
Vol.:(0123456789)1 3

Computing and Software for Big Science             (2023) 7:2  
https://doi.org/10.1007/s41781-023-00096-8

RESEARCH

The ATLAS EventIndex

A BigData Catalogue for All ATLAS Experiment Events

Dario Barberis1 · Igor Alexandrov2 · Evgeny Alexandrov2 · Zbigniew Baranowski3 · Luca Canali3 · 
Elizaveta Cherepanova4 · Gancho Dimitrov3 · Andrea Favareto1 · Álvaro Fernández Casaní5 · Elizabeth J. Gallas6 · 
Carlos García Montoro5 · Santiago González de la Hoz5 · Julius Hřivnáč7 · Alexander Iakovlev2 · Andrei Kazymov2 · 
Mikhail Mineev2 · Fedor Prokoshin2 · Grigori Rybkin7 · José Salt5 · Javier Sánchez5 · Roman Sorokoletov8 · 
Rainer Többicke3 · Petya Vasileva3 · Miguel Villaplana Perez5 · Ruijun Yuan7

Received: 15 November 2022 / Accepted: 24 February 2023 
© The Author(s) 2023

Abstract
The ATLAS EventIndex system comprises the catalogue of all events collected, processed or generated by the ATLAS experi-
ment at the CERN LHC accelerator, and all associated software tools to collect, store and query this information. ATLAS 
records several billion particle interactions every year of operation, processes them for analysis and generates even larger 
simulated data samples; a global catalogue is needed to keep track of the location of each event record and be able to search 
and retrieve specific events for in-depth investigations. Each EventIndex record includes summary information on the event 
itself and the pointers to the files containing the full event. Most components of the EventIndex system are implemented 
using BigData free and open-source software. This paper describes the architectural choices and their evolution in time, as 
well as the past, current and foreseen future implementations of all EventIndex components.
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Introduction

The ATLAS experiment [1] at the CERN LHC accelerator 
[2] is in operation since 2009; it collected during the first 
two LHC data-taking periods (Run 1 between 2009 and 2013 
and Run 2 between 2015 and 2018) almost 25 billion phys-
ics records (“events”). The particles accelerated by the LHC 
are grouped into many “bunches” that intersect each other 
every 25 ns, at a rate of 40 MHz. During each bunch cross-
ing, several independent interactions take place at almost 
the same time (within 0.5 ns); therefore, the signals left in 
the detector by the particles produced by those interactions 
are recorded together as one “event”. The average number of 
these “pile-up” interactions varied from a few in LHC Run 
1 to 50–60 during LHC Run 2 and is expected to increase 
further by the end of LHC Run 3 (2022–2025). In addition to 
the real events, about three times as many simulated events 
were generated using Monte Carlo methods.

This paper is based on work performed before 24 February 2022.
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ATLAS Data Taking and Data Processing

The LHC accelerator operates in cycles; first the protons 
or ions are injected into the accelerator rings, then they are 
accelerated and finally their orbits are modified to bring 
the counter-rotating particle beams to intersect at the cen-
tre of each experimental apparatus. When the number of 
circulating particles has decreased beyond a certain level, 
they are extracted and directed towards the “beam dumps”, 
where their energy is absorbed. Each such cycle is called a 
“fill” for the accelerator. A continuous data-taking session 
of the detector is usually referred to as a “run”, typically 
lasting from a few hours to just over a day. Runs are fur-
ther divided into luminosity blocks, short time periods, up 
to one minute, during which the LHC luminosity (inter-
action rate) and the detector conditions can be assumed 
to be constant. Luminosity block identifiers, called LBN 
(luminosity block number), are integers starting from 1 
and incremented as the run progresses.

The detector read-out system and the downstream pro-
cessing chain cannot cope with the 40-MHz bunch cross-
ing rate. An online selection system (“trigger”) is needed 
to select the events of interest on the basis of combinations 
of signals in the detector that match the expected signa-
tures for interesting physics processes, and extract their full 
information for offline processing. The trigger system had 
a three-level configuration for LHC Run 1: Level 1 (L1), 
implemented in programmable hardware; Level 2 (L2), 
that made software-based partial reconstruction within the 
“regions of interest” marked by Level 1, and finally the 
Event Filter (EF), analysing the full event. For LHC Run 2 
and Run 3, L2 and EF were merged into a single system, the 
High-Level Trigger (HLT), implemented in software running 
on commercial processors. In order to keep the possibility 
to select rare physics processes, events satisfying triggers 
matching common physics processes or used for monitoring 
were prescaled, i.e. reduced randomly in number in order to 
save output bandwidth. The trigger configurations and the 
prescale factors applied to each trigger type were recorded 
in the trigger database for each run [3].

Trigger decisions were stored in event data files as trig-
ger masks, where each bit corresponds to the specific set of 
trigger selections (trigger chains). Depending on the trig-
ger configuration, the same bit in the trigger mask (chain 
counter) may correspond to a different trigger chain. The 
relation between chain name and counter is uniquely 
defined in the trigger database table, indexed by the trig-
ger key (SMK). Trigger keys depend on the run number 
for the data recorded by the detector and on the production 
settings for Monte Carlo simulation.

The events recorded by the ATLAS detector are trans-
ferred in real time to the CERN computer centre and 

processed within 48 h from the end of a run using the 
ATLAS “Tier-0” cluster. This procedure consists of cal-
culating the time-dependent detector calibration and align-
ment parameters, and then using them to compute for 
each event the physical quantities of interest for the final 
analyses. The events can be re-processed when improved 
reconstruction algorithms or detector calibration and 
alignment constants become available, usually at the end 
of each major data-taking period; the result is the creation 
of additional versions of the same events, some of which 
replace older versions.

The reconstruction processes take events in “RAW” data 
format, as produced by the detector read-out system, apply 
detector calibration and alignments, execute particle recon-
struction and identification algorithms and output them 
in “AOD” (Analysis Object Data) format. The events are 
then distributed and made available to all ATLAS members 
through the World-wide LHC Computing Grid (WLCG [4]). 
The events can be further selected for different analysis pur-
poses, and saved in compressed formats (“derived AOD”, or 
“DAOD”) with only the events and contents that are useful 
for a given analysis. These derivation processes can be run 
very frequently, even monthly, as the analysis codes evolve 
in time, resulting in many DAOD versions with a relatively 
short lifetime as they are normally superseded by newer 
ones.

Simulated interactions go through a similar processing 
chain. The outputs of event generators are saved on disk 
in a common format (“EVNT”). Then the detector and 
read-out electronics simulation (digitization) processes are 
run; pile-up interactions are also simulated and added to 
the main interaction record during digitization. Finally, the 
same reconstruction and derivation processes as for real data 
are executed, producing events, respectively, in AOD and 
DAOD formats.

Groups of statistically equivalent events (real data events 
collected with the same detector conditions or simulated 
events produced with the same generator, and processed by 
the same software versions) are stored in files on disk or on 
tape. Each file typically contains between 1000 and 10,000 
events, depending on the format and balancing the need to 
avoid too many small files (<1 GB) that would cause data 
storage problems and at the same time too large files (>10 
GB) that could have lower transfer efficiency. Every unique 
file, regardless of its format, is assigned a distinct GUID 
(Globally Unique IDentifier [5]), which is used to catalogue 
and retrieve it. Currently ATLAS has over 100 million files 
on disk, containing over 400 billion event records. Files are 
grouped into datasets that can be hierarchically assembled 
into containers. The distributed data management system 
Rucio [6] is used to keep track of each file, dataset and con-
tainer, including their properties (metadata) and replica loca-
tions, as well as to manage the data movements between 



Computing and Software for Big Science             (2023) 7:2 	

1 3

Page 3 of 21      2 

different storage sites and the CPU farms where the data are 
processed and analysed.

Need for an Event Catalogue

Rucio is extremely efficient at managing 100 million files 
stored in 120 sites world-wide and using over 200 PB of 
disk space and similar quantities of tape storage space. 
Rucio allows analysers to easily access data and simulation 
samples using the existing organization of files in datasets 
and containers, but it does not store any information about 
individual events. Nevertheless there is also a need to be 
able to retrieve different versions of one or a few events, 
given the often reduced information contained in the last 
data reduction stages, either to produce nice event displays 
for publications, or to check in detail if all reconstruction 
procedures worked as expected.

The EventIndex was designed for this primary use case 
(quick and direct event selection and retrieval), but the same 
system can fulfil several other tasks, such as checking the 
correctness and completeness of data processing procedures, 
detecting duplicated events that can occur for temporary 
faults of the data acquisition or processing procedures, stud-
ying trigger correlations and the overlaps between selected 
data streams.

