CERN PS-CO Note 92-002
version 1.0 29/01/1992

Using DSC at PS

User’s manual and cookbook.

This manual is aimed to application developpers in the DSC environ-
nement at PS,

This edition (version 1.0) is a first draft and a partial delivery. Addi-
tionnal chapters will follow Iater...

This manual is issued by:

Alain Gagnaire,
Wolfgang Heinze,
Julian Lewis,
Nicolas <le Meiz Nobiat,
Clou~le-tiern Sicard.

With the contribution of: H. Abie, F. Berlin.

CERN Geneva, Switzerland, January 1992

Cern Geneva 1992

PS division, Control group.

Contents

The Device Stub Controller (DSC) ... v
Main functions of the DSC: ...ttt veeersssssessesasasasasenes v
Hardware platforms:ccocvveimveiireniirninincienicinecinecensceeesenessanesesseessnees vi

1 File-system road map

INtroduction:eiiicciieccriecirrecseesesstesesaeccensessesasessstnsssssssesssssssesasesenans 1-1
OBJECES ...ueieeeeieittecicreeerrtecestreecraseesssne e ssaessssesesssaessssasssnnsasssnnessssnesnes 1-2
ACHIVILIES ...ttt ceccereece s cnneeee s sranees e s snnesesssssaseassesssssessasaes 1-2
.. 1-2
.. 1-2
DSC paths seen from the DSC and accelerator levels:........................ 1-3
Symbolic links on DSC: ... iiiiiiirreirceecrseresreecrreessssessssssssensnses 1-4
Accelerator paths seen from the accelerator and MCR levels: 14
General remarks:cocceeeeeeniiereierienneisieneneeesneeesesessessesssnessnenes 1-5
Environment variables:ccoooveirvciiinneiiiinieiceeece et eeees 1-6
Dependence of environment variables:ccccccvreeeiieeneenineniiennnens 1-6
The TEST enVIronmENt:cccvviveeeirereecseeniseerieseseesssesseressssessssssssessassssees 1-7

The DEVELOPMENT environment:ccccccceeeciieeeeveeecrveeessaneeeseescessenens 1-8

2 Local utilities on Lynx systems

TeXt @AILOTB ...coccieeirierierrtrieieeerreeeeeceressseeesseessteessnessessssssessasaseessessessasassannse 2-1
Printers and printing Utilitiesccccovverrreeeniicieeneenresssenesieessrereseeesseeenne 2-1
The NODAL interpretercveiiiieeercirciceeeeeieeeestteeessessesreeesessnsesssssasannns 2-2
Sharing files with the PS control Ultrix system.c..ccccovvevrreccnnennnen. 2-2

3 LynxOS utilities

File Managementcccoooieiiiiiiiiiiieeeeee e eeeieeiieeeeeeeeeieneees 37 1
Utility Programscccccoiiiimiiiiini e ST 3-]
Program developmentcccoeiiiniienen - o e 3-3
System Manangementccccoeevenreennn. . . 34
Network utilitiesccoovvieiniicn, L3-A
Network serverscccocovvvieveivneeeiinen . ..3h
NFS Managementccccooiiiiiiiiieiereerieeeeeeeete e s e e siens e svteaestaeeeeseens 3-6
LADIraries: ..ottt sttt sttt st s st ssa e 3-6
Special flles.........eeiiiiieiece ettt s eese e e e nane 3-6
NFS Lbrary routinesccccceeeveeeeeeeeeneereneesseeenieeneesraeensessseeeseeseseesesneesseee 3-7
PS additionscccoeeriiiiiiiiererreee st sttt e e e e e s e s 3-7

4 Diskless LynxOS Systems

Principles of 0perationcccccovreeeininciinieicnecnneneecnreennnrnressessesssesssnenees 4-1
Execution environment..........ccccecccueeeenieeecnieeeieseseessuseesessssecsssssessssssssasssnns 4-1
The read-only shared environment (/usr)cccceceevreenereenneenenereecnnnenne 4-3
The read-write permanent environment (/Var)cccccceerverneerererceecreecnns 4-3
Setting-up a New boardcooviiiiiriiiinienneinrnnre et eae e sseseneas 44
DSC configuration management on the server.ccceeecviveiicevereennnn. 4-6
Maintaining the diskless environment.cccccccuerereerrceeerrcerrererreceneecnenes 4-7

5 Backup/restore of MVME147 disks

Doing a system backupc..cccoiiiiiiiiniinniinininniiniicneniecnerissnesnaescesaenas 5-1
Restoring system backup:coeeeerveeiieceecinnriieeecccneeeeecreeccecnnnneesseocsssens 5-2
Other BACKUDScccoiviceiiiineiininierieneniiesscsticsestsessssesnsssssnsssossossssssssassassanss 5-2

6 Understanding VME space in a DSC

Reminder of basic VME addressing from a DSC processor (CPU)............ 6-1
Addressing mechanisms principle in a DSCi:ccccccvvucvvennnrecnsnccnes 6-1
VME BCCEBS :ocervieniieeciiisinssiniieeassssstissssosssassrsssssosssssssssssssssssssssssssses 6-1
The VME space as seen from the CPU :ccooivvviveicniniinninenncnn 6-2
The VME space as seen from the Operating System : 6-3

VME module visibility from the CPU board.:.........c..cccceervrieecennuvecrreeenee 6-4
VME space mapping in the CPU adress space:cccceeevvinucnnenne 6-4

For the MVME147 SYS1147U/D1 CPU board :......cccceeeeveueecenvesncnnces 6-4
For the MVME147 MVME147S/D1 CPUboard :cccocevenirenenancenn 6-4
For the THEMIS TSVME13x CPUDOAI :ccvovveeunirenenencnenensucnence 6-5
Lynx O.S. facility to directly access the VME space:.........ccccoeveverunnene 6-b6
Hints to compute the 32 bit CPU address of a VME module : 6-5

VME space visibility from Lynx O.S.:, tresesetereeseererasesteeeseessnsnsnseasasason 6-6
System virtual address mapping (mem.h) :ccccevrivurrnnieiiannnnnen. 6-6
Hints to compute the system virtual address of a VME module : 6-7

7 VME - Addressing facilities library

VME accesses via library calls for application portability:c.cc..... 7-1
The VME module address in the library interface:.........cccccceeeinnnenernnnnenn. 7-1
The C library interface for the VME access facilities: (vmebuslib.o) 7-2
How to use the Hbrary:ccceveciiveiiiiiniiiiniinnnnieennnnnnnnaeneen 7-2
READ_VME, WRITE_VME : Read/Write from the VME bus 7-2
VME_MNGT : Function to get rid of module visibility after accesses.7-2
Error codes:ooovmiiiiieeiiiieeire e o73
The NODAL VME access interface: o . |
VME R/W function oooeeieeeceieeee e e 7-4
VMEMNGT Call functionccoooreeiieeriiienieiiei e e 7-4

8 Installing a VME mocule in a croie

Inserting a board in @ slot ofa VME crate: 81
Setting of the JUMPETs:cccccciiiiueiriiirieceee e 8-1
PN 273 110 (o) « RO OO PP U PPRRRt 8-1

9 Loading drivers under Lynx O.S.
Installing a driver using LYNX O.S. commands:cccceenierennueenennenne 9-1

Installing a driver using LYNX O.S. system calls in a C program: 9-2

10 SDVME - Serial Camac interface driver

INtrodUCHION:oooeeeeiecciiccceieccrteccrreesenteesstteeessseessrneesssnesssansassssnessessasesanne 10-1
Driver interface functionality:ccccooveeviiiiiinicennenienerreeeeeesececececeenns 10-1
Camac access : (ioct] function)cccceviieeveecrnercnnenenscciinnncecnnneennns 10-1
Connection with a Camac LAM : (ioctl function).......ccccccevenieiirnnnnes 10-1
Synchronization with a Camac LAM : (select, read function)........... 10-2
SDVME CAMAC Driver library Interface : (camaclib.o gpsynchrolib.o) 10-3
INtrodUCtion:cocociiiiiciciiieeeecneceeeccnerte e e ssereeesesnnssaesssssseanenessssssanes 10-3
How to use the Hbrary :coovrieviieiiccvrencieccsereecneeecnenesssssneees 10-3
Primary TOULINeS |cccccccvriverrireriinneersneressssesensnsssenesssssssesssseessssssnes 10-3
cdreg : Encode a CAMAC addresscoceeveenenireenceeccnsnsssecsniesesenes 10-3
Single CAMAC access routine :cccoceceeeeeeruereserrnencresssenessnnsesensns 104
cfsa : Read or Write CAMAGC BCCEBScuuvveeerenriieeiccnrereneesssnsssenenes 10-4
Multiple CAMAC access TOULINES:ccereeecenecnvercresesenssasssscecsssscossans 10-6
pmcami : Block CAMAC functioncceeeveeenieeeneeecsseecssaeessossnees 10-5
mcamt : Repetitive CAMAC functioncccoeeeriueernvecnresnessrncessanees 10-6
gpeviconnect, gpevtdisconnect : Synchronisation routine 10-7
gpevtconnect : Ask connection with a CAMAC LAMcccoeeeee 10-7
gpevtdisconnect : Ask disconnection from a CAMAC LAM 10-8
select, read : Getting synchronised with CAMAC LAM event........ 10-8
The NODAL CAMAC functions interface:.........cc.cccoveeeioiereccccrneeeeneenenns 10-10
GCAMAD to encode CAMAC addresscccceeeeveereereeeeeneenceneeesanes 10-10
SCAM to perform a single camac accessesccceecvvcercrsvceernnnes 10-10
CAMDR to perform a sequence of CAMAC accessesc.cccceereuenene. 10-10
MCAMT to perform a CAMAC block accessccceevveerecevevrennnns 10-10
Serial Camac VME specifications BUMMATIEs:ccccceeerueeeeccnsrosscrsssosnns 10-11
RArdWATre:ccocciiierciecee et setessees e s sees s nessssnnesessessasnses 10-11
Setting of JUMPETS:cccooiiiriiieercreieieeeneiesesrrereneeseseeeesnasssssnesessssees 10-11
Driver installation :cccceeeivieviiiececiieennnenn. Meerereseeeeeeesseseesnsesessssesnensane 10-11
SDVME Driver system interface :..........cccccceeeceeeeeieeecrneeesneecesnneesensneenns 10-12
Device file: (associated LynxOS minor devices).......ccceeeeecrerevennne. 10-12
File system interface:ccccccooiivvrniircrincienniisnreseeerseesesnesesenssnnes 10-12
CAMAC BCCEBS:ocecteeeeeieeeeteeeeereeereeeeeeeeeteeereseeneeerrssesnseressnseens 10-12
Connection to a Camac LAM:coovieiiiiecnicnireenreneceie s s seseees 10-15
Getting synchronised with a LAM : (select, read) 10-17
Miscellanious functions :.........cccovceeeceieiciieiece e e 10-19

11 TSVME404 - GPIB interface driver

INtroductioncoceiiireiirieriieentee ettt et et 11-1
Hardware settings summarycccocoeeceii e, e 11-2
Driver initialisationccoccooooiiiiiiiinnn 1.2
NOTrmAl USAGE:eeeeeieeiie et e e 11-2
Software specialist usage:cccoeevveeiviiiii e 1122
Ioctl special function codes:cccoveeieennn 113
Waiting for SRQ from a device. 11-4
Usage example: HP5335A universal connte: 116

12 ICV196VME - ITX interface driver

INtrOdUCHION ..ottt cce et e s e st st ae e srae s er e e sabeans 121
Driver interface functionality.........cccoceeiiieeeciiiiciiiccieceee e, 12-1
Hardware settings summaryccccceeeceierniiinenveeninereceeecsesreessssenenssenes 12-2
Installing the Ariver...........ccoi ittt 12-2

Calling the driver from a uSer program...........ccccceeeerurrriecerererescraeesecnnes 12-2

gpevtconnect(): Connect to an interrupt linec.cccueeueeevennennnn... 12-3

gpevtdisconnect: Disconnect from an interrupt line................c.u..... 12-3
_select, read : Getting synchronised with an external interrupt 124
ioctl ; Reading/setting parameters in the driver............ccccocevverueeennen. 12-5
open : Drivers access exclusively for reading/setting parameters 12-9
program example: Synchronizing with events............cccceevveeeuvennnes 12-10

13 FPIPLSVME - PLS Telegram and FPI driver

INtroduCtion:coivceernrieseeecnnieraeecrneressnersneseseesssseessasessrsessnsssssssssssneeses 13-1
Driver interface functionality:c.ccccccveuierrecicreiiieenseesseesesnneesseesseeeees 13-1
The access to the Pls telegram : (Read function)cccceevereeecnannns 13-1
Connection to an interrupt line : (ioctl function)cccceeveeeruerruecenns 13-1
Synchronisation with a trigger :uuieicoiiivieieieeiecccsreecrececcenees 13-2
FPIPLSVME Driver interface library: (fpiplslib.o, gpsynchrolib.o)...... 13-3
INtroduction:cccccriueiicinnnisnnntsiissseccsssssessssssssssenseosssssssossansassssseseses 13-3
How to use the Hbrary :......cccccvvimnnniiinnnniinnnniinncnnicnsenieionnesnesssssassss 13-3
Services TOULINES :ccccevceeecreeecrnirsnecsecssenesssesssseesssseessnsessnessssaassns 13-4
IDISELTIO : ..oooeecreeeceeenrereseennssssesssssassstsssassrassnssssnesanssnsassessnssarnassnsassosse 13-4
gpevtconnect, gpevtdisconnect : Synchronisation routine 13-5
_gpevtconnect : Ask connection with a TRIGGERuueeeeuenes 13-5
_gpevtdisconnect : Ask disconnection from a TRIGGER 13-6
_select, read : Getting synchronised with TRIGGER event............. 13-6
The NODAL FPIPLS functions interface:ccccceeveeererrerrnnesranseasecsosenss 13-8
FPICNCT , FLSCNCT to get connectedcccccerveevreeecrnnecssenecranens 13-8
FPIPLSVME specifications SUMIATIES:cccccevvuirruenrnniinscrrssanscsnesssenes 13-9
hardware:ccccciiineiiinnniiieimeesimssssssssssstsossssssasessssasssssssnan 13-9
Setting of JUMPETS:cccoioireiriiniiiitticiertesnetinsercesse e e essssseenss 13-9
Driver installation :cieiiniiiinneiicnniecicniisssmsmssssissreniessarsssssaes 13-9
FPIPLSVME Driver system interface :ccccceevuervninerrenrneennrseneecnns 13-10
Device file: (associated LynxOS minor devxces) 13-10
File system interface:ccccceecevueirinciccefureiecnnnnticesssssnisneneeesssssens 13-10
Connection 10 a trigEeT :......ccccccvvinerrernniiinrneinisenresnnniecnssiseessssssaeens 13-12
Getting synchronised with a trigger : (select, read) 13-13

The Device Stub Controller (DSC)

The DSC represent the front end computing layer in the proposed CERN control sys-
tem to upgrade the 15 years old previous ones. The chosen architecture aims at a real
convergence of CERN’s accelerator control system. This definition was made by the
CERN PS/SL working group DWG.

Main functions of the DSC:

The DSC are distributed in the local areas, connected to the workstations via a LAN,
and to the equipment either directly or via a field bus. The main functions of the DSC
are derived from its place in the hierarchy of the control system. they are:

1) To provide a uniform interface to the equipment as seen from the workstations.a
DSC provides a connection to the workstations via ethernet with the standard
protocol TCP/IP:

a. The programs running in the workstations can call programs in the DSC by
RPC (Remote Procedure Call) but can also establish fast repetitive data trans-
missions from the DSC to the workstations (e.g. for repetitive display).

b. A DSC can be reset remotely.

2) To provide direct control and acquisition for equipment like beam instrumenta-
tion, interfaced directly to the DSC, the DSC runs a real time operating system :
LYNX O.S.:

a. It allows to run several tasks concurrently, e.g. a beam measurement program
together with general programs like statistics, surveillance and diagnostics .

b. It also provide a fast and determinist response to external events which is nec-
essary if PPM (Pulse to Pulse Modulation) equipment is directly controlled by
a DSC.

3) To act as a master and data concentrator for distributed equipment, interfaced
via field bus, the DSC provides hardware and software for field bus connections.

Certain application programs run in the DSC (in general they run in the worksta-
tions). For this purpose local display facilities are provided via a TV driver with stan-
dard graphic functions much simpler a X-windows. General programs such as alarms
and surveillance, which scan reglar intera'= the aquipment connected to the DSCs
report their output to a server on th- LAJ:

Finally , the DSC provides local acress to the «quipment and can be seen as a "banc
d’essai” in the lab to run simple test program - Jocallv using NODAL and its extended
libraries.

Hardware platforms:

vi

In the DWG final report, two different basic platforms were kept: one based on the
IBM/PC architecture, the other on VME based 68030 microprocessors.

One of the reasons of the choice of the LynxOS operating system was that the same
operating system was available on both platform, providing an homogeneous Unix
user interface.

As this manual was mainly written during the LPI implementation, the various tar-
gets are often forgotten in the various chapters of this note. By default, all chapters
describing VME modules drivers are targeted towards MC68030 based boards, espe-
cially the MVME147/SA1 as this one was at that time the only VME board supported
by LynxOS. Since this date, time, LynxOS was also made available by THEMIS on
TSVME13x boards.

General chapters apply to the 2 target systems: based on PC and VME, running the
Unix real time operating system Lynx OS .

At PS, the first PC DSC will be based on an industrial 80486 and used as the MTG
(Master Timing Generator) as its boards were designed in common with the SL/CO.

