Franck Di Maio

SMACC system software October 88

PS/co/Nofe 83-02

SMACC system software
August 88 Revision

SMACC system software page iii

Contents
Part 1: User Manual e 2
F Bugs COMmections oottt e e e e 2
1.1 Timerbomb e 2
1.2 MIOS crashes e 2
2 User Programs MONItOIING oo vttt e et et e e e 2
2.1 General Description e 2
2.2 Functionnality e 3
2.3 StIUCHUNE . . . e e e e 3
24 Interface e 3
241 FUNCHONS ...t et e e e 3
2.4.1.1 Diagnostic Functions i 3
24.1.2 Brror functionst e 5
242 Data ... 6
2.4.2.1 Monica—like SMACC errorcodes oviiinn. 6
3 Debugger Interrupt 7
3.1 General descriptionot 7
3.2 Functionnality 7
33 Interface 7
330 Signals . .. e 7
332 Data .o e 7
4 Interrupts MONILOTINGttt et et 8
4.1 General description e e 8
4.2 Tunctionnality 8
43 Interface e 8
4301 Procedures . ..o e 8
432 Data ... e e e 9
4.3.2.1 Interrupt vectorstable 9
4322 Interruptcountstable 9
S5 Clear RAM Interrupt oo 9
5.1 General description e 10
5.2 Functionnality e 10
5.3 Interface 10
Part 2: Implementation Details 11
6 XMON Module — User Programs monitoringo, 11
6.1 Programstable 11
6.2 USEr BVENS . . oo e 1
6.3 Initialization e 11
6.4 Uscrevent handler 11
6.5 Programs status function 12
6.6 Program detailed information e e 12
6.7 Attach event handler e e 12
6.8 Detach event handler 13

6.9 Exception event handler e 13

SMACC system software page iv

7 INTSURYV module ~ Interrupts monitoring 13

7.1 Module Content e 13

7.2 Inittalisation 13

7.3 COMNISR patch e e 13

7.4 Nodalinterface 14

8 CLEARINT — Clear RAMinterrupt i e 14
Appendix A: Sample NODAL program using new features (SMACC — DEBUG overlay). 17
Appendix B: RMS Events e e e e 19
Appendix C: Exception Codes e 20

Appendix I Monica error codeso e 21

SMACC system software page |

SMACC system software page 2

Part |

User Manual

1. Bugs Corrections

1.1 Timer bomb

RMS version 4.4 kerncl hold a bug which caused a dead —lock (infinite loop at interrupt level 7),
about 20 days after startup. This bug has been corrected

1.2 MIOS crashes

MIOS (Monica Input/Output System) is still (and will stay forever) a fancy product. Block 10 of
characters are not well supported. There are 2 ways to receive blocks of charaters: turning echo on
and terminating blocks with a “Carriage Return”. The first solution has been used in the previous
FEPROM versions, it leads to system crashes under certain load circumstances.

MIOS has not been corrected in this version, but the communication software with the Macin-
tosh has been modified to use CR termination instcad of echo.

MacNodal Versions 2.1DD12 and upper are compatible with this correction.

2. User Programs Monitoring

2.1 General Description

Programs monitoring is acomplish in the SMACC by an cxception monitor task which may be
consulted remotely by means of interface routines accessible via RPC. Only the programs (up to 8)
declared by the user, currently via STID_TASK macro, are monitored this way. The purpose is to pro-
vide (1) synthetic information on the status of cvery user’s programs and (2) detailed information on
any user’s program for diagnostic or debugging purposes.

SMACC system software page 3

2.2 Functionnality

1. Provide RPC interface to obtain global information for every SMACC’s programs: name,
internal status (started, stopped by an error or terminated), and RMS status if meaningful.

2. Provide RPC interface to obtain detailed information for any monitored program: 68000
registers and diagnostic message if program is stopped.

