
CERN PS-CO Note 92-002
version 1.0 29/01/1992

Using DSC at PS
User's manual and cookbook.

This manual is aimed to application developpers in the DSC environ
nement at PS.

This edition (version 1.0) is a first draft and a partial delivery. Addi
tionnai chapters will follow later...

This manual is issued by:

Alain Gognoire.
Wolfgang Heinze,

Julian Levis,
Nicolas de MetiNobIat,

Claude-Henfi Sicanci.

With the contribution of: H. Abie, F. Berlin.

CERN Geneva, Switzerland, January 1992

Cern Geneva 1992

PS division, Control group.

Contents

The Device Stub Controller (DSC)..vMain functions of the DSC:..vHardware platforms:... vi
1 File-system road mapIntroduction:...1-1Objects...1-2Activities...1-2...1-2...1-2DSC paths seen from the DSC and accelerator levels:................................. 1-3SymboUc links on DSC:..1-4Accelerator paths seen from the accelerator and MCR levels:................1-4General remarks:... 1-5Environment variables:..1-6Dependence of environment variables: ...1-6The TEST environment:.. 1-7The DEVELOPMENT environment:... 1-8
2 Local utilities on Lynx systemsText editors ... 2-1Printers and printing utilities..2-1The NODAL interpreter.. 2-2Sharing files with the PS control Ultrix system..2-2
3 LynxOS utilitiesFile Management... 3-1Utility Programs.. 3-1Program development.. 3-3System Manangement... 3-4Network utilities.. 3-.r∙Network servers... 3-∙r∙NFS management..3-6Libraries:...3-6Special files.. 3-6NFS Hbrary routines.. 3-7PS additions..3-7

4 Diskless LynxOS SystemsPrinciples of operation... 4-1Execution environment..4-1The read-only shared environment (/usr).. 4-3The read-write permanent environment (/var)..4-3Setting-up a new board..4-4DSC configuration management on the server... 4-6Maintaining the diskless environment.. 4-7
5 Bαckup∕restore of MVME147 disksDoing a system backup..5-1Restoring system backup:...5-2Other backups... 5-2
6 Understanding VME space in a DSCReminder of basic VME addressing from a DSC processor (CPU):............... 6-1Addressing mechanisms principle in a DSC:..6-1VME access :..6-1The VME space as seen from the CPU : ...6-2The VME space as seen from the Operating System :................................6-3VME module visibility from the CPU board:... 6-4VME space mapping in the CPU adress space:.. 6-4For the MVME147 SYS1147U/D1 CPU board ;..6-4For the MVME147 MVME147S/D1 CPU board :... 6-4For the THEMIS TSVME13x CPU board :.. 6-5Lynx 0.S. facility to directly access the VME space:..................................... 6-5Hints to compute the 32 bit CPU address of a VME module :.................6-5VME space visibility from Lynx 0.S.:............. 6-6System virtual address mapping (mem.h) :... 6-6Hints to compute the system virtual address of a VME module :........ 6-7
7 VME - Addressing facilities libraryVME accesses via library calls for apphcation portability:...............................7-1The VME module address in the Ubrary interface:..7-1The C Ubrary interface for the VME access faciUties: (vmebusUb.o)..........7-2How to use the Ubrary:..7-2READ_VME, WRITE_VME : Read/Write from the VME bus.................7-2VME_MNGT : Function to get rid of module visibility after accesses.7-2 Error codes:.. 7-3The NODAL VME access interface:.. 7-JVME R/W function... 7-4VMEMNGT Call function...7-4
8 Installing a VME moc ule in a crateInserting a board in a slot of a VME crate...8-1Setting of the jumpers:... 8-1Attention:..8-1
9 Loading drivers under Lynx O.S.InstalUng a driver using LYNX 0.S. commands:..9-1

Il

Installing a driver using LYNX 0.S. system calls in a C program:..............9-2
10 SDVME - Serial Camac interface driverIntroduction: .. 10-1Driver interface functionality: .. 10-1Camac access : (ioctl function).. 10-1Connection with a Camac LAM : (ioctl function)...10-1Synchronization with a Camac LAM : (select, read function)..............10-2SDVME CAMAC Driver Ubrary Interface : (camacEb.o gpsynchroEb.o) 10-3 Introduction:... 10-3How to use the Ebrary :... 10-3Primary routines :...10-3cdreg : Encode a CAMAC address..10-3Single CAMAC access routine : ..10-4cfea : Read or Write CAMAC access.. 10-4Multiple CAMAC access routines:..10-5pmcaτni : Block CAMAC function... 10-5mcamt : Repetitive CAMAC function... 10-6gpevtconnect, gpevtdisconnect : Synchronisation routine.......................10-7gpevtconnect : Ask connection with a CAMAC LAM...............................10-7gpevtdisconnect : Ask disconnection from a CAMAC LAM.................10-8select, read : Getting synchronised with CAMAC LAM event..........10-8The NODAL CAMAC functions interface:...10-10GCAMAD to encode CAMAC address ..10-10SCAM to perform a single camac accesses... 10-10CAMDR to perform a sequence of CAMAC accesses................................10-10MCAMT to perform a CAMAC block access.. 10-10Serial Camac VME specifications summaries:... 10-11hardware: ...10-11Setting of jumpers:..10-11Driver installation :.. 10-11SDVME Driver system interface :...10-12Device file: (associated LynxOS minor devices)...10-12File system interface:.. 10-12Camac access:...10-12Connection to a Camac LAM:...10-15Getting synchronised with a LAM : (select, read)............................10-17Miscellanious functions :..10-19
11 TSVME404 - GPIB interface driverIntroduction...11-1Hardwaresettingssummary... J1-2Driver initialisation... 11-2Normal usage:..11-2Software specialist usage: ..11-2Ioctl special function codes:...11-3Waiting for SRQ from a device.. Il-JUsage example: HP5335A universal c∏nnt"∙ . ll-∙r>
12 ICV196VME - ITX interface driverIntroduction...12-1Driver interface functionalty...12-1Hardware settings summary.. 12-2InstalEng the driver... 12-2CalEng the driver from a user program... 12-2

