PS/LP Note 94-51 (Min.) 14. 11. 1994

CLIC/PS

NEXT MEETING: FRIDAY 18November 1994

9.00hrs in the large PS Conference Room

J.H.B. Madsen

AGENDA

- 1. The CTF beam emittance : measurements and computations by: M. Comunian
- 2. Programme for ' Two days for a two beam accelerator in the CTF 'or CTF-2 15 / 16 Dec. '94
- 3. Status with CTF run 3.

Distribution:

PS	Kugler H.	PS
PS	Madsen J.H.B.	PS
PS	Metral G.	PS
AT	Michailichenko A.	PS
PS	Millich A.	SL
PS	Mourier J.	PS
PS	Pearce P.	PS
PS	Potier JP.	PS
PS	Riche A.J.	PS
SL	Riege Hans	AT
PS	Rinolfi L.	PS
AT	Rossat G.	PS
PS	Schnell W.	Bât. 584
SL	Schreiber S.	AT
DG	Suberlucq G.	PS
PS	Thomi J.C.	PS
PS	Thorndahl L.	PS
PS	Warner D.J.	PS
PS	Wilson I.	SL
PS	Wuensch W.	SL
	PS PS PS AT PS PS PS PS PS SL PS SL PS SL DG PS PS PS PS PS PS PS PS PS PS	PSKugler H.PSMadsen J.H.B.PSMetral G.ATMichailichenko A.PSMillich A.PSPearce P.PSPotier JP.PSRiche A.J.SLRiege HansPSSchnell U.ATRossat G.PSSchnell W.SLSchreiber S.DGSuberlucq G.PSThorn J.C.PSWarner D.J.PSWilson I.PSWuensch W.

Summary on the CLIC/PS Meeting 04/11/1994

1. The bunch compressor and the CTF beam line 1995 by F. Chautard

With four quadrupoles at the bc outlet a round beam can be obtained at the entrance of the accelerating section, the 1 m long high gradient section of LAL. (called NAS or re baptised in SERA2).

Beam envelopes: fig.1,2 in Appendix 1

The bc magnets will be assembled and measured at CERN. Available: in January '95.

The space between SERA2 and TRS will be used for inserting equipment to be tested as BPM's, transfer structures.

BPM's testing requires making a small beam and this will be done with a triplet (see fig. 3).

A small beam is made at TRS with a doublet in front of the spectrometer BHZ430. The arrangement chosen asks for a minimum of modifications to the existing line. Optics: 4 to 9.

2. A preliminary study for a beam recombination in the drive beam of CTF-2 by R. Corsini and L. Rinolfi (see Appendix 2).

Enclosures

Affer 1

Bunch Compressor (BC)

Figure 1: Horizontal beam envelopes. (...): 90% particles. (-): rms value.

F. Chanlard

Figure 2: Vertical beam envelopes. (...): 90% particles. (-): rms value.

1100 1166.75 LAS qd qf qd <u>qf</u> qd 500 ٨٩ 623.75 TRS-В 1.11.1 waist 223.5 223.5 223.5 223.5 223.5 5285.4 1700 12546.15

12546.15

S

Horizontal beam envelopes for the simplified CTF line. (\ldots) : 90% particles. (-): rms value.

Vertical beam envelopes for the simplified CTF line. (...): 90% particles. (-): rms value.

6

Beam characteristics at the

BPM's

For a 1 nC beam in the middle of BPN: (Le=50cm)

AE OnCAE OnCAE NonC
$$\overrightarrow{AE}$$
 Outh mm \overrightarrow{AE} NonC $\overrightarrow{Gn} = 0.43 \text{ mm}$ $\overrightarrow{Gn} = 0.9 \text{ mm}$ $\overrightarrow{Gn} = 0.43 \text{ mm}$ $\overrightarrow{Gn} = 0.9 \text{ mm}$ $\overrightarrow{Gn} = 0.43 \text{ mm}$ $\overrightarrow{Gn} = 0.9 \text{ mm}$ $\overrightarrow{Gn} = 0.43 \text{ mm}$ $\overrightarrow{Gn} = 0.9 \text{ mm}$ $\overrightarrow{Gn} = 0.13 \text{ mm}$ $\overrightarrow{Gn} = 0.9 \text{ mm}$ $\overrightarrow{Gn} = 0.14 \text{ mm}$ $\overrightarrow{Gn} = 0.9 \text{ mm}$ $\overrightarrow{Gn} = 0.2 \text{ mm}$ $\overrightarrow{Sn} = 0.64 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Sn} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Sn} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Sn} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Sn} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Sn} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Sn} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Sn} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Sn} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Sn} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Re} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Re} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Re} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Re} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Re} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Re} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Re} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Re} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Re} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Re} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Re} = 0.5 \text{ mm}$ $\overrightarrow{Re} = 0.2 \text{ mm}$ $\overrightarrow{Re} = 0.5 \text{ mm}$ $\overrightarrow{R} = 0.2 \text{ mm}$ $\overrightarrow{Re} =$