3. Provide support (diagnostic messages) for exceptions and run—time errors (from compilers
and libraries). Diagnostic messages for run —time errors may be wrong when using monica
vs 1.0 libraries.

4. Provide support (library + diagnostic messages) for the treatment of SMACC specific errors:
RMS errors, ISR exceptions...

2.3 Structure

IEvent — driven exception monitor. Must be started prior to any user program. Dedicated to user
programs monitoring only. Crash system if error in this task (no crash for user programs).

2.4 Interface

2.4.1 Functions

2.4.1.1 Diagnostic Functions

Global status:

PGSTAT(NB, NAMES., INT.ST, RMS.ST)

NB is integer reference,

NAMES. is string reference,

INT.ST and RMS.ST are integer arrays.
Fivery array size must be 8.

SMACC system software page 4

The number of monitored programs is put into NB, every task’s 1D first long word are concate-
nated into NAMES. (4 bytes / program), internal status and RMS status into INT.ST and RMS.ST.

L internal status:
0 — non —existent,
I — started,
2 — stopped,
3 — terminated,

U RMS status (reduced to 16 bits) :
bit 15 — dormant,
bit 14 — wait,
bit 13 — wait on semaphore,
bit 12 — wait for cvent,
bit 11 — wait for acknowledgement (from trap server),
bit 10 — wait for command (from exception monitor),
bit 9 — suspend,
bit 8 — reserved,
bit 7 — termination pending,
bit 6 — will return to RMS when next dispatched,
bit 5 — dispatched to ASR,
bit 4 — ready,
bit 3 — wakecup pending,
bit 2 — terminating, wait for ack,
bits 1 & 0 — reserved,
Remark : bits 8 to 15 may be tested to know whether a program is running or waiting.

At least 32 bytes must be available in the string, otherwise,Nodal error #40 ("Result string filled”)
is raised. Nodal error #23 (“Array dimension error”) is raised if pb with array parameters.

sample syntax (misses some checks):

>SE SMACC.=1

>SE NB = 8; $SE NAMES.="";DIM-I INT.ST(8) DIM-1 RMS_ST(8)

>RPC#SMACC. PGSTAT W_NB[16] W_NAMES. W_INT.ST W_RMS.ST

>FOR I=1>NB; TYPE SUBS (1+(I-1)#4,44+(I-1)*4,NAMES.) INT.ST(I) JIRMS.ST(D) !

Detailed information on one program:

PGWHAT(NAME,, INT.ST, RMS.ST, D.REGS, A. REGS, PC, SR, MESS.)

NAMI. is string value (string size = 4),

INT.ST & RMS.ST are integer references,
D.REGS & A.REGS are integer arrays (size = 16),
PC is integer array (size = 2),

SR is integer reference,

MESS. is string reference.

NAME. parameter is used to pass the first long —word of the task 1ID. If the size is not 4, Nodal
error # 55 (string function failurc) is raised. INT.ST & RMS.ST receive status information, as for

SMACC system software page 5

PGSTAT. D.REGS & A.REGS receive Dn & An register values, D.REGS(1) is the most significant
word of DO (bits 16 to 31), D.REGS(2) is the less significant word of DO (bits 0 to 15) etc. PC & SR
receive Program Counter and Status Register. MESS. reccive a diagnostic message if INT.ST is
“Stopped” (i.e. 2). RMS.ST, D.REGS, A.REGS, PC and SR are valid only if INT.ST is “Started” or
“Stopped”.

Sample messages:
“1 ink — edit error”,
“Stack overflow error”,
“Illegal instruction”,
”Arithmetic overflow in ISR, at PC = 001000,
"RMS error: START — $0003”...

2.4.1.2 Error functions

A set of functions is provided in — smacc/lib/xmon_lib.ccu in order to let the user gencrate well
defined errors under certain circumstances: RMS directive failure, ISR exception event reception, inter-
nal fatal error detection... These user generated errors are handled in the same manner as run—time
errors (cx: arithmetic overflow), this means, currently, that the faulty task is left stopped in its error
state. Diagnostic messages describing these errors are build by the interface functions of this module.