The EventIndex is the second-generation event catalogue 
for ATLAS. The first-generation catalogue deployed for 
LHC Run 1 was called the “TAG DB” [7]. Its content was 
based on the direct import of event-wise information from 
ATLAS TAG files into an Oracle [8] database to facilitate 
queries of all events across entire datasets, which could 
speed up the analysis workflow. TAG files were thumbnails 
of the AOD format files produced in the final stage of the 
central production chain. The TAGs contained, in princi-
ple, sufficient information for identification and selection of 
events of interest to most physics analyses for the purpose of 
subsequent event skimming, i.e. the pre-selection of events 
based on any of the TAG quantities before accessing the full 
AOD file content. There were generally two problems with 
the TAG database: 

1.	 TAG information included immutable content (such 
as event identification and trigger decisions) as well as 
mutable content (basic physics quantities such as the 
number of loose electron candidates and their kinetic 
information). The inclusion of the mutable content was 
problematic because in practice, recalibrations and 
software improvements were made in post-processing 
or reprocessing steps, which skipped the production of 
new TAG files, so the TAG DB mutable content became 
out-of-date (stale) for accurate event selection based on 
that content. There was no easy way to refresh mutable 
content without fresh TAG files.

2.	 The TAG database structure was, for simplicity, dictated 
by the TAG files because the skimming functionality 
was based on being able to produce TAG files from the 
database. This meant that mutable content could not be 
easily separated from the immutable content, so all con-
tent was put into single database tables with hundreds 
of columns. To enable fast queries based on any of the 
content every column was indexed, which was a very 
heavy implementation on the database side, requiring a 
lot more storage than was ever actually used due to the 
first problem. While the mutable content became a dead 
weight on the system, there were many use cases for the 
immutable content which were utilized.

An inherent problem with the TAG DB was the dependence 
of the system on the ATLAS production processing chain to 
produce TAG files with each iteration of recalibration and soft-
ware improvements which was rarely fulfilled (except in full 
reprocessing after years of data taking). This fundamental flaw 
was completely avoided in the EventIndex catalog described 
in this paper by using a far superior workflow: it deploys its 
own data collection jobs (not part of the central production 
chain) and is able to collect event metadata from files at any 
stage of event processing (not just AODs). We also decided 
to avoid the mutable content in the new EventIndex since the 
Run 2 analysis model has its own mechanisms for event skim-
ming and to expand instead on the many use cases utilizing the 
immutable content as will be described in later sections. Since 
the data collection and storage were completely revamped, it 
was decided to explore the (then) new BigData technologies 
that were becoming increasingly popular and promising in 
terms of scalability with respect to data volumes, and start 
developing the new EventIndex in advance of the start of LHC 
Run 2 [9, 10].

This paper is organized mainly following the data flow 
through the EventIndex components. "Requirements and 
Global Architecture" describes the use cases and the overall 
system architecture; "Data Production" and "Data Collection" 
explain the selection of datasets to index, the indexing method 
and the index data collection components; "Data Storage in 
Hadoop and HBase" and "Data Storage in Oracle" describe 
the current data storage methods in Hadoop [11], HBase [12] 
and Oracle. "System Monitoring" and "Operations and Perfor-
mance" cover system operations and monitoring. Finally, "Sys-
tem Evolution" outlines the developments towards a higher 
performance system for LHC Run 3 and beyond.

Requirements and Global Architecture

We begin by briefly giving an overview of the use cases 
for the collected EventIndex records. Details of the utili-
ties implemented to satisfy these use cases are described 
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in later sections. These cases originated from experience 
gained from the LHC Run 1 catalogue and from experts 
within the collaboration who recognized that the informa-
tion consolidated in the EventIndex system could facilitate 
investigations across datasets much more easily than through 
processing event files.

Use Cases and Functional Requirements

The main use case, and in fact the raison d’être of the 
EventIndex, is the so-called “event picking”. Often in the 
course of a physics analysis it is necessary to retrieve full 
information about one or a few events, either to generate 
event displays for publications (see examples in [13]), or 
to inspect its properties and verify the correctness of its 
reconstruction procedure. A person who needs to search, 
select and/or retrieve one or more events out of the many 
billions of ATLAS events needs a complete catalogue of 
all events, in all processing versions, including the pointers 
to the event locations. This catalogue, similarly to the cata-
logues of (paper) book libraries, needs to contain enough 
information (“metadata”) about each event to be useful for 
the search, and at the same time it needs to provide reason-
ably fast queries, at least for the most common cases.

Several other use cases can be served by a complete event 
catalogue. A second group of use cases are related to data 
quality assurance. Production consistency and complete-
ness checks can be run, for example counting the number 
of events in the input and output datasets for any processing 
task and making sure that all events have been processed, 
and there is no data duplication in the output datasets. Run-
ning indexing jobs on all produced data provides in addition 
a check that all output files are stored correctly on disk and 
are available for further analysis.

Further use cases are related to the calculations of over-
laps among trigger chains within a given dataset, and and 
among derived datasets. With the complete trigger informa-
tion for each event stored in the catalogue, it is possible to 
count the number of events that satisfied each trigger chain 
and also measure the overlaps among trigger chains. Simi-
larly, it is possible to select particular events on the basis of 
combinations of their properties, such as the trigger or the 
instantaneous luminosity (interaction rate), and then count 
their occurrences or retrieve them directly for full analysis.

Not all event processing tasks output the same number 
of events they had in input. The derivation procedures take 
all fully reconstructed events as input and output only the 
selected events that are useful for one or a few particular 
analyses. As there are almost 100 derivations that run on 
ATLAS events, it is useful to have the possibility to check 
the amount of overlaps between derivation streams, in order 
to reduce if/when possible their number and hence the pro-
cessing time and the disk space for the output datasets. 

Differently from the trigger stream overlap checks that are 
done within a specific dataset, the derivation overlap check 
involves a number of different but related datasets; related 
in the sense that all these derived datasets must have been 
produced from the same parent one.

EventIndex Record Contents

The EventIndex stores only “immutable” event parameters, 
i.e. those that do not depend on the processing version, 
excluding all physics parameters of the simulated or recon-
structed events.

In order to satisfy the use cases, each event record needs 
to contain three blocks of information: 

1.	 Event identification Each instance of a given event 
can be uniquely identified by the combination of run 
number, event number, trigger stream, data format and 
processing version; therefore, this information has to be 
included in each event record. In addition, the data type 
(real or simulated data), time stamp, LHC conditions, 
luminosity block number (only for real data) and (for 
simulated events only) event weight and simulation pro-
cess identifier are included as they can be useful to trace 
possible processing problems and for future reference.

2.	 Trigger information Trigger masks for the L1, L2 (only 
for LHC Run 1) and HLT triggers, the trigger key (SMK, 
used to decode the trigger masks) and the prescale key 
(with information on the trigger prescale settings). The 
SMK can be used together with the trigger database [3] 
to decode the trigger records of each event and show 
which trigger chains led to the event being recorded.

3.	 Location information The GUID of the file that con-
tains this event and the internal pointers within that 
file, for the file that is currently indexed and also for 
the upstream files in the processing chain (provenance). 
The GUID can be passed to Rucio to identify, locate 
and retrieve the file containing a given event in order to 
extract it or analyse it directly. The provenance record is 
useful to reduce the number of datasets that have to be 
indexed; for example, the pointers to the RAW datasets 
can be obtained by indexing the corresponding AOD 
datasets.

Performance Requirements

The catalogue must sustain a record ingestion rate that is at 
least as large as the real data production rate (1 kHz during 
LHC Run 2), plus the simulated data processing rate (about 
the same when averaged over a year). Given the foreseen 
increase of trigger rates by the end of LHC Run 3 to over 3 
kHz and the corresponding increase in simulation produc-
tion computing power, the catalogue for LHC Run 3 needs 
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to withstand an ingestion rate of 10 kHz at least, allowing for 
some contingency in case of operation backlogs. The query 
rate is very small compared to the ingestion rate, but all data 
are equally important and all queries are different, so it is 
necessary to have a flat internal structure and caching does 
not help much. User queries for small data samples are done 
through client code with a command-line interface, or through 
web services, requiring that the response times for simple que-
ries be compatible with human response expectations (below 
1 s); queries for large amount of data or computations of 
global counts, trigger overlaps or derived dataset overlaps can 
be executed as batch processes but need to return their results 
within (roughly) an hour, and never fail, in order to be useful.

System Architecture

The information flow through the EventIndex system is lin-
ear, so it was natural to match the system architecture to 
the data flow [10]. One needs first to extract the relevant 
metadata from the event data files and store them in a cen-
tral store, which client programs can query to perform their 
tasks. The EventIndex system is therefore partitioned into a 
number of components:

–	 Data production. This component takes care of extracting 
the metadata from each data file as soon as it is produced 
at CERN or on any of the ATLAS Grid sites, format them 
for transfer to the central store and send this information 
to CERN.

–	 Data collection: This component deals with the data 
transfer infrastructure, the metadata completeness checks 
for each dataset, assembling the information produced by 
all files in a given dataset and formatting it for storage, 
including decoding the trigger information and present-
ing it in an optimized format for fast searches.