III

gpevtconnect(): Connect to an interrupt line... 12-3gpevtdisconnect: Disconnect from an interrupt line.................................... 12-3select, read : Getting synchronised with an external interrupt........ 12-4ioctl ; ReadingZsetting parameters in the driver.. 12-5open : Drivers access exclusively for reading/setting parameters 12-9 program example: Synchronizing with events... 12-10
13 FPIPLSVME - PLS Telegram and FPI driverIntroduction: ... 13-1Driver interface functionality: ... 13-1The access to the Pls telegram : (Read function)... 13-1Connection to an interrupt line : (ioctl function)... 13-1Synchronisation with a trigger :...13-2FPIPLSVME Driver interface library: (fpiplslib.o , gpsynchrolib.o)....... 13-3Introduction:... 13-3How to use the library :..13-3Services routines :... 13-4fpiSetTQ: ...13-4gpevtconnect, gpevtdisconnect : Synchronisation routine.......................13-5gpevtconnect : Ask connection with a TRIGGER.......................................13-5gpevtdisconnect : Ask disconnection from a TRIGGER...........................13-6select, read : Getting synchronised with TRIGGER event.................. 13-6The NODAL FPIPLS functions interface:.. 13-8FPICNCT , PLSCNCT to get connected ...13-8FPIPLSVME specifications summaries:.. 13-9hardware: ...13-9Setting ofjumpers:... 13-9Driver installation :.. 13-9FPIPLSVME Driver system interface :... 13-10Device file: (associated LynxOS minor devices)... 13-10File system interface:.. 13-10Connection to a trigger :..13-12Getting synchronised with a trigger : (select, read)............................ 13-13

Iv

The Device Stub Controller (DSC)
The DSC represent the front end computing layer in the proposed CERN control system to upgrade the 15 years old previous ones. The chosen architecture aims at a real convergence of CERN’s accelerator control system. This definition was made by the CERN PS/SL working group DWG.

Main functions of the DSC:The DSC are distributed in the local areas, connected to the workstations via a LAN, and to the equipment either directly or via a field bus. The main functions of the DSC are derived from its place in the hierarchy of the control system, they are:1) To provide a uniform interface to the equipment as seen from the workstations.a DSC provides a connection to the workstations via ethemet with the standard protocol TCP/IP:a. The programs nmning in the workstations can call programs in the DSC by RPC (Remote Procedure Call) but can also establish fast repetitive data transmissions from the DSC to the workstations (e.g. for repetitive display).b. A DSC can be reset remotely.2) To provide direct control and acquisition for equipment Uke beam instrumentation, interfaced directly to the DSC, the DSC runs a real time operating system : LYNXO.S. :a. It allows to run several tasks concurrently, e.g. a beam measurement program together with general programs Uke statistics, surveillance and diagnostics .b. It also provide a fast and determinist response to external events which is necessary if PPM (Pulse to Pulse Modulation) equipment is directly controlled by a DSC.3) To act as a master and data concentrator for distributed equipment, interfaced via field bus, the DSC provides hardware and software for field bus connections.Certain application programs run in the DSC (in general they run in the workstations). For this purpose local display facilities are provided via a TV driver with standard graphic functions much simpler a X-windows. General programs such as alarms and surveillance, which scan regular in<'"∙∙ ɔ ~ ÷h*=∙ <'q∙υpm<∙n< num«tod to the DSCs report their output to a server on *b, LAJ :Finally , the DSC provides local acress th* equipment and can be seen as a "banc d’essai" in the lab to run simple tes* program Iocallv using NOLiΛL and its extended Ubraries.

V

Hardware platforms:In the DWG final report, two different basic platforms were kept: one based on the IBM/PC architecture, the other on VME based 68030 microprocessors.One of the reasons of the choice of the LynxOS operating system was that the same operating system was available on both platform, providing an homogeneous Unix user interface.As this manual was mainly written during the LPI implementation, the various targets are often forgotten in the various chapters of this note. By default, all chapters describing VME modules drivers are targeted towards MC68030 based boards, especially the MVME147/SA1 as this one was at that time the only VME board supported by LynxOS. Since this date, time, LynxOS was also made available by THEMIS on TSVME 13x boards.General chapters apply to the 2 target systems: based on PC and VME, running the Unix real time operating system Lynx OS .At PS, the first PC DSC will be based on an industrial 80486 and used as the MTG (Master Timing Generator) as its boards were designed in common with the SL/CO.

vl

1

File-system road map
Authors : Julian Lewis

Claude-Henri Sicard

Introduction: The file system road map determines where a program can find the objects that it needs in a given environment. There are four environments, namely:1 The USER environment:This environment is what you see when you log in under your user name on your office workstation. Here you create text files and edit them, you may compile and run some programs, and perform some preliminary tests.2 The DEVELOPMENT environment:In this environment are Ubraries and include files provided by other users which can be used in developing a new program, or Ubrary. Depending on what your final target is going to be, you will need different utilities, Ubraries etc. The final targets are:a. MCR level workstation:These workstations have a global view of the control system. In the event of a failure of the LAN, they can be cut off from a given accelerator, and thus should not be the exclusive owner of critical appUcations or data.b. ACCELERATOR level workstation:At this level critical data and programs are kept, which will allow a reduced operation of the accelerator during times when the LAN can not access the MCR level, thus, any critical MCR programs or data must be copied down to the accelerator levels. The accelerator levels may also contain applications specific to one accelerator, which are not logicali'’ ■ 1' ,>.>1. and should Iheroforo not Uelocated at the MCR level.c. DSC level:Here we find real time applv ∏tv>ns. >- ∙ocsmg the hardware and data files. The DSCs themselves have no di , s ∏nd >- - ->o tl>- accelerator level servers.3 The TEST environmentIn the test environment, applications can ?<. tested without interfering with the actual operation of the PS complex. Here test-DSCs are provided, along with copies of any critical data which may be updated by the program under test. Some libraries may provide simulation facilities.4 The RUNTIME environment:This is where the appUcations run which are ControlUng the PS complex. Here the appUcations and their data are kept.

ObjectsIn each of the above environments we can find a sub set of the following list of objects:• C-program source files.• UIL source files.• Include files.• Man pages.• Binaries.• UIDfiles.• Libraries.• Data files.• Make files.• Shell scripts.• Programs to be executed.• Nodal files.
ActivitiesAnd we can define activities using these objects in the different environments to be:• Developing.• Testing.• InstalUng.• Running.What the file-system road map describes, is the set of paths and the corresponding NFS mounts which are required in order to..support these activities from the various final targets.We shall now describe each of these environments in turn starting with the simplest...