These function generates “line 1010” instruction, as described in the previous chapter. No stack
frame is created (i.e. no LINK/UNILK instructions) to facilitate debugging: it leaves the caller stack
frame pointer in A6. These functions are therefore written in assembly language, C syntax is provided
for clarity.

RMS errors checking:

Traps if a result code, as returned by a RMS directive, is '= 0.

void chk_rms_code(code) long code; {}

[ixample:

chk _rms_code (C_START (8pb_starts &name));
/% uill generate fatal error if illegal target task ID %/

ISR errors checking:

Traps if an ISR event reports an exception. Ioad the event address in A0 before the exception.

SMACC system software

page 6

void chk_isr_event(event_address) long event_address; {}

Fixample:

chk_rms_code (C_GTEVNT (event_address)); /% get next event (critical) %/
chk_isr_event ((long) event_address); /x it isr exceptions fatal error %/
switch(avent_address->type) ... /% else x/

Auto error generation:

Traps cvery time. The user must pass a long integer value which will be put in D0.L

void self_error(code, message) long code; char smessage; {}

Example:
/% if data != 8, fatal error; record time %/
if (data != 8) 1

sprintf(message; "Illegal value: %d", data);
self_error(time(),message); /% put time in parameter x/

2.4.2 Data

2.4.2.1 Monica —like SMACC error codes

Opcodes: $A1xx.
$A180 — RMS error
$A181 — ISR crror
$A182 — Self error
$A183 — Iixception return error (top frame reached)
$A184 — Tllegal entry — point (dummy entry in smacc’s libs)

SMACC system software page 7

3. Debugger Interrupt

3.1 General description
An interrupt routine is connected to the level 7 auto —int vector at startup and may also be con-

nected to other interrupts (trace int) by the debugger (SMACC — DEBUG) in order to (1) be able to
make a snap — shot of the processor’s registers or (2) force the system to enter into a debugging status.

3.2 Functionnality
1. React to unmaskable debugger interrupt gencrated by the FIIC via the CAMAC “Abort”
function: 1'25.A2 by (1) saving the processor status (registers value) in a place known by the

debugger and (2) suspending the processor (sclf F25.A1).

When this interrupt is raised, the SMACC may either be signalled to continue (I'25.A0) or to
restart (F28.A0).

3.3 Interface

3.3.1 Signals

1. The debugger signals the SMACC to enter into debugging mode by the CAMAC “Abort”
function: F25.A2.

2. The SMACC inform the debugger of beeing in debugging status by issuing the CAMAC sus-
pend function on itself: 1'25.A1, therefore setting the “suspend” bit (bit 14) in “Processor Sta-
tus Register” (word read by I'1.A2).

3. A SMACC in debugging state may be signalled to continue by the debugger via the
CAMAC “continue” function : F25.A0 or to restart via the CAMAC “reset” function:
[728.A0.

3.3.2 Data

Global variable : "DEBREGS”, pointer to the current System Stack where registers have been
saved:

struct |
tong USP;
/% User Stack Pointer at the time of the interrupt %/
long D_registers(8];/% D8-D7 %/
long A_registers(7];/x AB-RE */

long int_PC; /% Interrupt vector + 4 %/
short SR; /% Status Register %/
long PC; /% Program counter x/

} *DEBREGS;

SMACC system software page 8

DEBREGS value + 74 is thercfore SSP value at the time of the interrupt.

A pointer to this vector is in the jump —table at $80018.

4. Interrupts monitoring

4.1 General description

A facility must be provided for exploitation purposes in order to check that interrupts are correct-
ly triggered in a given SMACC. This facility could be used by a monitoring program in the FECs.