Ream characterictics at TRS

 \mathcal{X}

5~8

	'n
Momentum: P [MeV/c]	1. 2 ,
At the exit of the gun:	436
At the exit of the booster:	lo.57 •
At the exit of the bunch compressor:	-
At the entrance of the NAS:	-
At the exit of the NAS:	63.6
At the entrance of TRS:	
Momentum spread: $\delta p/p$ [%]	
At the exit of the gun:	2.5
At the exit of the booster:	3.35
At the exit of the bunch compressor:	
At the entrance of the NAS:	—
At the exit of the NAS:	0+54
At the entrance of TRS :	0.53
RMS transverse sizes [mm]	
At the exit of the gun:	x=y= 3 -
At the exit of the booster:	x=y=4.
• At the exit of the bunch compressor:	x= 2.6 , y= 0.9 🕴
At the entrance of the NAS:	x= 2·3 , y= 2·3 🖕
At the exit of the NAS:	x= 0.\$, y= 0.\$
At the entrance of TRS:	x= 0.56, y= 0.5
RMS transverse divergences [mrad]	
At the exit of the gun:	x'=y'= 1 7 .
At the exit of the booster:	x'=y'= 0.9
At the exit of the bunch compressor:	x'=0.9 , y'= 4.8
At the entrance of the NAS:	x' = 0.9, y' = 1.45
At the exit of the NAS:	x' = 0.9, $y' = 1$,
At the entrance of TRS:	$x' = 0, \frac{1}{2}, y' = 1,$
RMS normalized beam emittances ϵ [mm.mrad]	
At the exit of the gun:	$\epsilon_r = \epsilon_u = 32.4$
At the exit of the booster:	$\epsilon_r = \epsilon_u = 41.3$
At the exit of the bunch compressor:	$\epsilon_{n} = 41^{-1}, \epsilon_{n} = 52^{-1}$
At the entrance of the NAS:	$\epsilon_{1} = 419, \epsilon_{2} = 61$
At the exit of the NAS:	$\epsilon_{-} = h_{2}, \epsilon_{-} = b_{2}$
At the entrance of TRS:	c = 0, c = 62
Longitudinal beam extention σ_{-} [mm]	
At the exit of the gun:	$\sigma = 1.2$
At the exit of the booster:	$\sigma = 1.1$
At the exit of the hunch compressor:	<i>σ.</i> = 0.22
	II
At the entrance of the NAS:	$\sigma_{\star} = 0.23$
At the entrance of the NAS: At the exit of the NAS:	$\sigma_z = 0.23$ $\sigma_z = 0.73$

Table 1: Output data for **0** nC

Momentum: P [MeV/c]	4.38
At the exit of the gun:	
At the exit of the booster:	9.6
At the exit of the bunch compressor:	9.6
At the entrance of the NAS:	-
At the exit of the NAS:	62.5
At the entrance of TRS:	-
Momentum spread: $\delta p/p$ [%]	1.6
At the exit of the gun:	6.7
At the exit of the booster:	4.1
At the exit of the bunch compressor:	3.0
At the entrance of the NAS:	4.8
At the exit of the NAS:	1.0
At the entrance of TRS :	1.8
RMS transverse sizes [mm]	
At the exit of the gun:	x=y= 3.9
At the exit of the booster:	x=y= 4.7
At the exit of the bunch compressor:	x= 4 , y= 1.8
At the entrance of the NAS:	$x = S$, $y = 4 \cdot S$
At the exit of the NAS:	x= 1 , y= 1
At the entrance of TRS:	x= 0.6 , y= 0.56
RMS transverse divergences [mrad]	
At the exit of the gun:	x'=y'= 25
At the exit of the booster:	x'=y'= 1.4
At the exit of the bunch compressor:	x' = 2.2, $y' = 4$
At the entrance of the NAS:	x' = 1.8, $y' = 1.6$
At the exit of the NAS:	x'= 2 , y'= 1.6
At the entrance of TRS:	x'= 3 , y'= 1.2
RMS normalized beam emittances ϵ [mm.mrad]	
At the exit of the gun:	$\epsilon_x = \epsilon_y = 52$
At the exit of the booster:	$\epsilon_x = \epsilon_y = 56$
At the exit of the bunch compressor:	$\epsilon_x = 104$, $\epsilon_y = 53$
At the entrance of the NAS:	$\epsilon_x = 108$, $\epsilon_y = 62$
At the exit of the NAS:	$\epsilon_z = 195$, $\epsilon_y = 88$
At the entrance of TRS:	$\epsilon_x = 205, \epsilon_y = 79$
Longitudinal beam extention σ_{z} [mm]	
At the exit of the gun:	$\sigma_z = 1.4$
At the exit of the booster:	$\sigma_z = 1.4$
At the exit of the bunch compressor:	$\sigma_z = 0.4$
At the entrance of the NAS:	$\sigma_z = 0.5$
At the exit of the NAS:	$\sigma_z = 0.5$
At the entrance of TRS:	$\sigma_z = 0.5$

