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Does Lorentz-symmetric design boost network performance in jet physics?
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In the deep learning era, improving the neural network performance in jet physics is a rewarding task, as
it directly contributes to more accurate physics measurements at the LHC. Recent research has proposed
various network designs in consideration of the full Lorentz symmetry, but its benefit is still not
systematically asserted, given that there remain many successful networks without taking it into account.
We conduct a detailed study on the Lorentz-symmetric design. We propose two generalized approaches for
modifying a network—these methods are experimented on Particle Flow Network, ParticleNet, and
LorentzNet and exhibit a general performance gain. We also reveal that the notable improvement attributed
to the “pairwise mass” feature in the network is due to its introduction of a structure that fully complies with
Lorentz symmetry. We confirm that Lorentz-symmetry preservation serves as a strong inductive bias of jet
physics, hence calling for attention to such general recipes in future network designs.

DOI: 10.1103/PhysRevD.109.056003

I. INTRODUCTION

Recent advancements in deep learning have had a pro-
found impact on jet physics. Many common tasks for high-
energy experimentalists have reached a new performance
level with the use of deep learning techniques, which is
otherwise unattainable with the classical theory-inspired
approaches or shallow machine learning approaches. Jet
physics tasks that already have experimental applications
include jet tagging [1,2], jet property regression [3,4], etc.
(see Ref. [5] for a recent review of deep learning applica-
tions). One major advantage deep learning approaches bring
is that they directly allow proceeding with low-level data as
input. Since jets are clustered from a list of initial particles,
most jet datasets developed for deep learning studies are
based on particle records. Regarding the representation of the
particle records, the point-cloud (set) representation, which
guarantees the permutational invariance of these particles,
has gained increasing attention since it was proposed and
developed [6-8].

Improving the network performance in jet physics is a
rewarding task, since advanced networks can be directly
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applied to real physics searches at the LHC experiments
and substantially improve the sensitivity of measurements.
In search of such enhancement, recent interests fall in
experimenting with more advanced neural network archi-
tectures borrowing from the deep learning community,
e.g., the graph neural networks (GNNs) [6,8—-18] and
Transformer [19-21], or injecting physics knowledge into
the design of the network. For the latter, exploiting inherent
symmetries in jet physics is widely studied. The basic
attempts rely primarily on data preprocessing. For instance,
shifting the input jet to the center of the n—¢ plain, an
approach devised in early jet image representation [22,23],
ensures the network output is invariant under boosts on the
z axis (collider beam direction) or rotations on the x—y
plane. Recently, efforts have been made to propose special
network structures that respect certain symmetries. These
includes networks invariant under boosts on z axis or
rotation on the x—y plane [21], rotation on the n—¢ plain
[24] (or, similarly, around the jet axis [25]), boost along the
jet axis [25], or even under full Lorentz transformations
[17,26]. Among these various symmetries, the Lorentz
symmetry is considered the most fundamental, with all
others being recognized as its subsymmetries.

The effort to incorporate the full Lorentz-symmetric
design in the neural network first appeared in the intro-
duction of the Lorentz layer [27] and the Lorentz Boost
Network [28]. The Lorentz Group Network (LGN) [26]
was devised not long ago to be fully equivariant under the
Lorentz transformation. These network designs have
attracted attention, but it is unclear to the community
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whether such a design could bring a real benefit since there
lacks a controlled experiment studying with a similar net-
work without the symmetric design. On the other hand, a
noteworthy fact is that networks proposed in recent years that
show leading performance in the context of jet tagging,
including ParticleNet [8], Attention-Based Cloud Net [10],
Point Cloud Transformer [19], and Particle Transformer
(ParT) [20], still do not exploit the Lorentz-symmetric design
at their cores. This poses an important question to the
community: does Lorentz-symmetric design boost network
performance in jet physics? The mentioned studies indicate
that we may still lack an in-depth understanding to answer
this question. More recently, LorentzNet [17] was proposed,
which is fully equivariant to Lorentz transformations and
surpasses ParticleNet in performance. The work includes an
ablation study to demonstrate the performance gain by its
symmetry-preserving design. Meanwhile, PELICAN [29]
also exhibits remarkable performance by solely exploiting
Lorentz invariance in input features. These works utilize
different approaches to preserve full Lorentz symmetries,
and they all yield exceptional performances, bringing the
topic to the forefront. It therefore inspires the community to
undertake a systematic study to answer the question and
reveal the relations of a performant network with its Lorentz-
symmetric design.

In this paper, we conduct a detailed study of the
“Lorentz-symmetric network designs.” Our approach
adheres to a general paradigm: building upon the original
network, we focus on only a specific part of the network,
i.e., a subnetwork, ensuring it maintains invariance under
full Lorentz symmetry or its subsymmetries. This approach
covers most attempts to incorporate Lorentz symmetry into
networks, whether it be through the use of Lorentz-
invariant inputs or by introducing dedicated network
modules that keep these symmetries. The outcome is
consistent: a part of the network, along with all its neurons,
remains invariant under some types of Lorentz transforma-
tions. We broadly conclude this approach as Lorentz-
symmetric network designs. It is worth noting that other
approaches involve embedding Lorentz equivariance
within the network (e.g., Refs. [26,30]), but they are often
specialized in their designs and less easily generalizable.
Thus, we reserve their exploration for future studies. In our
approach, we can make the subnetwork relatively small,
hence treating it as a “patch structure” of the baseline
network. By switching the baseline networks or changing
the symmetry-related properties of the patch structure, we
are able to systematically study how Lorentz-symmetric
network designs influence the network performance.

Under this approach, we observe a general performance
gain when incorporating Lorentz-symmetric designs in the
context of jet tagging. Our study first shows that the
network performance can be improved as long as our
focused patch structure keeps invariance under the Lorentz
transformation, without the need to allow the network to

respect the Lorentz symmetry fully. The studies are based
on two general proposals to integrate the Lorentz-sym-
metric subnetwork structures into the original network,
where, for the original network, we consider three baseline
options for generality: Particle Flow Network (PFN) [7],
ParticleNet [8], and a modified LorentzNet [17]. The
experiment is complemented by a series of validations,
demonstrating that the observed enhancements come from
adherence to more types of Lorentz subsymmetries, pro-
gressing until the full Lorentz symmetry is attained. In
addition, an important conclusion drawn from our study is
the recognition of Lorentz symmetry as a valuable induc-
tive bias in jet physics. This insight can potentially benefit a
variety of jet-related tasks in future network designs.

The rest of the paper is organized as follows. In Sec. II,
we review the Lorentz symmetry and discuss its specific
form in jet physics. In Sec. III, we devise two generalized
patch structures that are invariant under Lorentz symmetry
and bring a performance gain, supplemented by experi-
ments to reveal the reason for improvements. Section IV
concludes our main results. Section V discusses some
future prospects in tagger design.