4.2 Functionnality

1. Provide via RPC, for LAM, FPI & INTRQ interrupts, the number of time the interrupt
occured since startup (modulo 2—15) if an Interrupt Service Routine is connected (via
RMS) or a fixed value (— 1) if not. As it may be executed frequently, the RPPC must be
optimized for FEC load sake.

2. Update internal tables for counting the occurence of LAM, FPI & INTRQ interrupts if an
ISR is connected. This may only be used by specialists if the RPC is not available.

If the RMS mechanism is by —passed (i.e. if code address is dircctly put in interrupt vector), the
count stays 0.

4.3 Interface

4.3.1 Procedures

Count valuces returned by procedures:
— 1 if no ISR connected,
0 if ISR connected but never triggered,
> () otherwise.

INTCNT(LLAM.C, I'PL.C, IRQ.C)

Parameters:
LLAM.C is integer array (size = 23), index is station number

SMACC system software page 9

FPLC is integer array (sizc = 4), index is Pl number
IRQ.C is integer array (size = 2), index is INT.RQ number

4.3.2 Data

For specialists only. 2 tables must be consulted in case RPC cannot be used.

4.3.2.1 Interrupt vectors table

struct |
long spurious; /% vector 64 %/
long l1am([23]; /% 1aml8) is station 1 %/
long dummy_11(8];
long intRql2]; /% intRqlB] is INT.RO2 %/
tong dummy_21[2];
long fpildl; /% tpil8] is FPI4 %/

The address of this table is $100. If vector is “COMINT” address (address in map), interrupt is
not connected. “COMINT” address should be left in dummy pointers (dummy_1 & dummy_2 arrays).

4.3.2.2 Interrupt counts table

struct {
short spurious;
short lam[23]; /% lam[@] is station 1 %/
short dummy_11[81;
short intRql2]; /% intRq(8] is INT.RQ2 %/
short dummy_21(2];
short fpilél; /% fpil8] is FPI4 %/

Counts are always > = 0. All values arc set to 0 at system startup. The external name of the
table is 7_INTCOUNT” (for map use). A () value means (1) no interrupt scrvice routine is connected,
(2) the interrupt does not occured or (3) special code address has been directly put into the vector
table. Casc (1) and (2) may be identified by looking into the interrupt vectors table: the vector is
either COMINT or a pointer to an entry in the 1/O vector table containing the code: “JSR
COMNISR” (address in map). No pointer 1o this table is available in application environment.

5. Clear RAM Interrupt

SMACC system software page 10

5.1 General description
An interrupt routine pointer is available in the jump —table. It may be connected to the level 7

auto —int vector by a FEC’s program in order to force a “reset to 0” of the whole RAM. This may
be used to make a quick cleaning of the memory and check that all the memory is accessible.

5.2 Functionnality

1. Clear all RAM
2. Check that the RAM is (s. al=RAM.
3. Maximum execution time : 1s (maximum dclay between the interrupt arrival and a normal

execution termination).

5.3 Interface

A pointer to the vector is in the jump —table at $80028. This pointer must be copied into level 7
interrupt Autovector ($7C) before sending the interrupt.

The interrupt is raised by CAMAC “Abort” function: F25.A2.

The interrupt normal termination is signaled by (1) the SMACC beeing suspended (bit 14 in
PSR, read via F1.A2) and (2) a 0.1 at location 0.

SMACC system software page 11

Part 2

Implementation Details

6. XMON Module — User Programs monitoring

6.1 Programs table

#define MAX_TASK 8 /% Req 2.1.4 %/
typedef struct |
long name;
short status;
short exc_code; /% used to record exception code %/

} prog_info;

static prog_info prog_table[MAX_TASK];

6.2 User events

When a system task : NODI or XRPC executes an interface function, it requests the target task’
status by posting a user event to the exception monitor.

struct |
char length; /% 14 %/
char code; /% 3 %/
long taskID; /% requesting task %/
tong dummy_1;

long name; /% target task %/
long status_receive_area_pointer;

6.3 Initialization

. Clear names in program table and set status to “non —existent” (0)
] Allocate ASQ, size for | event |/ program.

