​com/​boto/​boto3

	57.	 Zaharia M et al (2016) Apache Spark: a unified engine for big
data processing. Commun ACM 59(11):56–65. https://​doi.​org/​10.​
1145/​29346​64

	58.	 Gremlin: https://​tinke​rpop.​apache.​org/​greml​in.​html

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1088/1748-0221/15/10/P10004
https://doi.org/10.1088/1748-0221/15/10/P10004
http://guid.one
https://doi.org/10.1007/s41781-019-0026-3
https://doi.org/10.1007/s41781-019-0026-3
https://doi.org/10.1088/1742-6596/396/5/052053
https://www.oracle.com
https://doi.org/10.1088/1742-6596/513/4/042009
https://doi.org/10.1088/1742-6596/513/4/042002
https://doi.org/10.1088/1742-6596/513/4/042002
https://hadoop.apache.org
https://hbase.apache.org
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Collisions
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Collisions
https://doi.org/10.54546/MLIT.2021.35.43.001
https://doi.org/10.1088/1742-6596/219/7/072011
https://doi.org/10.1088/1742-6596/219/7/072011
https://doi.org/10.1088/1742-6596/898/6/062001
https://doi.org/10.1088/1742-6596/898/6/062001
https://doi.org/10.1088/1742-6596/898/5/052002
https://doi.org/10.1088/1742-6596/513/3/032094
https://doi.org/10.1088/1742-6596/513/3/032094
https://doi.org/10.1088/1742-6596/762/1/012024
https://arxiv.org/abs/physics/0306129
https://arxiv.org/abs/physics/0306129
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1088/1742-6596/898/6/062010
http://activemq.apache.org
https://stomp.github.io
https://doi.org/10.1007/s10723-021-09580-0
https://eos-docs.web.cern.ch
https://xrootd.slac.stanford.edu
http://www.sqlite.org/sqlite.html
http://code.google.com/apis/protocolbuffers
https://www.gzip.org
https://doi.org/10.1088/1742-6596/331/7/072034
https://doi.org/10.1088/1742-6596/331/7/072034
https://bigpanda.cern.ch
https://docs.oracle.com/javase/7/docs/%20api/java/util/concurrent/Future.html
https://docs.oracle.com/javase/7/docs/%20api/java/util/concurrent/Future.html
https://kudu.apache.org
https://phoenix.apache.org
https://hadoop.apache.org/docs/%20r2.6.2/api/org/apache/hadoop/io/MapFile.html
https://hadoop.apache.org/docs/%20r2.6.2/api/org/apache/hadoop/io/MapFile.html
https://hadoop.apache.org/docs/r2.6.2/api/org/apache/hadoop/io/SequenceFile.html
https://hadoop.apache.org/docs/r2.6.2/api/org/apache/hadoop/io/SequenceFile.html
https://doi.org/10.1088/1742-6596/513/4/042020
http://ceur-ws.org/Vol-2267/104-107-paper-18.pdf
https://cernvm.cern.ch/fs
https://tomcat.apache.org
https://restfulapi.net
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html
https://doi.org/10.1088/1742-6596/898/4/042033
https://doi.org/10.1088/1742-6596/898/4/042033
https://doi.org/10.1088/1742-6596/664/7/072007
https://doi.org/10.1088/1742-6596/664/7/072007
https://www.elastic.co/products/kibana
https://www.influxdata.com
https://grafana.com
http://ceur-ws.org/Vol-2267/91-94-paper-15.pdf
http://ceur-ws.org/Vol-2267/91-94-paper-15.pdf
https://doi.org/10.1088/1742-6596/898/6/062020
https://doi.org/10.1088/1742-6596/898/6/062020
https://doi.org/10.1051/epjconf/201921404057
https://doi.org/10.54546/MLIT.2021.68.25.001
https://doi.org/10.54546/MLIT.2021.68.25.001
https://github.com/jasonrbriggs/stomp.py
https://github.com/boto/boto3
https://doi.org/10.1145/2934664
https://doi.org/10.1145/2934664
https://tinkerpop.apache.org/gremlin.html

	The ATLAS EventIndex
	Abstract
	Introduction
	ATLAS Data Taking and Data Processing
	Need for an Event Catalogue

	Requirements and Global Architecture
	Use Cases and Functional Requirements
	EventIndex Record Contents
	Performance Requirements
	System Architecture

	Data Production
	Dataset Selection
	Indexing Job Submission
	Producer Transformation

	Data Collection
	Messaging System
	Object Store
	Index Record Format
	Supervisor
	Consumers

	Data Storage in Hadoop and HBase
	Data Formats in Hadoop
	Compression of MapFiles
	Data Import to MapFiles and Copy to HBase
	Duplicate Event Detection
	Trigger Decoding
	Derived Statistics and Correlation Tables
	Command Line Interface
	Web Interface
	Event Lookup or “Event Picking”
	Comment on Free and Open-Source Software

	Data Storage in Oracle
	Data Structures
	Web Interface

	System Monitoring
	Operations and Performance
	System Evolution
	Conclusions
	Acknowledgements
	References