II. LORENZ SYMMETRY

A. Lorentz transformations

In Minkowski four-dimensional spacetime R'3, a Lorentz
vector a@* has four components (a°,a',a?, a*), which
correspond to the ¢, x, y, and z components. The
Minkowski metric 7, = diag(+1,—1,—1,~1) defines the
inner product of two Lorentz vectors a*b*n,, = a’b’—
a'b' —a’b*> — a*b’. Lorentz transformations are linear
transformations A¥, that preserve the Minkowski metric:
GuN o\’ g = gop. Hence, the inner product of two Lorentz
vectors remains unchanged. The Lorentz transformations
that preserve the direction of time form the orthochronous
Lorentz group, SO* (1, 3).

The infinitesimal transformations in SO"(1, 3) include
6 degrees of freedom. From the physics interpretation,
these include three types of rotation in the space dimen-
sions (we denote them as x—y, x—z, and y—z rotation in what
follows) and three types of Lorentz boosts involving the
time dimension (denoted as x—#, y—t, and z—¢ boost). Here
we consider the finite-size transformations in the math-
ematical form. Taking x—y rotation and z—¢ boost as an
example, the x—y rotation is presented as

cosa —sina

sina  cosa

and the z—f boost has the form
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coshw sinhw

Aﬂv = > (2)

sinh w coshw

where a stands for the rotation angle and w for the boost
rapidity.

B. Lorentz symmetry for jet physics

In the context of jet physics, a jet is a collinear spray of
particles produced in high-energy collisions. When pre-
senting it to the jet network, a jet is composed of a list of
particles, where each particle carries the Lorentz vectors
pt—its energy-momentum vector, and some Lorentz sca-
lars, e.g., the particle ID." For jets appearing in the ATLAS
or CMS detector at the LHC, it is conventional to define the
z axis pointing to the beamline direction and the x—y plane
as the transverse plane. It is an inherent aspect of hadron
colliders that the physics properties of an event and the jets
it produces remain unchanged when all postcollision
particles undergo z—t boost and x—y rotation. Therefore,
it is conventional for the output of the jet network to be
invariant under these two transformations.

Additionally, for ATLAS or CMS experiments, the par-
ticle is generally considered in the relativistic limit, as the
mass of the particle is on the level of 0(0.1) GeV, which is
smaller by 1-4 orders of magnitude than its momentum or
energy. For applications to feed the jet kinematics features
into the deep neural network, the requirements for float
number precision are not very demanding. Therefore, it is
safe to make the following assumption:

p'p,=0. (3)

Important features for jet physics include pseudorapidity
n and azimuthal angle ¢. In the relativistic limit, we have

n= arctanh&,
E

¢ = arctan % . (4)

Note that a z— boost by rapidity y, and an x—y rotation by
angle a, to a particle with (n,¢) should directly result
in (’7/’ ¢/) = (’7 +y.h+ az)'

A neural network applied to the jet physics tasks is
considered to preserve the Lorentz symmetry if its output
score is invariant when the input jet undergoes any Lorentz
transformation. In this case, the nodes of the neural network
can either be invariant, which means the nodes are Lorentz

'For some jet datasets, each particle may also include
information from trajectory displacement that, by geometry,
cannot be presented in the forms of Lorentz scalars or vectors.
These are not included in our study.

scalars, or be equivariant to the transformations, meaning that
they are part of the vector or high-order tensor in the Lorentz
group representation. As an application of this scenario, the
LGN includes nodes that are Lorentz scalars, vectors, and
high-order tensors [26]; meanwhile, LorentzNet is con-
structed by nodes only from Lorentz scalars and vectors [17].

It is also possible that the network is only invariant or
equivariant to certain kinds of transformations. As Sec. |
mentions, there are generally two means to respect
certain symmetries when designing networks. One simple
approach is to use input data that are invariant to a kind of
symmetry. This typically involves a data preprocessing
stage before inputting the data into the network. The
following discussion refers to this as the “data engineering”
approach. For example, particle-level features pt, Ay, Ag,
or AR are invariant under the z—¢ boost and x—y rotation.
Therefore, designing any form of the neural network will
maintain the invariance property of the output score to any
z—t boost and x—y rotation. This implies that one can use
An, A¢ instead of 5, ¢ of the particle to preserve this
symmetry. We note this approach is generally adopted by
most network implementations that utilize the particle-level
features as input. Its origin dates back to the early convolu-
tional neural network (CNN) approaches [22,23], where a
standard preprocessing is always applied to reposition
the jet image on the #—¢ plane to be centered at (0, 0).
In addition, it is common for these CNN methodologies to
apply additional preprocessing to rotate the jet image on the
n—¢ plane into a standardized orientation. Thus, the rota-
tional symmetry on the #—¢ plane is further maintained.

In addition to the data engineering approach mentioned
above, another solution is to specially design the network
so that its output is invariant under a certain group of
transformations. For instance, the Particle Convolution
Network [24] introduces dedicated convolution on 7—¢
space so that the symmetry under “rotation” on the #—¢
plane is maintained. The Covariant Particle Transformer
[21] has its Transformer block designed to be equivariant
under the Lorentz z—f boost and x—y rotation.

The above facts show that many networks have considered
incorporating symmetry in their design, whether implicitly or
explicitly, but the question is this: do we have a systematic
way to understand and categorize these symmetries? How are
these symmetries related to the largest symmetry group—the
orthochronous Lorentz group? We interpret it through the
following theoretical analysis.

For each jet, we first deliver a z—f boost and x—y rotation
to the jet to have (17,¢) = (0,0). An equivalent way of
understanding this operation is to perform a translation on
the jet’s #—¢ plane representation such that the axis of the
jet points at the (1, ¢) origin. Note that the jet axis is now
fixed at the x axis in the three-dimensional view. Given that

The definition of these variables are pr = (p2+ p2)s,
) )
An =1 =i, Ap = ¢ — ¢y, and AR = (Ap* + Ap)2.
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FIG. 1.

Ilustration of a toy jet on the (a) 7—¢ plane and its behavior when it undergoes the four types of Lorentz transformation that

maintain the jet axis directing to the x axis or, equivalently, the origin of the #—¢ plane. The four types of Lorentz transformation are
(b) y—z rotation, (c) x—t boost, (d) z tilt, and (e) y tilt. Markers in the plot represent the constituent particles of the jet, where the size of the

marker represents the pt of the particle.

we have fixed 2 degrees of freedom out of 6, there are 4
additional degrees of freedom to Lorentz transform the jet.
As illustrated in Fig. 1, the four transformations are y—z
rotation, x—t boost, z tilt, and y tilt. The latter two are a
mixture of z— boost with x—z rotation and a mixture of y—t
boost with y—z rotation. Note that the z—¢ boost and x—z
rotation are not commutable, similar to y—¢ boost with y—z
rotation—we adopt the convention to first deliver the boost,
followed by the rotation in the following context.