6.4 User event handler

— acquire task state (RSTATE) — wake —up requesting task

SMACC system softwarc page 12

6.5 Programs status function
Nodal function : PGSTAT.

C function:

void xmon_pgstat(number, names, int_status, rms_status)
short *number;
char *names;
short *int_status,
*rms_status;
it

P

. Reset number to 0 and names to ””.
. Scan programs table: for every programs with (name !'= 0)
—_ incrcmcnt numbcr & names
— copy internal status into int_status,
— if status = = “started”, acquire task state (QEVENT + WAIT) and copy rms status into
rms_status parameter.

6.6 Program detailed information
Nodal function: PGWHAT.

C function:

void xmon_pgwhat (name, int_status, rms_status,
d_regss a_regs, pcs» srs message)
long name;
short *int_status,
*rms_status;
long *d_regs»
*a_regs;
long *pc;
short *sr;
char kmessage;

Get program table entry from name.

Acquire task’s state (QEVNT + WAIT).

Update register parameters and rms_status.

If internal status is “stopped”, build diagnostic message.

e & o o

6.7 Attach event handler

Allocate an entry in progs table & record name.
Set status to “non —existent”.

Start task (REXMON)

Set status to “started”

SMACC system software page 13

6.8 Detach event handler

. Set status to “terminated”.

6.9 Exception event handler

i Set status to “stopped”

7. INTSURYV module — Interrupts monitoring

7.1 Module Content

. Count table.
. Init function (see next section).
. C interface function (see lower)

Interface function (external name GETINDCOUNT) :

short getintCount (lamDatas fpiDatas irqData)
short xlamDatas xfpiDatas *irqData;
{

File : —smacc/rms_sys/intsurv.c

7.2 Initialisation
At startup, the monitoring task ("XMON” or "ERL.G”) execute “initIntCount” routine (name
“ INITINTCOUNT”). This function set all counts to 0 and copies into an internal address the vector

“dummy_1[0]” (see upper) which should be COMINT address.

File : - smacc/xmon/xmon.c

7.3 COMNISR patch

. Increment interrupt’s counter.
. Wrap to 1if <0.
File : — smacc/rms68k/kernel.src

SMACC system software page 14

7.4 Nodal interface

Internal C routine is interfaced for RPCs, the size and type of the arrays arc checked, array
dimension error (23) is returned if not consistent. C functions return value is also treated as Nodal
error if < > (.

Fiile : —smacc/rms_gen/nod2c_interf.asm

8. CLEARINT — Clear RAM interrupt

When the interrupt is activated:
write $50000.1, at location 0 (counter)
while counter > 0
— decrement counter
— clear location
— check value is
- if not, suspend SMACC.
. suspend SMACC.,

SMACC system software

page 17

Appendix A

Sample NODAL program using new features (SMACC - DEBUG

overlay).

#c SAMPLE PROGRAM USING VS 2.2 (AUG 88) EPROM FACILITIES
¢ F. DI MAIO

Fodal

1.85 D0 5

1.18 TY "1 - Processor snapshot"!
1.28 TY "2 - Interrupts monitoring"!
1.38 TY "3 - Programs monitoring"!
1.48 TY "4 - Clear & test whole RAM"!
1.91 ASK "What" OPT.