File-system road map 1 -2

The RUNTIME environment:As stated above, this environment actually runs the PS complex, and hence consists of installed and tested programs with their data running on any of the three final target levels. The activity of nmning a program in this environment dose not in general require objects such as source files or object libraries.
MCRlevel
(GLOBAL)

Accelerator level
(CRITICAL)

DSC level
(DISCLESS)

DSC

-►DSC

, ► DSC

-►DSC

► DSC

, DSC

► DSC

► DSC

DSC

-►DSC

-►DSC

'► DSC

DSC paths seen from the DSC and accelerator levels:1 DSC => I <accelerator> /data Accelerator => /dsc/dataReadZWrite data shared between all DSCs connected to the same accelerator. For example /lpi/data/... is the path to common data seen from any LPI DSC.2 DSC => I <accelerator/ local / data Accelerator => |dsc|<dsc
name>/dataReadZWrite private data used by a particular DSC. For example ZlpiZlocalZdata ... is the path to a private data area for this DSC.3 DSC => Z <accelerator> /bin Accelerator => ZdscZ binRead only access to programs shared between all DSCs connected to the same accelerator. For example, seen from a DSC, then ZlpiZbinZ... contains all LPI shared DSC programs.4 DSC => Z<accelerator>/local/bin Accelerator => /dsc/<dsc
naτne>∕binRead only access to programs that are only able to run on this particular DSC.For example ZlpiZlocalZbinZ... is the path to private programs running only on this LPI DSC.

File-system road map 1 -3

Symbolic links on DSC:From the DSC we can create a symbolic link such that /dsc is equivalent to /<accelera-
tor>. Thus in the following example names like IlpiIdataJglobaljdata can be replaced by the equivalent name IdscIdataJglobaljdata.

FX AlVTPT.F. :

/dsc/XX/private program/dsc/XX/private data/dsc/bin/global program/dsc/data/global_data
Accelerator paths seen from the accelerator and MCR levels:1 /mcr/dataGlobal data, if any of this is critical, then it must be copied to the appropriate accelerator server.2 /mcr/binWorkstation application programs running in a global context.3 /<accelerator>/dataCritical data residing on an accelerator server not seen by its DSCs.4 /<accelerator>/binCritical or non shared workstation application programs.5 /<accelerator>/dsc/dataData seen by the workstations for a given accelerator and all its DSCs.6 /<accelerator>/dsc/binPrograms used by all DSCs of a given accel* va.tor.7 /<accelerator>/dsc/<dsc name>∕dat∏Data to be shared between works’ ∙H<*ns «-I '÷<∙∙>∣ι ;>*celerator and a particularDSC.8 /<accelerator>/dsc/<dsc name.-AppUcations which run on a given DSC of a given accelerator.

File-system road map 1 -4

EXAMPLE:

General remarks:The names have been invented so that if the correct questions are asked, then the path name should be obvious, for example, an application nmning on an LPI DSC asks the question: Where do I store my own private data ? Answer, /dsc/local|data /... The same DSC asks: Where do I store data to be accessed by all LPI DSCs and workstations ? Answer /dsc/data/... An application running at the MCR level asks: Where is the LPI DSCs’ data with DSC name of XX ? Answer /lpi/dsc/XX/data.The names MCR, and the accelerator names, when preceded by a nΓ in fact refer to physical disc drives, and have exactly the same meaning throughout the network, so for example /mcr/data can be used by MCR appUcations and accelerator level programs, both referring to the same data. Copying critical data to the accelerator level will take the general form:cp /mcr/data/... /lpi/dsc/data/... or cp /mcr/data/... /lpi/data/...In the former case the data is seen by DSC$. `ŋ b'∙ Inf only H LPI <nppbmfions running on LPI workstations.

File-system road map 1 -5

Environment variables:In order to make life as simple as possible, to guard against future changes in the file-system road map, to make applications portable between the final target levels, and to simplify testing, we provide five environment variables:1 ACCELLRThe name of the accelerator on which we are currently working, for example LIN, PSB, CPS, LPI, or MCR. The final name MCR means all accelerators.2 GLOBALPThe path to global programs, on each level it will be set as follows:

The path to global data:

a. DSC => |dsc|bin

b. Accelerator ■> |mcr|bin

c. MCR

3 GL0BALD

≡> /mcr/bin

4 LOCALPLocal programs path:

a. DSC => |dsc|data

b. Accelerator => |mcr|data

c. MCR ≡> /mcr/data

a. DSC -> Idscllocallbin

b. Accelerator ■> / <accelerator> / bin

c. MCR

5 LOCALD

=> |mcr |bin

Local data path:
a. DSC => Idscllocalldata

b. Accelerator ≡> / <accelerator> / data

c. MCR ≡> Imcrldata

Dependence of environment variables:The above environment variable values correspond to their values in the run time environment. During program testing however, they will not point to operational data, but to copies set up only for test purposes. This is achieved by systematically appending !test to all data path names. It is the responsibility of the person testing an application to make sure that the data is up t^, d »t .∙ •>» ∏<u .∙∣<,∙ H1.∙ !∙H∏nl <>p∙∙r∏f∣<*nal data may in fact not be what is require tr exerrv:«.» '∣>∙ prop-:ɪm under testThis leads to the next environment

File-system road map 1 -6

The TEST environment:Not yet written, sorry.

File-system road map 1 -7

The DEVELOPMENT environment:Not yet written, sorry.

File-system road map 1 -β

2

Local utilities on Lynx systems
Author: Nicolas de Metz-Noblat

Various utilities are installed on our Lynx systems. They are either undocumented in the standard documentation, or they are standard UNIX programs from the public domain, or they are specific software developed at CERN for the Lynx systems.
Text editors At least three different editors are available on the Lynx systems: emacs, vi and e.

vi is the default (poor) UNIX editor. It is the only one available on any UNIX system and its knowledge is required at least to do some system maintenance.
emacs is product from the Free Software Foundation (the GNU project) and by definition is a free. It is one of the most popular editors, that can be customized in various ways.
e is the RAND editor, an editor which is today in the public domain and that was quickly ported to Lynx on MVME147 and PC. This editor was the most popular editor at CERN on Ultrix system a few years ago and is known by the majority.

Printers and printing utilitiesThere is a standard BSD spooler (Ipd) and associated utilities (lpr, lpq, Ipc and
lprm). They allow us to see printers connected to our Ultrix cluster (located in the Terminal Room and in the Meyrin Control Room) in the same manner as from our DECstations.
Ipr is the standard BSD UNIX interface to the spooler.
Ipq allows you to look at the printer queue.
Iprm allows you to remove one of your jobs from the printer queue.
Ipc is restricted to user root and used to manage printer queues and daemons.You can today use any printer «feriar«»’ •»» ∙'∣>∏n∣< >∣> r<>> n<>w insinuations. youwill get a message "your host doe?1 ” ’t h > ■ 1 ■> ∣'∏∣>ι-> .∙w∙< .>s∙s" until v>>υ∣ host ∣s declared in /etc/hosts.lpd of the serve’ specified ∙vi∣h nn= fv`ld Von can change your default printer in your .Login file modifying ih« !”’»-> $Äc;etenv(PRINTERJnpsOl).In order to simplify the usage of th« ->r-<rυ, <.,∣t∏ ∙ι ,<,n chain, 1h»? following utilities have been installed on the system-
a2ps is an utility that does r,∙∙-i∙, ∙ , ∙∏∣∣ l><∙nι s«»ur«»' fil» s (see man
a2ps on a DECstation or on cemvax).
pt is a simple shell script to facilitate the usage of a2ps, changing the defaults options and piping its output to Ipr utility.