From Figs. 1(a) and I(b), it is then clear that the
previously discussed #—¢ rotation is an approximate y—z
rotation, when the jet is fixed at the origin of the #—¢ plane.
The approximation holds in the limit p, ~ o(E) and p, ~
o(E) (i.e., p,. < E). Define rapidities

yy = arctanh&,
v, = arctanh%, (5)

we have y, . ~ o(1). According to Eq. (4), we have

n= % + 0<yz)’
b=+ 00.32). (©)

This proves that #—¢ rotation is essentially an approximate
y—z rotation. Reference [24] also considers the possibility
of adding an invariance property on x—t boost to the
network design. We reveal that they can all be grouped
into our four transformation prototypes.

III. LORENTZ-SYMMETRIC PATCHES

Given the above background, we perform the studies
following the aforementioned Lorentz-symmetric network
design paradigm. We isolate a specific part of the baseline
network, known as a patch network structure, and make it
invariant under one or some of the four transformations. The
invariance is achieved by inputting invariant features under
certain transformations to the patch structure. In order to
isolate such a patch structure, we either put a “patch” to the
well-established baseline network or choose a certain part of
the baseline network and isolate it. The specific means are
elaborated in the subsections as follows. The experiment is
delivered to compare different symmetric design scenarios,
evaluate if there is performance gain, and study its relation to
the additional symmetries brought to the system.

A. Incorporating pairwise features

As a starting point, we consider the scheme that the
subnetwork is fully invariant under Lorentz transformations.
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TABLE I. Invariance property of the pairwise variables between particles when the jet undergoes a certain type of
Lorentz transformation.

y—z rotation Xx—t boost z tilt y tilt
Pairwise variable 7=t boost  x—y rotation [y, . ~o(1)] [y, ~o()] [yy.~o(1)] [y,,~o(l)]
mlzj 4 v v v v v
AR;; v 4 v
AR;;(pr;i + 1)) 4 v v 4
E;; (ablation study) v v

Therefore, all inputs to the subnetwork are required to be
Lorentz scalars. Given N particles with Lorentz vectors p/,
the only possible Lorentz scalars constructed are m?j =
(pi)*(p;),- They are denoted as pairwise mass features in the
following context. This approach will bring N(N —1)/2
pairwise features into the network. To incorporate these
pairwise features, we choose GNNSs as our baselines because
they exploit the edge features and deliver message-passing
between nodes by design. Hence, we use ParticleNet [8] and
LorentzNet [17] as our baseline models for the study.

In previous works (e.g., ParT [20]), the pairwise mass
has been studied and found to be helpful in improving
network performance. In this work, we hope to go one
step forward to understand the logic for such improve-
ment. We discover that the underlying reason lies in
symmetry preservation—we reveal this fact by studying
many possible options to construct a pairwise variable
that respects different levels of Lorentz symmetry, as
collated in Sec. II B.

1. Variables

The following pairwise variables are chosen in our study.

Pairwise mass. m;; = (p/ p M)% is known to be invariant
under all types of Lorentz transformations.

Pairwise AR. AR;; = (Anj; + Acﬁ%j)% is another physics-
motivated variable that measures the angular separation of
two particles. It is interesting to figure out that the variable
is not only invariant under z—t boost and x—y rotation, but
also invariant under rotation in the #—¢ plane, hence an
approximate invariance under y—z rotation when the jet
direction points to the x axis.

Pairwise py-weighted AR. Inspired by the symmetry
perspective, we consider a new type of angular separation
angle that is further approximately invariant under the x—¢
boost. From Figs. 1(a) and 1(c), we see that an x—¢ boost in
the positive direction decreases the angles between particles
while raising the transverse momentum py. It can be
proved that they are in inverse proportion in the limit of
Yy ~o(l) for all particles (see proof in Appendix A).
Hence, we construct from pure mathematics the new
pairwise variable AR;;(pr; + pr)-

Pairwise energy. To design the ablation experiment, the
pairwise energy variables E;; = E; + E; are chosen that, in
general, violate the Lorentz symmetry. They do not obey

the two basic symmetries, i.e., the z—t boost and the x—y
rotation, but they are actually invariant under any rotation
in 3D space.

Table I summarizes the four constructed variables and
their invariance property under the specific types of Lorentz
transformation.

2. Baseline networks

Our baseline neural network should satisfy two require-
ments. First, the network has a GNN backbone so as to have
an intrinsic mechanism to incorporate edge features. Second,
the network has not, by design, included the above variable.
We use ParticleNet and the “weakened” LorentzNet, named
LorentzNety,., as our baseline networks. A detailed descrip-
tion is as follows.

ParticleNet has satisfied the two requirements by
default [8]. LorentzNet by design uses the pairwise masses
to build edge features in each unit block. Specifically, the
edge feature is constructed by concatenating Lorentz scalar
node features for two connecting nodes 4; and h;, with the
mass variables, namely, ||p; + p;||* and p¥p;, [17]. We
simply remove the two mass variables in the construction of
the edge feature. Furthermore, we find that by completing
all node input variables in LorentzNet such that they are the
same as the ParticleNet variables, there is no performance
loss, although some variables are not Lorentz scalars, which
violates the spirit of the original LorentzNet design. Adding
these additional node features can, however, improve the
network performance in the case where we remove the mass
in edge features, which is as expected. In this way, we created
a specific version of LorentzNet that is more similar to
ParticleNet. The modified LorentzNet model is denoted
by LorentzNet,,.. Like ParticleNet, it does not hold the
Lorentz-invariant or equivariant properties.

3. Patch structure

We then introduce how to incorporate pairwise features
into the baseline network.

FParticleNet. ParticleNet is built from a stack of
EdgeConv [31] layers that perform a “graph convolution”
on a point cloud. It includes an intrinsic message-passing
mechanism for each node with their k nearest neighbors.
Specifically, for each node i carrying features x;, consider

its neighboring nodes i; (j=1,....k), the message
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FIG. 2.

[lustration of the patch structure introduced to the baseline networks that incorporate (a) The patch structure introduced for

ParticleNet to incorporate the pairwise features of the input particles. The patch structure is drawn in a red background to be
distinguished from the original ParticleNet structure. The pairwise features, after embedded, are integrated into each of the EdgeConv

blocks according to the intrinsic k nearest neighbors mechanism to

define pairs of particles and (b) The generalized patch structure

introduced for all baseline networks to incorporate additional node-wise features. The patch structure is drawn in a red background to be
distinguished from the original network structure. The nodewise features, after embedded, are integrated by “summation” to the latent

space features fed into every unit layer of the baseline network.