Intfroduction:

File-system road map

Authors : Julian Lewis
Claude-Henri Sicard

The file system road map determines where a program can find the objects that it needs
in a given environment. There are four environments, namely:

1

The USER environment:

This environment is what you see when you log in under your user name on your
office workstation. Here you create text files and edit them, you may compile and run
some programs, and perform some preliminary tests.

The DEVELOPMENT environment:

In this environment are libraries and include files provided by other users which can
be used in developing a new program, or library. Depending on what your final tar-
get is going to be, you will need different utilities, libraries etc. The final targets are:

a. MCR level workstation:

These workstations have a global view of the control system. In the event of a fail-
ure of the LAN, they can be cut off from a given accelerator, and thus should not
be the exclusive owner of critical applications or data.

b. ACCELERATOR level workstation:

At this level critical data and programs are kept, which will allow a reduced op-
eration of the accelerator during times when the LAN can not access the MCR
level, thus, any critical MCR programs or data must be copied down to the accel-
erator levels. The accelerator levels may also contain applications specific to one

accelerator, which are not logicalls «“1einl and chonld therefore not. he located at
the M.CR level.

c. DSC level:
Here we find real time appli-ationg. o cessing the hardware and data files. The
DSCs themselves have no dv = nned +v - i the nceelerator level servers.

The TEST environment:

In the test environment, applhications can o tested without interfering with the ac-
tual operation of the PS complex. Here test-DSCs are provided, along with copies of
any critical data which may be updated by the program under test. Some libraries
may provide simulation facilities.

The RUNTIME environment:

This is where the applications run which are controlling the PS complex. Here the
applications and their data are kept.

Objects
In each of the above environments we can find a sub set of the following list of objects:
e C-program source files.
e UIL source files.
¢ Include files.
e Man pages.
¢ Binaries.
e UID files.
e Libraries.
e Data files.
e Make files.
o Shell scripts.
¢ Programs to be executed.
o Nodal files.

Activities
And we can define activities using these objects in the different environments to be:

Developing.

Testing.
Installing.

¢ Running.

What the file-system road map describes, is the set of paths and the corresponding NFS
mounts which are required in order to.support these activities from the various final
targets.

We shall now describe each of these environments in turn starting with the simplest ...

Flle-system road map 1-2

The RUNTIME environment:

As stated above, this environment actually runs the PS complex, and hence consists of
installed and tested programs with their data running on any of the three final target
levels. The activity of running a program in this environment dose not in general re-
quire objects such as source files or object libraries.

MCR level
(GLOBAL)

Accelerator level @ @ -
(CRITICAL)

DSC level > DSC - DSC DSC = DSC
(DISCLESS) > DSC > DSC DSC | DsC
& psc ¢ DSC DSC W DSC

DSC paths seen from the DSC and accelerator levels:

1

DSC => /<accelerator>/data Accelerator => /dsc/data

Read/Write data shared between all DSCs connected to the same accelerator. For
example /lpi/data/... is the path to common data seen from any LPI DSC.

DSC => /<accelerator/local /data Accelerator => /dsc/<dsc
name>/data

Read/Write private data used by a particular DSC. For example /lIpi/local/data ...
is the path to a private data area for this DSC.

DSC => /<accelerator>/bin Accelerator => /dsc/bin

Read only access to programs shared between all DSCs connected to the same ac-
celerator. For example, seen from a DSC, then /lpi/birv... contains all LPI shared
DSC programs.

DSC => /<accelerator>/local/bin Accelerator => /dsc/<dsc
name>/bin

Read only access to programs that are only able to run on this particular DSC.
For example /lpi/local/biry/... is the path to private programs running only on this
LPI DSC.

Flle-system road map 1-3

Symbolic links on DSC:

From the DSC we can create a symbolic link such that /dsc is equivalent to /<accelera-
tor>. Thus in the following example names like /Ipi/data/global_data can be replaced
by the equivalent name /dsc/data/global_data.

EXAMPLE:
Mpi/data/global_data >
/lpi/bin/global_program >
- - > LP1
/pi/local/data/private_data SERVER
>
Npi/local/bin/private_program
/dsc/XX/private_program
An LPI /dsc/XX/private_data
DSC -«
Name XX < /dsc/bin/global_program
/dsc/data/global_data
\ %

Accelerator paths seen from the accelerator and MCR levels:
1 /mcr/data

Global data, if any of this is critical, then it must be copied to the appropriate accel-
erator server.

2 /mcr/bin

Workstation application programs running in a global context.
3 /<accelerator>/data

Critical data residing on an accelerator server not seen by its DSCs.
4 /<accelerator>/bin

Critical or non shared workstation application programs.
5 /<accelerator>/dsc/data

Data seen by the workstations for a given accelerator and all its DSCs.
6 /<accelerator>/dsc/bin

Programs used by all DSCs of a g1ven accelerator.
7 /<accelerator>/dsc/<dsc name>/datn

Data to be shared between workst t1innz oof =« :-1ven sccelerator and a particular
DSC.

8 /<accelerator>/dsc/<dsc name.-. Iv

Applications which run on a given DSC of a given accelerator.

Flle-system road map 1-4

EXAMPLE:
/mcr/data/global_data

fmer/bin/global_program

Npi/dsc/XX/data/XX_data

Npi/dsc/XX/bin/XX_program

v

Npi/data/server_only_data
-+

/lpi/bin/server_only_program

-
Npi/dsc/data/all_data
< Npi/dsc/bin/all_program

General remarks:

The names have been invented so that if the correct questions are asked, then the path
name should be obvious, for example, an application running on an LPI DSC asks the
question: Where do I store my own private data ? Answer, /dsc/local/data/... The
same DSC asks: Where do I store data to be accessed by all LPI DSCs and workstations
? Answer /dsc/data/... An application running at the MCR level asks: Where is the LPI
DSC¢’ data with DSC name of XX ? Answer /lpi/dsc/XX/data.

The names MCR, and the accelerator names, when preceded by a "/" in fact refer to
physical disc drives, and have exactly the same meaning throughout the network, so for
example /mcr/data can be used by MCR applications and accelerator level programs,
both referring to the same data. Copying critical data to the accelerator level will take
the general form:

cp /mcr/data/... /lpi/dsc/data/... or cp /mcr/data/... /lpi/data/...

In the former case the data is seen hv DSCs. 11 "he Intter onlv by LPT applicntions run-
ning on LPI werkstations.

Flle-system road map 1-5

Environment variables:

In order to make life as simple as possible, to guard against future changes in the
file-system road map, to make applications portable between the final target levels,
and to simplify testing, we provide five environment variables:

1 ACCELLR

The name of the accelerator on which we are currently working, for example LIN,
PSB, CPS, LPI, or MCR. The final name MCR means all accelerators.

2 GLOBALP
The path to global programs, on each level it will be set as follows:
a. DSC => /dsc/bin

b. Accelerator => /mcer/bin

c. MCR => /mer/bin
3 GLOBALD
The path to global data:
a. DSC => /dsc/data
b. Accelerator => /mcr/data
c. MCR => /mcr/data
4 LOCALP
Local programs path:
a. DSC => /dsc/local/bin
b. Accelerator => /<accelerator>/bin
c¢. MCR => /mer/bin
5 LOCALD
Local data path:
a. DSC => /dsc/local /data
b. Accelerator => /<accelerator>/data
c¢. MCR => /mcr/data

Dependence of environment variables:

The above environment variable values correspond to their values in the run time en-
vironment. During program testing however, they will not point to operational data,
but to copies set up only for test purposes. This is achieved by systematically append-
ing /test to all data path names. It is the responsibility of the person testing an appli-
cation to make sure that the data is up to 42t~ ar net e the setunl operational data
may in fact not be what is require te exercize ‘he program under test.

This leads to the next environment

Flle-system road map 1-6

The TEST environment:
Not yet written, sorry.

File-system road map 1-7

The DEVELOPMENT environment:

Not yet written, sorry.

Flle-system road map 1-8

2

Text editors

Local utilities on Lynx systems

Author: Nicolas de Metz-Noblat

Various utilities are installed on our Lynx systems. They are either undocumented in
the standard documentation, or they are standard UNIX programs from the public do-
main, or they are specific software developed at CERN for the Lynx systems.

At least three different editors are available on the Lynx systems: emacs, vi and e.

vi is the default (poor) UNIX editor. It is the only one available on any UNIX system
and its knowledge is required at least to do some system maintenance.

emacs is product from the Free Software Foundation (the GNU project) and by defini-
tion is a free. It is one of the most popular editors, that can be customized in various
ways.

e is the RAND editor, an editor which is today in the public domain and that was
quickly ported to Lynx on MVME147 and PC. This editor was the most popular editor
at CERN on Ultrix system a few years ago and is known by the majority.

Printers and printing utilities

There is a standard BSD spooler (Ipd) and associated utilities (lpr, lpq, lpc and
Iprm). They allow us to see printers connected to our Ultrix cluster (located in the
Terminal Room and in the Meyrin Control Room) in the same manner as from our
DECstations.

lpr is the standard BSD UNIX interface to the spooler.
Ipq allows you to look at the printer queue.
Iprm allows you to remove one of your jobs from the printer queue.

Ipc is restricted to user root and used to manage printer queues and daemons.

You can today use any printer declared v depranteap For new installations, you
will get a message "your host does »ot v - v poanden aeeess™ il vony host. is de-
clared in /etc/hosts.lpd of the server specihicd -oith rm= ficld. You can change vour de-

fault printer in your .Login file modifiing the line $#cetenv(PRINTER. Inp<01).

In order to simplify the usage of th: ~rozran: proaduction chain. the following utilities
have been installed on the svstem-

aZps is an vtility that does yrovic : St fram souree files (see man
aZps on a DECstation or on cernvax).

pt is a simple shell script to facilitate the usage of a2ps, changing the defaults op-
tions and piping its output to lpr utility.

Local utilttles on Lynx systems 2-1

The NODAL interpreter

A nodal interpreter has also been ported to the Lynx system. As this is intended to be
customized depending on the application, locally available functions may vary largely
from one DSC to another one. In any case, several major features can be noticed:

An EXEC and an IMEX NODAL server should be automatically started by the
/var/etc/rc.local shell script.

You have to take care to the fact that file names specified to those servers should be
fully qualified as they do not have any idea of defaults environment variables of caller.

See man nodal on either DECstation, or on cernvax.

Sharing files with the PS control Ultrix system.

Development DSC systems are setup in order to share home directories with the home
directory you have on the PS DECstations locally on the DSC, this across NFS.

The practical result is that you can edit files from any station or development DSC,
then compile it on any DSC (I recommend to use the DSCDEV as this one is never
used to test applications), then run it on a target system.

With V2.0 official distribution, the local file system is still not reliable enough to be
used for long-term storage, and it is much easier to be able to overwrite it on each new
system release. Therefore, I discourage to use the local disk except for temporary stor-
age (and so no backups are required).

Please take care that if you are logged in as root (as this is often required when writ-
ing a device driver), you have no write access to your files, but any try to overwrite a
file will result in a file lost (root is nobody across NFS, but still has write access to
directories!).

Notice also that operational DSCs should never rely on the accessibility of develop-
per’s home directory: there is a separate environment dedicated for operationnal com-
puters on local Unix server from which the DSC will boot and we cannot keep the de-
velopment environment critical for operation (even if - for commodity reasons - the
development environment can be seen from operationnal DSCs).

Local utillities on Lynx systems 2-2

3
LynxOS utilities

Author: Nicolas deMetz-Noblat

Here is a non-exhaustive list of LynxOS commands that was written for the V1.2.1 re-
lease but that should still be mostly valid.

File Management

cd - change current working directory

chgrp - change group ownership of files

chmod - change access mode of a file

chown - change file ownership

df - show free disk space

du - show disk usage

file - classify files

find - locate files

In - make links between files

1s - show directory contents and file information

mkcontig - make a contiguous file !!!!

mkdir - create directories path - find path to a file
pwd - print working directory name

rm, rmdir - remove (unlink) files or directories

tar - combine files into an archive

touch - change the modify date of files

Utility Programs
btoa, atob - encode/decode binary te printhl - ARCTI
banner - show arguments in hig lettere

basename, dirname - return portion= of path rames

bined - binary editor binfix - {1 hanor-- alee
bm - search a file for 2 =t»v-

cal - produce a calendar

calc - simple desk calculator

cat - concatenate files

clear - clear terminal

cmp - byte-by-byte file comparison

compress, uncompress, zcat - compress and uncompress files

LynxOS utilities 3-1

cp - copy files

cpio - copy file archives in and out

cs - produce file checksum

ctags - generate editor tag file

date - display or set current date and time

dlsh - Lynx shell

(dosread, doswrite, dosdir) - manipulate DOS diskettes (PC only)
dump - dump selected parts of an object file

echo - echo arguments

emit - emit characters given their ascii values

expand, unexpand - add or remove tabs from files

expr - expression evaluator and pattern matcher
finger - user information lookup

flex flook - interactively examine file blocks

grep, egrep - print lines matching a regular expression

groups - show current group membership

head - print the first few lines of a file

host, hostname - print or set name of current host

id - print current user uid, gid

ident - identify files

less - interactive paginator

lesskey - specify key bindings for less

login - login into LynxOS

more - interactive paginator

mv - move or rename files

od - file dumping utility (octal, hexadecimal or ascii)
passwd - change user password

Pg - paginate files

pr - produce a formatted listing of a file

printenv - print environment vanables

prof - interpret profile inform: tons

sed - sequential editor

sh - standard command progc rriming: nenage ghell
show - show hex and charartor oo 1

size - print size of an ohject +» -+ -t i

sleep - suspend execution of current process for a given interval
sort - sort or merge files

split - break stream into pieces

stty - set terminal driver options and parameters

LynxOS utilittes 3-2

su - get effective user id

tail - print last few lines of a file

talk - converse interactively with another user

tee - distribute data to multiples files

termcap - retrieve termcap data

test, [- simple relational expression evaluator

time - output a command’s elapsed real, user and system times
tr - translitarate characters

true, false - provide truth values

tset - set up terminal line

tty - print the name of the current tty device

uniq - report repeated lines in a file

vi - visual text editor (default unix editor)

we - count words, lines, characters in a file

who - show current users whoami - show current user name

Program development
cc, cc030 - native C compiler and linker interface

disasm - object and executable disassembler
1d - object file linker

libr, ranlib, ar - manipulate object library files
make, oldmake - automatic compilation manager
makeboot - install default bootstrap program
mkshlib - create a shared library

mktimestamp - embed time stamp in a string

nm - print symbol table
strip - remove symbols and relocation information
st - post-mortem debugging aid

awk, gawk - GNU pattern matching and processing language
bison - GNU parser generator (yacc replacement)
diff, diff3 - Gnu intelligent file comparison

emacs, ctags. etags - GNU emacs «A+tnr

gee - Gnu Interface to C compile

cpp - Gnu Preprocessor

ccl - Gnu C compiler itself

as - Gnu assembler

gdb - Gnu debugger

m4 - general purpose macro-processor

rcs, resdiff, rlog, o, co - RCS
sccstorcs - build RCS file from SCCS file

LynxOS utlliies 3-3

System Manangement
Ainit - master system process
/bin/rc - system startup script
/net/rc.network - network startup script
/net/re.nfs - nfs startup script
config - produce system configuration tables
devices - show installed devices
devinstall - install physical device
drinstall - install or unload device

drivers - show system device drivers

install - intelligent copy for software installation

installvpkg - install a System V package

ipcrm - System V compatible interprocess communication facilities removal
ipcs - System V compatible interprocess communication facilities status
kconfig - produce system configuration tables

kill - terminate a process

fmtflop - format floppy diskettes

fmtscsi - format SCSI disk drives

fack - file system check and repair

idos - identify default operating system

Iptest

mkfs - make a file system

mknod - create a special file entry

mkpart - make partitions on a disk and update bad block info

setactive - set active (boot) partition
mkramdisk - dynamically install a RAM "disk” device

mkromk - make a romable kernel file

mount - mount a file system or a remote NFS directory
newconsole - choose a new console device

ps - display status of current processes

reboot - reboot the system

s5fstotar - convert System V file svztem to tos archive format.

shownode - show inode contents

sems - user semaphore status »od vemes
setprio - alter priority of a provee

smems - shared memory status a»-i <
spool - general purpose spooler spooler
stasks - display status of current stream tasks

sync, syncer - write out disk cache

tic - terminfo compiler

LynxOS utiities 3-4

umount - dismount a filesystem

vmstart - start the virtual memory management
zeronode - re-initialise a disk inode

(saio) - configure analog I/O driver

/et¢/mount, /etc/umount - mount a system V.3.2 filesystem

Network utilities

arp - address resolution display and control
ftp - file transfer program
ifconfig - configure network interface parameters

initrarp - initialize ARP table thought Reverse Address Resolution Protocol

kermit

Ipc - Berkeley printer control program

Ipq - Berkeley printer queue management

lpr - Berkeley printer print utility

Iprm - Berkeley printer remove utility

netstat - show network status

pac - Berkeley printer accounting information
ping - send ICMP ECHO_REQUEST packets to network hosts
rcp - remote file copy

rlogin - remote login

route - manually manipulate the routing table
rsh - remote shell

ruptime - show host status of local machine

rwho - who’s logged in on local machines
slattach - attach serial lines as network interface
telnet - user interface to the TELNET protocol
tftp - trivial file transfer program

Network servers

fingerd - remote user information server
ftpd - DARPA internet File Transfer Feotacol cerver
inetd - internet "super-serven