–	 Data storage. This is the core system. It includes the 
setup of the EventIndex data storage cluster in Hadoop, 
the code to import the data and internally index them, 

and the web service providing the command line and 
graphical interfaces for the clients. As a subset of the 
EventIndex data are also replicated to an Oracle database 
for access performance reasons, this component includes 
also the support for the Oracle store, the data import code 
and the graphical interface for the users.

–	 Monitoring. All servers and all processes have to be con-
stantly and automatically monitored. This component 
collects, stores and displays the relevant information, and 
sends automatic alerts in case of service interruptions or 
malfunctioning. Regular functional tests are also sub-
mitted in order to monitor the performance for the most 
common use cases.

Figure 1 shows a schema of this global architecture. Thanks 
to the partitioning and to the clear interfaces between com-
ponents, it is possible to implement, evolve and upgrade 
each component independently of the other ones. The data 
production and data collection components already went 
through a couple of upgrades; the data storage component 
was upgraded to a newer base technology in advance of the 
start of LHC Run 3 in 2022 (see "System Evolution").

This architecture allows the development of additional 
services that satisfy more complex needs, such as the Event 
Picking Server [14] that will automate most of the actions 
needed for event picking (see "System Evolution").

Only a few components depend on ATLAS data structures, 
namely the Producer, which has to read ATLAS data files, and 
the storage schema; other experiments could use the same 
infrastructure by just replacing those components with theirs.

Data Production

The data production system includes all tasks that are exe-
cuted at the sites where the datasets to be indexed reside, 
in order to collect information from the event files and 
transfer it to the central EventIndex servers.

Fig. 1   Global architecture of the EventIndex system, as implemented 
at the end of LHC Run 2. The blue ovals indicate temporary or per-
manent data blocks or files; the green hexagons correspond to differ-
ent storage technologies. The pink rectangles contain continuously 

running processes. The black arrows show the flow of EventIndex 
data; the blue arrows show the flow of information related to data 
processing. Further details are explained in "System Architecture"
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Dataset Selection

As soon as new ATLAS data are processed on the CERN 
Tier-0 cluster [15] and the corresponding AOD datasets 
are available, jobs are launched to extract the EventIndex 
information for all “physics” datasets; calibration, test and 
monitoring streams are excluded. From this indexing step, 
information on the location of each event in RAW format 
is also extracted.

Many more ATLAS datasets are produced using the 
ATLAS resources of the WLCG Grid, and other additional 
resources that can be available from time to time. They 
include the whole simulation chain, from event genera-
tion to detector simulation, then event reconstruction and 
selection for analysis; real events are also re-reconstructed 
from time to time on the Grid, and all analysis selections 
also take place in a distributed fashion.

All AOD datasets are indexed, and for real data all 
types of derived AODs (DAODs) are indexed too. For the 
simulated data only some types of DAODs are indexed, if 
requested by the analysis groups that use them. In addition, 
all EVNT datasets are also indexed.

Datasets produced on the Grid are selected for indexing 
according to the following criteria, based on information 
obtained from the ATLAS metadata database AMI [16]:

–	 The dataset is marked in AMI as complete and vali-
dated for use in analysis or further processing.

–	 The dataset is marked as long-lived, to avoid indexing 
transient datasets that are only used in internal steps of 
the production procedure.

–	 The dataset is part of a regular production processes 
and not just used for checks or validations of the soft-
ware or the trigger configurations.

Selected datasets should then pass additional checks, to 
exclude datasets that have a “bad” status in Rucio, are 
known for problems or have other signs of corrupted data 
that may cause import jobs to crash or result in excessive 
computing resource consumption.

Indexing Job Submission

Datasets that were selected for indexing have to be pro-
cessed by the Production and Distributed Analysis system 
(PanDA) [17]. PanDA takes the list of new datasets and 
generates jobs that run a predefined “transformation” (a 
script containing a sequence of algorithms to be executed 
on a data file [18]) on the WLCG Grid.

The transformation used and its configuration in general 
depend on the data format of the dataset and the type of data 
(simulated or real); for example, the trigger information, 

which constitutes a large fraction of the EventIndex data, is 
collected for each event only from datasets in AOD format as 
it will not change with subsequent processings of the same 
event. The progress of these jobs can be monitored through 
a dedicated dashboard; if necessary jobs can be aborted or 
rerun.

Producer Transformation

The Producer is in charge of extracting the EventIndex infor-
mation from the actual input files, store it into temporary 
files and send them to a central location at CERN. It has to 
be able to run using the ATLAS production infrastructure 
on all available production facilities (the Tier-0 cluster at 
CERN and the WLCG Grid), so it is implemented in a way 
very similar to standard ATLAS data processing programs 
using the ATLAS transformation framework running within 
the Athena software framework [19].

Python was chosen as the implementation language for 
the Producer code, as it only accesses the header records 
of each event. The python interfaces to the Athena classes 
methods written in C++ do not change between releases, so 
the Producer code can be rather stable.

The producer input can be one or several files in the 
ATLAS specific ROOT format [20, 21], such as those in 
AOD, DAOD and EVNT datasets.

The EventIndex transformation class implements all 
required methods by the Athena framework to initial-
ize a job, execute the event loop (process the events) and 
finalize the job. The current implementation runs using a 
serial processing model, so the input data structure (file 
and event ordering) is preserved without needing further 
post-processing.

The EventIndex producer has two separate steps, both 
running within the transformation. In the first step, it reads 
events (execute method), extracts information and saves the 
relevant information into a temporary file. When all events 
are read, the second step starts (finalize method), in which 
the output file is transferred to a central store at CERN. 
Besides the EventIndex information itself, some additional 
environment and processing information is stored: the 
PanDA task and job identification, input dataset name, total 
number of files and events, starting and ending processing 
times as well as identification (GUID) and number of events 
for each file read.

This second step provides a good opportunity to check for 
inconsistencies in ATLAS data files as soon as they are pro-
duced. Currently the transformation looks for event unique-
ness within each file, so duplicate events that could result 
from failures in previous processing steps, are detected here 
allowing quick notification to ATLAS.
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Data Collection

The data collection system receives and validates the infor-
mation extracted by the producers, assures its completeness, 
and orchestrates the EventIndex data transfer from the pro-
ducers that run on the WLCG Grid to the Hadoop cluster at 
CERN. Depending on the number of processed events, each 
indexing job produces between 100 kB and a few MB of 
information to be transferred to the central servers.

Messaging System

Messaging is a key component of the data collection sys-
tem. In the original implementation of the producer trans-
formation [22], the output file was serialized and packed into 
JSON messages, sent to ActiveMQ brokers [23] at CERN 
using the STOMP protocol [24].

Two different types of messages were used in the messag-
ing based data collection architecture: 

1.	 Data messages, containing the produced data. They 
ranged from 1 to 10 kB and were tagged in a way that 
all messages from the same producer were consumed 
by the same consumer. Larger payloads were split into 
10-kB chunks and sent as independent messages; the 
consumer processes were then recombining them into a 
single file.

2.	 Status messages, allowing the tracking of the indexing 
processes. They were sent to a different queue, where 
they were collected. The produced information was vali-
dated by means of the status messages.

Although this architecture was reliable and fully functional, 
there were concerns regarding its ability to cope with peaks 
of production activities, as all information was kept in the 
brokers until it was consumed. During peak times, this could 
lead to a considerable growth in the number of messages 
that the brokers have to keep until they can be delivered and 
consumed.

The current system still uses the messaging system for 
Control Messages, which are similar to the original status 
messages. In this way the amount of data flowing through 
the ActiveMQ servers was reduced from a few megabytes 
(dominated by the data messages) to a few tens of kilobytes 
per job (just the control message).

Object Store

Alternatives to minimize the impact of the expected 
increases of data-taking rates on the messaging architecture 
were investigated [22], resulting in the replacement of data 
messages by temporary objects written into an Object Store 

[25]. Figure 2 describes this approach. A temporary object 
is created by each producer job, containing the information 
that the producer transformation ("Producer transforma-
tion") extracted from the processed files. Once the object 
is written into the S3 Object Store [26] at CERN, a Control 
Message containing a summary of the information and the 
URI of the object is sent to a new entity, the EventIndex 
Data Collection Supervisor ("Supervisor"), that orchestrates 
all data collection activities.

The information sent through the messaging mechanism 
has therefore been drastically reduced from several mega-
bytes to tens of bytes for each job, keeping the brokers in a 
well-performing status. If a producer, for any reason, is not 
able to write the data into the object store, there is a fallback 
solution based on the CERN large-data store EOS [27] also 
at CERN, using the xrdcp protocol [28].

Index Record Format

Two different file formats were used to store the output from 
the producer, adapted to the specific needs of the processing.