L∞αl utilities on Lynx systems 2-1

The NODAL interpreterA nodal interpreter has also been ported to the Lynx system. As this is intended to be customized depending on the application, locally available functions may vary largely from one DSC to another one. In any case, several major features can be noticed:An EXEC and an IMEX NODAL server should be automatically started by the /var/etc/rc.local shell script.You have to take care to the fact that file names specified to those servers should be fully qualified as they do not have any idea of defaults environment variables of caller.See man nodal on either DECstation, or on cernvax.
Sharing files with the PS control Ultrix system.Development DSC systems are setup in order to share home directories with the home directory you have on the PS DECstations locally on the DSC, this across NFS.The practical result is that you can edit files from any station or development DSC, then compile it on any DSC (I recommend to use the DSCDEV as this one is never used to test applications), then run it on a target system.With V2.0 official distribution, the local file system is still not rehable enough to be used for long-term storage, and it is much easier to be able to overwrite it on each new system release. Therefore, I discourage to use the local disk except for temporary storage (and so no backups are required).Please take care that if you are logged in as root (as this is often required when writing a device driver), you have no write access to your files, but any try to overwrite a file will result in a file lost (root is nobody across NFS, but still has write access to directories!).Notice also that operational DSCs should never rely on the accessibility of develop- per,s home directory: there is a separate environment dedicated for Operationnal computers on local Unix server from which the DSC will b∞t and we cannot keep the development environment critical for operation (even if - for commodity reasons - the development environment can be seen from Operationnal DSCs).

Local utilities on Lynx systems 2-2

3

LynxOS utilities
Author: Nicolos CleMetz-NobIat

Here is a non-exhaustive list of LynxOS commands that was written for the Vl .2.1 release but that should still be mostly valid.
File Managementcd - change current working directorychgrp chmod - change group ownership of files- change access mode of a filechown - change file ownershipdf - show free disk spacedu - show disk usagefile - classify filesfind - locate filesIn - make Unks between filesIs - show directory contents and file informationmkcontig mkdir - make a contiguous file !!!!- create directories path - find path to a filepwdrm, rmdir - print working directory name- remove (unlink) files or directoriestar - combine files into an archivetouch - change the modify date of files
Utility Programs

basename, dimame - return portions of pnth r.∙∙mes
btoa, atob - encode/decode binary to print∙.ι>ι a$ctibanner - show arguments in biɛ Ietf e*∙s

compress, uncompress, zcat - compress and uncompress files

bined - binary editor binfix - lʊnɔv U«■•«•bm - search a file fr>^r ɔcal - produce a calendarcalc - simple desk calculatorcat - concatenate filesclear - clear terminalcmp - byte-by-byte file comparison
LynxOS utilities 3-1

cpcpio - copy files- copy file archives in and out
CS - produce file checksumctags date - generate editor tag file- display or set current date and timedish - Lynx shell(dosread, doswrite, dosdir) - manipulate DOS diskettes (PC only)dumpecho - dump selected parts of an object file- echo argumentsemit - emit characters given their ascii valuesexpand, unexpand - add or remove tabs from filesexpr finger fiex flook

- expression evaluator and pattern matcher- user information lookup- interactively examine file blocksgrep, egrep - print lines matching a regular expressiongroups head - show current group membership- print the first few lines of a filehost, hostname - print or set name of current hostid - print current user uid, gidident - identify filesless - interactive paginatorIesskey login - specify key bindings for less- login into LynxOSmore - interactive paginatormv - move or rename filesod - file dxunping utility (octal, hexadecimal or asdi)passwd - change user passwordPg - paginate filesPr printenv prof sed
- produce a formatted Usting of a file- print environment variables- interpret profile informa fions- sequential editorsh - standard command proc, inmiin;: ∙τ>rr∏∏<,'< shellshow - show hex and char^H'”ɪsize - print size of an object •” ∙sleep - suspend execution of current process for a given intervalsort - sort or merge filessplit stty - break stream into pieces- set terminal driver options and parameters

LynxOS utilities 3-2

SU - set effective user idtail - print last few fines of a filetalk - converse interactively with another usertee - distribute data to multiples filestermcap test, [- retrieve termcap data- simple relational expression evaluatortime - output a command’s elapsed real, user and system timestr - translitarate characterstrue, false - provide truth valuestset - set up terminal linetty uniq vi
- print the name of the current tty device- report repeated lines in a file- visual text editor (default unix editor)WC - coimt words, lines, characters in a filewho - show current users whoami - show current user name

Program developmentcc, cc030 disasm - native C compiler and linker interface- object and executable disassemblerId - object file linkerlibr, ranlib, ar - manipulate object library files make, oldmake - automatic compilation manager makeboot - install default bootstrap program mkshlib - create a shared library mktimestamp - embed time stamp in a string

a wk, gawk - GNU pattern matching and processing language
nm - print symbol tablestrip - remove symbols and relocation informationst - post-mortem debugging aid

emacs, ctags. etags - GNU emacs t'÷f
bison - GNU parser generator (yacc replacement)diff, difΓ3 - Gnu intelligent file comparison

res, rcsdiff, rlog, ci, co - RCS

gcc - Gnu Interface to C com nib-”cppcc 1 - Gnu Preprocessor- Gnu C compiler itselfas gdb - Gnu assembl°, - Gnu debuggeτ^m4 - general purpose macro-processor
sccstorcs - build RCS file from SCCS file