1pd - Berkeley printer daemnn

named - Internet domain nam« ~r-er
rexecd - remote execuhinn e

rlogind - remote login ser-e

routed - network routing daemon

rshd - remote shell server

rwhod - system status server

talkd - remote user communications server
telnetd - DARPA TELNET protocol server

LynxOS utlliies 3-5

tftpd - DARPA Trivial File Transfer protocol server

NFS management

Libraries:

Special files

exportfs - export and unexport directories to NFS clients

mountd - NFS mount request server

nfsd - NFS daemon

portmap - DARPA port to RPC program number mapper
rpegen - an RPC protocol compiler

rpcinfo - report RPC information

showmount - show all remote mount

unfsio - network input/output deamon for NFS client support
_etext.o

init.o

initl.o

initn.o

pinit.o

pinitl.o

vinit.o - system V compatible C init program

vinitl.o

gnulib - small library needed by code generated by gcc
libbsd.a

libc.a

libc_nv.a

libc_p.a

libc_v.a - System V compatible interface library
libcurses.a

libm.a - Mathematical library

libnetinet.a - host databases routines
librpc.a - NFS RPC library
libtermcap.a - termcap library

/etc/exports - static export information

letc/xtab - current state of exporterd Grvestean
/sys/lynx.0s/CCONFIG.TBL - Laym= 30 e ver e e 2iie
/letc/devices - dynamically loaded syt o -+ 1+ vatermstion
/etc/drivers - dynamically loaded device drivers table
/etc/fstab - table of file systems

/etc/ftpusers- table of users that cannot be accessed via ftp
/etc/magic - data for file utility

/etc/motd - "message of the day”

LynxOS utiiities 3-6

/etc/mtab - table of mounted file systems

/etc/group - group information file

/etc/hosts.equiv - name of hosts with "equivalent” user IDs
/etc/hosts - TCP/IP host names database

/etc/inetd.conf - inet server database

/etc/networks - TCP/IP network names database
/etc/nodetab - special file table

/etc/passwd - table of user names, passwords and login informations
/etc/peonfig - Lynx "printer” configuration file (unused)
/etc/printcap - Berkeley spooler printer database
/etc/printers - Lynx "printer” list of spoolable devices
/etc/protocols - TCP/IP protocol names database

/letc/rpe - NFS rpc names database

/etc/rmtab - NFS table of currently mounted filesystems
/etc/services - TCP/IP service names database

/etc/starttab- system startup data file

letc/tconfig - serial port configuration file

/etc/termcap - terminal capability descriptions

letc/ttys - login terminal information

/etc/utmp - currently logged in terminals information
~/rhosts - user-specified file of equivalent hosts and users
~/.profile - /bin/sh initialisation file

~/.Login - /bin/dish login initialisation file

~/.dlshrc - /bin/dslh initialisation file

/dev/nfssvc - special chr dev to maintain NFS server data in kernel

NFS library routines
nfsmount - mount a NFS directory
getrpcent, getrpcbyname, getrpcbynumber - get RPC entry
getrpcport - get RPC port number

PS additions

/usr/local/bin/e - the RAND editor ¢ ""r_: on mzra fermna by

/usr/local/bin/nodal - the NODAL interpreter thnge in terminal handling)

LynxOS utilities 3-7

4
Diskless LynxOS Systems

Author: Nicolas de Metz-Noblat

Target systems are normally diskless systems. In our context, there will be several
servers, one per accelerator complex (e.g. LPI, ..) and one on the office LAN.

Principles of operation

On LynxOS V2.0, the MVME147 board contains four eproms. The two first ones con-
tain the Motorola firmware (147-Bug) which is used to reset the hardware, test it, and
then transfer the control to two others eproms that contains LynxOS bootstrap code.

The network boot procedure first send a Reverse Address Resolution Protocol (RARP)
request, i.e. an ethernet broadcast requesting "Who knows my IP address?". The
server, which knows this address replies to this request.

Once got its own address, the diskless system tries to fetch its system with tftp from
the server which replied.

If transfer was successful, the loaded system is started. This system does already
holds a RAM disk which contains the minimum programs required by the startup
procedure.

The first startup action is to get system specific startup files (hosts and rc.network
files) across tftp, always from initial boot server and then to execute them.

Execution environment

Once the startup procedure completed, following file systems are reachable from the
diskless system:

- local ramdisk - with limited space (about 500Kb with around 150Kb free after

startup.

- a read-only environment in /usr that does hold all standard programs and data
shared by diskless DSCs.

- a read-write environment in /var that doe bbb o e vt hang that requoiees fo be modi-
fied by this DSC and is equivalent. -1 the lac: ! gk - even o located on an other sys-
tem. In particular, this can hold 2 =wap fl~ 3" =swapping is required for non-real-time
programs such as interactive program=

- various NFS mount for access t- «1r” 1 o dustories and other data that re-
quires to be shared between the - ~ s hebanr disk based dovelopment.
systems).

RAM disk contents

The ramdisk is the master directory (/) of the system. Its size has to stay limited as it
effects the reliability of the downloading procedure and it consumes the physical mem-

ory.
On startup it does contains the following files:

Diskless LynxOS Systems 4-1

finit This is the first dispatched program that executes the /client/rc script and
then manage the interactive logins on active terminal lines.

/client This directory holds all other programs that are required by startup. It is
partially cleaned up by the startup procedure in order to free some space
in the ramdisk after startup.

/client/dlsh This is the startup shell and is used as default shell for login
as it is already memory resident.

[client/getccf This program retrieves the /etc/hosts and /client/rc.network
on startup and should be deleted after startup.

/client/hostname This is used to setup the host name and should be deleted

after startup.
/client/ifconfig This is used to start TCP/IP and should be deleted after
startup.
/client/mount This is used to mount (or check mounted) remote directories.
/client/route This is used to define network routes.
/client/stty This is used in root .Login file
/client/tset This is used in root .Login file.
/client/unfsio This is the NFS client program and is required to stay.
/client/rc This is the common startup shell script.

/client/rc.network This is the specific startup shell script.

letc This directory contains configuration data required by normal Unix prog-
grams as network servers, terminal descriptions. Most files are just links
to /usr/etc, with the exception of ttys and motd taken from /var/etc.

/dev This directory does contains all system special files required to access
devices.

/pipe This ramdisk directory is intended for efficient creation of special files for
pipes, and is publicly writable.

/sem This ramdisk directory is intended for efficient creation of special files for
semaphores, and is publicly writable.

/usr This is the mount point of the read-only shared environment.

/var This is the mount point of the computer specific read-write environment.

/bin, /cc, /lib, /sys this are symbolic links to the /usr environment.

/tmp This is a symbolic link to /var/tmp and this last one is cleared on

system startup.

/Login, /.dlshrc, /.subroutines This files are required for root login.

/dsc/bin this 1s the mount poinf te the vend ol appshe ation environment. chared
by the various DSCs of a single serves

/dsc/local this-is the mount point te the apphisation environment specific to this
DSC.

/dsc/data this is the mount point to h wio o Dot i NSCs and consoles.

Diskless LynxOS Systems 4-2

The read-only shared environment (/usr)

This does contains the normal system environment of a disk-based system, with the
only modification that all directories in this directory must be grouped (e.g. move /bin to
/usr/bin, /X to /usr/X).

As this environment is shared by all diskless systems, changes in this environment
should be achieved with special care as this does affect all of them.

Few special cases must be noted:

/usr/spool has to be a symbolic link to /var/spool as this has to be unique for each
system.

/usr/tmp has to be a symbolic link to /var/tmp for the same reason.

/usr/etc this directory contains all files from /etc that can be shared between the
different diskless systems as hosts, passwd, termcap and other service
files.

/usr/local this directory is the only one that should be modified by us in order to
extend the standard environment.

/usr/local/bin this directory does hold common programs as editors and
other site specific executable programs.
/usr/localllib this directory should receive all libraries that you want to

share with other users.

/usr/local/include this directory should receive the include files associated with
the corresponding libraries (preferably grouped in a single
subdirectory per product).

/usr/local/util This directory is intended to receive extra read-only data or
programs that are not directly started by a user command
(preferably grouped in a single subdirectory per product).

/usr/local/drivers This directory is intended to receive all drivers that are
automatically installed on startup by the dynaminst
program.

The read-write permanent environment (/var)

This environment is in practice the true permanent storage of the system. It will con-
tains all data (and programs) specifics to this computer - but special care should be
taken by real-time applications as access to the disk can be blocked at any time for an
indeterminate amount of time (and possibly with I/O errors) if the file server is re-
started.

When the system is initially installed, the following directories are created:

/var/tmp this is the normal /tmp of the svstem and is cleared- on every system
restart. It is normally accessed across /toa - fe ronces Thic divectory e
publicly writeable.

/var/adm this directory is intended to receive =vstem administration statistics data
and its access should be restricted to vt naer

/var/spool this directory is intended i+ nze b thee =pending system and its access is
restricted to ront user.

/var/etc thrs directory contain. N codefimitions), redocal
(specific startup script), motd (Message of the day) and insttab (dynamic drivers in-
stallation table).

Diskless LynxOS Systems 4-3

Setting-up a new board

The first step is to note the ethernet address written on the back of the front-panel.
This address will be required at different steps in the board initialization.

First plug in an up-to-date release of the Motorola firmware (today rev. 2.42) in sock-
ets U22 and U30. Then Plug the LynxOS TFTP bootstrap eproms in sockets Ul and
U15. (check for correct eprom type selection depending upon eprom as described in the
MVME147S/D1 documentation page 2.4).

If this is the first installation, check that the board connector, the two flat cables and
the MVME712 connection board are connected on the back - and that on the
MVME?712, at least serial port 1 is configured as a terminal (not modem).

Connect a terminal to the serial line and power-up the crate and check it is connected
to the V24 line at 9600 bauds.

Depress together Abort and Reset switches, then release the Reset switch - maintain-
ing the Abort switch for about ten seconds. This will reset the Motorola firmware and
you should have the prompt 147-bug> on the terminal. If nothing does happens, check
first the terminal, then try to cross the two Motorola Eproms.

Once you get the prompt on the terminal, the first thing to do is to check if the boot-
strap eproms are in the right order. This can be achieved with the command:

MD FFA00000

That should produce a memory dump of the specified address and where the text
BOOT can be read. (If its OBTO, you have crossed Ul and U15 eproms).

Then you have to do an exhaustive test of the board:

ENV
B (bug environment)
E (Enable tests)
E (Enable RAM test)
(then all defaults)
Depress Reset button and then The whole card is tested. Don’t worry about bad
NVRAM contents.
Once tests successfully completed, disable them with the command:
ENV
B (Bug environment)
B (Bypass)
(then all defaults)
Disable the Motorola system boot with the - arimand
NOAB
Define the boot as going to the second EFRON <t with the command:
B
R e
IR
FFA00000 (Boot address)
Check the Ethernet address with the command:
LSAD
Then set the board time with the command:
SETTIME

Diskless LynxOS Systems 4-4

10/07/91 (07 Oct 91)
(return) (Calibration value)
10:10:00 (HH:MM:SS)

Then depress once more the Reset button. This time it should automatically issue a
GO command and go to the Lynx Monitor that you should immediately abort by press-
ing the Return key.

There you must issue the following commands:

ROO (define the root file-system)

\'% (Boot across the network).
There the system boostrap should startup, trying to reboot across the network.
Don’t forget to reconnect the Ethernet cable.

Then you have to login on the server in order to declare this new DSC or to change the
Ethernet address of the replaced one.

If, after bootstrap, the startup repetitively fails on getting the rc.network file, this just
means that you have forgotten to issue the "R 0 0" command.

If "*" character continuously appear on the terminal, you have to check the ethernet
address written on the terminal that must be equal to this one entered on the server.
Notice that - for the time being at least - you cannot cross the CISCO, i.e. bootstrap
from a server not located on the same IP network (128.141 or 192.91.236).

Diskless LynxOS Systems 4-5

DSC configuration management on the server.
Most DSCs are diskless and are serviced by a local server.

In order to use this procedure, you have to be in the list of DSC privileged user= or to
be the user root of the server, as for any system management routine.

There you have to call the DSC management program:
cd /<complex>/dscenv/bin

dscconfig

This provides you the following menu:

DSC Configuration Procedure
LynxOS boot directory: /dscenv/tftp/lynx/tftpboot

1- List known DSCs
a-Add a DSC
m - Change ethernet board address of a DSC
d - Delete an existing DSC
q - Exit from this procedure
Your selection ?
By default, the response is q.

The a command is intended for declaration of a brand new DSC whose address must
be already known from the stations (i.e. be declared in our YP hosts database). The
only other requests from the program are the DSC name and its hardware ethernet
address. In case of doubt, a generic address 08-00-3e-00-00-00 (for an MVME147
board) can be entered and then modified later with the m command. This will create
the whole diskless environment requested by a diskless station, then declare it in the
various system files as required.

The m command is to be used every time you do a standard exchange of a board as
this is the only way to distinguish two boards on startup.

The d command allows you to remove a DSC. You need to be logged in as root in order
to remove also all files associated with this DSC. If this is not the case, the only effect
is to disable this DSC from any boot and to remove all its authorizations for NFS
access to the server (the rm of the root directory refuse to work). This command
should be used with special care as you normally remove all files that belongs to this
specific DSC.

The 1 command is used just to conzult the ~te ~ther:- Al

Diskless LynxOS Systems 4-6

Maintaining the diskless environment.

A disk based MVME147 system is required (at least for the V2.0 beta-test release), in
order to prepare the boostrap image. Today only the DSCDEV (dsps07) is allowed to
issue the right NFS mounts required to do this maintenance.

You will have first to login as root on dsps07 and to issue the following command:
mount XXXsrv/XXX/dscenv /mnt (XXX= lpi, mcr or tst)

You can then regenerate the system image in the /mnt/usr/sys/lynx.os directory.
(You will find there a copy of all system source files).

You can update the initial ramdisk contents in /mnt/usr/root directory, but don’t for-
get to clean it up after modifications.

After any modification in this environment, it is required to regenerate the boostrap
system image with the following commands:

cd /mnt/tftp/iynx/tftpboot
make

Please take care that during that time, no diskless 147 based DSC will be allowed to
reboot and that all modifications will be valid for all 147 boards booting from this en-

vironment.

N.B.: the /usr/local environment of all DSCs (including disk based DSCs) is normally
the same one (taken from SVPS02) and this can only be modified from DSCDEV.

Diskless LynxOS Systems 4-7

5
Backup/restore of MVME 147 disks

Author: Nicolas de Metz-Noblat

One very important operation is to keep up to date backups of developments systems.
This can be very easely achieved using the SCSI streamer.

Disk capacity varies from one system to an other, the minimum (DSPS01 and
DSPS02) being of 85Mb, most others being 150Mb.

The Streamer capacity of 150Mb can be achieved only with DC6150 tapes. Please
check this with your furnisher.

Doing a system backup

In order to do a full system backup, first log in as root and unmount any NFS
mounted file system. This is preferably achieved by rebooting the system in single
user mode with the following command:

reboot -f

Once the system restarted, it automatically enter the single user mode , a mode in
wich the network is stopped and no user has access to the system. Note that the vir-
tual memory system is then not active. You can then plug your cartridge (not hard-
ware procted, i.e. not in the "safe" position) inside the streamer. Once the tape
rewund, type the following commands:

cd /

tar cvbf 256 /dev/rtape

This will create a full backup of the system (except contiguous files):

tar is the Tape ARchive utility,

¢ means create an archive,

v means verbose, i.e. all file names will be printed on terminal (this flag is optionnal).

b requests tar to write on the tape whith the specified number of 512 bytes blocks in a
single block. Here, we specify 2868*512=128kh hlack an thr tape This is verv impor-
tant for a streaming tape and if net =pecifred oy v bap widbnot it on the tape

f allows you to force to output to the specitied -ievice there /dev/riape)

. i1s very important: all backups ho-~ o he velative in arder to allow von to restore
them later op a different device thar ‘b onv = vl - e ereated.

Once finishec. finish the syvsten v o e e D anesweering return (o all
questions.

Backup/restore of MVME 147 disks 5-1

Restoring system bcckup:

In order to restore a full system backup, you will need a copy of the first system instal-
lation tape.

If you are going to restore a backup of another system, please donot forget to
first disconnect the Ethernet cable from the crate.

If needed, you can first reformat the disk using the Motorola 147-MBUG monitor.

Go to the target system and hit any character when you get the message "type any
character to break”.

There you will enter the Lynx PROM monitor. insert the first system installation
tape and type the following commands:

RO10Tr

b - t2

This will boot a system from the tape.

You have now to install this minimum system on the disk:

Freshdisk

After about 30 minutes, you can go back to the PROM monitor:

reboot -

You can now remove the system installation tape and reboot from the disk:
R OO

b - s0

You can now plug in your full backup and restore it with the command:
Getit /dev/rtape

Once finished, check the /net/rc.network to check the host name (and the /etc/hosts file
to check if it is defined), reconnect the Ethernet cable and restart restored system
with:

reboot -a

System will complain about the file /swap that will be missing, so login as root and
recreate it:

mkcontig /swap 20m

Dont forget to reconnect the Ethernet cable.

Other backups
As a Unix user, you should know (and use) the tar standard utility.
You can, using the tar uti]it_v. dr hacler A eeral b dhirectores, oither to the
streaming tape. either to a simple file v t=o that voun wall then tranfer with ftp
(without forgetting to specify a binar+ transter mode) to any other computer.
A simple precaution: never specifi ahsolntc nath names to tar (and dont forget to
specify at least one file name as .)in wrider to- U able to recover them in another direc-
tory.
A good practice is to check the con:- © ot e abieast ils beginning) with a
tar tf command.
example:
tar cbf 16 /tmp/mine save the contents of current directory
tar xvf /tmp/mine restore it to the current directory.