(Xl-l, x,-k) is passed to target node i. Hence, there leaves
space to include manually designed pairwise features
between the node i and i;. Figure 2(a) illustrates the patch
structure we introduce to the original ParticleNet model. To
begin with, the N(N —1)/2 pairwise features are calcu-
lated. Starting from initial feature dimension 1, they are
embedded in latent space with dimension 64 by an
elementwise multilayer perceptron (MLP), via two hidden
layers both with feature dimension 64. The embedded
feature is denoted by U;; for nodes i and j, and then it
proceeds to all the EdgeConv blocks. For each EdgeConv
block, the new message conveyed from neighboring nodes
can be constructed by (U;; . ..., U;; ). The feature vectors
of U;; are directly added to the original message, after

passing an individual linear layer to match their dimen-
sions. This is represented by the following equation and
depicted in Fig. 2(a):

x; = x; + Linear(U;; )

1
LorentzNety,,.. The implementation of the pairwise
feature to LorentzNet,,, is much easier, as we directly
adopt the intrinsic mechanism of the original LorentzNet to
incorporate pairwise features. We note that there are two
main differences with ParticleNet implementation. First,
the pairwise features are repeated for calculation in each
unit layer, as in LorentzNet, and the vectors are updated
dynamically layer by layer, hence the pairwise features also
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change. Second, due to the fact that LorentzNet is essen-
tially a fully connected GNN, pairwise features for all
N(N —1)/2 pairs participate in the network.

4. Experiments

The network performance is assessed in the task of jet
tagging, which is a classification task to identify the origin
of a jet. Our experiments are performed on two datasets: the
top tagging dataset [32] and the JetClass dataset [20]. The
top tagging dataset is a jet dataset comprising 1.2 x 10° jets
for training. It includes two sets of large-radius jets, one
initiated from the top quark and the other from the QCD
events initiated by quarks and gluons. Events in this dataset
are generated by PYTHIAS [33] and passed to DELPHES [34]
for fast simulation of the detector effect. Jets are clustered
from the E-flow objects with the anti-ky algorithm [35].
The kinematics information of the jet constituents is used as
the only input source to train the network. The JetClass
dataset is a larger jet dataset with 100 x 10° jets for
training. It is composed of ten classes of large-radius jets,
including five decay modes of the Higgs boson, two decay
modes of the top quark, two initiated by Z and W bosons,
and one from the QCD event initiated by quarks and
gluons. Events in this dataset are first generated by
MadGraph5_MC@NLO [36] for resonance production and their
decay, then they proceed to PYTHIAS [33] for parton
showering and DELPHES [34] for detector effect simulation.
Jets are reconstructed similarly from the E-flow objects.
The constituent-level features are used as the input to the jet
network, including the kinematics information, particle
identification flags, and trajectory displacement features.

In the following experiments, we use the top tagging
dataset as the main benchmark dataset to study how
Lorentz-symmetric network designs influence the network
performance in various aspects. Particularly, we limit our
training to 60 000 jets, as our findings indicate that, for the
top tagging benchmark, utilizing the entire 1.2 x 10° jets

TABLE II.

for training leads to a saturation in network performance.
This obscures the distinctions when we test with various
top-performing networks and switch their subcomponents
in our studies. To validate that the conclusion is applicable
to a wide range of data sizes, we perform an experiment on
different sizes of the top tagging task and JetClass’s ten-
class classification task, covering the data size from 6000
to 100 x 10°.

The training setup is the same with Ref. [20], only with a
proper resetting of the batch size to cooperate with the more
complex computation when pairwise features are involved.
The LorentzNet model is trained in the same optimizer and
scheduler as in the ParticleNet case. A detailed description
of the training setup is presented in Appendix B.

Table II shows the evaluation results for different net-
work designs. A number of metrics are used for evaluation,
including the accuracy, area under the receiver operating
characteristic curves (AUCs), and background rejection
1/eg at a certain level of signal efficiency at 50% and 30%.
The uncertainties correspond to the standard deviation in
ten trainings. Several findings can be extracted from the
table, with some explanations.

(1) For both ParticleNet and LorentzNet,,, experi-
ments, the network incorporating variables m;;,
AR;;, and AR;;(pr;+ pr;) performs better than
without using the pairwise features and with inject-
ing E;; with no dedicated symmetric design.
Comparing the three scenarios when cooperating
with m;;, AR;;, and AR;;(pr; + pr ;). the Particle-
Net experiment is more saturated in performance.
On the other hand, LorentzNet,,,,. cooperating with
m;; and AR,;(pr;+ pr;) are found to be more
performant then AR;;. The latter finding matches to
some degree with the fact that these two variables
respect more underlying subsymmetries, showcased
in Table I.

(i)

Performance of the baseline network and the one supplemented by the pairwise patch structure with different variable

designs. The baseline network is chosen from ParticleNet and LorentzNety,,.. The model is trained on 60 000 jets from the training data
of the top tagging dataset and evaluated on the full test data. The uncertainty is calculated from the standard deviation over ten trainings.
For each metric, the best-performing networks from both ParticleNet and LorentzNet,,,. variants are highlighted in bold text.

Base model Variation Accuracy AUC 1/eg(es = 50%) 1/eg(es = 30%)

ParticleNet 0.9310(3) 0.9810(2) 198 +7 640 £ 29
“+pairwise: m;; 0.9334(8) 0.9820(4) 222 + 13 722 £ 52
+pairwise: AR;; 0.9334(6) 0.9823(3) 231 +10 752 +43
tpairwise: AR;;(pr; + pr;)  0.9337(3) 0.9821(1) 22346 741 + 36
+pairwise: E;; 0.9303(5) 0.9807(2) 200 £ 6 651 £23

LorentzNety,. 0.9276(12) 0.9789(7) 172+ 13 581+ 53
+pairwise: m;; 0.9347(4) 0.9829(2) 260 + 6 931 + 50
+pairwise: AR;; 0.9328(4) 0.9819(3) 232+ 10 807 £ 35
“+pairwise: ARy (pr, + pr) 0.9342(4) 0.9826(2) 251+ 6 919 + 34
+pairwise: Ej; 0.9243(37) 0.9767(23) 144 £ 29 485 £ 108

056003-7



LI, QU, QIAN, MENG, GONG, ZHANG, LIU, and LI

PHYS. REV. D 109, 056003 (2024)

ParticleNet -z rotation o ParticleNet x-t boost o ParticleNet z-tilt
0.982
094 094
0.981
0.8 084
2 0.980 =z =z
—— ParticleNet 079 —— ParticleNet 079 —— ParticleNet