Initially a SQLite3 [29] format was reused from other 
Athena tools, with data stored in key:value pairs using only 
one table with two columns, “key” (TEXT) and “value” 
(BLOB). “Value” is the serialized representation of a 
python object using cpickle, so arbitrary objects can be 
saved and retrieved into the database, allowing a flexible 
“blackboard” style storage of key:value pairs. The producer 
transformation used several key: value pairs to store general 
information like the number of files and events processed, 
date and time of processing, job and task identification, file 
GUIDs, input collection name (dataset name), etc. Events 
were saved consecutively as an ordered tuple with key 
“Entry N” where N is the entry number. This file format 
was successfully used by the first producer implementation, 
but when it was decided that the file was going to be sent “as 
is” to the S3 Object Store it was soon realized that it was not 
the best format for the new needs.

The current producer uses a format based on the Google 
Protocol Buffer [30] with gzip [31] compression. This for-
mat allows the consumers to read the files easily and the size 
reduction achieved by the compression allows faster transfer 
times and requires fewer resources in the S3 Object Store.

This format contains a Stream of Protocol Buffer (Proto-
Buf) messages (SPB) compressed using the gzip library on 
the fly. The uncompressed file starts with a “magic” fixed_
uint32 value (0x6e56c8c7) so it can be identified quickly. 
Since ProtoBuf messages do not have type information, all 
messages have extra prepended information to identify the 
message type; two fixed_uint32 integers containing the type 
and message version and its length are added before the mes-
sage itself.
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The file can contain six different message types: Header, 
Trailer, BeginGUID, EndGUID, TriggerMenu and EIEvent: 

1.	 Header: contains global information about the process-
ing step, like task and job identifications, input dataset 
name and start processing time.

2.	 Trailer: contains global information collected during the 
processing, like number of files read, total number of 
events and end processing time.

3.	 BeginGUID: marks the start of a new input file being 
processed. These messages contains the input file unique 
global identifier (GUID), and the start processing time 
besides some other ATLAS metadata information like 
the processing version, the stream and project names.

4.	 EndGUID: marks the end of the input file processing. It 
contains the number of events read for this file and the 
end processing time.

5.	 TriggerMenu: contains the trigger menu used during 
data taking for the next collection of events. This mes-
sage is sent once per file read and whenever the trigger 
menu changes.

6.	 EIEvent: this is the main part of the EventIndex. It con-
tains the event record described in "EventIndex Record 
Contents" like the run number, event number, trigger 
mask, time of data taking, etc.

The EventIndex file contains one Header message at the 
beginning and one Trailer message at the end. Between 
them, one or several sequences of processed files which 
begin with BeginGUID and end with EndGUID. For each 
processed file one or more TriggerMenu messages and a 
sequence of EIEvent records are written.

Although the protocol buffer format tries to store the 
information using the least space possible, the compression 
factor obtained is greater than 86%, as consecutive EIEvent 
messages usually contain very similar (and partially equal) 
information, so the compressor can reduce the space very 
significantly.

Supervisor

The Data Collection Supervisor is in charge of tracking 
all data collection steps. It validates the produced data and 
informs the consumers about the presence of data to be 
transferred into the Hadoop cluster at CERN. It also allows 
following the indexing progress of datasets and containers 
thanks to its web interface.

The Supervisor receives messages sent by each pro-
ducer job with information about what has been processed. 
This information includes among other things: the dataset 
name, the task and job identifiers, the location of the pro-
duced object store, the GUIDs of the processed files, and 
the number of events and the number of different event 
identifiers processed per file. The supervisor collects this 
information, and it is thus able to know which datasets are 
being indexed by which tasks in which system.

As part of the file and dataset metadata information, 
Rucio stores the number of events that they contain. This 
information is used to track the progress of dataset index-
ation. Furthermore, since each job sends the number of 
events that it has processed per file, this information can 
be compared against the one provided by Rucio to identify 
possible inconsistencies.

Fig. 2   Architecture of the EventIndex Data Collection system based 
on Object Store. The data flow is described in "Supervisor". The thick 
arrows indicate the flow of EventIndex data from the Producers to the 
Consumers, going through the Object Store; the red arrow marks the 
messages sent by the Producers to the Supervisor through the mes-
sage broker; the light dotted green and the blue arrow correspond, 

respectively, to the information stored by the Supervisor in the Object 
Store about the location of all objects related to a given dataset, and 
the signal sent to the Consumers that all data for a dataset is available 
in the Object Store; the dark green arrow marks the messages sent 
back by the Consumers to the Supervisor to signal the completion of 
a given dataset transfer
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The supervisor also retrieves the information of the 
indexing tasks before they achieve a final state. To do this, 
the supervisor has to contact and decode the information 
provided by two different monitoring systems: conTZole 
[32] if the tasks is running in Tier-0, and PanDA Moni-
toring [33] if the task is running through PanDA on the 
WLCG Grid. Both monitoring systems provide informa-
tion on the progress of tasks, like the number of jobs, 
number of events processed, status of the task and jobs, 
etc. Once the task has reached a final successful status, 
all the collected information from the jobs, from the task 
monitoring system, and from Rucio can be cross-checked:

–	 Each successful job should have produced and sent a 
message to the supervisor.

–	 Each file should have been processed by at least a job.
–	 The number of processed and produced events per file 

should match the number of events in the file according 
to Rucio.

When those checks are satisfied, the supervisor can assure 
the completeness and correctness of the produced infor-
mation; then a validation object is created and stored in 
the Object Store. Among other information, the validation 
object contains the URIs of the produced Object Store 
objects that allowed the validation, as well as, for each 
object, the list of the files that were processed in that job 
and should be considered as valid. The consumers are 
informed through the messaging system about the valida-
tion objects that they should consume; they first retrieve 
the validation objects, process them retrieving from the 
Object Store the information that should be consumed and 
put into Hadoop. When all data have been consumed, they 
notify the supervisor about it, signalling once again how 
many events have been consumed. With this last message, 
the supervisor can mark the dataset as indexed.

Inconsistencies in the number of events, unprocessed 
files, lost or delayed messages, can be identified thanks to 
this validation procedure. A dataset that is not validated 
is kept in a validation queue, where the validation will be 
retried in after receiving possible delayed messages.

With all these pieces of information from different sys-
tems the supervisor is able to:

–	 Monitor the progress of the tasks that index each dataset;
–	 Identify failed production tasks;
–	 Declare obsolete indexing tasks that have problems and 

are going to be replaced by other tasks;
–	 Detect if any messages were lost;
–	 Identify inconsistencies between the processed files and 

the information retrieved from Rucio;
–	 Complete missing pieces of information in Rucio in the 

rare cases when they occur;

–	 Notify, through email if needed, about datasets that have 
duplicated event numbers detected at job level, i.e. within 
the few files of the dataset that were processed by the 
same job;

–	 Identify failed data transfers due to the death or discon-
nections of the consumers from the brokers;

Figure 2 shows the data collection process with the interac-
tions between the different components and the information 
flow.

Consumers

The Consumers are in charge of storing the EventIndex data 
in the final data store. They run centrally at CERN and in the 
current system there are as many consumers as messaging 
brokers, as this is sufficient for the current production rates. 
They are stateless independent entities that can be scaled up 
in case of necessity.

Consumers wait for validation messages from the Super-
visor, containing references to the actual EventIndex data 
objects to be ingested. These objects are read from the 
Object Store with data encoded with Protocol Buffers [30] 
format. The data are then formatted for the current produc-
tion schema, and stored in Hadoop files. These files are 
organized in directories named after each dataset container, 
and the current granularity is to write a file per dataset, 
but this is also configurable in the validation object. Each 
file contains data organized by key containing RunNum-
ber–EventNumber, and its related value encoded in a CSV 
schema with all the event information. Information about 
the status of the processing is communicated back to the 
Supervisor, starting with the acknowledgment of the request. 
When all the objects are consumed and the file is written, 
the result is sent back with a control message again. In case 
of any failure, details are included. It must be noted that the 
granularity of the validation data can vary from a single 
object reference, to thousand of them belonging to a par-
ticular dataset.

This procedure is repeated for all validation messages 
produced for a dataset container. At this point the validation 
of the complete dataset is possible, and a different control 
message will trigger the final validation of a dataset con-
tainer. This procedure writes a control text file in the Hadoop 
file system, containing all the URLs of the individual dataset 
files that were validated. This file is used by Oracle ("Data 
Storage in Oracle") to know which data have to be imported.

An individual Consumer typically processes a mean 
of 15 kHz (events processed per second), and we have 
observed a maximum of 28 kHz. The current implemen-
tation of the Consumer is a multi-threaded Java program, 
with thread pools using the Future pattern [34] in order to 
save resources, and exploit parallelism among internal data 
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access and transformation tasks. The setup of the Hadoop 
writing channels and the input/output largely dominates the 
processing time, with the CPU used on data mangling and 
schema transformation taking a small percentage of the time. 
The Consumer design allows to easily include new data sink 
plugins, and it has been extended to support new data back-
ends like Kudu [35], and now HBase/Phoenix [12, 36].