Backup/restore of MVME 147 disks 5-2

6

Understanding VME space in a DSC

Author: Alain gagnaire

This note is an introduction to VME space addressing in a DSC. To get a full descrip-
tion of the VME bus protocol and CPU board addressing in a DSC see:

- VMEDbus SPECIFICATION MANUAL (ANSI/IEEE STD1014-1987)
- CPU board reference manual: depending on the target board

Reminder of basic VME addressing from a DSC processor (CPU):

Addressing mechanisms principle in a DSC:

In a DSC, a running program, in supervisor mode or not, references addresses in
what is called its virtual address space.

When executing a program, the CPU addressing mechanism converts program
virtual addresses in 32 bits physical addresses. This convertion uses a mapping
table attached to the program.

For a normal user program (non privileged) this mapping is restricted to the virtual
space of its data and code. At run time of a program the O.S. allocates for each virtual
page of data or code, a physical page in the memory.

For a gystem program this mapping includes visibility of private system areas and of
the VME bus address space areas (see O.S. reference manual).

The physical address space in a VME CPU board consists of the normal memory ad-
dress space corresponding to RAM, EPROM, local IO and different ranges corre-
sponding to the different VME bus addressing areas: short, standard, extended.

The mapping of the actual physical space on the VME areas depends on the CPU
board : see VME CPU addressing in a DSC.

VME access :
A VME access can be :
e adata access: e.g. ;read/write 1’0 vermvete - memiony o VME module, ofe

e a program access: fetching of instructions from 2 VME module: e g from a -
brary in the Eprom of a VME module. the instructions are picked up from the

VME space; an example is the craphic «wadnle TSVMEROO which provides the
access library to the basic functrm in it TTTROM
An adddress on the VME bus i~ ~ ; e = he physieal space n« seen from
the CPU accerding to the mapping - - © o viere apacein the CPUL

To access a VME module, the CPU must generate an address in the range of the
mapping of VME address space.

When a 32 bit CPU falls into the range of the VME space, the corresponding access is
processed by theVME chip interface, which is based on groups of lines:

¢ Address Modifier lines (AM): these 6 lines are set up automatically by ad-
dressing mechanisms (they can also be programmed explicitely if needed, see in

Understanding VME space in a DSC 6-1

the CPU reference manual instruction set). A VME target module acknowledges
the addressing only when the AM lines fit its AM requirements. These lines are
used to give information on the type of the adressing mode, to filter the access to
modules and protect modules from program access. The 64 different configura-
tions of the AM lines are organised into 3 categories (Defined, Reserved, User-
defined) out of which we have to consider only the defined one made of 3 subsets:

* Short addressing: 16 address lines used A15-A02 lines
* Standard addressing: 24 address lines A23-A02 lines
* Extended addressing: 32 address lines A31-A02

¢ The Data lines: 8, 16, 32 according to the data width of the access (byte, short,
long).

e The address lines: 16, 24, or 32 according to the associated AM lines.

The automatically generated AM depends also on the CPU state on access, this value
is:

¢ in case of data access:

Address Size supervisor non privileged
short (16 bits) $2D $29
Standard (24 bits) $3D $39
Extended (32 bits) $0D $09

s in case of program access:

Address Size supervisor non privileged
Standard (24 bits) $3E $3A
Extended (32 bits) $0E $0A

Reminder : The target module requires a certain AM. Most of the VME modules have
got a strap to allow the user to partially set up the AM in order to define the access
right: supervisor only or non privileged and supervisor.This set up will tell the user
how to access the module from a program running in the DSC.

The VME space as seen from the CPU :

Depends on CPU board.

The whole physical addressing space of the T ic shaved e
e on board memory space of the «xstem ETKOM. KAM._..

e on board /O devices,

» VME space.
The layvout of the addressing sper - - Co U haard veference manual.
The physical addressing on the %'+ : « e the AM lines as well, there-

fore the user should remember on what the Al lines depends :
¢ the address range, determining the addressing type: short, standard or extended
¢ the addressing mode: data access or fetch mode, determines the access mode

o the state of CPU: user or system level determines the non privileged or supervisor
access mode.

Understanding VME space in a DSC 6-2

Reminder : during a VME access the data size must also fit the data port size of the
module. This size can be forced by setting of theVME ship (e.g. in a the MVME147
the VMEship can be told to perform long data transfer in 2 short access cycles to fit
16 bit data port size module requirements).

The VME space as seen from the Operating System :

A program running under the O.S. cannot access the physical memory directly . Ac-
tually the program accesses its virtual space. An intermediate mapping, hiding the
physicall memory topology to user programs, is used in order to associate a physical
space to its virtual address space. In a DSC this mapping depends on the priviledge
level of execution of the program.

¢ From a non privileged program : at this level the Operating system provides
the program with the visibility of a subset of the whole virtual space correspond-
ing to the data and code space. To access the VME space some facilties, depend-
ing on the type of Operating system, are provided to access directly the VME
space, see chapter "user memory mapping”.

¢ From a system program : at this level the Operating System has the visibility
of the VME space in a special mapping, which can be used by system programs
and drivers.

Reminder:

¢ The O.S. provides a special documentation for the mapping of VME space as seen
from the system access (from drivers). This depends on the type of CPU board
used.

e The O.S. provides user programs with facilities to directly access the VME space
see chapter "user memory mapping and VME",

Understanding VME space In aDSC 6-3

VME module visibility from the CPU board:

When receiving a new module and before installing it, the user will have to gather
the following basic information about the module:
e AM supported by the module.
e Adressing size: short, standard or extended
¢ Functions supported:
- data access
- program access

A set of straps is inserted to filter the access according to the user’s choice, e.g.: on the
TSVME 600 the user can restrict access only to supervisor mode.

¢ Data port size: the module has got a data port of a given size, the access must follow
this requirement (the VME chip interface must perform the data transfer corre-

spondingly)..
e.g.: the VME chip interface can be told to generate only word access,
in this case long data transfer is done in 2 word data transfers.

e The VME base address: this is usually set by strap, it defines the module’s VME
offset in the corresponding VME subset range (short, standard or extended).

VME space mapping in the CPU adress space:
This is dependent on the CPU board:

For the MVME147 SYS1147U/D1 CPU board :
N.B.: see System manual in Operating instruction ch 3.3.1.1 p3-3

The map of main memory is given by the following table:

Address range Devices accessed Port size Size Notes
0-DRAMsize On board DRAM D32 4-32 Mb
DRAMsize-$efff ffff VME bus A32/A24 D32 3Gb 1
$f000 0000-$ff7f fif VME A32 D16 248 Mb

$FIIF 0000- S £ VME short D16 64 Kb

For the MVME147 MVME147S/D1 CPU board :

see User’s manual in operating instructions ch 3 p 3-5

Address range Devices acce==ed Povt ovee Siwe Notes
0-DRAMsize On board DRAM naz 4-32 Mh
DRAMsize-$efff ffff VME bus A3 A4 oo 3Gh !
$f000 0000-$fOff fiff ~ VME AZ! R 16 Mh

$£100 0000-$f17f T VME A32 it 232 Mb

$£FIf 0000-$£11T fHIf VME short D16 64 Kb

NOTES: 1. This A24 only applies to VMEbus space that falls below $1000 0000.
VMEbus space below $1000 0000 only occurs on versions of the MVME147 |
MVME147/S that have DRAMsize smaller than 16 Mb.

Understanding VME space In a DSC 6-4

For the THEMIS TSVME13x CPU board :
See the manual TSVME13x 68030 single-board computer

Address range Devices accessed Port size Size Notes
0-DRAMsize On board DRAM D32 lor4 Mb
DRAMsize-$fcff fiff VME bus A32 D32 3Gb 1

$£d00 0000-$fdfe fIff VME A24 D16 15 Mb

$£dff 0000-$fdff feff VME Al6 D16 1Mb

$FHT 0000-$£1FY fFFf VME short D16 64 Kb

Lynx O.S. facility to directly access the VME space:

A user’s program normally has no access outside its memory space. To enable it to
access VME space or any address range, Lynx O.S. provides a special function to ex-
tend the memory map of a non priviledged program to any physical space:

e smem_create: System call to get mapped onto the physical address range given
in the arguments. It returns the virtual address in the caller’s virtual space exten-
tion of the physical area specified in the parameters.This virtual area works like a
window giving direct access to the corresponding physical area. Choosing the
physical address in a VME range gives access to this VME area.

Reminder:

¢ The address given to smem_create as parameter is interpreted as a physical 32
bits address. To get a window mapped on a VME space area this value must be
choosen according to CPU mapping of CPU board which depend on type of the
CPU. Note that such a program is CPU dependent ! ... so to run it on an-
other type of cpu board it must be recompiled with the corresponding VME range
declarations.

¢ To prevent user program dependence on this mapping, general libraries facilities
must provide dynamically this mapping.

N.B.: see LYNX OS ref. manual chapter 2 System Calls.

Hints to compute the 32 bit CPU address of a VME module :

This information is necessary for people who need to directly access a VME module
using the Lynx O.S. facility in order to create an extention of a program virtual space
(smem_create) mapped onto a VME space.

The physical address of a VME medule a= scon fram the OPTT je computed by adding
to the base address of the range ' Tt ¢
dress set by the strap on the modul« hoar

e Pl o tepddend, the madnle hase ad-

VME range CPU b oveleleo o
- module VM b«

= VME module 32 bit CPU_address
eg.: for the MVME147/S the VME short range is 0x££££0000
if the module base address (given by the straps) is 0xe000
the physical CPU address of the VME module is
Oxf£££0000 + 0xe000 => Oxffffe000

Understanding VME space In aDSC 6-5

VME space visibility from Lynx O.S.:

The Lynx O.S. uses the virtual memory mechanisms, therefore it hides the physical
space completely from the program. Each program is given the visibility of a virtual
space corresponding to its code and data.

System virtual address mapping (mem.h) :

This may be dependent on the implementation of Lynx O.S., the mapping below corre-
spond to the Lynx O.S based on a MVME147/S CPU:

The table below describes the address space as seen from system level programs like
drivers, it gives a mapping for the valide VME address range.

N.B..The source of this documentation was extracted from the C header file: mem.h,
used to compile system kernel and drivers.

System memory mapping and VME address range:

Virtual Memory address associated Physical Space

OxfTf fiff

VME short I/O (A16)
Oxffff 0000

On board PROM

0xff00 0000

VME Standard (A24)
0xfe00 0000

Reserved
0xfd00 0000

VME Extended (A32)
0xed00 0000

Physaddr (32 Mb)
0xeb00 0000

0.S. Addr (4 Mb)
Oxeac0 0000

SpecPage/Startstack (8 Mb)
STARTPROTECT

USpecPage

Capn of PESENTRY

| for user to read

SHARED MEM START
TISTARTSTACK -

(8 Mb)
PERLIMIT

USER AREA
0x0000 0000

Understanding VME space in a DSC 6-6

Hints to compute the system virtual address of a VME module :
This information is necessary for people writing drivers.

The virtual address of a VME module as seen from the system level i computed by
adding the module base address set by the strap on the module board (The range base
address is picked up from the system virtual address mapping) to the base address of
the range (short, standard or extended) :

VME range system base address
+ module VME base address

= VME module system virtual address

eg.: for the MVME147/S the VME standard range is 0x£e000000
if the module base address (given by the straps) is 0x080000
the physical CPU address of the VME module is
0xfe000000 + 0x08000 => 0xfe080000

Understanding VME space in a DSC 6-7

7
VME - Addressing facilities library

Author: Alain Gagnaire
Habtamu Abie

The user is given an introduction to basic of VME addressing at chapter:
Understanding VME space in a DSC.

VME accesses via library calls for application portability:

In a DSC the access to the VME is available from the low and basic level of the sys-
tem, using directly the system call facilities to open a virtual space window on the
physical space corresponding to the VME area target. This level of programming
makes the program dependent on the current 0.S. features (in our case Lynx O.S.
with the smem_create system call) and moreover makes the application directly de-
pendent on the CPU mapping of the VME space.

Therefore a library interface was introduced in order to hold dependencies below ap-
plication programs. It is up to the system managers to set up the library according to
the actual Operating System and CPU environment.

The VME module address in the library interface:

To understand the VME addressing on a DSC see in this manual the chapter "Under-
standing VME space in a DSC".

A VME address for the user is made of 3 informations:

e The Address Modifier (AM) : a part of it specifies the type of address size used
for the access: short (16 bit address), standard (24 bits address), extended
(32 bits address). This is a fundamental characteristic of the addressed module
to stand such or such address size and it determines which physical address range
must be used by CPU to generate the associated AM lines on the VME bus by
actual addressing.

¢ The module base address : usually it can be set up by strap on the module
board. This must be understood as an offset jn the physical address space associ-
ated to the address size type.

¢ The module address offset : '+ muct b nnderstond as an offset in the module
address space.

The library determines the CPU ha - sdelhe o the *'ME module computed from the

interface address as follows:

» The AM =elected accordingz - - :) the hibrary which base
address of the Address size type hangs ramed AR to take, this depends on the
CPU mapping .

¢ The VME module base address named MBA is given by the strap setting.

VME module physical base address = AR + MBA

The module address offset is finally added to make an access from the physical base
address of the VME module.

VME - Addressing faclitties lbrary 7-1

The C library interface for the VME access facilities: (vmebuslib.o)

Using this library to access a VME module makes programs independent of the O.S. fea-
tures and of the CPU physical memory mapping.

These facilities are basic functions to perform single data accesses in the VME space
available on the DSC. A program VME address is defined, as explain above, by 3 infor-
mations:

The AM, the module VME base address and the offset.

How to use the library:

The source file of program using the library interface must declare in front the include
file : <vmebuslib.h>

The Makefile building the user’s application must include the appropriate lines to give
the path of the object file: /u/dscps/vmefclty/vmebuslib.o

READ_VME, WRITE_VME : Read/Write from the VME bus

This functions process a read/write of a byte, word or long from/onto the VME bus at the
VME address defined by the 3 informations: AM, module VME base address, user offset.

Formal C syntax definition:
void READ_VME(AM,Module_add,offset,ref_data,size,coco)
void WRITE_VME(AM,module_add,offset,ref_data,size,coco)
unsigned long AM;
unsigned long module_add;
unsigned long offset;
unsigned int *ref data;
unsigned int size;
int *coco;
Syntax of a call:
READ_VME(AM,module_add,offset,ref_data, size, coco):;
WRITE_VME (AM,module_add,offset,ref_ data, size, coco);
Where:

AM = The user select the AM corresponding to the type of addressing size
he wants, the supported values are:

$29 to select the short addressing data access.

$39 to select the standard addressing data access.

$09 to select the extended whis ovimgelat e e
module_add = The address of the module defined by its strap.
offset = Thisis the offsct in side tha farget VME module
ref_data = address of the «dntn v wlved in the transaction.

size = sgize of the An- 1o 7 ot b] for o byvte, 2 for a word
and 4 for a long.

coco = completion code if ><0 error occurred see local error code below.

VME_MNGT : Function to get rid of module visibility after accesses.

This function is associated to the Lynx OS implementation to perform the VME access,
this function release the Lynx OS resources implicitly reserved by the call to access
function on a module. This function must be invoked when the access finished to release

VME - Addressing faclltties library 7-2

the resources it sets up. When non released it would prevent to access other modules (
maximum 8 different VME space can be simultaneously accessed by this way).

Formal C syntax definition:
void VME_MNGT (AM,Module_add) ;
unsigned long AM;
unsigned long module_ add;
Syntax of a call:
VME_MNGT (AM, module_add) ;
Where:

AM and module_add = specifies the module interface address of a previ-
ously accessed module.

Error codes:
VMEBUS_UNSIZE = byte number not allowed
VMEBUS_ILLADDR = illegal base address
VMEBUS_INVAM = AM value not supported
VMEBUS_SEGVIOL = Hardware error by VME access
VMEBUS_ILLWIN = Cant get system resource to manage the VME access.
VMEBUS_ILLNAME = Internal error
VMEBUS_INVSIZE = size not supported
VMEBUS_NSYSMEM = No more system resource for that access

VMEBUS_EINTER = unexpected error code

VME - Addressing facllittes lbrary 7-3

The NODAL VME access interface:

The Nodal interpreter function extensions provide NODAL user with the VME access
facilities. The on-line documentation for that purpose is available under the NODAL
or the console station by invoking the ‘man’ program.

The NODAL function for the VME interface access are named :
VME R/W function
VMEMNGT Call function

SEE
The NODAL man pages manual :
PS/CO Note 91-0020
by F. Perriollat, G. Cuisinier, A. Gagnaire,
OR
under any console station
ask the man facility to display on line
the documentation of any NODAL function:
>man function-name

VME - Addressing faclitties llbrary 7-4

8

Installing a VME module in a crate

Authors: Alain Gagnaire,
Wolfgang Heinze

Inserting a board in a slot of a VME crate:

Whatever manufacturer your crate is coming from, you must always take care of the 5
standard jumpers along each slot:
Setting of the jumpers:

e IACK is the one to daisy-chain the interrupt acknowledge line, so remove it only
when a board is plugged in.

o BGO, BG1, BG2, BG3 are the 4 ones grouped together serving the BGIN/BGOUT
daisy chain. They have to be taken out only if a module is inserted which can take
mastership of the bus. At present, the main CPU board is the only master in the
crate, this make these jumpers unused in the other slots, so leave these 4 jumpers
untouched except for the CPU slot where they have to be removed.

Attention:
There are some difference beetween crate coming from different manufacturers:

o for WES crate type V422 the jumpers are on the left-hand side of each slot.

o for ROTRONIX crates, the jumpers are on the left-hand side of each slot.

e for MOTOROLA crates 1147, the jumpers are on the right-hand side of each slot.