—}— ParticleNet +pairwise m;

—}— ParticleNet +pairwise ARy

—— ParticleNet +pairwise AR;(pr; +pr)
—}— ParticleNet +pairwise E;

—— ParticleNet +pairwise m;;
—}— ParticleNet +pairwise AR;;

0.979 4
0.6 1

0.978 4 —}— ParticleNet +pairwise Ej

—— ParticleNet +pairwise AR, (p; + pr)

—}— ParticleNet +pairwise my

—}+— ParticleNet +pairwise AR

—t— ParticleNet +pairwise AR;i(pr; +pr;)
—}— ParticleNet +pairwise Ej

0.6 1

0.5

0 /6 a3 a2 273 5n/6 ks 0.0 0.2 0.4

T T 0.5 T T T T T
0.6 0.8 0.0 0.2 04 0.6 0.8

ax Bx=tanh w, B:=tanh w,
LorentzNet, . Y-z rotation o LorentzNet, .. x-t boost o LorentzNet, .. z-tilt
—
LT I S o S S ey s s st S \4\
0.980 091 N 0.9
0.978 1 ! N
0.8 1 0.8 1
9 0976 1 5] 3
< < <
09741 4 LorentzNety,,. 079 —— LorentzNety,,, 079 —— LorentzNety,,
09724 —+— LorentzNety,, +pairwise m; —t+— LorentzNety,,, +pairwise m; —t— LorentzNety,,, +pairwise m;
' —+— LorentzNet,,,, +pairwise AR;; 06 —+— LorentzNet,,,, +pairwis AR;; 06 —t— LorentzNety,, +pairwise AR
0.970 4 —— LorentzNety,,, +pairwise AR;(pr; +pr;) | = LorentzNety,,, +pairwise AR;(pr, + pr;) " | = LorentzNety,,, +pairwise AR;(pr; + pr;)
—t— LorentzNet,, +pairwise E; —t— LorentzNet,,, +pairwise E; —t— LorentzNet,, +pairwise E;
0.968
0.5 T 0.5
0 /6 /3 i 2113 snl6 x 0.0 02 04 0.6 0.8 0.0 02 04 0.6 0.8
Bx =tanh wy B;=tanh w,
FIG. 3. Network performance in terms of AUC evaluated under various types of Lorentz transformation applied to the test dataset.

From left to right: the input jet undergoes a y—z rotation with angle ., an x—t boost with rapidity w,, and a z-tilt transformation (i.e., a z—t
boost with rapidity w, followed by a x—z rotation to redirect the jet to the x axis). The curves in the plots show different options of
pairwise features added to the baseline network. The baseline is chosen as ParticleNet (top) or LorentzNet,,,.. (bottom). The error bar

shows the standard deviation over ten trainings.

To further reveal the relations between performance
differences with the role in subsymmetries preservation,
we evaluate the drop in performance when the test sample is
processed by a given type of Lorentz transformation.

We study the case of y—z rotation, x—¢ boost, and z-tilt
subsymmetries. Given the limitation that these transforma-
tions are done when the jet is directed to the x axis, for a
given jet, the overall transformation is described as
(AO)_I(Atarget)(AO)’ where A, is a successive z—t boost
and x—y rotation to ensure the jet points to x direction, and
Avarger 18 the target transformation (i.e., y—z rotation, x—f
boost, or z tilt). The performance in AUC under various test
datasets transformation is shown in Fig. 3.

We summarize new findings from the plots as follows.

(1) The first obvious finding is that, when the added

patch structure is invariant regarding a certain
symmetry, the whole network tends to be more
resilient to the transformations on that symmetry.
Specifically, the network adding the “mass” recipe
becomes more robust for all transformation scenar-
ios; the network adding the patch incorporating AR;;
has improvement on adaptability for y—z rotations;
and interestingly, adding AR;;(pr;+ pr;) im-
proves adaptability for both y—z rotations and x—t
boost. This suggests that the added patch plays a
significant role during network training, as its
invariant properties are, to some extent, imparted
to the entire network.

(i) Networks adding the symmetry-preserving structure
show smaller spreads on the metric over ten train-
ings. Especially, the ablation case that adds Ej;
shows unstable training results. This can be attrib-
uted to the patch structure disrupting the more
fundamental symmetry associated with z—t boost.
Overall, they indicate that networks with higher
levels of symmetry preservation exhibit a stronger
generalization ability.

The above observations can be interpreted by recogniz-
ing that preserving Lorentz symmetry acts as a special
“inductive bias” for the jet tagging tasks. Generally, the
inductive bias works in the principle as follows. By
introducing such a patch network structure that remains
invariant under any Lorentz transformation, we effectively
provide a hint to our network that the input jet property
(e.g., its truth label) typically does not change when the
input jet undergoes any Lorentz transformation. An analog
example is the benefit of the CNN architecture in the vision
domain (such as in the image classification task), where the
specialized design of CNNs can provide a hint that the
input image properties are generally unaffected by shifts of
some elements within the image.

From this viewpoint, the two observations can be
explained as follows. Our first observation, i.e., greater
resilience to the transformations with the introduction of
more symmetry levels, can be seen as evidence that the
network benefits from this inductive bias. This benefit
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FIG. 4. Network performance in the top tagging task in terms of AUC versus the training size, selected among {6000, 20 000, 60 000}.
The curves in the plots show different options of pairwise features added to the baseline network. The baseline is chosen as ParticleNet
(left) or LorentzNety,. (right). The error bar shows the standard deviation over ten trainings.

arises as the network relies on the symmetry-preserving
property of the patch structure and eventually propagates it
throughout its entire structure. The second finding, on the
other hand, can be understood by acknowledging that
integrating an inductive bias into the network effectively
serves as a method of augmenting input data.

As a further validation that the symmetry-preserving
property serves as an inductive bias, Fig. 4 shows the
original top tagging performance in terms of the AUC when
the network is trained on different sample sizes, ranging
from 6000, 12 000, and 60 000 jets. Clearly, the modified
network that preserves more levels of symmetries performs
better in the low-data scheme. As incorporating inductive
bias generally helps networks perform better on small
samples due to its effective data augmentation, this is again
in line with our observation. Figure 4 also shows that, when
the data size rises, the top tagging performance on this
dataset tends to converge. We believe that it is caused by the
performance saturation for this benchmark task when
training with larger data. To verify that the inductive bias
is not confined to specific training sizes, but is a general
property to enhance the network performance, we conduct
an additional experiment using the JetClass dataset. This
experiment employs a more intricate ten-class classification
to assess the impact of inductive bias on a 100 x 10°
dataset. Figure 5 shows the jet tagging performance on
JetClass, measured in terms of the multiclass classification
AUC, as the training datasets range from 60000 to
100 x 10°. The study only utilizes ParticleNet baseline
and its two variants: one adding the patch structure with m;;
as input to preserve full Lorentz symmetries and the other
an ablation case with E;;, which disrupts an existing
symmetry related to the z—t boost. The results consistently
support our conclusion, even with large datasets, while
signs of performance saturation convergence appear less
pronounced.