LynxOS utilities 3-3

/net/rc.network - network startup script
System ManangementAnit - master system process/bin/rc - system startup script

installvpkg - install a System V package

/net/rc.nfs - nfs startup scriptconfig devices - produce system configuration tables- show installed devicesdevins tall - install physical devicedrinstall - install or unload devicedrivers - show system device driversinstall - intelhgent copy for software installation

mkramdisk - dynamically install a RAM "disk” device

ipcrm ipcs kconfig kill
- System V compatible interprocess communication facihties removal- System V compatible interprocess communication facihties status- produce system configuration tables- terminate a processfintflop fmtscsi - format floppy diskettes- format SCSI disk drivesfsck - file system check and repairidos Iptest mkfs
- identify default operating system
- make a file systemmknod - create a special file entrymkpart setactive - make partitions on a disk and update bad block info - set active (boot) partition

mkromk - make a romable kernel filemount - mount a file system or a remote NFS directorynewconsole - choose a new console devicepsreboot - display status of current processes- reboot the systems5fstotar - ConvertSystem V file system ♦.<» ta` nrrhive formalshownode - show inode contentssems - user semaphore status ɔŋ'l r~n*∙∙∙ ∙∣setprio - a1ter priority of ? rr","∙∙smems - shared memory status a"∙.i. ∙∙.∙m∙∙∙∙spool stasks - general purpose spooler spooler- display status of current stream taskssync, syncer - write out disk cachetic - terminfo compiler
LynxoSutIIIties 3-4

/etc/mount, /etc/umount - mount a system V.3.2 filesystem

umount - dismoxmt a filesystemvmstart - start the virtual memory managementzeronode - re-initialise a disk inode(saio) - configure analog I/O driver
Network utilitiesarp ftp if∞nfig initrarp kermit

- address resolution display and control- file transfer program- configure network interface parameters- initialize ARP table thought Reverse Address Resolution Protocol
Ipc ipq Ipr Iprm

- Berkeley printer control program- Berkeley printer queue management- Berkeley printer print utility- Berkeley printer remove utilitynets tat - show network statuspacPing - Berkeley printer accounting information- send ICMP ECHO_REQUEST packets to network hostsreprlogin - remote file copy- remote loginroute - manually manipulate the routing tablersh - remote shellruptime rwho - show host status of local machine- who’s logged in on local machinesslattach - attach serial fines as network interfacetelnet - user interface to the TELNET protocoltftp - trivial file transfer program
Network serversfingerd ftpd inetd

- remote user information server- DARPA internet Fil«* Trpncfov F-nt∏rol qo∏>pγ- internet "super-serv«”Ipd named - Berkeley printer daeɪnɑn- Internet domain nam^rexecd - remote execuHf'∏ c-t∙'∙, `rlogιndrouted - remote login seτ^—- network routing daemonrshd - remote shell serverrwhod - system status servertalkd - remote user communications servertelnetd - DARPA TELNET protocol server
LynxOS utilities 3-5

tftpd - DARPA Trivial File Transfer protocol server
NFS managementexportfs - export and unexport directories to NFS clients mountd - NFS mount request servernfsd - NFS daemonportmap - DARPA port to RPC program number mapperrpcgen - an RPC protocol compilerrpcinfo - report RPC informationshowmount - show all remote mount unfsio - network input/output deamon for NFS client support
Libraries: _etext.oinit.oinitl.oinitn.opinit.opinitl.ovinit.o - system V compatible C init programvinitl.ognulib - small library needed by code generated by gcclibbsd.aIi be. alibc_nv.alibc_j).alibc_v.a - System V compatible interface librarylibcurses.alibm.a - Mathematical UbraryUbnetineta - host databases routinesUbrpc.a - NFS RPC UbraryIibtermcap.a - termcap library
Special files /etc/exports - static export informatioŋ/etc/xtab - current state of export e<-> ÷'∙∙-∙' <'∙∙ » /sys/lynx.os/CCNFIG.TBL - Lyn-' `' ∙/etc/devices - dynamically loaded sy -> ” ` ■ ∙ ∙ι<∙r∣n >∣κ>∏/etc/drivers - dynamically loaded device drivers table /etc/fstab - table of file systems/ete/ftpusers- table of users that cannot be accessed via ftp /etc/magic - data for file utiUty /etc/motd - "message of the day"

Lynxosutllltles 3-6

/etc/mtab - table of mounted file systems /etc/group - group information file/etc/hosts.equiv - name of hosts with "equivalent" user IDs /etc/hosts - TCP/IP host names database ∕etc∕inetd.∞nf - inet server database/etc/networks - TCP/IP network names database /etc/nodetab- special file table/etc/passwd - table of user names, passwords and login informations ZetcZpconfig - Lynx "printer" configuration file (unused)/etc/printcap - Berkeley spooler printer database /etc/printers - Lynx "printer" Ust of spoolable devices /etc/protocols - TCP/IP protocol names database /etc/rpc - NFS rpc names database/etc/rmtab - NFS table of currently mounted filesystems ZetcZservices - TCPZIP service names databaseZetcZstarttab- system startup data fileZetcZtconfig - serial port configuration file ZetcZtermcap - terminal capabiUty descriptions Zetc/ttys - login terminal informationZetcZutmp - currently logged in terminals information ~Z.rhosts - user-specified file of equivalent hosts and users ~Z.profile - ZbinZsh initialisation file~Z.Login - ZbinZdlsh login initialisation file~Z.dlshrc - ZbinZdslh initialisation fileZdevZnfssvc - special chr dev to maintain NFS server data in kernel
NFS library routinesnfsmount - moιmt a NFS directory getrpcent, getrpcbyname, getrpcbynumber - get RPC entry getrpcport - get RPC port number
PS additions ZusrZlocal∕birve - the RAND editor 1 f',>ς <’T> "ɪ ∙> ` ,*'∏w∣> ∙∣ ` ZusrziocalZbinZnodal - the NODAL interpreter in terminal Iiandlinc>

LynxOS utilities 3-7

4

Diskless LynxOS Systems
Author: Nicolos de Metz-Noblot

Target systems are normally diskless systems. In our context, there will be several servers, one per accelerator complex (e.g. LPI, ..) and one on the office LAN.
Principles of operationOn LynxOS V2.0, the MVME147 board contains four eproms. The two first ones contain the Motorola firmware (147-Bug) which is used to reset the hardware, test it, and then transfer the control to two others eproms that contains LynxOS bootstrap code.The network boot procedure first send a Reverse Address Resolution Protocol (RARP) request, i.e. an ethemet broadcast requesting "Who knows my IP address?". The server, which knows this address replies to this request.Once got its own address, the diskless system tries to fetch its system with tftp from the server which replied.If transfer was successful, the loaded system is started. This system does already holds a RAM disk which contains the minimum programs required by the startup procedure.The first startup action is to get system specific startup files (hosts and rc.network files) across tftp, always from initial boot server and then to execute them.
Execution environmentOnce the startup procedure completed, following file systems are reachable from the cliskless system:- local ramdisk - with Hmited space (about 500Kb with aroιmd 150Kb free after startup.- a read-only environment in /usr that does hold all standard programs and data shared by diskless DSCs.- a read-write environment in/var fl∙.ɔt '1∙∙<∙ ɪ` ∙1∙i ; >∙∙. . ihm;.; t∣κd re<∣m∙∙∙r to be modified by this DSC and is equivalen* ,'> tlv` ⅛∙; ɪ <l∣yk - even `f located on an oth<∙r system. In particular, this can hold a swap Gb* ÷ swapping is required for non-real-time programs such as interactive progne n'"- various NFS mount for access ∣∙ ɪ - ■ ɪ ∙∙v rb., ,∙tn,∏es anfj of.her data that requires to be shared between ∣h<∙ ∙. ■ .. ι,,,ι.n.r l>∏s∙jd developmentsystems).RAM disk contentsThe ramdisk is the master directory (/) of the system. Its size has to stay limited as it effects the reliabiUty of the downloading procedure and it consumes the physical memory.On startup it does contains the following files:

DlsklessLynxOSSystems 4-1

Zinit This is the first dispatched program that executes the /client7rc script and then manage the interactive logins on active terminal lines.
/client This directory holds all other programs that are required by startup. It is partially cleaned up by the startup procedure in order to free some space in the ramdisk after startup.
ZclientZdlsh This is the startup shell and is used as default shell for loginas it is already memory resident.

on startup and should be deleted after startup./ClientZgetecf This program retrieves the /etc/hosts and /dient/rc.network
/client/hostname This is used to setup the host name and should be deleted after startup.
/ClientZifeonfigstartup.
ZclientZmount

This is used to start TCPZIP and should be deleted after
This is used to mount (or check mounted) remote directories.

ZclientZroute This is used to define network routes.
ZclientZstty

ZclientZtset

This is used in root .Login fileThis is used in root .Login file.
/ClientZunfsio This is the NFS cUent program and is required to stay.
/clientZrc This is the common startup shell script.
/ClientZrcmetwork This is the specific startup shell script.
/etc This directory contains configuration data required by normal Unix proggrams as network servers, terminal descriptions. Most files are just links to /usr/etc, with the exception of ttys and motd taken from /var/etc.
/dev This directory does contains all system special files required to access devices.
/pipe This ramdisk directory is intended for efficient creation of special files for pipes, and is publicly writable.
Zsem This ramdisk directory is intended for efficient creation of special files for semaphores, and is publicly writable.
/usr This is the mount point of the read-only shared environment.
/var This is the mount point of the computer specific read-write environment.
/bin, /cc, /lib, /sys this are symbolic links to the /usr environment.

/tmp This is a symbolic Unk to /var/tmp and this last one is cleared on system startup.
ZJLogin, /.dlshrc, /.subroutines This files ar° r<≡∏uired fnr root Inpin
/dsc/bin this is the mount point to I h<:' - , ,,1 .∙>l∙.∙ ;ipi-lv ∙.∣ v>n rt∣vironιn<>ι>l sh:»» <'d by the various DSCs of a single serveι
ZdscZlocal this is the mount point tn ∣ he opph' .»< ><»n <-nvironmenf. specific io this DSC.ZdscZdata th» s is the mount poi nt *∙ ■ ' ∙∙ ■ 1 ɪ ∙ i--∙∙<-n Γ)S< '∏ and consoles.

Diskless LynxOS Systems 4-2

The read-only shared environment (/usr)This does contains the normal system environment of a disk-based system, with the only modification that all directories in this directory must be grouped (e.g. move /bin to /usr/bin, ZX to /usr/X).As this environment is shared by all diskless systems, changes in this environment should be achieved with special care as this does affect all of them.Few special cases must be noted:
/usr/spool has to be a symbolic fink to /var/spool as this has to be unique for each system.
/usr/tmp has to be a symbolic Unk to /var/tmp for the same reason.
/usr/etc this directory contains all files from /etc that can be shared between the different diskless systems as hosts, passwd, termcap and other service files.
/usr/local this directory is the only one that should be modified by us in order to extend the standard environment.
/usr/local/bin this directory does hold common programs as editors andother site specific executable programs.
/usr/local/lib this directory should receive all libraries that you want toshare with other users.
/usr/local/mclude this directory should receive the include files associated with the corresponding Ubraries (preferably grouped in a single subdirectory per product).
/usr/local/util This directory is intended to receive extra read-only data orprograms that are not directly started by a user command(preferably grouped in a single subdirectory per product).
/usr/local/drivers This directory is intended to receive all drivers that are automatically installed on startup by the dynaminstprogram.

The read-write permanent environment (/var)This environment is in practice the true permanent storage of the system. It will contains all data (and programs) specifics to this computer - but special care should be taken by real-time appHcations as access to the disk can be blocked at any time for an indeterminate amount of time (and possibly with I/O errors) if the file server is restarted.When the system is initially installed, the following directories are created:
/var/tmp this is the normal /tmp of the system and is cleared- on every system restart. It is normally accessed across /fair ∙,∙<' *'∙∏< Thi- di∣∙∙rt<>ry ir pubUcly writeable.
/var/adm this directory is intended to re<e’ve -∙vstem administration statistics data and its access should be restricted to »>,ιw
/var/spool this directory is intended ,∙∙, <r,∙ 1> 'l<-∙ '∣∙∙∙∙∙lir∣c system and its access is restricted to roɔt user./var/etc this directory contain- ,>- .. <∣∙ tinit∣<∙ns). rc. local(specific startup script), motd (Message of the day) and insttab (dynamic drivers installation table).

Diskless LynxOS Systems 4-3

Setting-up α new boardThe first step is to note the ethernet address written on the back of the front-panel.This address will be required at different steps in the board initialization.First plug in an up-to-date release of the Motorola firmware (today rev. 2.42) in sockets U22 and U30. Then Plug the LynxOS TFTP bootstrap eproms in sockets Ul andU15. (check for correct eprom type selection depending upon eprom as described in theMVME147S/D1 documentation page 2.4).If this is the first installation, check that the board connector, the two flat cables andthe MVME712 connection board are connected on the back - and that on theMVME712, at least serial port 1 is configured as a terminal (not modem).Connect a terminal to the serial fine and power-up the crate and check it is connectedto the V24 Une at 9600 bauds.Depress together Abort and Reset switches, then release the Reset switch - maintaining the Abort switch for about ten seconds. This will reset the Motorola firmware andyou should have the prompt 147-bug> on the terminal. If nothing does happens, checkfirst the terminal, then try to cross the two Motorola Eproms.Once you get the prompt on the terminal, the first thing to do is to check if the bootstrap eproms are in the right order. This can be achieved with the command:
MD FFA00000That should produce a memory dump of the specified address and where the text