Reminder:
e remove all jumpers on the slot of CPU.

¢ if there is an empty slot, install the IACK iumper on that slot.

e if thereis a board in a slot. rem« o I/0 7 csnpuny o that slal

CATTTIC T
Installing a module in an~ - 7 *he o b e the P2 connector
for anoth=r type of signa*™ - e all the boavds in

the systenm.

installing a VME module in a crate 8-1

9
Loading drivers under Lynx O.S.

Author: Alain Gagnaire,
Habtamu Abie

Drivers for additional devices can be dynamically loaded under LYNX O.S. The stan-
dard LYNX O.S. documentation provides all information for that purpose but the com-
plete recipe to follow is not given and the fundamental information is scattered in dif-
ferent places which make things not easy . In any case, the user must have read the
LYNX O.S. standard documentation:

e LYNX O.S. User's Manual Vol 2 : Chapter 4.6 Writing Drivers

o LYNX O.S. Utility Programs Manual , see the entries: devices, drivers, devin-
stall,, drinstall, drivers, mknod

e LYNX O.S. System Calls, see the entries : cdv_install, cdv_uninstall,
bdv_install, bdv_uninstall, dr_install, dr_uninstall, mknod. to perform the dy-
namical loading of driver from a program written in C.

Before you start your loading sequence the user should make some checks in the
driver code in order to prevent misfunction in it:

¢ Check order of the driver’s jump table entries which must as shown in table 4.1,
page 76 in chapter 4, i.e.: Open, Close, Read, Write, Ioctl, Install, Uninstall !

Installing a driver using LYNX O.S. commands:

This enables the user to dynamically install a driver by hand-typing the sequence of
commands or editing a command file or a script file:

N.B.: the command lines are headed with @ as the prompt character of LYNX O.S.

1 Run your C program to build a file and fill it up with the sdata of the informa
tion table required later at device installation:

If the program is named setup_dev_info and the file dev_info_table perform:
@setup_dev_info >dev_info_table

2 Load the driver object module. «whichive 21 fra the compilation of dyiver convee
code, into the system.

If the driver's object module is named nrvdrirer and the output of drinstall
command is redirected into the file «/- 11w 1eie-i perform:

@drinstall -c mydrire:

3 Install the driver (as May < e o onbaration of the system
with the command:

@devinstall -c -d dev_info_table <driver_i

4 Create the name of the associated Minor device to set up a handle for this
device, with the following sequence:

- Note the ID number of the corresponding Major device in the list displayed by
the command devices , e.g nn the number for this example.

Loading drivers under Lynx O.S. 9-1

- Create the handle named mydevice_handle giving to Minor device the arbit-
rary value ii (in the range [0..255]), with the command:

@mknod mydevice_handle c nn ii

Installing a driver using LYNX O.S. system calls in a C program:

This enable the user to install a driver by calling a dedicated program. here follows,
as an example, the source file of such a program:

/° Example of C program installing a driver into LYNX O.S

Created: Habtarmu Abie

This program requires 3 option argument on the command line:
-Dmydriver to specity the module of ditver in this case mydriver
-ldev_info_table to specify dev_info_table as file to receive the information table

-Nmydevice_handle to specify the name of the handle cre-
ated by mknod

When the program name is my_install a call looks like this:
@my_install Dmydriver -ldev_info_table -Ndevice_hcmdle

</

#include <ijo.h>

#include <stat.h>

#include <ftile.h>

#include <stdio.h>

#include <ctype.h>

/° info table: to provide hardweare address */

struct | long addr; long tvec; | info_table = (0x{ee00000, 3i;

static char info_path{80]. drvr_path({80]), node_pcath[80]

intextta = O;
/* set_path subroutine */
void set_path(path,crg)
char. path[) argfl
int &
i=2
while (argfi] I= "\O){
pathli-2) = crgtil;
1+4;
|
pathli-2) = \O;

}
/* swith_path subroutine */
void switch_path(arg)
char aagf(l
{ charch:
ch = crg(1l
switch ((char) toupper((int)ch)) {

case D'

set_path(drvr_path, arg);

Loading drvers under Lynx O.S. 9-2

case T:

set_path(in

break;
case ‘N

o_path, arg);

set, _pat.h(node _path, crg);

breck;

default:

break;
1)

/

void get_path(crgl,crg2.cag3)
char ‘argl, ‘arg2, ‘cag3d;
{ switch_path(crg1);
switch_path(cxg2);
switch_path(cag3);

}

/ BODY of MAIN

*/

main (cage, caagv)

int cage; char *cagv
{

intdriver_ID, f{d, Majardev_ID, Minordev_ID;

char ch[10], minor{80};
it (cage = 4) {

fprintt(stderr, “Usage: %s {Driver Info_table Path)\n',cagvi0D:

exit(1);)

get_path(argvi1].cargvi{2].cxgvi3D;
tprintf(stderr, Producing InfoTable: %s\n" info_path);

if (({d = open(info_path, O_WRONLY | O_CREAT, 0755)) < 0) {
perrorCCannot open or create INFO-table®);

exit(1); |

if (write(fd,&info_table sizeof(info_table)) < 0) {

close(fd);

perrorCError writing INFO-Table”);
exit(1); |

fprintf(stderr, Installing driver : %s\n" drvr_path);
dr_install(drvr_path, CHARDRIVER)) < O) {

perrorCCceny 4 st M in

exit(1); |

fprintf(stdern,"Driver ID = % " alrjren 1T

if (Majordev_ID = cdv_instariinmte peett deeey

perror e

exit(l). |

if ((dniver_ID =

trepy 2 0y |

tprinti(stderr,"Creating node with Majordev_ID %d with node %s\n',

Maijordev_ID.node_path);

if (mknod(node_path,S_IFCHR Mgjordev_ID << 8) < 0) {

do {

perror(Error creating node®);
exit(1); |

printfDo you want make node with minor dev? (Y/N) %;

soani(C%s',ch); printfC\n");

Loading drivers under Lynx O.S.

9-3

it ((chantoupper(nt)ch{0] == Y) {

printfCGive the minor device number: °);

scami(C%d’ &Minordev_ID);

printC\n°%);

sprintf(minor,*%s.%d’, node_path Minordev_ID);

it (mknod(minor S_IFCHR . (Mdjordev_ID << 8 |
Minordev_ID)) < 0) {
perrorCWriting to a file”);
exit(1);}

} } while ((char)toupper(Unt)ch{0] == Y?):

-- - -/

Loading drivers under Lynx O.S. 9-4

10

Intfroduction:

SDVME - Serial Camac interface driver

Authors: Alain Gagnaire (software),
Wolfgang Heinze (hardware)

This VME module provide access to a Serial Camac loop: to Read or Write from/to a
Camac module embedded in a crate in the loop, to accept Lams from Camac modules
in the loop as an interrupt signal in the VME crate. A full specification of the module
is given by the reference manual of the VME board provided by the developers of the
module:

- PS/CO/Note 91-022 Camac Serial Highway Driver in VME
by L. Antonov, V. Dimitrov, W.Heinze.
The access to the driver’s facilities can be done on 2 levels:

e The direct access to the driver interface based on UNIX i/o system call. This is
not recommended because it makes the user program dependent on the drivers
implementation and non portable.

e The library interface which provide global function hiding the UNIX system call
interface and the driver specific interface to the programmer. This interface is
available for C program and NODAL program.

Driver interface functionality:

These functions are provided via the user interface of the standard Unix file system.
Camac access : (ioctl function)

* Single Read/Write Camac.

e Multiple Camac access : perform a given sequence of Camac command

¢ Repetitive Camac access: perform the same Camac command the number
of time given, on data provided/returned from/into an array.

Connection with a Camac LAM : /i~ trime ey

* Connect : to get an event assonr+ ed v h - AN ¢l aomon slot from o given ceate
of the loop. When a LAM occurr“"vl the e er wall put an event, made of 4 byt i
the ring buffer of the requesting devic The cvont js a sequence of 4 byvtos i we
represent this event by : byte [2 1 0] the denc e of the event is
- b}’tes [3.2]= 1 word = nvmi.. e e W EAM - ainee the connectinn wene

made
- Dbyte[1] = Crate number of LAM source.

- byte [0]

N.B.: the connect is exclusive, only one device can get the event for a given slot.

Slot number issuing the LAM.

¢ Disconnect : to get rid of a previous LAM source connection. The in
coming LAM are no longer given to this device.

SDVME - Serlal Camac Interface driver 10-1

Synchronization with a Camac LAM : (select, read function)

performed by means of the select or read function. The read will be used to get infor-
mation on source of the incoming LAM (previously connected) .

Synchronization with Camac LAM (select, read file system call):

e Select : if the device descriptor of the sdvme driver, dedicated for synchronization
is given in the list of a select, and if a connect was made before on it,for one or more
LAM source, the select will return when one of this LAM arrived. The knowledge of
the LAM source is acquired by reading the incoming events from the ring buffer of
the corresponding device descriptor.

¢ Read : to get synchronized with a LAM source and to read the ring buffer in order to
to know the LAM source. When ring buffer is empty the call is blocking during a
laps of time, after which a time out is returned. The associated buffer must be tai-
lored to receive at least one full event i.e.: minimum 4 bytes; the buffer is fed only
with an integer number of events.

SDVME - Serial Camac interface driver 10-2

SDVME CAMAC Driver library Interface : (camaclib.o gpsynchrolib.o)

Introduction:

This interface inherited its main lines from the 0S9 ESONE CAMAC IMPLEMENTA-
TION FOR OPAL, it proposes a few subset of this whole interface and an extension
with some more standard functions.

The library hides to the programmer the UNIX system call of the driver’s direct inter-
face. The user may like to have a minimum knowledge of the system resources involved
by the library, for that purpose he has to read the further chapters giving the full de-
scription of the direct interface.

In few words, the user must know that a Camac access is based on UNIX i/o system
call, to access the driver facilities the library has to open a device file, the currently
opened device file identifier is stored in the global context of the library (local to the
running process) , this open is called at the first CAMAC access:

For the CAMAC access request the library opens the device file dedicated for
that purpose whose name is : /dev/sdvmelRW .

For the synchronization request the library tries to get a free device file, non
possible to be shared, out of the set of resources dedicated for that purpose whose
names are:

/dev/sdvmelOl to /dev/sdvmellé

Using library access make program independent of the driver implementation and
source code portable.

How to use the library :
In the source file of program include the header file associated to these libraries:
#include <camaclib.h>
#include <gpsynchrolib.h>
The Makefile building the user program must include the following lines
¢ The general path to dsc library is defined in the makefile as :
general path to lead to dscps library:
ROOT= /u
¢ To work with the access routine define the library path:
define path to load camaclib.o
camaclib.o full path
CAMLIB= $ (ROOT)/camdfclty/camaclib.o
¢ To work with the synchronization rrutines dofine the lihrnr path:
#define path t: ' al o .- - -h 1

RTLIB= $(ROOT) /r* £z1t-- ar —rnchrolibe.o

To tell the loader to reference ‘he cam o Lilh inelude the SCCAMLIB)Y andior
$(RTLIB) in the compilation/linl - rsevand i

Primary routines :

cdreq : Encode a CAMAC address
This function encode a CNA CAMAC address it performs no CAMAC access at all !.
The returned encoded value is required in c£sa access function.

Formal C syntax definition:

SDVME - Serial Camac Interface driver 10-3

int cdreg(ref camadd, L, C, N, A)
unsigned long *ref camadd;
unsigned short L;
unsigned short C;
unsigned short N;
unsigned short A;
Syntax of a call:
err = cdreg(ref_ camadd, L, C, N, A);
Where:
ref_camadd = add of the returned encoded value
L = CAMAC Loop number (for the moment only 1 loop supported)
Crate number in the loop (in the range [1..63]
Slot number in the crate.
A = Subaddress in the CAMAC module
gcamfunc ; Encode a CAMAC function

This function encode a CNAF CAMAC address/function, it performs no CAMAC
access at all 1.

Cc
N

The returned encoded value is required in multiple access function.
Formal C syntax definition:
int gcamfunc(ref_ camfunc, L, C, N, A, F)
unsigned long *ref camfunc;
unsigned short L;
unsigned short C;
unsigned short N;
unsigned short A;
unsigned short F;
Syntax of a call:
err = gcamfunc(ref_camfunc¢, L, C, N, A, F);
Where:
ref _camfunc = add of the returned encoded value

L = CAMAC Loop number (for the moment onlv 1 loop supported)

C = Crate numberip the loapam v [T 60
N = Slot number in the rrate.

A = Subaddressin the * AMAC v aednle

F = Function numher

Single CAMAC access routine :
cfsa : Read or Write CAMAC access

The way of access : read/write depends on the F value, see CAMAC reference manual.
Formal C syntax definition:

int cfsa(F, encoded-value, ref data, OX)

SDVME - Serial Camac interface driver 10-4

unsigned short F;
unsigned long encoded_value;
unsigned long *ref data;

unsigned short Q;

Syntax of a call:
err = cfsa(F, encoded_value, ref data, Q):;
Where:
F = CAMAC function to perform at given encoded CAMAC address
encoded_value = CAMAC encoded address
ref_data = address of data for the read/write CAMAC access.
0X = Q and X response of required CAMAC access

bit 16 = Q response and the sign of QX: QX < 0 Q response, QX>= 0 no
Q response

bit 14 = X response.

Multiple CAMAC access routines:
These functions use array of encoded CAMAC function returned by gcamfunc.

pmecami : Block CAMAC function
This function perform a sequence of CAMAC function given in an array.
Formal C syntax definition:
int pmcami (size,data_ar,camfunc_ar, retry,coco_ar, ref_coco)
int size;
int *data_ar;
long *camfunc_ar;
int retry;
int *coco_ar;
int *ref coco;
Syntax of a call:

err = pmcami (size,data_ar,camfunc_ar, retry,coco_ar,ref coco);

Where:
size = number of camar fun -ty n v pertorn incamaciune arrav
data_ar = address of deta arrny fo corregpondhing camac function
camacfunc_ar = address of camac function arrav to be performed
the encoded et i st be gef. up with geamfune
retry = mode of TARNTY T poend:
>0 maxretry v o e nie 1) dalee, check Q response

= 0 no retry, check Q response
< 0 no retry, ignore Q response
coco_ar = array of corresponding completion code returned
element = 0 no error, 170 no Xresponse, 169 no Qresponse

ref_coco = Global completion code

SDVME - Serial Camac Interface drver 10-5

=0 no error occured, 68 one error at least.

mcamt : Repetitive CAMAC function

This function perform several time the same CAMAC function using an array for the
data.

Formal C syntax definition:
int mcamt (size,data_ar, camfunc,retry, ref perf, ref coco)
int size;
int *data_ar;
long camfunc;
int retry;
int *ref perf;
int *ref coco;
Syntax of a call:
err = mcamt (size,data_ar,camfunc, retry, ref perf,ref coco);
Where:
size = number of repetition for the CAMAC function.

data_ar = address of data array for the successive execution of the
camac function .

camacfunc = camac function to be performed.

The encoded function values must be set up with gcam-
func

retry = mode of CAMAC access checking required:
> 0 max retry on each action while Q false, check Q response
= 0 no retry, check Q response
< 0 no retry, ignore Q response

ref_perf = number of action successfully performed

ref_coco = array of corresponding completion code returned

element = 0 no error, 170 no Xresponse, 169 no Qresponse.

SDVME - Serlal Camac Interface drver 10-6

gpevtconnect, gpevtdisconnect : Synchronisation routine

These facilities are not specific for synchronization with CAMAC LAM events, they in-
tend to provide DSC programs with general purpose means to get connected with exter-
nal events such as: CAMAC LAM, trigger from Front panel interrupt module (ICV196),
timing line events (PLS module).

gpevtconnect: Ask connection with a CAMAC LAM

To get synchronized with CAMAC LAM the program must first ask to get connected to.
A call to gpevtconnect function for each of the expected CAMAC LAM must be done.

A CAMAC action 1 or 2 single CAMAC access function can be associated to the call in
order to let them performed by the driver as soon as corresponding LAM occurs.

Formal C syntax definition:
int gpevtconnect (type,evt_val, ref EvtDescr)
int type:;
int evt_val;
long *evt_descr
Syntax of a call:
synchro_device_id = gpevtconnect (type, 0, ref EvtDescr);
Where:
type = 1
evt_val = ignored parameter for CAMAC synchronisation

ref EvtDescr = long ref EvtDescr([5] can be redefine as an
union structure pointer:

union U_EvtDescr ({
long element [5];
struct {
short C, N;
long Fl1_add, Fl_data;
long F2_add, F2_data;
} atom;

};
Where:

ref EvtDescr -> atom.C = Crate of the LAM to connect

ref EvtDescr - b Am 1 B EEYRNTYE P2 DAPRERPN B | PPN FAM taoconneet

ref EvtDescr =-> a-ow.l'l_ -l and #1 dat -
if F1 add ;- 0 pives the encaded CAMAC function to be firet
perfonned oo the-elvs- o 20 10N procegsing

ref EvtDescx - e el Pty =

if >< 0 p e the encoded CAMAC functin
to be secondely periormed by the driver at LAM processing .

synchro_device = returned value giving the device file identifier to
be used when the program want to get synchronized either by means of
the system file select command or in a specific request on this
events source by means of the read system file command which re-
turns as well in the associated buffer the event identifying the LAM
source.

SDVME - Serial Camac Interface driver 10-7

_gpevidisconnect : Ask disconnection from a CAMAC LAM

To get rid of a previously connected event source the program must ask to disconnec-
tion of this source of CAMAC LAM.