Data Storage in Hadoop and HBase

Data Formats in Hadoop

All data are stored in Hadoop MapFile format [37] on the 
Hadoop file system provided by CERN. The MapFile format 
is a basic Hadoop storage format with two related Sequence-
Files [38] (another basic Hadoop storage format), one with 
data, the other being an index. Both SequenceFiles consist 
of key:value pairs ordered by key. In the data file the values 
are the payload, in the index file the values are the positions 
of the keys in the data file. The index file contains a fraction 
of the keys so that it can be kept in memory. The MapFiles 
allow fast random data access by the key that we use to 
query the data.

Some MapFiles contain full Event Index records, others 
contain various derived entities and records. This mecha-
nism is transparent to the users, as all MapFiles are treated 
in the same way. Search results are also stored as MapFiles 
to be available for later reuse.

All MapFiles are registered in the Catalog, which is 
implemented as an HBase [12] table. The Catalog contains 
all information about each MapFile, its status, properties, 
history and relations to other MapFiles.

MapFiles can be searched in three ways: 

1.	 Key-based search on (sequence of intervals of) keys. 
This method gives almost immediate results. The pri-
mary key for MapFiles containing event records consists 
of the RunNumber–EventNumber pair, that is unique 
within each MapFile, as it corresponds to a dataset. 
Derived MapFiles can have different primary keys. 
Further, more detailed selections can follow after the 
key-based search.

2.	 Full Map/Reduce search. The search clause may contain 
Java code or complete Java classes implementing the 
Mapper and Reducer steps of the Map/Reduce process.

3.	 Full scan search. It is the slowest way, but it is useful to 
understand the details of the search process.

Most search and formatting options can contain any legal 
Java code using MapFile variables.

Compression of MapFiles

Due to growing storage space, we had to consider com-
pressing the data file of each MapFile.

In the record-compressed SequenceFile format, each 
record is compressed separately, but the keys are not com-
pressed. With the default codec (the “deflate” format) the 
space savings are in our case a factor of 2 to 4, depending 
on the data type.

Using the block-compressed SequenceFile format, 
groups or blocks of keys and records are compressed 
together. The block size for compression - the size of 
uncompressed keys plus values that become compressed 
together - is configurable. In our case, with the default 
block size (128 MB) and compression codec we reduced 
the file size by a factor 10.

For any tool reading the files as standard MapFiles, the 
change of compression type of the SequenceFiles is trans-
parent. In block-compressed format, to read one record 
one has to read the whole block; however, querying the 
data we did not see measurable differences relative to the 
record-compressed data files. We decided to use the block-
compressed format, so that the average size per event was 
reduced to 100 bytes, with the largest datasets so far (100 
million events) residing in 10 GB files, still a manageable 
size.

Data Import to MapFiles and Copy to HBase

The Consumers ("Consumers") write in Hadoop one sequen-
tial file for each dataset. These files are converted into Map-
File format and copied into their dedicated space. All those 
MapFiles are then registered in the Catalog, which is imple-
mented as an HBase table.

After each successful dataset import, the event informa-
tion (without trigger record, for space and performance rea-
sons) is uploaded to an auxiliary HBase table for fast event 
lookup operations.

All import and search operations are also registered in the 
system journal, together with all relevant information. The 
journal is also implemented as an HBase table. The full data 
flow within the Hadoop system is shown in Fig. 3.

Duplicate Event Detection

After each import, the MapFiles consistency is verified and 
all potential problems are notified to the relevant users. The 
most important inconsistency is the presence of the events 
stored several times in the same dataset MapFile, which is 
usually a consequence of a problem in the previous stages 
of data processing. When duplicated events are found, the 
production managers are automatically notified by email.
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Trigger Decoding

The trigger record for each event is transferred as a bitmap, 
where each bit corresponds to a trigger chain. In order to 
store the trigger data in Hadoop in an easily searchable 
and retrievable way, it has to be decoded with the help of 
the trigger mask for the given dataset, which in turn can 
be retrieved from the trigger database using the trigger key 
(SMK) of the dataset. The trigger tables are available in 
different databases: the COMA (COnditions MetadatA) 
database [39] contains all trigger information for real data 
and the MonteCarlo Trigger DB (TriggerDBMC) in Oracle 
contains the data for MC simulation.

The EventIndex replicates the trigger tables from COMA 
and TriggerDBMC to HBase tables and then uses them for 
trigger decoding [40]. If the SMK is absent in the event 
record, it is possible to obtain it from the run number for the 
real data and from the reconstruction tag for MonteCarlo 
simulation. This information is also replicated to the HBase 
tables in the Hadoop store.

The trigger decoding data flow is presented in Fig. 4. The 
trigger masks from event records are decoded [40] using 
HBase tables, converting chain counters to chain names. The 
list of trigger chain names obtained after decoding are then 
stored in updated event records. The information obtained 
is used for trigger-based selections or to calculate trigger 
overlaps, helping the trigger chain optimization.

Derived Statistics and Correlation Tables

After the dataset import and successful verification, several 
derived tables are created automatically:

–	 The dataset overlap table contains the numbers of com-
mon events between different datasets in the dataset deri-
vation chain.

–	 The trigger overlap table contains for each dataset the 
number of trigger chain pairs which were fired simultane-
ously.

–	 The trigger statistics table contains for each dataset the 
number of fired trigger chains of each type. While this 
table is created separately, it can be seen as a subtable of 
the trigger overlaps table.

All derived tables can be interrogated with the standard tools 
because they are implemented as normal MapFiles. Overlap 
tables can be also visualized as Graphs (see Fig. 5).

Command Line Interface

Several commands were implemented to give access to the 
stored data:

–	 Catalog (catalog) to search and modify Catalog 
entries.

–	 EventIndex (ei) to search all datasets using either direct 
searches or complex Map/Reduce jobs. The EventIndex 
command allows the use of any legal Java code as a 
search or result clause.

–	 EventLookup (el) for fast search of the physical data-
sets corresponding to an event (specified as a pair of run 
number and event number).

–	 TriggerInfo (ti) to perform search and analyses of the 
trigger information.

–	 Inspector (inspect) to see the actual content of a Map-
File.

Commands to access the EventIndex store are avail-
able directly in the CERN Hadoop cluster for the data 

Fig. 3   The overall data flow within the Hadoop system. The sequen-
tial files, one per dataset, written by the Consumers are imported into 
MapFile format and registered in the Catalog. A subset of the infor-
mation is stored also in the event lookup table in HBase. Consistency 
checks are applied and derived information is saved also in Mapfiles. 
Trigger decoding information is imported from Oracle to HBase for 
local use. All actions are recorded in the journal

Fig. 4   Trigger information decoding data flow. The EventIndex infor-
mation in the Hadoop file system (HDFS) contains the trigger key for 
each event, which is used to retrieve the copy of the relevant trigger 
table stored in HBase. The event trigger mask is then decoded using 
this trigger table and the result is stored back with the event record in 
Hadoop
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management tasks. The (client) commands that do not mod-
ify the store contents are available to all ATLAS members in 
the standard locations, on the CERN Linux machines as well 
as in the ATLAS CVMFS [41] environment that is available 
world-wide. The remote invocations go through a Tomcat 
[42] based web service.

Web Interface

All provided commands are also available via a Tomcat-
based standard REST [43] Web Service. On top of the sim-
ple form-based interface corresponding to the command 
arguments, high level graphical and interactive Web Ser-
vices have been implemented. They offer several graphical 
ways (histograms, Venn diagrams, Graphs, etc.) to display 
the data contents and their relations, as shown in Fig. 5.

Event Lookup or “Event Picking”

Event lookup is the most important and heavily used func-
tionality. It returns the GUIDs and optionally the stream 
type, dataset name and other parameters for user speci-
fied sets of real or simulated events, identified by run and 
event numbers. The search can be narrowed by specifying 

the trigger stream, data format and version. By default, the 
lookup is performed in the HBase table, the best performing 
back-end. It is also possible to run identical queries against 
the MapFiles from which the data are ingested into the 
HBase table, as described in "Data import to MapFiles and 
copy to HBase", and which were historically the first event 
lookup implementation.

Comment on Free and Open‑Source Software

When it became necessary to convert all MapFiles to the 
block compressed SequenceFile format (see "Compression 
of MapFiles"), it turned out that random access queries 
were not working on the block compressed files. Thanks 
to the availability of the source code, we were able to fully 
investigate the issue and track it down to a bug in a Map-
File method. Having resolved the problem and incorporated 
the patched version into the EventIndex, we contributed the 
patch to the Hadoop project; the patch was accepted and 
we also had a chance to learn the Hadoop project practices.