BOOT can be read. (If its OBTO, you have crossed Ul and U15 eproms).Then you have to do an exhaustive test of the board:
ENV

B (bug environment)
E (Enable tests)
E (Enable RAM test)(then all defaults)Depress Reset button and then The whole card is tested. Don’t worry about badNVRAM contents.Once tests successfully completed, disable them with the command:
ENV

B (Bug environment)
B (Bypass)
(then all defaults)Disable the Motorola system boot with th- ∙ or*τnnndNOABDefine the boot as going to the second EFR*?? t=-t with the command:RBR i ■ ∙H
FFA00000 (Bootaddress)Check the Ethernet address with the command:
LSADThen set the board time with the command:
SETTIME

Diskless LynxOS Systems 4-4

10/07/91

(return)

10:10:00

(07 Oct 91)(Calibration value)(HH:MM:SS)Then depress once more the Reset button. This time it should automatically issue a GO command and go to the Lynx Monitor that you should immediately abort by pressing the Return key.There you must issue the following commands:
R00 (define the root file-system)V (Boot across the network).There the system boostrap should startup, trying to reboot across the network.Don’t forget to reconnect the Ethernet cable.Then you have to login on the server in order to declare this new DSC or to change the Ethernet address of the replaced one.If, after bootstrap, the startup repetitively fails on getting the rc.network file, this just means that you have forgotten to issue the "R 0 0” command.If "*" character continuously appear on the terminal, you have to check the ethernet address written on the terminal that must be equal to this one entered on the server. Notice that - for the time being at least - you cannot cross the CISCO, i.e. bootstrap from a server not located on the same IP network (128.141 or 192.91.236).

Diskless LynxOS Systems 4-5

DSC configuration management on the server.Most DSCs are diskless and are serviced by a local server.In order to use this procedure, you have to be in the Ust of DSC privileged users or to be the user root of the server, as for any system management routine.There you have to call the DSC management program:
cd /<complex>/dscenv/bindscconfigThis provides you the following menu:
DSC Configuration ProcedureLynxOS boot directory: /dscenv/tftp/lynx/tftpboot
1 - List known DSCs
a - Add a DSCm - Change ethernet board address of a DSCd - Delete an existing DSCq - Exit from this procedureYour selection ?By default, the response is q.The a command is intended for declaration of a brand new DSC whose address must be already known from the stations (i.e. be declared in our YP hosts database). The only other requests from the program are the DSC name and its hardware ethernet address. In case of doubt, a generic address 08-00-3e-00-00-00 (for an MVME147 board) can be entered and then modified later with the m command. This will create the whole diskless environment requested by a diskless station, then declare it in the various system files as required.The m command is to be used every time you do a standard exchange of a board as this is the only way to distinguish two boards on startup.The d command allows you to remove a DSC. You need to be logged in as root in order to remove also all files associated with this DSC. If this is not the case, the only effect is to disable this DSC from any boot and to remove all its authorizations for NFS access to the server (the rm of the root directory refuse to work). This command should be used with special care as you normally remove all files that belongs to this specific DSC.The 1 command is used just to consult thɛ ʌ',r "*herr rιl--

Diskless LynxOS Systems 4-6

Maintaining the diskless environment.A disk based MVME147 system is required (at least for the V2.0 beta-test release), in order to prepare the boostrap image. Today only the DSCDEV (dsps07) is allowed to issue the right NFS mounts required to do this maintenance.You will have first to login as root on dsps07 and to issue the following command:
mount XxXsrv,√XXX∕dscenv /mnt (XXX= lpi, mcr or tst)You can then regenerate the system image in the ∕πmt∕usr∕sys∕lynx.os directory. (You will find there a copy of all system source files).You can update the initial ramdisk contents in /nmt/usr/root directory, but don’t forget to clean it up after modifications.After any modification in this environment, it is required to regenerate the boostrap system image with the following commands:
cd /mnt/tftp/lynx/tftpboot

makePlease take care that during that time, no diskless 147 based DSC will be allowed to reboot and that all modifications will be valid for all 147 boards booting from this environment.
N.B.: the /usr/local environment of all DSCs (including disk based DSCs) is normally the same one (taken fi*om SVPS02) and this can only be modified from DSCDEV.

Diskless LynxOS Systems 4-7

5

Bαckup∕restore of MVME147 disks
Author: Nicolas de Metz-Noblat

One very important operation is to keep up to date backups of developments systems.This can be very easely achieved using the SCSI streamer.Disk capacity varies from one system to an other, the minimum (DSPSOl andDSPS02) being of 85Mb, most others being 150Mb.The Streamer capacity of 150Mb can be achieved only with DC6150 tapes. Pleasecheck this with your furnisher.
Doing α system backupIn order to do a full system backup, first log in as root and ιmmount any NFSmoimted file system. This is preferably achieved by rebooting the system in singleuser mode with the following command:

reboot -fOnce the system restarted, it automatically enter the single user mode , a mode inwich the network is stopped and no user has access to the system. Note that the virtual memory system is then not active. You can then plug your cartridge (not hardware procted, i.e. not in the "safe" position) inside the streamer. Once the taperewund, type the following commands:
cd I

tar cvbf 256 /dev/rtape This will create a full backup of the system (except contiguous files):
tar is the Tape ARchive utility,
c means create an archive,V means verbose, i.e. all file names will be printed on terminal (this flag is optionnal).
b requests tar to write on the tape whith the specified number of 512 bytes blocks in asingle block. Here, we specify 25β*c' 12=12∙cΨh Moch nn the tape This is very important for a streaming tape and if not '∙∏o∙∙it∙∙∙∙∣ •••»» h .. I υ∣> v ill ∣l<>∣ Ht <>∏ ilw` tapof allows you to force to output to the specified i''vιce there ∕dev∕rtapeι.. is very important: all backups h∏"r∙ ‘° ∣',∙ ,'T∙>tιv∙' in ord<jr Io allow yon to restorethem later on a different device th?»- 'h∙ 1∙ > ∙ is createdOnce finished, finish the syst“’”’ - ∙ > ɪ » ∙.υ<∣ answering return to allquestions.