1.92 IF OPT. > 4 ; GOTO 1.18

1.93 DO OPT.x18

1.99 GOTO 1.18@

5.5 DIM-1 T(256)
5.18 SE LP=8;SE CR=8;SE $T=8

5.15 ADACC (ARG (1),LP»CR,STY;IF LP=-1;TY "Iflegal ACCA" ARG (1) !;END
5.28 SE X0=8

6.18 IF BIT(14,XQ)<>0; RET

6.15 TY "No X Response:"

6.28 TY " loop " %L LP " crate " %1 CR !
6.38 END

% Processor Snapshot

18.85 SE V=SCAM(LP,CR,»ST»2,1,X0); DO 6; % PSR

18.86 IF BIT(14>V) = 1; TY "SMACC is already SUSPENDed" !; RET

18.18 SE V=SCAM(LP,CR,»S5T»2,25,X0);00 6 ;% "Rbort" function

18.15 SE V=SCAM(LP,CR,ST»2,1,X0); DO 6; % PSR

18.28 IF BIT(14,V) = 8; TY "SMACC does not respond" !; RET

18.25 SE T(1)=8; SE T(2)=[[0018

16.38 GET(RADT(T»1),T,2);GET(ADT(T»1),7,2);5E DR=ADT(T,1); GET(DR»T>37)
18.35 SE DR=DR+74 ;% System SP at the time of interrupt

16.49 TY "SSP = " 1) (DR/65536) 11MOD (DR,65536)

18.55 TY " - UYSP = " 11T(1) 11T(2) !

18.57 TY "PC = " J)T(36) 11T(37) " - SR = " 117(35%) !

18.68 FOR I=8,7;TY &3 "D" %1 I "=" J1T(3+I%2) }IT(4+I%2);IF MOD(I54)=3;TY !
18.65 FOR I=8,6;TY &3 "A" %1 I "=" 11T(19+1%2) 13T(28+1%2);IF MOD(L,4)=3;TY |
18.66 TY !

18.78 SE V=SCAM(LP,CR,5T,8,25,X0); DO 6;% Signal the SMACC to continue
19.75 SE V=SCAM(LP,CR,ST»2,1,X0); DO 6; % PSR

18.76 IF BIT(14,V) = 1; TY “SMACC does not CONTINUE"!

% Interrupts Monitoring
20.85 DIM-1 LAM.C(23); DIM-I FPI.C(4); DIM-I IR0.C(2)
208.18 RPCARRG (1) INTCNT W_LAM.C W_FPI.C H_IRQ.C
26.15 TY &2 "LAMs " 84S "FPIs " &5 "INT.RQ™!
26.20 FOR 1=1,5; DO 21
21.18 TY %2 1 ":" %5 LAM.C(D) " "
21,11 TY %2 145 ":" %5 LAM.C(I+5) * I
21.12 TY %2 1+18 ":" %5 LAM.C(I+18) " "
21,13 TY %2 1415 ":" % LAM.C(I+15) " "
21.14 IF 1<=3; TY %2 1428 “:" %5 LAM.C(1428) " "
21.15 IF I=4 ; TY &8
21.28 IF I<= 43 TY "1 " %1 1 ":" %5 FPI.C(I) &1
21.38 IF <= 2; TY "I " %1 I ":" % IRO.C(D)
21.48 TY !

% Programs Monitoring
30.85 se nb=8; %se nm=""; dim-i is(8); dim-i rs(8)
30,18 RPC#RRG (1)PGSTAT W_NB(161 W_NM W_IS W_RS
30.15 IF NB = 8 ; TY "No Program found"; end
38.20 F I=1,NB; DO 31
31.18 TY "*" SUBS (14 (I-1)%4s44(I-1)%4,N1) "> ~ "
31.28 IF IS(I) = @; TY "Non existent"!;RET
31.25 IF IS(I) = 2 ; TY "Stopped (exception)” !; RET
31.38 IF IS(I) = 3 ; TY "Terminated"! ; RET
31.48 IF IS(I)= L ; TY "Started" ; GOTO 31.58
31.45 TY "-~- XMON ERROR --- prog status =" %2 IS(I); RET !
31.58 TY "» RMS status=" % 1IRS(D)
31.55 IF RS(I) > 256; TY "(Task is waiting)"
31.68 Ty !
38.38 SE 1.S =8; SE R.S =8;DIM-I D.R(16); DIM-I A.R(16)
38.35 DIM-1 PC(2); SE SR=8; $SE MES.=""
30.48 $ASK "Additional info on which task ? (4 chars mandatory)" nm
30.45 RPC#ARG (1)PGUHAT R_NM H_I.S5016) W_R.ST16)1 W_D.R W_A.R W_PC W_SR[16) W_MES.
38.58 DO 32