The Hadoop project software is released under the 
Apache License 2.0 [44], which is a free software license 
according to the Free Software Definition [45], and this 
turned out to be a crucial point. Hadoop has created an 

Fig. 5   Screenshot of the EventIndex Graphical Web Service. It allows 
the navigation of graphs of data entities. Datasets with event overlaps 
are shown in this example. The graph can be further explored, other 
relations can be shown and operations on the vertices and edges can 

be executed—either from the web service itself or by calling other 
ATLAS services. The example shows possible actions available for a 
dataset and the tabular view of the dataset trigger statistics



Computing and Software for Big Science             (2023) 7:2 	

1 3

Page 13 of 21      2 

efficient infrastructure and stimulating atmosphere for pro-
ject contributors with easy access to the full build and test 
environment, the use of modern compilers and build tools, 
extensive use of unit testing and of advanced code quality 
assurance tools, systematic and consistent use of an issue 
tracker, an automated contribution testing system, and expert 
and friendly contribution reviewers.

It is worth mentioning that, apart from Oracle (see "Data 
Storage in Oracle"), all the software we use is free and open-
source software.

Data Storage in Oracle

The initial implementation of the EventIndex store in 
Hadoop showed several important shortcomings by the end 
of 2015, the first year of LHC Run 2. With the versions 
of Hadoop and HBase and the hardware setup provided by 
CERN that we could use at that time, all queries became 
substantially slower as the amount of stored data increased. 
Simple event lookup queries for 10 events started taking 
over 1 min instead of the expected sub-second response, and 
counting events across large datasets (100 million events) 
took tens of minutes.

In addition to optimizing the Hadoop cluster setup, it was 
then decided to explore the possibility of storing a subset of 
the real data information in an Oracle database, exploiting 
this well-known technology to support the most important 
and time-consuming use cases, primarily event picking for 
real data events. For each real data event, the event record 
without trigger information, which constitutes 80% of the 
data volume, is copied to an Oracle database. Locating this 
data in existing Oracle servers also allows us to easily con-
nect to other metadata in existing complementary reposito-
ries like the COMA [39] and AMI [16] systems, which store 
metadata related to runs and datasets, respectively.

Data Structures

A relational model was found to be well suited to the task 
[46]. The simple relationship of datasets to events lends 
itself to a very simple relational table structure as shown in 
Fig. 6. The two leftmost tables (in blue) store each indexed 
dataset and its events, respectively, driving the core func-
tionality of the system as well as serving some secondary 
use cases. In ATLAS, datasets are uniquely identified by a 
string concatenating 6 fields, each of which is stored as a 
separate column in the Datasets table: 

1.	 Project name: A string encoding the LHC beam type 
with the year of data taking,

2.	 RunID: The run number,
3.	 Stream name: Events passing specific triggers are writ-

ten to one or more data streams,
4.	 Data format: The stage of processing at which the data 

are indexed (usually AOD),
5.	 AMI Tag: a string encoding the processing steps these 

events have undergone, i.e. effectively the processing 
version for the events in this run and stream.

6.	 Production Step: A short string to distinguish between 
an intermediate or final processing stage.

Since the Datasets table is the parent table for all other 
tables of the schema, this table has an integer primary key 
associated with each indexed dataset name as is common 
in relational database design.

For each dataset, all events are stored in the Events 
table. We store up to 3 GUIDs per event, which we found 
to be sufficient. References are numbered starting at 0 (the 
GUID of the indexed file), with subsequent references 1 
and/or 2 used for its upstream file formats. Since available 
GUID types (RAW, AOD, and DAOD) are common to all 
events in the dataset, GUID types are stored only once in 
the Datasets table (another advantage of relational design). 

Fig. 6   Relational tables of the EventIndex Oracle (EIO) schema. The 
“Datasets” table contains one row for each imported dataset. The 
unique events for each dataset are stored in the “Events” tables and 
its duplicated events (if any) are stored in the “Event Duplicates” 

table. Aggregated information about each dataset is stored in “LBN 
Counts” (a count of events per Luminosity Block) and “Dataset Over-
laps” (the number of common events between datasets of the same 
run number)
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Also, at the event level, we store the event’s luminosity 
block number (LBN) and LHC bunch crossing identifier 
(BCID), which are useful for use cases described in "Web 
Interface".

The Event Duplicates table keeps the list of all duplicated 
events found. Duplication can (and has been shown to) occur 
at any stage in processing. In the initial 2015 loading of the 
data, hundreds of datasets were found with duplicate events; 
using data stored in this table combined with event counts at 
each stage of processing (from the AMI database), we could 
identify the stages at which duplication occurred. Subse-
quent refinements in upstream systems have considerably 
reduced the occurrence of duplicated events in current data.

The Dataset Overlaps table stores the number of events 
in common between different datasets of the same run. This 
data serve a secondary use case of providing these overlaps 
to experts in DAOD production for refinement of the ATLAS 
Derivation Framework [47].

The LBN Counts table stores the event counts and the 
number of associated unique GUIDs by LBN. Data in this 
table have multiple secondary uses including many forms of 
integrity checks, determining the probable LBN for an event, 
investigating missing events and files, and understanding the 
splitting of luminosity blocks at file boundaries.

Both the ’Overlaps’ and the ’LBN Counts’ table con-
tent could be computed dynamically using the data in the 
two primary tables, but we chose to materialize this data 
in these tables since the computation can take more than a 
few seconds, the data volume is minimal, and some of the 
aggregated data are used in multiple services.

When a new dataset appears in Hadoop storage, it is con-
sidered for import into Oracle if the run exists in the COMA 
system (which contains only runs of potential physics inter-
est), and if the Stream meets similar selection criteria (e.g. 
there are no known use cases for indexing datasets in calibra-
tion streams). If the dataset passes these requirements, the 
“Import process” stage imports the dataset and its events 
into “Staging tables” which are similar to the final tables, 
but without indexes or constraints. The “Oracle scheduler 
Jobs” stage runs verification checks such as checking that the 
events are consistent with belonging in the same dataset and 
flagging if any duplicate events are found. If the data pass 
verification checks, the data are moved to the “Destination 
Tables”, writing any duplicate events to a separate table, 
while keeping one copy for the Events table.

Subsequently, supplemental information is added to 
the Datasets table including data from other repositories 
(COMA and AMI) as well as aggregated information from 
Events table loading. This includes dataset status flags, 
various relevant dates, event counts both within the system 
as well as related counts in ATLAS file systems (upstream 
dataset files), counts of unique GUIDs associated with the 
dataset, and counts of total and unique duplicated events. In 

addition, the datasets with Run, Stream, and Data Format in 
common are ranked by dataset creation date, which is use-
ful to help users find the latest processing of a set of events. 
These columns are used to enhance various services, and/or 
are included in user interfaces and reports.

A number of additional database optimization techniques 
deployed in this system, which further minimize storage 
volume (beyond relational normalization mentioned previ-
ously), transaction volume and database load, and optimize 
query performance for use cases, strongly deserve mention:

–	 The Events table is “list” partitioned by DATASET _ID. 
The main advantage is that sets of events can be deleted 
by simply dropping the associated partition. This oper-
ation is needed more often than we initially expected 
because datasets are sometimes re-indexed because of 
constituent file loss on the grid (which invalidates the 
associated GUIDs).

–	 For the Events table we use Oracle’s “basic” compression 
for table data and key compression on its primary key 
index. Moreover for data loading we use Oracle’s direct 
data load interface. In combination, storage utilization 
is reduced by a factor of about 3.5 which has the added 
advantage of reducing similarly the I/O footprint for writ-
ing data, undo and redo to the storage subsystem.

–	 Up to three GUID reference columns per event in the 
source data are 36-character strings (for example 
“21EC2020-3AEA-4069-A2DD-08002B30309D”). In 
our Events table, we store these columns using the non-
standard “RAW” data type, reducing the 36 bytes of stor-
age per GUID to 16 bytes. This considerably decreases 
the Events table per-row volume without loss of func-
tionality: when the GUID columns are queried, an Oracle 
function easily converts them back to the original CHAR 
type (event lookup is always by EventID, not by GUID).

After optimization, the storage volume is ∼ 20 bytes per 
event, a factor of 10 reduction from the initial 210 bytes 
per event for this data imported from Hadoop. This reduc-
tion, however, is only for the table segments. Adding the 
primary key index overhead, the reduction factor drops to 
5 (the size of the parent table is negligible, only 8 MB). So 
overall, including indexes, storing 25 × 109 events requires 
less than 1 TB of space (rather than 5 TB). The savings of 
4 TB of disk space, in itself, is not the foremost point but 
has a knock-on effect which is particularly beneficial for 
query performance: it enables the caching of a larger frac-
tion of the database rows into the database data cache (buffer 
pool) which yields real performance gains in query response 
(around 10 ms for simple queries). In summary, using a rela-
tional model and a number of carefully chosen techniques 
available in Oracle RDBMS results in an impressive mini-
mization of resources while exceeding performance goals.
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Web Interface

The central part of the user interface is the EIO (Event Index 
in Oracle) Browser shown in Fig. 7, which allows users to 
easily find indexed datasets and their properties.