Formal C syntax definition:
int gpevtdisconnect (type,evt_val, ref EvtDescr)
int type;
long *evt_descr
Syntax of a call:
synchro_device_id = gpevtconnect (type, 0, ref EvtDescr):
¥Where:
type = 1

ref EvtDescr = same as for gpevtconnect with only the 2
first elemnts used:

ref_EvtDescr -> atom.C = Crate of LAM source to disconnect
ref_EvtDescr -> atom.N = Slot address of the source of the LAM.

The other arguments are ignored.

select, read : Getting synchronised with CAMAC LAM event

After connection established with the expected CAMAC LAM sources the program has
to get synchronized with event and has to identify from which source LAM occurred.

For that purpose, the returned device file identifier from gpevtconnect call, the same
for all the connection the program performs, allows the program to wait for this
events, according to its needs, either by the select or by the read.

Events data structure:

These events are pushed in the corresponding device file and can be read by the pro-
gram, the data structure of the event is as follows:

struct sdvmeT Event (
short count;
unsigned char C, N;

}:

Where:
count = serial rumber b e e e el
C = crate where the LAM «wc uved
N = Slot in the crats= where T.Am orenrred.
Getting synchronized by the sel /- 1L o ‘he ciandard UNIN wav, sfter retinrn
from the sel=ct the program mu:t © i e hode s Bomy e coming the event
If the device file is the one of the ' = oo o know which out of all

the connected LAM source, generated a LAM the program must perform the reading
of the device which returns in the buffer the data identifying the source : see below
getting synchronized by read.

Getting synchronized by the read :

SDVME - Serial Camac interface driver 10-8

Reading from the device file descriptor given back on gpevtconnect is waiting for
CAMAC LAM to occur or getting in the buffer associated to the read the event data
identifying the source of event.

This source depends on the kind of device generating the event, in case of sdvme mod-
ule the structure of CAMAC LAM events is described above in the paragraph Event
data structure.

Formal C syntax definition: int read (synchro_device_id,
buffer,byte count);

int synchro_device_id;
char *buffer;
int byte-count;
Syntax of a call:
err = read(synchro_device_id, buuffer, byte count);
Where:
err = see Lynx O.S. reference manual for usage of read

synchro_device_id = Device file descriptor index given by the gpevt -
connect call (always the same for all connect the program perform)

buffer = buffer to get event descriptor: minimum size required = size
of (sdvmeT_Event) i.e. = 4 bytes. if the buffer is bigger it can receive as
many already received event as the buffer can completely contents. the ac-
tual maximum event awaiting a read for a device is 8. When device ring
buffer is full a next event will purge all the ring buffer and a special event
to warn the program is generated with all field set to 1:

special event in case of purge: Count= (-1) C= $ff N= $ff

byte count = see Lynx O.S. reference manual for usage of read

SDVME - Serlal Camac Iinterface driver 10-9

The NODAL CAMAC functions interface:

The NODAL interpreter got extension of its function to provide NODAL user with the
CAMAC driver facilities. The on line documentation for that purpose is available by
typing under a nodal session the man followed of the function name. The whole
NODAL man pages can be printed out from a Console station as any system man

pages.
The NODAL function available are:

GCAMAD to encode CAMAC address

SCAM to perform a single camac accesses

CAMDR to perform a sequence of CAMAC accesses
MCAMT to perform a CAMAC block access

SEE
the NODAL man pages manual
PS/CO Note 91-0020
by F. Perriollat,G. Cuisinier, A. Gagnaire
OR
under any console station
ask the man fcicilh‘y to display on line
documentation of any NODAL function:
>man funcfion-name

SDVME - Serlal Camac Interface driver 10-10

Serial Camac VME specifications summaries:

hardware:

¢ VME board single 6U.

e VME board, addressing short I/O, data port size 16 bits

¢ Register generated single Camac access, conservative mode , P10 only
¢ Bit and byte serial mode, 5, 2.5, 1 and 0.5 MHz selectable

o Stacking of serial demand message in a FIFO (1024 memory)

¢ Reply and demand messages generates maskable interrupt.

Setfting of jumpers:
Base address of the module:

It is adjusted by the jumpers: [JA1l .. JA15] corresponding to the address lines [A11
.. Alb] giving 32 different selectable base address for the module (Jumper JAx pre-
sent means line address Ax is zero):

[JA15, JA14, JA13, JA12, JA11]) =[O0, 0, O, 0, 0] for base address $0
" =[0,0,0,0, 1] "t $800

" ={1,1,1,1,1] " $£800
Address modifier supported by the module:

It is fully determined according to the setting of the JAM jumper, whose value is 0
when present:

JAM =[0] stand AM = $2d for supervisor data access only.
JAM =[1] stand AM = $29 Or $2d for supervisor/non-privileged data access

Driver installation :

After hardware selection of appropriated setting of the VME module the installation
of software driver requires some informations corresponding to the hardware setting:

¢ VME base address of the module,

e MC68158 interrupt vector : this vector is given to CPU at Demand interrupt to
generate the interrupt in the CPU, therefore this value should be chosen carefully
in order not to collide an already allocated vector interrupt in the CPU

e MC68153 interrupt level : this value defines the level of the CPU triggered
when an demand interrupt is generated.

The installation can be made by calling the inztallation promram with the following:

syntax:
>sdvmeinstall -A<base addressz> -7 v .stor - =Lointerrupt level.
with the constraints: vector valne ~ Gd anme AL
Level valn: 1 . 1
exemple:

>sdvmeinstall -AQ0 -V160 -L.

SDVME - Serial Camac interface driver 10-11

SDVME Driver system interface :
For standard usage this level is hidden by a library interface .
This interface follows the standard way of Unix for programming I/O serviced by a
driver.
Device file: (associated LynxOS minor devices)

the installation processing create devices file to provide user with system resources nec-
essary to invoke driver services, there are 3 class of this resources:

¢ /dev/sdvmelRNW : system resource to call Camac access services, shared by all si-
multaneous user.

¢ /dev/sdvmelsurv : system resource to get synchronized with Power failure and
spurious interrupt of the loop, non possible to be shared, the survey task should own
this ressource.

¢ /dev/sdvmelOl {0 sdvmellé6 : system resource to get synchronised with LAM in
the loop, these resources are non sharable, they are like handle which enable the
owner to call services to ask for synchronisation with LAM and to get information
on incoming LAM.

File system interface:

The driver direct services interface is provided by the file system interface c.f. Lynx
O.S. user’s manual:

e open on the minor device name: to get a device descriptor to call file system func-
tion associated to the driver link to the device.

e ioctl : to perform a special service of driver.

e select :to wait for the condition of the open file descriptor and other to change.
e read:toread bytes from the open file descriptor.

* close:to get ridd of the file descriptor from a previous open.

The file definition <sdvme.h> must be included in the program

Camac access:

The common device file "/dev/sdvmelRW'must be open to get an appropriate device
descriptor index for the ioctl function performing Camac access request.

example:

int fid_access;

fid _access = open("/dev/sdvmelRW", O RDWR, 0755);
Single Camac access call : (SDVME_=ca~

Invoked by means of the ioctl function = SPWVIE _scam passing an argument defined
defined by the following C structure rrovided v the header file < sdvime h> :

struct sdvmeT_scam !

long Cam¥Fnin

long data,

unsigned short QX_response;
unsigned short Reg_status;

IR
Where the caller puts parameters of call, and gets back results:

SDVME - Serial Camac interface driver 10-12

e Reg_cde = (RO.) Encoded camac function according to sdvime command register
structure. See sdvine hardware manual : this is the value to put in the sdvme
command register.

e data =(RW.) Data Read/Write according to camc function
e OX response =(WO.) bit[15] is Qresponse of camac function call
bit[14] is X response of camac function call

e Reg_status=(WO.) Hardware status of sdvme module, for further in vestiga-
tion unexpected no X response oc cured. The 14 right most bits of the short
are the corresponding bits of status register of sdvime module, see in =d
vime hardware manual specification of status register.

example of call:

struct sdvmeT_scam arg_scam;

cc= ioctl (fid_access, SDVME_scam, &arg_scam);
Driver return specific error in ermo when error returned by the call:
EFAULT Wrong parameter pointer (out of range or protected)
EACCESS This file id does not stand this funstion
EINVAL Illegal parameter found in arg.

Camac access sequence call: (SOVME_pmcami)

Invoked by means of the ioctl function = SDVME_pmcami passing an argument defined
by the following C structure provided by the header file < sdvme.h> :

struct sdvmeT pmcami {
int sz;
long *dval;

long *AFNC;

int retry;
int *OX;
int *coco;

i
Where the caller puts parameters of call, and gets back results:

e sz =number of single camac command in the table

e dval= table of data for earh of the —ale camae fuanclhion of the Sorqriend e
Read/Write/Test to be «-«cut-'
e AFNC= table of the Camac command zeq-ience encoded according to sdvme com.
mand
. Tetry = if) 0 nll!llber Ofr?h’\'."" R “""“""’l \V]]il" no ') ""”')("\.Q"

1= 0 no retry. cher i
if <0 no retry , ignore Q response
e OX= completion array: QX[i] = 0 if ok, 170 if no X response, 169 if no Q response.
e coco = global completion code: 0 if no error, value of error occuring at stop.
The driver returns a specific error in errno when error returned by the call:

EFAULT Wrong parameter pointer (out of range or protected)

SDVME - Serial Camac Interface driver 10-13

EACCESS This file id does not stand this funstion
EINVAL Illegal parameter found in arg.

example of call:

struct sdvmeT pmcami arg pmcami;

cc= ioctl (fid_access, SDVME_pmcami, &arg_pmcami);
Repetitive Camac action call : (SDVME_mcamt)

Invoked by means of the ioctl function= SDVME_mcamt passing an argument de-
fined by the following C structure provided by the header file < sdvme.h>:

struct sdvmeT_mcamt {
int sz;
long *dval;
long AFNC;
int retry;
int *perf;
int *coco;
}:
Where the caller puts parameters of call, and gets back results:
e sz = number of time the camac action will be repeated.
e dval = table of data for each Camac action.
¢ AFNC= Camac function encoded according to sdvme command to be repeated.
e retry = meaning according to value:
- if > 0 number of retry,on each Camac command while no Q response
- if = 0 no retry, check Q response
- if <0 no retry , ignore Q response
¢ perf = number of action performed
e coco = global completion code: 0 if no error, value of error occuring at stop.
The driver returns a specific error in errno when error returned by the call:
EFAULT Wrong parameter pointer (out of range or protected)
EACCESS This file id does not stand this firnetion

EINVAL Illegal parameter found are

example of call:

struct sdvmeT_moam®

cc= 1octl (fid_access, SDVME_mcamt, &arg_mcamt);

SDVME - Serial Camac interface drver 10-14

Connection to a Camac LAM:

The system resources to invoke this services are non sharable, the device file available
are:

/dev/sdvmelsurv is the unique resource to get automatically connected with spuri-
ous LAM or power failure LAM and to get synchronised with these incoming LAM.
This device file is dedicated to the task surveying the Camac loop.

/dev/sdvmel0l to /dev/sdvmellé are the resources to ask connection with LAM in
the loop, and get synchronised with these incoming LAMs.

To invoke the associated services the resource must be opened in order to get a device
descriptor identificator required for the further file system calls:

example:

int fid_synchro;

fid_synchro = open("/dev/sdvmel01", O__RDONLY, 0755);

Request for connection with a LAM of a Camac Slot :
Invoked by means of the ioctl function = SDVME_connect passing an argument
defined by the following C structure provided by the header file < sdvme.h>:
struct sdvmeT_connect {
short C, N;
long F1l_CamFun, F1l Data;
long F2_CamFun, F2_data;
}i
Where the caller puts parameters of call, and gets back results:
¢ C = Crate number of the LAM source to connect.

¢ N = Slot number in the crate of the LAM source to connect.

The following parameters allow the caller to let perform by the Interrupt service rou-
tine of the driver, a camac action, up to 2 actions, as soon as the LAM occured. This is
used to disable the LAM source.

e F1_CamFun = Camac function 1 to be performed if non zero by the driver when
receiving the LAM

e F1 Data = associated data to Camac function specified by F1_CamFun

e F2 CamFun = Camac function 2 to be performed if non zero and if F1_CamFun

non zero as well. by the driver whenveo v the 1AM
e F2 Data = associated data to " vmac frmnen spocihed by F25ocamt an
The driver returns a specific error 1 ~y v = henorror veturned hy the eall:

EACCESS The fileid does not starn " tha - veee twn,

ENODEV “he file id does net - - ' : ey heofwoon matallngon
program and actual . - S e

EWOULDBLOCK driver fatal error (internal table corruption detected)
EINVAL Illegal parameter found in arg.

EISCONN Try to connect to a LAM already in use by another user.
example of call:

struct sdvmeT_ connect arg_connect;

SDVME - Serial Camac Interface driver 10-15

cc= ioctl (fid_access, SDVME_connect, &arg_connect);

Request for disconnection : (SDVME_disconnect)

Invoked by means of the ioctl function = SDVME_disconnect passing an argument de-
fined by the following C structure provided by the header file < sdvme.h> :

struct sdvmeT connect {
short C, N;
long F1_CamacFun, F1l_Data;
long F2_CamacFun, F2_data;
)i
Where the caller puts parameters of call, and gets back results:
e C = Crate number,of the LAm source to disconnect.

¢ N = Slot number in the crate of the Lam source to disconnect.

Other parameters = non significant because ignored .
The driver returns a specific error in errno when error returned by the call:
EACCESS The file id does not stand this cunstion

ENODEV The file id does not exist for the driver (discrepancy beetween installation
program and actual configuration of the driver)

EWOULDBLOCK driver fatal error (internal table corruption detected)
EINVAL Illegal parameter found in arg.

EISCONN Disconnect refused: either such connection or no owner of the connection.

example of call:
struct sdvmeT_connect arg_connect;

cc= ioctl (fid access, SDVME_disconnect, &arg_connect);

SDVME - Serlal Camac Interface driver 10-16

Getting synchronised with a LAM : (select, read)

Once the program get connected it can wait for incoming LAM from the specified
camac module.

If the program wants to wait for incoming event from different devices it has to use
the standard Unix way: the select function which tell it which device got an
event.

If the program uses only the camac events source it can wait by read on the device:
¢ one or more events arrived, the read returns the event in the buffer

¢ nothing arrived, the read blocked on wait until one event comes or time
out occured

The buffer must be big enough to receive a complete 4 bytes event, the buffer will re-
ceive as many complete events, he can get, as there are in the device.

The design of an event is given by the following C structure:
struct sdvmeT_Event ({
short flag;
unsigned char C;

unsigned char N;

Where :

Flag = serial number of corresponding LAM since the connect was done.
C = Crate number of the corresponding LAM source.

N = Slot number of the corresponding LAM source.

/ % (example of C syntax usage: ,/
#include <sdvme.h>

int fid_access;

int fid_synchro;

struct sdvmeT_connect arg_connect;

struct sdvmeT Event Event;

int cc;
/« open the channel t~ pexfcrm the amar arcen: and
the channel t« 1t - b At ion with the LAM

from the modr!

£id _access = 1 - : ‘ T RDWE, 0NNy

fid_synchro = open("/dev/sdvmel0Ol",0 RDONLY,0755);

/« ask to be connected on the incoming LAM from the

Camac modules ,/

SDVME - Serial Camac interface driver 10-17

/%

cc = ioctl(fid_synchro, SDVME_connect, &arg_connect);
/« ask to get synchronised:

the read will wait for LAM to come and

give back the first event in the buffer ./
cc = read(fid_synchro, &Event, sizeof (Event));

/« Then Process the received event ,/

)% */

SDVME - Serial Camac interface driver

10-18

Miscellanious functions :

Control of driver behaviour :

single ioctl functions , to control the behaviour of the driver:

IOCTL whose argument is ignored, the supported function code are:
SDVME_nowait if no event in device the read will not wait, it return 0 byte

SDVME_wait default option, make the read wait if no event in device

Request to get information from a Slot:

Invoked by means of the ioctl function = SDVME_ SlotInfo passing an argument
defined by the following C structure provided by the header file < sdvme.h>:

struct sdvmeT_Slotinfo {
short C, N;
int Owner;
int count;
long Fl1_CamacFun,Fl Data,F2_CamacFun,F2_data;
}:
Where the caller puts parameters of call, and gets back results:
C = Crate number of the Slot.
N = Slot number in the crate.
Owner = Index of device if connected, -1 if not connected
Count = number of LAM having occured from this Slot.
F1_CamFun = Camac function 1 to be performed if non zero by the driver when
receiving the LAM
F1_Data = associated data to Camac function specified by F1_CamFun

F2_CamFun = Camac function 2 to be performed if non zero and if F1_CamFun non
zero as well, by the driver whenreceiving the LAM

F2_Data = associated data to Camac function specified by F2_CamFun
Driver returns specific error in enmo when error returned by the call:
EACCESS The file id does not stand this cunstion

ENODEV The file id does not exist for the driver (discripancy beetween installation
program and actual configuration of the driver)

EWOULDBLOCK driver fatal error (internal ¢ bl cogrnptinn dedectody
EINVAL Illegal parameter foun n ov:

EISCONN Try to connect to a LAM alread: in nee b anotheruser.
example of call:

struct sdimeT

cc= ioctl (fid_access, SDVME_connect, &arg_connect);

SDVME - Serial Camac Interface driver 10-19

11

Introduction

TSVME404 - GPIB interface driver

Author: Nicolas de Metz-Noblat

The TSVME404 is a simple VME board allowing the connection of a GPIB (IEEE 488)
bus. This board has no local processor, but is delivered with 16Kb RAM and 16Kb
ROM with a simple firmware. The GPIB access is done through a TMS9914A chip.