32.85 IF 1.5 <> 1 ; IF 1.5 <> 2;TY "No info on that task"!; END
32.18 TY "PC =" JIPC(1) 1IPC(2)

32.15 IF 1.5 = 2; TY "“Stopped - " MES.

32.16 TY !

32.20 FUR‘I=B’7;TY 83 "D" %1 1 "=" J1D.R(1+I1%2) 11D.R(2+I%2);IF MOD(I,4)=3;TY !

SMACC system software page 18

32.21 FOR 1=0,7;TY &3 "A" %1 1 "=" 11A.R(1+I%2) JJA.R(2+I%2);IF MOD(I,4)=3;TY !

% CLEAR LAM INTERRUPT

49.18 SE T(1)=8; SE T(2)=018828

48.15 GET(ADT(T,1),7,2)

48.28 PUT(LI7C,T»2)

48.38 SE V=SCAM(LP,CR,ST52,25,XQ);D0 6 ;% "Abort" function

48.48 WURIT-T 2

48.58 SE U=8; GET(U»T,2)

40.68 IF T(1) <> B8 OR T(2) <> 8; TY "Faileds address:" 11T(1) 11T(2) !

99.18 SAVE (NEW-RMS)DEMO-EPROM-22

SAVE (VOL)TEST-XMON

SMACC system software page 19

Appendix B

RMS Events

ixception monitor events:

struct {
char length; /¥ always 12 %/
char code; /% aluays 8 x/
long task; /% task 1D %/
long dummy_1; /% Task session %/
char exc_code; /% exception code x/
char exc_type; /% exception type %/

/% 1 - task attached x/
/% 2 - task detached %/
/% 3 -~ Exception %/

ISR events:

typedef struct |

char tength; /% 18 it error %/

char code; /% always 2 */

long error_code; /% $FFFFFB80 + code %/

tong PC; /% program counter at error time %/

I ISR_event_rec;

SMACC system software

page 20

® & 0 & & 6 O o o o o o o

$00 :

Appendix C

Exception Codes

reserved.

$01 to $OF : Trap instructions.

$10:
: address error
$12:
$13:
$14 :
$15:
$16:
$17 :
$18:

$1t

bus error

illegal instruction

zero divide

CIIK instruction

TRAPV

privilege violation

line 1010 emulator ($Axxx instructions)
line 1111 emulator ($I'xxx instructions)

$19 & $1A : Not used.
$1B to $1E : Exception manager codes:

Fxception codes found in ISRs events are identical, in the range $10 to $18.

$1B — Maximum count reached
$1C — Traced 1 instruction
$1D — Value change occurcd
$11F — Value equal occured

SMACC system software page 21

Appendix D

Monica error codes

Monica error codes arc inserted in the “line 1010 emulator” instructions: opcode is: $A1xx, with
xx being the error code.

Version 1.0

$00 Ii_Relkrr Pusher relocation error
$01 IF_Return return to MoniCa monitor
$02 IL_Buskrr bus error

$03 E_AdrErr address error

$04 IE_llglns illegal instruction

$05 E_DivZer zero divide

$06 I:_ChkErr boundary error

$07 E_OvfTrp overflow trap

$08 E_PriVio privilege violation

$09 I¥_Trclirr trace vector

$OA E_EmITrp line 1010 emulator

$0B II_Em2Trp line 1111 emulator

$0C E_UnxInt exception vector #

$0D E_NoSpac no more space for NEW
$0E E_Stckl.ow initial stack too small
$01° i_StckOv stack overflow