Before ending this section, we offer a final remark on the
pairwise mass m;;. The above results also provide a new

angle to explain the benefits brought by pairwise mass. As a
matter of fact, the mass variable is generally considered an
important nonkinematics feature that sculpts the dynamics
properties of the physics system. This is generally used by
experimentalists to explain that this variable can play a
crucial role in the multivariate analysis, which other event
kinematics features cannot compete with. We can, however,
modify from a pure kinematics feature—separating angle
AR—from the hints of symmetries to achieve similar
performance with the mass feature. This brings a new
angle to interpret the role of pairwise mass participating in
the network that boosts the performance. However, we
need to point out that there are actually mathematical
relations between m,zj and AR;;. In the relativistic limit and

ParticleNet

0.9850

0.9825 4

0.9800

8
2 0.9775 1
0.9750
0.9725 4 —— ParticleNet
—}— ParticleNet +pairwise my
0.9700 4 —}— ParticleNet +pairwise E;
100 k M 10 M 100 M
Training sample size (JetClass)
FIG. 5. Network performance in the JetClass classification task

in terms of AUC versus the training size, selected among {60 000,
200 000, 500 000, 2 x 10°, 10 x 10°, 100 x 10°}. The curves in
the plots show different options of pairwise features added to the
ParticleNet network as the baseline. The training iterations
are conducted 10 times for the 60000 case and 5 times for
the 200000 case, with the error bar showing the standard
deviation over multiple trainings. Training with larger datasets
is performed only once.
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considering y, . ~ o(1) for the particles i, j, we can derive
(with proof in Appendix A)

mtzj = |p;|p,[(1 —cos e(pi,p,-)) ~ %ARzszT.ipT.jv (8)
which means the pairwise mass can be equivalently consid-
ered as another form of pr-weighted angular separation
feature between particles. Nevertheless, the fact that a pure
mathematically constructed variable, AR;;(pr; + pr;), is
able to rank a high performance as well and manifest
expected behavior on imposing various types of transforma-
tions on the test dataset is sufficient to illustrate the role
symmetry plays behind the network’s mechanism.

B. Incorporating nodewise features

Our above study has used additional implementation of
pairwise features to illustrate the role Lorentz-symmetric
design plays in network training. However, the pairwise
features have limited usage as they are generally applicable
to GNN or attention-based baseline models only. Therefore,
we consider further extending its application scheme and
hope to design a more generalized patch. The new patch
structure is based on additional nodewise features and can be
applied to all mainstream networks that rely on the point-
cloud (set) representation of the input data.

1. Variables

The node features are designed from the same spirit to
incorporate mass variables, but carried in a nodewise
manner instead of pairwise. For each node i, we define
a group of friend nodes G;, the choice of which is invariant
under Lorentz transformations. We calculate their invariant
mass

Therefore, it is essentially the predetermined linear combi-
nation of all Lorentz scalars p/ pju- In the ablation study,
the nodewise variable Eg, = ). E; is also considered
as an option.

We deliver studies in the determination of the G;. We
find that

G, ={Jj|p} pj,is among the k largest values for allj} (10)

is a Lorentz-invariant choice and makes the network more
performant. Here, k is a predetermined variable. We choose
the value of k as {4, 8, 16, 32}, hence creating the nodewise
features with a dimension of 4.

2. Patch structure

The injection of new nodewise features to the baseline
network is created as a rather generic design. Therefore, we
use PFN, ParticleNet, and LorentzNet,,,. as our baseline
for experiments and implement the same patch structure to
all three networks. The patch is illustrated in Fig. 2(b).
First, N nodewise features are calculated at the beginning
stage and embedded from the initial dimension 4 to the
fixed feature dimension 64 by an elementwise MLP, via
two hidden layers of feature dimension 64. The embedded
nodewise feature is denoted by u;, We note that all
mainstream networks viewing jets as a point cloud (set)
are composed of a stack of some unit block to update the
nodewise features of the particles. For PFN, the unit block
is @(x) according to the notation from Ref. [7]. This
represents a feed-forward network designed to individually
update particle features. For ParticleNet, it is the EdgeConv
operation [8]; for LorentzNet, it is the Lorentz Group
Equivariant Block [17]. We need to incorporate our addi-
tional node feature u; into the existing structure block by
block. In the data processing flow, we update the node feature
x;, which will be fed into the unit block by u,;, after a
dimension-matching linear layer. This can be expressed by

x; = x; + Linear(u,). (11)

We note the injection strategy is very similar to that of
including pairwise features in ParticleNet, by comparing to
Fig. 2(a) and the injection formula described in Eq. (7). Both
methods employ an embedding of the additional features first
and then inject them into the baseline network block by
block. The difference is that our current features are on a per-
node basis and are more generalized to be applied.

3. Experiments

We do the same experiments as detailed in Sec. III A 4 to
study the effect when incorporating the additional node
features via our generalized mechanism and understand its
relation with symmetry preservation. Table III shows the
performance of different schemes in terms of accuracy,
the AUC, and background rejections. Figure 6 shows the
robustness study of network performance upon Lorentz
transformations on the test dataset. Figure 7 provides the
performance trend when trained on various sample sizes.
All uncertainties shown in the table and plots correspond to
the standard deviation over ten trainings. The findings are,
overall, similar to the pairwise case in Sec. [Il A 4 and are
summarized below.

(1) Inclusion of nodewise mass features substantially
improves the PFN performance. This demonstrates
the huge potential of including manually constructed
mass features in improving DNN performance in the
era of using low-level inputs.

(i) All experiments show a degree of improvement
when incorporating mass features. The improvement
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FIG. 6. Network performance in terms of AUC evaluated under various types of Lorentz transformation applied to the test dataset.
From left to right: the input jet undergoes a y—z rotation with angle ., an x—¢ boost with rapidity w,, and a z-tilt transformation (i.e., a z—t
boost with rapidity w, followed by a x—z rotation to redirect the jet to the x axis). The curves in the plots show different options of
nodewise features added to the baseline network. The baselines are chosen as PFN (top), ParticleNet (middle), or LorentzNety,.