This driver was developped without using the local firmware, neither using the local
RAM, because we wanted a multi-user interface and dont want to rely on an external
untested RAM.

By definition of the GPIB protocol, two main modes of operation can arise: either this
board acts as the bus controller, or it acts as a slave board. This is specified when in-
stalling the driver, but if the jumpers allows it, it is possible to dynamically exchange
the controller status with another computer on the same bus.

As on any Unix system, access to the driver is achieved via the open, read, write, ioctl,
select and close system call. On open, a special file (usually /dev/gpib) whose major de-
vice number correspond to the driver is opened. In order to simplify the usage of the
GPIB from user’s programs and to allow concurrent usage of the bus by different
tasks, several modes of operation are supported:

In controller mode, the minor device zero correspond to the master device, i.e. allows
an access to the whole bus functionnalities, but for practical reasons, this kind of open
is restricted to a single task (only one task can be woken up by SRQ and interpret the
result of a parallel poll). Several tasks can open different devices (whose just minor
device number differs) at the same time and be woken up by the driver on SRQ of the
uniq instrument to which they are related. by convention, the minor device is equal to
the device number+1 (and usually the special file name is /dev/gpib.xx, where xx is the
station number on th bus).

In slave mode, either a single task can be blocked in wait on the master device, or sev-
eral tasks can wait for different subaddresses.

TSVMEA404 - GPIB interface driver 11-1

Hardware settings summary

Following jumpers can be set on the hoard (see reference manual):

The S1 jumper allows the choice to force the board to be system controller or slave, or
to leave the choice to the software ("auto”). The prefered switch setting is this last po-
sition, i.e. the software controlled one.

The S2 jumper enables selection of the type of output for the interface circuit of the
GPIB data lines. In "T.S." position, the buffer outputs are Three-State type, except
during "parallel poll” cycles in which they automatically switch to an open-collector
type. In the "C.O. position, the buffer outputs are of open-collector type.

The S3 jumper(s) allows to choice the software interrupt level. This will affect the
overall system response time and should be choosen carefully.

The S4 jumpers choice the board address and must be coherent with the initialisation

software.

The S5 jumper allows to restrict the board access to supervisor mode, and since this is
a true driver, the prefered position is the "Sup” position.

The five front-panel switches allow the choice of the board GPIB address on the bus.

Driver initialisation

When installing the driver, it does require the following informations:

- VME base address of the device (see jumpers S4).

- MC68030 interrupt vector: This number should be choosen carefully in order to avoid
conflicts with other boards. Preferred default value is 120.

- Initial state as controller or slave GPIB station.

The driver is normally installed by the dynaminst program. This one does require
some informations found in the file /etc/insttab.

Normal usage:

normal user will just use the driver as follow:

#include <t404 h>

int dev;

dev = open("/dev/gpib.21"."r");
write(dev., buf, len);
read(dev, buf. sizeofibuf)):

closetdev);

Software specidalist usage:

/* sperial tavmed04 joct] definitions */
L IRTPTIRNE I SV

A alke weth station 21 %/

.

cond . aumand to instrument */

| B R T I T | 1yoesponse vy,

In order to have full access to the gpib functionnalities,

#include <t404.h>

int dev;

/* special tsvme404 ioctl definitions */
/* buffered device */

TSVME404 - GPIB Interface driver 11-2

dev = open("/dev/gpib","r"); /* reserve the whole bus */
joctl(dev, T404_LISTEN, 21); /* set station 21 as listener */
write(dev, buf, len); /* send command to instrument */
ioctl(dev, T404_UNLISTEN, 21); /* stop any listener */

n = ioctl(dev, T404_SPOLL, 21) /* poll station 21 */

ioctl(dev, T404_TALK, 21); /* set station 21 as talker */
read(dev, buf, sizeof{buf)); /* Read instrument response */
ioctl(dev, T404_UNTLK, 21); /* stop any talker */

close(dev);

loctl special function codes:
General ioctl calls:

T404_DEFEQOC define end of transfer conditions. The int parameter is in-
terpreted as follow:

- the MSB byte is a flag to generate EOI on the last byte of
each write command.

- the two LSB bytes define the End of Line character(s):
Oxffff means end only on EOI or byte count,
Oxyyff means stop on reception of char yy
Oxyyzz means stop on reception of char yy followed by
char zz (usually 0x0d0a).

T404_BUS_STATUS read the status of the HPIB bus lines.
T404_TMS9914 allows to send special commands to the tms9914 chip.

ioct]l functions restricted to controller mode:

The following ioctl functions are available to modes, but restricted to the opened de-
vice if not on the master device.

T404_CLEAR Device clear. This command is either a general device clear
command if applied on the master device with parameter -1,
or a selected device clear of the specified instrument.

T404_LOCAL Set specified instrument into local mode.

T404_REMOTE Set specified instrument into remote control mode.

T404_LOCAL_LOCEKOUT Lockout the Local/Reset command of the instrument

T404_SIGNAL Define the amnal 1 ent cn RO fram the apened in G
ment.

T404_SPOL~ Serial poll epened i triament

TSVME404 - GPIB Interface driver 11-3

ioctl function restricted to the master device:

T404_LISTEN put specified instrument in listener mode.

T404_TALK put specified instrument in talker mode.
T404_SEND_SECOND send a secundary device address.

T404_STANDBY Let the requested operation execute. (this is normally used

once a listner and a talker have been selected and we are not
interested in listening to the transfer).

T404_UNLISTEN Stop any listener.

T404_UNTALK Stop any talker.

T404_IFC Generate InterFace Clear signal.
T404_PASS_CONTROL Pass control to another controller.
T404_GET Send Group Execute Trigger command.
T404_PPCONF Configure parallel poll on device
T404_PPUNC Unconfigure parallel poll
T404_PPDIS Disable parallel poll

T404_PPOLL Execute a parallel poll

ioctl functions restricted to slave device:

T404_SRQ Request for service
T404_STSPOL Prepare Serial Poll response
T404_STPPOL Prepare Parallel Poll Response

T404_READ_SECUND Fetch specified secundary device address

Waiting for SRQ from a device.

A task driving an instrument that can generate an SRQ has to open this HPIB device
and to issue an ioctl(d,T404_SIGNAL,signum), where signum is a signal that will be
generated to the requesting if the polling of this instrument has the bit 6 on.

Any instrument that can generate SRQ should be serviced by a task that will handle it.

TSVMEA404 - GPIB interface driver 11-4

Usage example: HPS335A universal counter.

/* */
/* HP5335-A universal Frequency counter test program */
/* */

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <signal.h>
#include <fentl.h>

#include <t404.h>

#define ASK(t,f,v) {printf(t); fflush(stdout) ; scanf(f, v);}
#define ASKOK() {printf("Ok ?"); f£flush(stdout); getchar():)
#define ERR(1l,t) {perror(t); exit(l);}

#define SYSERR (=-1)

#define SIGSRQ SIGUSR1 /* Our signal for SRQ */

int hp5335; /* Open device number */

int station; /* HPIB station number for 5335-a */
char device[80]; /* Special file name */

char dummy[80]; /* Dummy response buffer */

int cr;

int service_request;

/**/

/* SRQ signal handler */
/************************'k***********************************/
static sig_srqg ()
{ printf ("SRQ arrived\n");

++service_request;
}

/**/

/* Write command to hp5335 */
/**/
write_command (txt)
char *txt;
{ char txtl[128]: /* Intermediate buffer */

int len;

sprintf (txtl, "%s\r\n", txt);

len = strlen (txtl);

if ((cr = write (hp5335, t.tL1, =~ - ! o ey
}

/*********************g_.**.‘a.4L.&.A., . Ch L s s L A A A
/* Test 2 : **** LOCAL/RESET =he. sase
/**********************...**;4.;;4;.-‘ F L T L A S
test_2 () |
if ((cr = ioctl (hp33°° CYIET I
ERR (Z. "hp%33S &el-
if ((cr = ioctl (hp5355, 1. . iuiv ., v == JY3ERE)

ERR (2, "Remote");
write command ("IN"); /* initialize */
printf ("\n");
printf ("Press LOCAL/RESET on 5335A front panel and verify\n");
printf ("that REMOTE LED goes out.\n");
ASKOK ()

TSVMEA404 - GPIB Interface driver 11-5

/**/

/* Test 3 : ****x LOCAL LOCKOUT check KKK K/
/**/
test_3 () {
if ((cr = ioctl (hp5335, T404_REMOTE, 0)) == SYSERR)
ERR (2, "Remote");
if ((cr = ioctl (hp5335, T404_LOCAL_LOCKOUT, 0)) == SYSERR)
ERR (2, "Local Lockout"):;
printf ("Press LOCAL/RESET on 5335A front panel and verify\n");
printf ("that REMOTE LED stays ON.\n\n");
ASKOK ()
if ((cr = ioctl (hp5335, T404_LOCAL, 0)) == SYSERR)
ERR (2, "hp5335 Local mode");
}

/**/

/* Test 4 : **** 'WAIT’ & ’SRQ’ mode test *rkk %/
/**********************************i**********************t**/
test_4 () {

int (*sig _old) (); /* saved alarm signal handler */

int i;

char buf{1024];

printf ("Verify that following LEDs are lit for 5 measures:\n");

printf (" - TALK\n - LISTEN\n - SRQ\n - REMOTE\n");
ASKOK ();
write command ("IN,GA.02"); /* Initialize, Gate adjust */

sig_old = signal (SIGSRQ, sig_srq);
service_request = 0;
if ((cr = ioctl (hp5335, T404_SIGNAL, SIGSRQ)) == SYSERR)
ERR (2, "Enabling SRQ requests");
/* Wait to Send mode on, Enable SRQ */
write command ("WAl,SR1");
sleep (1)
for (i = 0; 1 < 5; i++) {
if ((cr = read (hp5335, buf, sizeof (buf))) < 0)
ERR (2, "reading");
buf[cr] = 0;
printf (" $s\n", buf);
if (i<4) {

write command ("RE"); /* reset for new measurement */

sleep (1):

}

write command ("SRO");
ASKOK ()
}

/**************************+*****'"""‘44

/* Test 5 : **** Teach - Leaza: m ' :

S O P O Y

/****************************‘“*“‘“" ,

test_5 () {

int i,l;

char buf([512], bufl[512):

printf ("Verify that 7777 B AN N L A DA

if ((cxr = ioctl (hpSZ2l. - TOEFT
ERR (2, "Remote");

/* select function 1, set scale value 11222448800 */

write command ("FU1l,MS1122448800");

ASKOK ()

printf ("Reading current setting\n");

write command ("PQ");

if ((cr = ioctl (hp5335, T404_DEFEOC, -1)) == SYSERR)
ERR (2, "Define end of transfer conditions"):;

TSVME404 - GPIB interface driver

11-6

for (;7) |
if ((1 = read (hp5335, buf, 30)) < 0)
ERR (2, "reading");
if ((buf[23) == 17) && (buf[24] == 34) && (buf[25] == 68)
&& (buf[27] == 0) && (buf[28] == 0))
break;
}
printf ("Verify that 5335A displays 100. 000 00 -9 with S\n");:
printf ("and function PER A LED’s ON and GATE LED flashing\n");
write_command ("FU9");
ASKOK () ;
printf ("Rewriting setting\n");
bufl[0]="P’;
bufl[1]='B’;
for (i=0;i<l;i++)
bufl[i+2])=buf[i];
if ((cr = write (hp5335, bufl, 1+2)) < 0)
ERR (2, "writing");
printf ("Verify that 5335A displays: ‘11. 224 49 +15 Hz’.\n");
ASKOK ()
}

/**********************t*************************************/

/* Main program */

/**********t***********t*************************************/

main (argc, argv)

int argc;
char **argv;
{ int i

printf ("'******'k*****************************\n") ;

printf ("* 5335-A HPIB verification program *\n");
printf ("****************************t*******\n\n“);
for (;:) |

ASK ("Enter HP 5335-A station number: ", "%d", &station);

if ((station >= 0) && (station < 31))break;

printf ("Illegal HPIB station number !\n");
}i
sprintf (device, "/dev/hpib.%d", station);
if ((hp5335 = open (device, O RDWR, 0)) < 0) ERR(2,device)
printf ("Connect Time Base Out from rear panel to Input A.\n");
printf ("Set ’GATE ADJ’ to CCW and Channel A & B input to:\n");
printf (" Preset, 50 Ohms, X1, DC and positive slope\n");
ASKOK ()

printf ("Test 2 : **** LOCAL/RESET check ****\n") ;
test 2 ();
printf ("Test 3 : **** LOCAL LOCKOUT check *rxF\n") ;
test_3 ()
printf ("Test 4 : *=*<+* ‘77T : oL T T
test 4 ()
printf ("Test 5 : **** Tex-h - Jov movde toot R PR
test 5 (O

TSVMEA404 - GPIB interface driver 11-7

12
ICV196VME - ITX interface driver

Authors ; Friedtjof Berlin
Alain gagnaire

Introduction

This ICV196 VME module contains 96 I/O lines, arranged as 12 ports of 8 lines. The
lines 0 to 15 (ports 0 and 1) are used for external interrupts and these are the lines
which are supported by the driver.

The driver supports up to 4 of the icv196 modules, each containing 16 interrupt lines
and permits a user program to connect to one or more of the 4*16 interrupt lines
provided by the modules. Which lines are available depends of course on how many
modules are physically installed.

The additional I/O ports contained on the icv196 module (port2 - portll) are not sup-
ported by the driver, with one exception: the direction of these ports has to be set by
an ioctl() function on the desired module (see chapter:"Ioctl special function codes”).

Before using the driver, it must be installed. The program icvl96vmeinstall, which is
provided with the driver, performs the installation (see chapter "Installing the
driver").

On the DSC’s, the driver object codei, its installation program and a testprogram “tes-
ticv" is situated in the directory /usr/local/drivers/icv196. The directory
/u/dscps/icv196vme contains the source code for all programs concerning the driver.

Driver interface functionality

The following is a very brief description of the calls executed in an application pro-
gram to interact with the driver. For more details, see chapter "Calling the driver
from a user program” and the program examples given.

Similar as for other drivers developped under LynxOS at PS, the library functions
gpevtconnect () and gpevtdisconnect () are used for connecting to and discon-

necting from an icv196 interrupt 'ne Tl vovehie] wdindize - the e an
terface.

In short the following calls access the driver fam o user program ¢

1) gpevtconnect () : connects te n et o v the desired modale

2) gpevtdiszonnact () : Adiseans - b g hine on Ahe desired mvedaede
3) read () : waits for an interr:- ‘ Cee e 106 modudes aned e

turns information on the event (e. g. which line was the source of the interrupt) when
it arrives. If more than one event has occcurred since the last read (), information on
all the events (up to 8) is returned.

4) select () : This call is used to wait for interrupts which may come from either
one of the 4 icv196 modules in the driver or from another source. If, in this case, it
was detected that the icv196 module gave the interrupt, a read () call has to be exe-
cuted to find which line was the source of the interrupt.

ICVI96VME - ITX Interface driver 12-1

5) ioctl () : reads/sets parameters in the driver.

6) open () : this call is used for connecting to the driver if no interrupt synchroni-
sation is wanted. The open is performed on the so called "service handle” which al-
lows reading different status information from the driver and setting parameters in
the driver via the ioctl () call.

Hardware settings summary

The icv196 module contains the following jumpers (see reference manual):

ST 1....ST 4: define the address offset of the module. The jumpers define bits ?? to ?? of
the adddress offset.

ST b: sets the board access mode; supervisor mode or general access.
ST 6: timer output on/off (the timer is not supported by the driver).

For further information on the jumpers, see the icv196 hardware manual.

Installing the driver

After having initialised the hardware settings on the icv196 module, the following
data must be provided to the installation program for the driver, icvl96vmeinstall:

VME base address of the module.

MC68153 (CPU) interrupt vector: this vector is given to the CPU at an inter-
rupt demand to generate the interrupt in the CPU. It should not already be used by
an other interrupt source!

. MCe68153 interrupt level: this value defines the level of the interrupt triggered
by the icv196 module.

As there can be up to 4 icv196 modules supported by the driver, the index mod given
in the installation syntax below can have the values A..D representing module nr. 0..3.

The installation can be performed by calling the installation program with the follow-
ing syntax:

>icv196vmeinstall -<mod>O<base address> -<mod>V<vector> -<mod>L<interrupt
level>

with the constraints: 64 < vector < 255.

1 < interrupt level <6.
example:

sicv196vmeinstall YOMIRO00000 AV ITC ALY
This installs module 0 with the followin:: parmer

Address offset: 0x0500000 (hexadecimal®
Interrupt vector: 128 (decimal)
Interrupt level: £ (decimal)

Calling the driver from a user program

Headers/links:

In the source file of the user program, the following header files must be included:

ICV196VME - ITX interface driver 12-2

1) /w/dscps/rtfclty/gpsychrolib.h

2) /u/dscps/icv196vme.h

In the makefile, it must be linked with the file:
/u/dscps/rtfclty/gpsynchrolib.o

The following is a closer description of the calls used in a user program to interact
with the driver.

gapeviconnect(): Connect to an interrupt line

This call connects the user program to the given module and line and enables inter-
rupts on that line.

Formal C syntax definition:

int gpevtconnect (type, evtval, ref dat)

int type;
long evtval;
struct icv196T UserConnect *ref dat;

Syntax of a call:

where:

synchro_device_id = gpevtconnect (type, 0, ref dat)
type = 2 /*for icvl96vmedriver */
evtval = 0; /*ignored in this context*/

ref _dat = struct icv196T_UserConnect |{
unsigned char module;/*mod. number */
unsigned char line; /*line number */
.short mode;/*explained under read()*/

}

If synchro_device_id <= 0, the call failed.

gpevtdisconnect: Disconnect from an interrupt line

This call disconnects the user program from a previously connected interrupt line.