The browser offers dynamic filtering of datasets by any of 
the dataset name fields and/or other dataset characteristics. 
With each iteration of selection criteria, the system shows 
the number of remaining datasets meeting the criteria and 
displays the remaining criteria. Once the user has selected 
their dataset(s) of interest, they can choose from the follow-
ing services:

–	 Event Lookup serves the primary use of returning GUIDs 
for user specified events (RunID/EventID pairs). In the 
absence of a user specified dataset version, GUIDs from 
the highest EIO-derived ranked dataset are returned. The 
report provides additional details about the events found 
as well as information to help determine why events were 
not found.

–	 The Dataset Report includes a table displaying details 
about each selected dataset: the collected and derived 
information in the Datasets table. EIO event counts are 
compared to counts of the corresponding upstream data-
set files which helps to understand event losses/filtering 
at each stage of processing. Links are provided to related 
AMI dataset and COMA run reports and to other EIO 
services described herein.

–	 The Dataset Overlaps Report shows the count and per-
centage of events in common between selected datasets 
of any run that is useful for the resource optimization of 
the offline production of DAOD [47]. Results are dis-
played in a colour-enhanced 2-D matrix (as in Fig. 8) 
showing datasets which overlap by more than a 70% 
threshold. This threshold and a choice of two overlap 
computation algorithms are configurable in the interface.

–	 The Duplicate Event Report displays all copies of events 
with any duplicated event identifiers in a dataset. It shows 
clearly the LBN(s) where duplication occurred and the 
associated GUIDs, from which, combined with event 
counts at each stage in processing, we can unambigu-
ously determine the processing stage in which the dupli-
cation occurred.

–	 A Missing Event Report can be generated when a dataset 
has fewer unique events than expected. The cause may 
be intentional filtering or an unintentional error resulting 
in in-file event loss or entire files of events being lost; 
reports show event counts (and computed losses) at each 
processing stage. If those events have been completely 
processed and indexed in another version of process-
ing, the report shows lost event ranges and associated 
LBN(s).

–	 The Count by BCID Report displays event counts in each 
LHC bunch crossing (BCID). During collision opera-
tions, one clearly observes the correlation in the peaks of 
recorded events with BCID with the LHC fill configura-
tion of the run.

Fig. 7   The EIO dataset browser entry page. Users can set search fil-
ters by clicking on predefined options or typing in the text boxes on 
the left, and then select the kind of report by choosing from the menu 
on the right. The reports are described in  "Web Interface"

Fig. 8   The EIO dataset overlaps report, as an example of the func-
tionalities provided by the EIO dataset browser. This report shows the 
count and percentages of events in common between selected data-
sets, as described in "Web interface"
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–	 The Count by LB and GUID Reports both display event 
and GUID counts along with EventID ranges per LBN 
which have been aggregated in the LBN Counts table. 
The GUID Report further shows the distribution of LBNs 
by GUID for selected LBN ranges: this is a useful cross 
check of event in-file metadata, which on occasion had 
incorrect counts causing problems in the ATLAS lumi-
nosity accounting software. This report has been helpful 
to identify incorrect in-file metadata since this system 
gets this information via a completely different path.

System Monitoring

The successful operation of the EventIndex system depends 
on a number of different components. Each component 
has different sets of parameters and states and requires a 
dedicated approach for monitoring. A first version of the 
EventIndex monitoring tools [22] based on Kibana [48] was 
developed in late 2014, but it suffered from performance 
issues, so a new version based on InfluxDB [49] as data 
store and Grafana [50] for the display was developed [51].

The monitoring infrastructure consists of two parts, pro-
ducer and viewer. The producer part is responsible for col-
lecting data and transferring them to the database; it includes 
the scheduler, a number of Python scripts and the database. 
The scheduler uses a cron utility to run the Python scripts 
at fixed times. The Python scripts collect data from CERN 
and Grid sites and insert them into the database. Several 
different modules monitor different system sub-components: 
Data Production, Consumer Processes, Hadoop Imports, 

Hadoop Cluster, Trigger Database, Web Interface, Server 
Status, Event Picking Tests and Data Volumes. Each of these 
modules requires a different approach for data collection and 
processing, thus every module has its own Python script and 
scheduler to run it. The viewer part is responsible for the 
graphical presentation of data. Figure 9 shows the functional 
schema of the EventIndex monitoring system and the data 
flow.

Grafana supports different back-end databases; it was 
decided to use InfluxDB as a front-end database because 
support for InfluxDB+Grafana is provided by the CERN-
IT Monitoring group. Although the group policy does not 
allow writing data directly to InfluxDB, an HTTP endpoint 
to the middleware that moves data to the database is pro-
vided for records in JSON format. This JSON format has a 
common part that is the same for all databases supported by 
the CERN-IT Monitoring group, and custom parts that are 
different for each database and carry the specific information 
for each service to be monitored.

The visualization component has a status dashboard for 
all modules, dashboards for the most important parameters 
of each module and links to the module details pages. The 
current status for each module is calculated using its own 
algorithm based on the module critical parameters. The sta-
tus can have one of following values:

–	 “available” (green)—the module works correctly
–	 “degraded” (yellow)—the module has some non-critical 

problem
–	 “unavailable” (red)—the module has a critical problem
–	 “N/A” (white)—monitoring data are not available for this 

module.

Fig. 9   Functional schema for the monitoring system of the EventIn-
dex components. Several modules collect information from multiple 
sources about the status of EventIndex processes (top-left), functional 

and performance tests (bottom-left) and the computing infrastructure 
(top-right) and store this information in an InfluxDB database; the 
data are then displayed in Grafana dashboards
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The details page of each component usually contains addi-
tional dashboards. The status of each EventIndex service 
is also fed into the global ATLAS service monitoring view 
that the computing operation shifters check periodically; in 
case of problems, the experts are notified and can intervene 
promptly.

Operations and Performance

Before the start of LHC Run 2 operations, we indexed all 
LHC Run 1 datasets in AOD format on the Tier-0 cluster. In 
this way we collected information on the RAW dataset prov-
enance and on the trigger parameters of each Run 1 event. 
After that, real time operations started. The indexing jobs are 
distributed on all sites available to ATLAS, selecting primar-
ily those that are closest to the input dataset location from 
the network point of view, as shown in Fig. 10. The index-
ing jobs are fast, as the producer transformation only reads 
the header of each event and takes between 10 and 50 ms/
event, depending on whether the trigger record is needed or 
not; each job indexes several files and runs for 30 to 60 min. 
The total CPU consumption of EventIndex Producer jobs is 
well below 10−4 of the total CPU power used by the ATLAS 
experiment world-wide.

The percentage of jobs failing has been around 7% , with 
the main causes of errors being problems related to the input 
files and the sites operation, such as corrupted files, sites 
with storage or disk configuration issues, stage-in problems, 
etc. The indexing jobs are the first jobs run on just-produced 
datasets, so they are useful to detect at an early stage any 
problem with data corruption or unavailability. After con-
tacting site administrators and the ATLAS data management 

operations team, the problems are usually solved promptly, 
so that simply re-running the problematic jobs is sufficient 
to achieve consistency.

The number of stored event records increased approxi-
mately linearly as shown in Fig. 11. Some datasets, espe-
cially those with type DAOD, do not have an infinite lifetime 
but are periodically replaced by newer versions generated 
with better calibrations or improved algorithmic code; after 
some time the old versions are deleted. The down steps in 
Fig. 11 correspond to periodic clean-up operations that 
remove the information regarding obsoleted datasets.

The current amount of disk space used by the Event Index 
data in the Hadoop cluster is shown in Fig. 12. Most of the 
disk space is used by real data and MC AODs, which contain 
the trigger records. The event generator datasets (EVNT) 
and derived analysis formats (DAOD) contain many more 
event records, but without trigger information, as it is either 
not yet available (in case of the generator-level EVNT data-
sets) or retrievable from the corresponding AOD datasets 
(for the derived formats DAOD).

The Hadoop system runs a variety of tasks, importing and 
cataloguing data, running consistency checks, establishing 
links between related datasets, and last but not least respond-
ing to user queries. Figure 13 shows the daily access statis-
tics of the major Hadoop services. Accesses count all data 
handling procedures, including data import, user queries and 
functional tests.

Figure 14 shows the response times of the Hadoop server 
to event lookup queries selecting 10, 100, 1000, 10k and 50k 
events out of a dataset with one million records as a function 
of time. The event lookup is performed through the el client 
command, selecting randomly different events each time in 

Fig. 10   Distribution of the EventIndex Producer jobs run each week 
between the start of operations in May 2015 and January 2022. Jobs 
run on the CERN Tier-0 system that indexes all real data as soon as 
they are produced and reconstructed are indicated in green; jobs run 
world-wide on the ATLAS Grid resources are shown in purple

Fig. 11   Event records (top) and datasets (bottom) stored in the 
Hadoop system between May 2015 and February 2022. Each plot 
shows separately real data in red, simulated data in blue and their sum 
in black
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order to avoid using cached results. The occasional glitches 
are due to other activities on the servers at the time of the 
queries. The response times are dominated by the query time 
for low numbers of events, and by the transmission time of 
the output for large numbers of events.