(bottom). The error bar shows the standard deviation over ten trainings.

is relatively small in ParticleNet and LorentzNet, . (iii) In the case of ParticleNet and LorentzNety,.., the

due to the effectiveness of their plain GNN-based
network. However, the gain still illustrates that the
added Lorentz-symmetry-preserving patch helps
improve the network performance.

improvement from injecting the nodewise mass
features is not as large compared with adding
pairwise mass features shown in Table II. This
can be explained from the perspective that, in the
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098 4 098 4 098 4 //-
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FIG. 7. Network performance in terms of AUC versus the training size. The curves in the plots show different options of nodewise
features added to the baseline network. The baselines are chosen as PFN (left), ParticleNet (middle), or LorentzNet,, . (right). The error

bar shows the standard deviation over ten trainings.
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TABLE III.  Performance of the baseline network and the one supplemented by the nodewise patch structure with
different variable designs. The baseline network is chosen from PFN, ParticleNet, and LorentzNet,,,,.. The model is
trained on 60 000 jets from training data and evaluated on the full test data. The uncertainty is calculated from the

PHYS. REV. D 109, 056003 (2024)

standard deviation over ten trainings.

Base model Variation Accuracy AUC 1/eg (€5 = 50%) 1/eg (e5 = 30%)
PEN - 0.9104(12)  0.9664(13) 6745 198 + 21
+nodewise: mg,  0.9281(4)  0.9791(2) 184 +5 714 £ 50
+nodewise: Eg, 0.9207(4) 0.9750(3) 125+3 378 +£ 19
ParticleNet 0.9310(3) 0.9810(2) 198 +7 640 + 29
+nodewise: mg,  0.9313(3)  0.9812(1) 22245 800 -+ 40
+nodewise: Eg, 0.9300(12) 0.9802(6) 183 + 12 572 + 47
LorentzNet, . 0.9276(12)  0.9789(7) 172+ 13 581+ 53
+nodewise: mg,  0.9306(3)  0.9809(2) 21943 887 + 36
+nodewise: Eg, 0.9272(3) 0.9788(1) 171 £ 2 562 + 16

case of including nodewise features calculated by
Eq. (9), not all N(N —1)/2 Lorentz-invariant fea-
tures pip;, (V i,j) are fed into the network, but
only N features composed of their linear combina-
tion are taken as the input. In principle, they carry
only a part of the information.
The behavior under Lorentz boosts and rotations of
test dataset and performance trend in using different
sample sizes in Figs. 6 and 7 follows our expect-
ation. This reinforces our conclusion that preserving
Lorentz symmetry serves as an inductive bias, a
principle that is also applicable in this context.
Finally, Table IV shows the comparison of the model
complexity for baseline networks and their variants, which
incorporate additional features. As can be seen, the effect of
the patch for including nodewise features between three
baselines is consistent due to the generality of the patch
design; the effect of adding pairwise features is rather
different for ParticleNet and LorentzNety,,. because their
patches rely on different mechanisms, as introduced in
Sec. IITA3. It is clear from the table that all of our
introduced patch structures contain very few parameters

(iv)

TABLE IV. The number of trainable parameters and floating
point operations (FLOPs) for the three baseline networks and
their variants. The “+” sign indicates the increase in the number
with respect to its baseline.

No. parameters FLOPs
Base model Variation (x10%) (x10%)
PFN 83.84 4.46
+nodewise +26.19 +3.41
ParticleNet e 366.16 535.73
+pairwise +34.91 +285.29
+nodewise +21.97 +2.83
LorentzNety,. e 226.23 1997.69
+pairwise +0.43 +7.02
+nodewise +37.35 +4.8

compared to the original baselines. It makes the fact even
more interesting that the Lorentz invariance property of a
very small subnetwork can be successfully reflected onto
the entire network. Thus, this finding provides a new angle
to argue the important role Lorentz symmetry plays in
network design.

IV. DISCUSSION AND CONCLUSION

In this work, we study the effect of Lorentz-symmetric
design in network performance in a systematic way. We
confirm that the answer to the initial question is yes: the
Lorentz-symmetric design can boost network performance
in jet physics, according to our experiments in the context
of jet tagging.

We first find out that the network need not be designed to
fully comply with Lorentz symmetry to get the perfor-
mance boost—only including a substructure invariant to the
Lorentz symmetry can ensure a higher performance. Then,
inspired by this spirit, we design two patches that can be
generally used to improve the network performance.

(1) First, the pairwise mass feature can be injected into a

GNN-based model, e.g., ParticleNet and Lorentz-
Net, in their intrinsically supported way to assist in
building the edge features of the graph that partici-
pate in the message-passing mechanism.
Second, as a more universal solution, we propose the
design of the “nodewise mass” feature, which is
constructed by the invariant mass of various friend
particles of a given particle, and propose a general
patch structure for injecting the feature into the
primary network structure block by block.

We conduct experiments on PFN, ParticleNet, and the
weakened version of LorentzNet and see general improve-
ments when incorporating these mass features in two
different ways. We use Lorentz boosts and rotation experi-
ments to illustrate that the underlying symmetry preserva-
tion plays a role in the network training to achieve higher
performance. Especially, we design a specific experiment

(i)
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to introduce the patch network structure adhering to various
levels of Lorentz subsymmetries. The results indicate
improved performance with the incorporation of more
symmetry levels. This finding demonstrates that respecting
full Lorentz symmetry is particularly beneficial, aiding the
network in achieving higher performance. This goes
beyond the more commonly held belief in our community
that symmetries related to the boosts along the beamline
(z—t boost) and azimuthal rotation (x—y rotation) are the
primary ones to be integrated into the design of jet neural
networks. We then find that injecting mass features in two
ways improves the network performance, especially when
trained on a small training sample. This further demon-
strates that Lorentz symmetry preservation is an effective
way to assist the network in achieving higher performance,
hence a real but often overlooked “inductive bias” in the jet
physics task.

From another perspective, this work makes a successful
step forward in understanding the interpretability of neural
networks, in terms of how the networks incorporate
symmetries using the dedicated variables we inject into
the network. We show to the community that the previously
discovered pairwise mass features, which are capable of
improving network performance, find their root in the
incorporation of full Lorentz symmetry in the network’s
substructure to process these variables.

V. OUTLOOK

This work reveals, in the context of jet tagging, that
Lorentz symmetry is an inductive bias, which, by properly
hinting to the network, can enhance the network perfor-
mance. Hence, one of the primary goals of our work is to
draw attention to such inductive biases in future jet network
designs. In this work, we propose the nodewise mass
recipe, which is more general and capable of being applied
to a variety of networks; however, we also emphasize that,
with the goal of achieving state-of-the-art performance, it is
more necessary to utilize the pairwise mass feature, as it
contains more abundant Lorentz invariance properties
inside a jet, and to incorporate it with advanced baseline
networks, which can be either GNNs or attention-based
models like Transformer. We note that both LorentzNet
[17] and ParT [20] have adopted the pairwise mass design.
This also explains to some extent the high performance
they have exhibited.