Formal C syntax definition:

int gpevtdisconnect (type, evtval, ref dat)

int type:
lana et -ead

T T R BRI T R Y

Syntax of a call:

retval = gpevtdisconnect(type. 0. vof dats

where:

type = 2 Frfor o o 0 .

ertval = (;

ref_dat = struct acvlsvi toorlonnect |
char module;/*module number */
char line; /*line number */
short mode; /*ignored */

If filedescriptor < 0, the call failed.

ICV196VME - ITX Interface driver 12-3

select, read : Getting synchronised with an external interrupt

After the connections are established to the desired interrupt lines, the program can
synchronize with events occurring on these lines.

For that purpose, the returned device file descriptor from the gpevtconnect () call
allows the program to wait for events by calling select () or read(). The file de-
scriptor returned by gpevtconnect is always the same for one program, even when
gpevtconnect () is called several times to connect to several interrupt lines.

As mentioned in the introduction, select () is used to wait for interrupts which
may come from either one of the 4 icv196 modules in the driver or from another
source. If, in this case, it was detected that a icv196 module gave the interrupt, a
read () call has to be executed to find which line was the source of the interrupt.

Getting svnchronized by select(): this is the standard UNIX/LynxOS way to syn-

chronize with external events. After select (), read () gives the events having oc-
curred (the active interrupt lines) in the icv196vme module, if any. For details on
read () see below.

The select () call is described in the LynxOS manual under system calls.

Getti 1 ized | $0):

Reading from the device file descriptor given back on gpevtconnect () means read-
ing the events which have occurred since the last read () call. This means that the

specified buffer in the read () call will be filled with one or more structures as de-
scribed below (Event data structure).

Formal C syntax definition:
int read(synchro_device_id, buffer,byte count);
int synchro_device_id;
char *buffer;

int byte_count;

Syntax of a call:

err = read(synchro_device_id, buffer, byte count);

Where:

err = if read() failed. -1 is retriimad

synchro device id = T'wvee bl heormpton caven by the gpeveens
nect () call (always the sam« for all cennect the proagram performa
buffer = buffer teo oo ’ ety QY7 |l‘1|l|l“‘l| I
of (1cv196T UserEvent) - T mives gpace for one event,

maximum is 8. If 8 events have occurred after a read(), and no new read()
has been executed, the 9 th event will purge the driver internal buffer,
and a special event to warn the program is generated with all fields set to
1:

special event in case of purge: count= (-1) module= S$ff
line= $ff

ICV196VME - ITX Interface driver 12-4

byte count = gives the number of bytes read.

The cumulative mode:

When calling gpevtconnect(), the parameter mode in the structure
icv196T_UserConnect has two possible values; 0 = non-cumulative mode and 1 = cu-
mulative mode. The mode chosen determines how to interprete the parameter count in
the structure icv196T_UserEvent described below.

The non-cumulative mode means that count indicates the number of events having oc-
curred since the interrupt line was enabled.

The cumulative mode means that count indicates the number of events having oc-
curred since the last read () call.

In this way, using the cumulative mode, it can be tested if a program has missed in-
terrupts since the last read (). It also prevents the internal event buffer in the driver
to fill up with events of the same kind. This may be useful if it’s not neccessary to read
all the events of this kind, and the driver is delivering more events than the conn-
nected task(s) can read.

Event data structure:
The events which can be read through the read () call have the following structure:
struct icv196T UserEvent {
short count;
unsigned char module, 1line;
}i
Where:
count = event counter (see expl. above)
module = module where the interrupt occured

line = linein the module where the interrupt occurred.

ioctl : Reading/setting parameters in the driver

The ioctl() system call provides an interface to the parameters in the driver which
can be read or set from a user program.

Examples on how to execute ioctl () calls on the icv196 driver can be found in the
file /u/dscps/icv196vme/testicv.c on the serst o e 1he T intro] nefa ol

Formal ” syntax definitior.

ioctl (synchro de--» = ' 0 ogneemt . oara)
lnt 3'}'{] v I ' '
T
char a

Syntax of a call:

err = joctl(syn.chro_device_id, request, arg);

ICV196VME - ITX Interface driver 12-5

Where:
err =if read() failed, -1 is returned, success = 0

synchro_device_id = Device file descriptor index given by the gpevt-
connect call (always the same for all connect the program performs)

request = code for driver ioctl action

arg = pointer to a structure containing data to be read/written. This
structure may be different for different values of request (see below).

Ioctl special function codes:

The ioctl special function codes below replace the parameter request in the ioct1 ()
call.

For the description of the data structures used to transmit the data to and from the
driver, see the end of this section. These structures are all defined in the file
"icvl96vme.h".

ICVVME getmoduleinfo
Function: get general information on the installed module
Variable to transmit data:

struct icvl196T_ModulelInfo arg[4];/*array of 4 module info blocks*/

ICVVME_connect

Function: connect to an interrupt line on a given module. Normally, this call is not
used by a program, as it is integrated in the gpevtconnect () call described above.

Variable to transmit data:
struct icv196T_connect arg;

ICVVME disconnect

Function: disconnect from an interrupt line on a given module. Normally, this call is
not used by a program, as it is integrated in the gpevtdisconnect () call de-
scribed above.

Variable to transmit data:

struct icv196T_ connect arg;

ICVVME_dflag

Function: Toggles (sets/resets) debug fl:+ 1+ 21l vt of messages from the
driver on serial channel 3 of the D37

ICVVME_nowait

Function: sets non-blocking read, meaning that the read() call returns immediately
whether data has been read or not.

ICVVME_wait

ICV196VME - [TX interface driver 12-6

Function: sets blocking read, meaning that the read() call returns after the data has
been has arrived or on timeout.

ICVVME setupTO

Function: sets timeout for read(). The value should be given in milliseconds. Default:
6000 ms. The old timeoutvalue is returned.

Variable to transmit data:

int *arg;

ICVVME_intcount

Function: reads the interrupt counters for all lines in the module given in the argu-
ment.

Variable to transmit data:

struct icvl96T Service arg;/* the interrupt counter values are */
/* returned in arg.data(0..15] */

ICVVME_setreenable

Function: When the reenableflag is set, the interrupt line is automatically reenabled
after an interrupt to be ready for the next event.

Variable to transmit data:

struct icv196T connect arg;

ICVVME_clearreenable

Function: When the reenableflag is cleared, the interrupt line is not automatically re-
enabled after an interrupt. In this mode, the line must be enabled with ioctl(..., ICV-
VME_enable, ...) after each interrupt to be ready for the next event.

Variable to transmit data:

struct icv196T_connect arg;

ICVVME enable
Function: Enables an interrupt line.
Variable to transmit data:

struct icv196T connect arg:

ICVVME_disable

Function: Disables an interrupt lin~
Variable to transmit data:

struct icvl124T connec*
ICVVME_readio

Function: The I/O ports contained on the icv196 module (port2 - port11) which are not
used as interrupt lines, can be written to and read from like standard I/O lines. Li-
brary routines are available; Chapter 9 in this manual: VME - addressing facilities |-
brary or /u/dscps/icvl96vmefclty. The direction of these ports can only be set by the

ICV196VME - ITX interface driver 12-7

ioctl function ICVVME_setio. In order to read back the status of the ports (in-
put/output), ioctl (...,JICVVME_readio,....) is called.

Variable to transmit data:

struct icv196T_Service arg; /* arg.data[0) contains the bit */
/* pattern corresponding to the I/O*/

/* port status. Bit 2 = port 2, */

/* etc... input = 0, output = 1 */

Note: line number ignored as argument for this call, as the call is not line specific.

ICVVME_setio

Function: Set I/O port direction (see above).

Variable to transmit data:

struct icvl96T Service arg;/* arg.data[0]:I/0 port to be set */
/* arg.data[l]:direction of the port */
/* 0 = input, 1 = output *x/

Note: line number ignored as argument for this call, as the call is not line specific.

ICVVME intenmask

Function: read the interrupt enable mask of a icv196 module.

Variable to transmit data:

struct icvl196T_Service arg; /*arg.data[0] contains the bit */
/*pattern corresponding to the *x/
/*interrupt enable mask. *x/
/*Bit 0 = line 0, etc... */

/*enabled = 1, disabled = 0 */

Note: line number ignored as argument for this call, as the call is not line specific.

ICVVME_reenflags
Function: read the reenable flags for all the interrupt lines on a icv196 module.
Variable to transmit data:

struct icvl196T_Service arg; /* the reenable flags are returned */
/* in arg.data[0..15) */
/* 0 = not set, 1 = set */

Note: line number ignored as argument for this ~all_ as the eall is not line specific.

ICVVME_gethandleinfo

Function: Get information on a user han e 1Tl povnrcccid of the process naing the
handle 2) The connected interrupt line:

Variable to transmit data:

struct icv196T_ Handlelnfo aru.

Structures defined in icvl96vme.h for transmitting data via ioctl():

struct icv196T UserConnect { unsigned char module;
unsigned char line;

ICV196VME - ITX Interface driver 12-8

short mode;

}:

struct icv196T_UserEvent { short count;
unsigned char module;
unsigned char line;

}i

struct icvl196T UserLine { unsigned char group; /*module number */
unsigned char index; /*line number */

}:

struct icvl196T_Service ({
unsigned char module;
unsigned char line;
unsigned long data[ICV_IndexNb];

struct icv196T_ModuleParam{
unsigned long base; /*offfset in VME address space */
unsigned long size; /* size of used VME space */
unsigned char vector[icv_LineNb]; /* interrupt vect. */
/* for each interrupt line */
unsigned char level[icv_LineNb];/* interrupt level */
/* for each interrupt line*/

}:

struct icvl196T_ HandleLines {
int pid; /* id of process using the handle */
struct icv196T UserLine lines{ICV_LogLineNb];
}:

struct icv196T_Handlelnfo {
struct icv196T_HandleLines handle[ICVVME MaxChan];

}

struct icv196T ModuleInfo {
int ModuleFlag;
struct icv196T ModuleParam Modulelnfo;

}:

open : Drivers access exclust =i a1 v ding o Hing paramelers

The open() call is used for connectin: - the I oot e interrupt syncebronisation
is wanted. The open is perfn et - : & + e handle” whiech allows reondd
ing different ztatus informstis - - : S aarameters i the drives

via the ioctl1 () call

Syntax of a call:

static char path[] = }/dev/icv1963ervice" serv-
ice_filedesc = open(path,O_RDONLY) ;

ICV196VME - ITX Interface driver 12-9

program example: Synchronizing with events

The following program gives an example on how to use the driver for synchro-
nising with events. The task connects to two different interrupt lines and waits
for interrupt on these two lines. Depending on which line gives the interrupt, dif-
ferent parts of the program is executed.

#include <icvl196vme.h>

#define SIZE 32 #define INT ISR 0 #define
INT RT 1 extern int gpevtconnect (); extern int
gpevtdisconnect () ;

main ()

{

struct icv196T_UserConnect connct;
int i, 3, k;

int type;

int retval;

int evtval;

int synchro_£d;

int byte count;

char buff[SIZE]:;

struct icvl1l96T UserEvent *event;

connct .module = 0; /* module numbers: 0 to 3 */
connct.line = INT_ ISR; /* line numbers: 0 to 15 */
connct .mode = 1; /* cumulative mode */
type = 2; /* type = 2 for icv196 */
evtval = 0; /* no initialization of event */

/* connect to line 0 */

if ((synchro_fd = gpevtconnect (type, evtval, &connct))<0) {
perror ("could not connect to line 0\n");
exit (1),

}

connct.line = INT RT;

-

/* connect to line 1

if ((synchro_fd = gpevt - nn- = ¢ 1w, otoal, Loonnet)ieo0)
perror ("could not connest o laime 1n")
exit (1) ;

for (1 =0; 1 < 1000; 1+-
for (3=0; j < SIZE; j++) buff[j] = 0;/* clear buffer */
byte count = SIZE;/* read max 8 events *x/
if ((retval = read (synchro_£fd, buff, byte_count))
< 0) {
perror ("could not read\n");
continue;

ICV196VME - ITX Interface driver 12-10

event = (icv196T UserEvent *) buff;
if byte_count == 0 {
perror ("timeout on read\n");
continue;
}
for (;event->count != 0;event++)
{ /* treat ALL events in the buffer !*/

if (event->line == INT_ RT)
{

/* TASK RT */

}

if (event->line == INT_ISR)
{

/* TASK ISR */

} /* end event buffer treatment */

} /* end for loop waiting for events */

/* disconnect from line 0 */

if ((retval = gpevtdisconnect (type,evtval, &connct)) < 0) {

perror ("could not disconnect from line 0\n");
exit (1) ;

}

connct.line = INT_ RT;

/* disconnect from.line 1 */
if ((retval = gpevtdisconnect (type,evtval, &connct)) < 0) {
perror ("could not disconnect from line 0\n");
exit (1);

/* end main */

ICV196VME - ITX Interface driver 12-11

13

Introduction:

FPIPLSVME - PLS Telegram and FPI driver

Authors: Alain Gagnaire (software),
Claude dehavay (hardware)

The FPIPLSVME module has 2 functions :

¢ To receive, decode and memorize the PLS (Program Line Sequence) pulse train
(maximum 1023 bits).

e To generate up to 8 different VME interrupts corresponding to the 8 trigger
sources: the trigger pulse of the PLS telegram, and the 7 external lines associ-
ated to the 7 plugs of the front panel.

A full specification of the module is given by the reference manual of the VME
board provided by the designers of the module:

PLS Receiver and Front Panel Interrupt VME module 80401CO
by Claude Dehavay (Cern PS-CO). PS/CO/Note 91-xxx
The software interface of the driver facilities is proposed at 2 levels:

e The direct access to the driver interface based on UNIX i/o system call. This is
not recommended because it makes the user program dependent on the drivers
implementation and non portable.

¢ The library interface which provides global functions hiding to the programmer
the UNIX system call interface and the driver specific interface. This interface is
available for C program and NODAL program.

Driver interface functionality:

The driver supports up to 4 fpiplsvme meodules, and allows an application program to
be connect to one or more of the 4*8 interrupt lines provided by the modules and to
read the 4 telegrams coming from the 4 different PLS sources. The number of avail-
able lines and telegrams depends of covre ~n how mane madnles are phyvsieally in.
stalled in the DSC crate.

These functions are provided via the user inte-face of the standard Umix file system
The access to the Pls telegrom ol o diary

¢ Reading from one of the modunls ¢l oot T Lvprm

Connection to an interrup! o+ i SR

¢ Connect function command : in order to get further an event associated with a
trigger of a given line from one of the fpiplsvine module. When the trigger oc-
curred the driver will put an event,in the ring buffer of the requesting device. The
event is a sequence of 4 bytes, if we represent this event by : byte [3,2,1,0] the
structure of the event is:

FPIPLSVME - PLS Telegram and FPI driver 13-1

bytes [3,2]= 1 word = number of trigger occurrences since the connection was
made.

byte [1] = fpiplsvme module index ([0 ... 3]) of the trigger source.
byte [0] = Line index of the trigger ([0...7]) source.

N.B.: the connect is multiple, several device (up to 8) can get the event associated to
the same trigger source.

¢ Disconnect function command : to get rid of a previous trigger source connection.
The in coming trigger are no longer associated to the device.

Synchronisation with a trigger :

Performed with a call to the select or read function. The read will be used as well to get
information on source of the incoming trigger (previously connected) .

Synchronisation with a trigger (select, read file system call):

e Select : if the device descriptor of the fpiplsvme driver, dedicated for synchroniza-
tion is given in the list of a select, and if a connect was previously made on it,for one
or more trigger source, the select will return when one of this trigger occurred. The
knowledge of the trigger source is acquired by reading the incoming events from the
ring buffer of the corresponding device descriptor.

¢ Read : to get synchronized with a trigger source and to read the ring buffer in order
to know the trigger source. When the ring buffer is empty the call is blocking dur-
ing a laps of time, after which a time out is returned. The associated buffer must be
tailored to receive at least one full event i.e.. minimum 4 bytes; the buffer is fed only
with an integer number of events.

FPIPLSVME - PLS Telegram and FPl driver 13-2

FPIPLSVME Driver interface library: (fpiplslib.o , gpsynchrolib.o)

Introduction:

The library hides to the programmer the UNIX system call of the driver direct interface.
The user may want to have a minimum knowledge of the system resources involved, for
that purpose he has to read the next chapters describing the direct interface.

In a few words, the user has to know that this interface is based on UNIX i/o system
call. To access the driver facilities, the library has to open a device file, the currently
opened device file identifier is stored in the global context of the library (local to the
running process) . There are two different devices involved :

¢ one for reading the PLS telegram. This resource is unique and shared by the differ-
ent user processes, a semaphore is used to make exclusive the access to the hard-
ware.

For reading the PLS telegram, the library opens the device file dedicated for
that purpose whose name is : /dev/£fpiplsRTgm.

e one for the synchronization, open at the first library call. This resource is exclu-
sive (one device resource for each different user process)

For the synchronization request on the type Evtsrce_fpi, the library tries to
get a free and exclusive device file, out of the set of resources dedicated for that
purpose whose names are : /dev/fpiplsFpi02 to /dev/fpiplsFpi08 .

For the special PLS task a dedicated device is reserved, this is
/dev/£fpiplsPls. The selection of this resource is done at the connect using the
type Evtsrce_pls.

N.B. : using <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>