Table 1: Output data for 10 nC

Apreliminary study (Apr. 2) for a beam recombination in the drive beam of CTF - 2 R. Corsini, L. Rinolfi

. Stequirements . An RF dipole for recombination, · lepeometrical solution · Bean offics (dispersion, isochronici . Locusing . Treliminary conclusions

RF kicker studied at

3 GeV/c for long and short range wake fields L. Thorndahl, A. Millich

10 cells and 17 MW provide 0.6 mrad scaling at 70 Mel/ Deflection angle $\alpha = 26$ mrad relax constraints d = 10 mrad

Iris déameter 47 mm

Total length : 150 mm including beam pipes 4 (10 cells)

Shough estimation

for the transverse wakes

Voltæge for 10 mrad and 70 MeV $E.l = [tan \sigma] \cdot p \cdot \beta$ (V] (Geu/c] $E.l = 700 \, \text{kV}$

Voltage for transverse wake fields Erain of bunches speced beg 1 cm and 10 nG / bunch 2.83 kN/mm (A. Millich) Train of bunches speced by 5 cm and 10 nG / bunch 0.56 the for 1 mm of transverse offset.

Hexisting RF dijole for LIL and CTF

G. Carron, L. Thorndah!

Iris diameter : 2.3 mm Total length: 267 mm (6 cells)

 $\begin{array}{r} \theta = 0.814 \quad \frac{\sqrt{P(mw)}}{P(MeV/c)} \end{array}$

 $P = 1 M \longrightarrow 0 = 12 mrad$

Pmax = 30 MW -> Omax = 64 morad

Bean characterístics

70 Mel

10 mG / bunch.

Energy :

Charge :

Energy spread :

Beam sizes *

Bean emittances:

(normalized rms)

3 % $\frac{2}{2} = \frac{2}{2} = 5 \text{ mm}$ $\mathcal{E}_{i} \simeq$ 140 T mm. mrac Ev 2 60 It mm. mrac

Geometrical solution with a double septum magnet

Double septum Deflection angle mrad 70 • Septem tickness 2 mm ; Beam width 13 mm : Beam height 9 mm ; Integrated field 0.016 T ; Effective length 0.800 m ; Field 0.02 T Ewerent 4200

A.

Tig 7 Layout with a double septum magnet

Existing double septem BTSMV30 at the Booster machine (J.P. Delahaye) 2.6 mrad Seflection angle • Leptur tickness : 1 mm 2×69 mm Cotal gap Integrated field 0.0127 T.m / Effective length 0.400 m . Field : 0.03 T : 3036 A

Eurrent

Geometrical solution

with a quadrefole

Defocusing quadrupole:

Deflecting angle 40 mrad ; Insuited radius 20 m.m. ! Deam width 13 mm ; Seam height 9 mm : I treng th $11.1 m^{-2}$! efradient 2.6 T/m Effective length 0.4 m $4.4 m^{-1}$ Focal length $\left(\frac{1}{F}\right)$; Integrated gradient: 1 T

Fig 8 Layout with a quadrupole QD

Dipoles B2 and B3

Deflecting angle: 310 mrad Smin = 445 m.rad Smax =

13 m.m. Beam width :

Beam height: 9 mm

Dipole field : 0.26 T

0.4 m Effective length :

Gap : 40 mm

0.1 T Integrated field :

Sijole B2 could be a double window frame (P. Bossard)

Bean offics

with a double septem magnet

and

2 focusing quadrupoles

Conditions on the dispersion at the RF Ricker

 $D_{x} = 0$ $D'_{\mathbf{x}} = 0$

Condition of isochronocity

 $\int l = 0$ $\int p = \pm 2.5\%$

 $M_{56} \simeq 0$

Isochronicity Al ~ 0.03

mm

Dispersion contribution $\Delta x \simeq 0.25 \text{ mm}$

Quadrupoles for Dispersion and isochronicity

	QF1	QF2
Focal length $\left(\frac{1}{f}\right)$	6. 38	3.57 m
Effective length	0.100	0.400 m
Strength	63.8	35.7 m
Gradient	14.8	8.3 T/1
Integrated gradient	1.48	0.8 T
Incribed radius	40	40 mn
Transverse offset	29	52 mn
Deflecting angle	187	-187 mrac

(19

Advantages

1) it compact injection region is achievable (r 3 m)

2) All elements are standard and realisable at a relative low cost

3) The 2 beams have the same energy

Disadvantages

1) The phase shift between the 2 train. cannot be varied

2) Ele RF kicker requires MW of RF power

3) A blan loading compensation should be implemented.

Conclusion

. The recombination with a RF diple provides a compact injection region

. An offics solution is found for the <u>dispersion</u> function, the isochronous condition (at the first order) and for the focusing.

. The best solution between the double septem magnet and the defocusing quadrupole should be investigated.

. The real magnets and the second order contributions should be implemented in the model.