Beyond the jet tagging task, it is interesting to study the
effect of applying the patch structures in other physics
scenarios that treat jets as a point cloud (set) of particles, for
instance, in the regression of jet properties [21], in the jet
assignment tasks [37-39], and in the generation task of jets
with use of a generative model [40]. Furthermore, tasks that
process whole collision events instead of a single jet may
also draw on such patches in the network design. A typical
example includes using a variational autoencoder to iden-
tify anomalous events in the search for new physics [41].

This perspective broadens to a potentially more prom-
ising viewpoint. For deep learning tasks using more
primitive data as input, e.g., the raw data collected in
calorimeters, which deposit energies in the regular grid or
the data from the tracker storing the hit information [42,43],
a key fact remains, i.e., the essence of these data lies in the
information of outgoing particles. Therefore, we conjecture
that Lorentz symmetry is equally important for such tasks.
Special designs of the Lorentz-symmetry-preserving net-
work to adapt these sources of input can be an interesting
field for future study.

In addition to the points discussed above, we would also
like to address that, for a better understanding of the role
that symmetry-preservation plays in the network perfor-
mance, there are yet room and means. Regarding the
systematic study of Lorentz-symmetric design, this work
adopts a universal paradigm, focusing on a segment of the
network (a patch structure) and ensuring its invariance
under Lorentz symmetry or its subsymmetries. However,
this approach does not include the equivariant case, as such
design can be more specialized. While integrating this case
into our general study presents challenges, we think that
the Lorentz-equivariant designs may still inspire the next
generation of high-performing networks. Hence, we also
emphasize the importance of these designs in future
research. Additionally, although the mass has manifested
itself in our study as a symmetry-relevant feature intrinsic
in jet physics, when we focus on the heavy resonance jet
tagging task, mass is also a direct signature to distinguish a
specific type of jets or subjets. It would be interesting to
study the role of masses and their symmetry-preserving
property in other scenarios, e.g., the jet flavor tagging task,
where jets cannot be explicitly distinguished by the mass
variable itself. This will be more helpful to understand the
role of mass in the network.
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APPENDIX A: SUPPLEMENTED PROOFS

This appendix provides proofs of several pairwise
feature properties under Lorentz transformations which
are discussed in context.
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Proposition A.l. In the limit of y,; y,;~o(l)
for all particles i, where y, = arctanh(p,/E) and
y. = arctanh(p./E), considering all particles as massless,
the pairwise feature p;; = AR;;(pr; + pr ;) for particles i
and j is an approximate invariance to the boost trans-
formation on the x axis.

Proof. In the massless case and under the limit of
Vyi»Yzi ~o(1), from Eq. (6) we have

nm=DYy
¢ =y, +0(yyy.)

Hence,

AR;; = \/(ﬂi ;) + (i — #))*

= \/(yy.i - y)',j)z + (yz.,i - yz.,j)2 + O(y,w yz)'

For a boost on the x axis with rapidity w, for each particle,
given p, = E(1 -y} — y2)i = E + o(1), we have

E' = Ecoshw + p,sinhw = e"E + o(1),

p =e"E+o(l), p\ = py, and p. = p.. Hence, we have
|

1 1 1
mi, = E;E; — EiEj<1 _E)ﬁ,i _Eyg,z) <1 _Eyij

2

Vy=e"y, +o(yy.y.),
Ve =eVy. +o(yy,y.)

Therefore, for each particle i or pair (i, j), after trans-
formation,

Pr; = e pr;+o(l),
AR;j = e_WARij + O(yy.i’ yz.i)'

Thus,

AR} (pr,; + pr;) = Rij(pri + Prj) + 0(Vyis ¥2i)s
which is invariant in the first-order y, ;, y.; ~ o(1) limit. m
Proposition A.2. In the limit of y, ;. y,;~o(l) for
all particles i and considering all particles as massless,
the pairwise squared mass m%j =pip i 18 equal to
3 AR} pr,ipr,; to the leading order.
Proof. According to Proposition A.1 and given

m,zj = EiEj — Px.iPxj — Py.iPyj — PziPzj>

we have

1
y%,,-) —EE;y,;y,j—EE;y_y.;j+o0(y*)

1 1 1 1
= EE; (§y§,,- +-yi+ —)’ij + —yﬁ,j = Vy.ilyj— yz,iyz,j> +0(y?)

2 2 2

1
— EEiEjAR%j +0(y?)

1
= EARzszT,ipT.j + o(y?).

APPENDIX B: TRAINING SETUP

The training of PFN, ParticleNet, and LorentzNet mod-
els and their variants to incorporate pairwise or nodewise
features is performed on an Nvidia RTX 3090 GPU. The
original models of PFN and ParticleNet are taken from the
public version provided in Ref. [20] and the LorentzNet
model is taken from Ref. [17]. The batch size is set as 512
for PFN, 512 for ParticleNet (128 for ParticleNet incor-
porating pairwise features), and 256 for LorentzNet. The
initial learning rate (LR) is set as 2.5 x 1073 for PFN, 1 x
102 for ParticleNet (2.5 x 1073 for ParticleNet incorpo-
rating pairwise features), and 2 x 1073 for LorentzNet.

In our experiments using the top tagging dataset, the
training is performed on a total of 20 epochs, with an epoch

|
defined as a whole iteration over the used dataset. For our
case, where only a portion of training jets are used, they are
selected by the event number event no, e.g., the 60 000
jets used for training are selected by event no $20==0
from the training dataset.

In experiments using the JetClass dataset, when the
training sample size is {60000, 200 000, 500 000}, the
training is performed on 20 epochs, with an epoch defined
as a whole iteration over the used dataset. In order to make
the training controllable when the data size grows further, a
different configuration is adopted. When the training size is
{2 x10°, 10 x 10°, 100 x 10°}, the number of training
epochs is 50, where each epoch is defined as iterating {0.5,
0.25, 0.1} of the selected training dataset. This allows the
configuration to be the same as in Ref. [20] when training
on the full 100 x 10° dataset.
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For all the training, we employ the same optimizer and the
scheduler as in Ref. [20]. The Lookahead optimizer [44] with
k=6 and a = 0.5 is used to minimize the cross-entropy
loss. The inner optimizer is RAdam [45] with y; = 0.95,
y, = 0.999, and € = 107>, For our training schedule, the LR

remains constant for the first 70% of the iterations and then
decays exponentially, changes at beginning of every follow-
ing epoch, down to 1% of the initial value at the end of the
training. In the training of LorentzNet and its variants, a
weight decay of 0.01 is adopted according to Ref. [17].
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