$10 E_StckCor stack/heap corrupted

$11 E_SetErr set element error

$12 I _IntOvf integer overflow

$13 E_AriOvf real number overflow

$14 E_EOF end of file

$15 E_IllAce illegal file access

$16 1i_Nlnt illegal integer on file

$17 E_Inplirr char. lost/ buffer overfl.
$18 I;_Syskirr system error message

$19 E_SubVio subrange violation

$1A E_ChaVio character range violation
$1B E_PtrErr pointer outside range

$1C I[_Caskirr case statement error

$1D E_GloJmp global jump crror

$1E E_lHalt halt requested

$1F E_Break break received

$20 E_Auto auto vector interrupt

$21 Ii_BkpFound breakpoint found

$22 E_NolunRes no function result defined
$23 I¥_BadStack bad SSP/MSP

Codes $02 to $0C are considered illegal in our context.

Version 1.1
$00 — Ii_Relbirr Pusher relocation error

SMACC system software

page 22

$01 — E_Rcturn
$02 — E_Buskirr
$03 — E_Adrlir
$04 — I Ilgins

$05 — E_DivZer
$06 — Ii_ChkErr
$07 — E_OvfI'rp
$08 — E_PriVio
$09 — I _TrcErr
$0A — F_Em!Trp
$0B — E_Im2Ttp
$0C — E_CopVio
$0D — Ii_FormEr
$OIF — E_Unilnt
$OF — I_Spulnt
$10 — E_I'PCP48
$11 — E_I'PCP49
$12 — E_FPCP50
$13 — II_FPCP5I
$14 — I_I'PCPS2
$15 — E_IFPCPS3
$16 — II_FFPCP54
$17 — I_PMMUS6
$18 — I_PMMUS57
$19 — E_PMMUSS8
$1A — E_UnxInt
$1B — E_NoSpac
$1C — E_Stckl.ow
$1D — E_StckOv
$1 — E_StckCor
$1F — B SetBErr
$20 — E_IntOvf
$21 — E_AriOvf
$22 - E_FOF

$23 — F_MllAcc
$24 — E_Illnt

$25 — F_Inplirr
$26 — E_Syslirr
$27 — E_SubVio
$28 — Ii_ChaVio
$29 — E_PtrErr
$2A — I_CasErr
$2B — E_GloJmp
$2C — I_Ialt

$2D — [Break
$2E — IE_Bkpliound
$2IF — II_NoFunRes
$30 — E_BadStack

return to MoniCa monitor
bus error
address error
illegal instruction
zero divide
boundary error
overflow trap
privilege violation
trace vector
line 1010 emulator
line 1111 emulator
coprocessor violation
format error
uninitialized interrupt
spurious interrupt
MC 68881 coprocessor
MC 68881 coprocessor
MC 68881 coprocessor
MC 68881 coprocessor
MC 68881 coprocessor
MC 68881 coproccssor
MC 68881 coprocessor
MC 68851 coprocessor
MC 68851 coprocessor
MC 68851 coprocessor
exception vector #
no more space for NEW
initial stack too small
stack overflow
stack /heap corrupted
set element error
integer overflow
real number overflow
end of file
illegal file access
illegal integer on file
char. lost/ buffer overfl.
system crror message
subrange violation
character range violation
pointer outside range
case statement error
global jump error
halt requested
break received
breakpoint found

no function result defined

bad SSP/MSP

Codes $02 to $1A are considered illegal in our context.

List de distribution PS/C0/Note 88-2

Adorni
Benincasa
Burla
Casaleygno
Cuisinier
Daems

di Maio
Gagnaire
Giudici
Heinze
Lelaizant
Lewis
Mérard

de Metz-Noblat
Perriollat
. Raich

h. Sere

.H. Sicard

ErSsxEZma2meaarvas

aaasm

Arruat
Bouchéron
Fernier
Poncet
Soby
Vandorpe

et S X