The response times of the Hadoop server to queries 
retrieving information on all events from datasets contain-
ing 50k, 100k, 1M and 10M events are shown in Fig. 15 as 
a function of time. These queries are performed through the 
ei client command. The response times are dominated by 
the setup time of the Map/Reduce job for low numbers of 
events, and by the transmission time of the output record for 
large numbers of events.

The EventIndex data stored in Oracle increase in size in 
parallel to the growth of the main Hadoop store, as shown 
in Fig. 16. Due to the relational database nature of Oracle, 
a large amount of indexes is stored together with the actual 
payload data, so that a similar amount of disk space is used 
by actual payload data and the indexes.

Most of the event picking requests are for single events 
in RAW format; other requests are placed from time to 
time from physics analysis groups who need to extract their 
complete highly selected data sample for further processing 

and/or more detailed analyses; so far the EventIndex system 
could cope very well with all requests.

Figure 17 shows the statistics of the event picking jobs 
run between January 2019 and June 2021. During this period 
9.5% of the jobs were automatically “closed” and resched-
uled to another site while waiting for the input file (or files) 
to be staged from tape, and 6.5% of the jobs failed after 
waiting for the input file(s) for more than 3 days; resubmit-
ting the same jobs normally works, as the wait time is then 
doubled. The tape reading queues work in FIFO mode, so it 
is not possible to assign a higher priority to tasks requesting 
a single file as opposed to staging large datasets needed by 
production activities.

System Evolution

The described storage implementation reflects the state 
of the art for BigData storage tools in 2012–2013 when 
the project started, but several different options appeared 
since, even within the Hadoop ecosystem. With the 

Fig. 12   Data volume used in the Hadoop cluster, split by data type, 
June 2021

Fig. 13   Access statistics of the Hadoop system between May 2015 
and June 2021. The statistics is dominated by internal processes, like 
data imports, event counts and consistency checks, plus the regular 
functional and performance tests

Fig. 14   Response times of the EventIndex Hadoop server to event 
lookup queries selecting 10, 100, 1000, 10k and 50k events out of a 
dataset with 1 million records as a function of time, recorded between 
April and December 2021. Note the occasional longer response times 
due to other activities in the Hadoop cluster

Fig. 15   Response times of the EventIndex Hadoop server to queries 
using Map/Reduce jobs to retrieve information on all events from 
datasets containing 50k, 100k, 1M and 10M events as a function of 
time, recorded between February and June 2021. The discontinuity 
corresponds to a day of Hadoop cluster maintenance, during which no 
statistics were collected
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increase of data-taking and simulation production rates 
foreseen for LHC Run 3 (2022–2025) and even more for 
LHC Run 4 (High-Luminosity LHC, from 2028 onwards), 
a re-design of the core systems is needed. In order to be 
safe, a new system should be able to absorb a factor 10 
more event rate than the current one, i.e. 100 billion real 
events and 300 billion simulated events each year.

Investigations on several structured storage formats for 
the main EventIndex data to replace the Hadoop MapFiles 
started a few years ago [52]. Initially it looked like Apache 
Kudu [35] would be a good solution, as it joins BigData 
storage performance with SQL query capabilities [53]. 
Unfortunately Kudu did not get a sufficiently large support 
in the open-source community and CERN decided not to 
invest hardware and human resources in this technology.

HBase had been evaluated as the main data store at the 
beginning of the project, but was discarded at that time 

because of performance restrictions. Nowadays instead, 
it is able to hold the large amounts of data to be recorded, 
with a much-improved data ingestion and query perfor-
mance thanks to the increased parallelization of all opera-
tions. Additional tools like Apache Phoenix [36] can pro-
vide SQL access to HBase tables, if the tables are designed 
appropriately upfront, which can be done in our case.

HBase works best for random access, which is perfect 
for the event picking use case where we want low latency 
access to a particular event to get its location information. 
Use cases where we need information retrieval (trigger 
info, provenance) for particular events are served by fast 
HBase gets, with good performance. In addition, analytic 
use cases where we need to access a range of event infor-
mation for one or several datasets (derivation or trigger 
overlaps calculation), can be solved with scans on these 
data. They can be optimized with a careful table and key 
design in order to maintain related data close within the 
storage, reducing access time.

HBase is a column-family grouped key:value store, so 
we can benefit from dividing the event information in dif-
ferent families according to the data accessed in separated 
use cases; for example we can maintain event location, 
provenance, and trigger information in different fami-
lies. Further analytic use cases on larger amounts of data 
are not foreseen, but still can be achieved running Map/
Reduce or Spark jobs on the HBase files, as they are stored 
in the Hadoop file system.

Apache Phoenix is a layer over HBase that enables 
SQL access and provides an easy entry point for users 
and other applications. Although HBase is a schema-less 
storage, Apache Phoenix requires a schema and data typ-
ing to provide its SQL functionalities; nevertheless schema 
versioning and dynamic late binding for the same tables 
are supported as well.

EventIndex data rarely need schema changes, so we 
can benefit from Phoenix access, designing the required 
schema and tables accordingly. The table schemas and 
their relations [54] closely resemble those implemented 
for the Oracle version of the data store ("Data Storage in 
Oracle").

While updating the core storage system, other compo-
nents can be revised and if necessary updated or replaced:

–	 The Producer implementation is currently done in 
python with a single thread. It will be upgraded to 
work with the latest data analysis software and exter-
nal libraries like stomp.py [55], boto [56] and Protocol 
Buffers [30].

–	 The Data Collection system will use modern data pro-
cessing technologies like Spark [57]. It will also allow 
to simplify all procedures, reducing data duplication 

Fig. 16   Disk storage size used by EventIndex tables in the Oracle 
cluster. Almost half of the disk space is taken by the large amount of 
indexes stored alongside the main data to optimize the read perfor-
mance

Fig. 17   Event picking jobs run each week world-wide between Janu-
ary 2019 and January 2022
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and using common job management tools over the 
stored data.

–	 The Supervisor will be expanded to cover the entire 
workflow, from the selection of datasets to be indexed 
to the storage of data in HBase.

–	 The detection of duplicated events and the calculation 
of statistics for each dataset will be done “on the fly” 
during the import process.

–	 A new implementation of the Trigger Counter will 
make direct use of the Hbase/Phoenix infrastructure, 
which provides fields and families to store the six trig-
ger masks of the event.

–	 A graph database layer working on top of any SQL 
database has been implemented to deliver a graphi-
cal and highly interactive view of the EventIndex data 
stored in the Phoenix SQL database. Thanks to its 
SQL genericity, this layer can work with all ATLAS 
data stored in SQL databases, thus providing a global 
navigable overview of all ATLAS data. All data are 
accessed directly via the standard Gremlin API [58] 
and the interactive graphical Web Service.

A prototype of the new storage and associated systems 
showed timing performances for data ingestion and for 
lookup well within our specifications.

A new tool was developed since 2021: the Event Pick-
ing Service [14]. It consists in a web service that can 
receive a list of events to be retrieved, with some optional 
specifications like the trigger stream and the data type to 
search for, and it will take care of all operations that were 
previously done by hand: query the EventIndex store to 
find the GUIDs of the files containing these events, sub-
mit the PanDA jobs to retrieve the events, retry the jobs 
if necessary, store the outputs in a central and safe loca-
tion, inform the requester of the status of operations. It is 
useful to submit “massive” event picking requests, with 
numbers of requested events in excess of 10 thousand, for 
particular physics analyses that require dedicated recon-
struction processes to be run on relatively small samples 
of pre-selected events.

Conclusions

The ATLAS EventIndex was designed to hold the cata-
logue of all ATLAS events in advance of LHC Run 2 in 
2012–2013, and all system components were developed 
and deployed in their first implementation as described in 
this paper by the start of Run 2 in 2015. As any software 
project, it went through several stages of development and 
optimization through the years. Thanks to the partitioned 
project architecture, each new component version could be 
tested in parallel with the production version and phased 

in when its performance was considered stable, and better 
than the previous version. The EventIndex operation and 
performance during and after the LHC Run 2 period has 
been satisfactory.

The significant increases in the data rates expected in 
LHC Run 3 and the subsequent HL-LHC runs required a 
transition to a new technology for the main EventIndex data 
store. A new prototype based on HBase event tables and que-
ries through Apache Phoenix was tested and showed encour-
aging results. A good table schema was designed and the 
basic functionality was ready for operation in advance of the 
start of LHC Run 3 in 2022. We are now working towards 
improved performance and better interfaces; according to 
our expectations, this system will be able to withstand the 
input data rates foreseen for LHC Run 4 and beyond.
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