BackupZrestore of MVME147 disks 5-1

Restoring system backup:In order to restore a full system backup, you will need a copy of the first system installation tape.
If you are going to restore a backup of another system, please donot forget to
first disconnect the Ethernet cable fi*om the crate.If needed, you can first reformat the disk using the Motorola 147-MBUG monitor.Go to the target system and hit any character when you get the message "type anycharacter to break".There you will enter the Lynx PROM monitor, insert the first system installationtape and type the following commands:
R O 10 r

b - t2This will boot a system from the tape.You have now to install this minimum system on the disk:
FreshdiskAfter about 30 minutes, you can go back to the PROM monitor:
reboot -You can now remove the system installation tape and reboot from the disk:
ROO

b - s0You can now plug in your full backup and restore it with the command:
Getit /dev/rtapeOnce finished, check the /net/rc.network to check the host name (and the /etc/hosts fileto check if it is defined), reconnect the Ethernet cable and restart restored systemwith:
reboot -aSystem will complain about the file /swap that will be missing, so login as root andrecreate it:
mkcontig /swap 20m

Dont forget to reconnect the Ethernet cable.

Other backupsAs a Unix user, you should know (and use) the tar standard utility.You can, using the tar utility, do badr,,ι∙ ' ',v∙∙∣ H mb d∣ro<∙forv∙s. ml her to thestreaming tape, either to a simple ’ile ∙ ■ ,r Hmf ` *»” will then Iranier with ftp(without forgetting to specify a bina’y transfe’ mode > to any other computer.A simple precaution: never specif’ nhqoltH» notIi names to tar (and dont forget tospecify at least one file name as J in -∙rdm ∣.∙ 1 ∙ .bk t<∙ recover them in another directory.A good practice is to check the'.∙m> ∙ ’ ' ∙, ∙',∙ 'oast Hs beginning) with a
tar tf command.example:
tar cbf 16 /tmp/mine save the contents of current directory
tar ɪvf /tmp/mine restore it to the current directory.

Bαckup∕rβstorβ of MVME147 disks 5-2

6

Understanding VME space in a DSC
Author: Alain gagnaire

This note is an introduction to VME space addressing in a DSC. To get a full description of the VME bus protocol and CPU board addressing in a DSC see:- VMEbus SPECIFICATION MANUAL (ANSI/IEEE STD1014-1987)- CPU board reference manual: depending on the target board
Reminder of basic VME addressing from a DSC processor (CPU):

Addressing mechanisms principle in a DSC:In a DSC, a running program, in supervisor mode or not, references addresses in
what is called its virtual address space.When executing a program, the CPU addressing mechanism converts program
virtual addresses in 32 bits physical addresses. This convertion uses a mapping table attached to the program.For a normal user program (non privileged) this mapping is restricted to the virtual space of its data and code. At run time of a program the O.S. allocates for each virtual page of data or code, a physical page in the memory.For a system program this mapping includes visibility of private system areas and of the VME bus address space areas (see O.S. reference manual).The physical address space in a VME CPU board consists of the normal memory address space corresponding to RAM, EPROM, local I/O and different ranges corresponding to the different VME bus addressing areas: short, standard, extended.The mapping of the actual physical space on the VME areas depends on the CPU board : see VME CPU addressing in a DSC.
VME access :A VME access can be :♦ a data access: e.g. :read/writ° T'∩ ∙t- ` ιn<∙n∣.>rv ∏∣ VME module etc...• a program access: fetching of instructions from a VME module: e. g from a library in the Eprom of a VME module the instructions are picked up from the VME space; an example is the crnphv- -`ʊwbib- TSVMEfib∏ which provides the access library to the basic funct,,>n iɪ` ι< ’ τ,Γ' >MAn adddress on the VME bus >~ ` > ■ ■......................... '»> physical spare as seen fromthe CPU according to the mapping ∙ ∙ ∙> :p ><∙- m the CPU.To access a VME module, the CPU must generate an address in the range of the mapping of VME address space.When a 32 bit CPU falls into the range of the VME space, the corresponding access is processed by theVME chip interface, which is based on groups of Unes:
• Address Modifier lines (AM): these 6 Unes are set up automatically by addressing mechanisms (they can also be programmed exphcitely if needed, see in

Understanding VME space In a DSC 6-1

the CPU reference manual instruction set). A VME target module acknowledges the addressing only when the AM Hnes fit its AM requirements. These lines are used to give information on the type of the adressing mode, to filter the access to modules and protect modules from program access. The 64 different configurations of the AM lines are organised into 3 categories (Defined, Reserved, User- defined) out of which we have to consider only the defined one made of 3 subsets:
* Short addressing: 16 address Hnes used A15-A02 fines
* Standard addressing: 24 address fines A23-A02 fines
* Extended addressing: 32 address fines A31-A02

• The Data lines: 8, 16, 32 according to the data width of the access (byte, short, long).
• The address lines: 16, 24, or 32 according to the associated AM lines.The automatically generated AM depends also on the CPU state on access, this value is :
• in case of data access:

Extended (32 bits) $0D

Address Size supervisor non privileged
short (16 bits) $2D $29Standard (24 bits) $3D $39$09
• in case of program access:Address Size supervisor non privileged

Standard (24 bits) $3E $3AExtended (32 bits) $0E $0A
Reminder : The target module requires a certain AM. Most of the VME modules have got a strap to allow the user to partially set up the AM in order to define the access right: supervisor only or non privileged and supervisor.This set up will tell the user how to access the module from a program running in the DSC.
The VME space as seen from the CPU :Depends on CPU board.The whole physical addressing space of f∙,' ' 'τ τι ,r '∙∏ ,r∙ ,∣ ,,∙ • on board memory space of the syste’” ErKθM. RAM... • on board I/O devices, • VME space.The layout of the addressing snɔ'∙ , ' ∙ ' ∣∙*∙ard r<√rrpn<∙<' manual.The physical addressing on the λ∙',∙' ∙ ∙ ∣∙ l∣w, AIM lines as well, therefore the user should remember on what the AM lines depends :• the address range, determining the addressing type: short, standard or extended• the addressing mode: data access or fetch mode, determines the access mode• the state of CPU: user or system level determines the non privileged or supervisor access mode.

Understanding VME space In a DSC 6-2

Reminder : during a VME access the data size must also fit the data port size of the module. This size can be forced by setting of theVME ship (e.g. in a the MVME147 the VMEship can be told to perform long data transfer in 2 short access cycles to fit 16 bit data port size module requirements).
The VME space as seen from the Operating System :A program running under the O.S. cannot access the physical memory directly . Actually the program accesses its virtual space. An intermediate mapping, hiding the physicall memory topology to user programs, is used in order to associate a physical space to its virtual address space. In a DSC this mapping depends on the priviledge level of execution of the program.
• From a non privileged program : at this level the Operating system provides the program with the visibility of a subset of the whole virtual space corresponding to the data and code space. To access the VME space some facilties, depending on the type of Operating system, are provided to access directly the VME space, see chapter "user memory mapping".
• From a system program : at this level the Operating System has the visibility of the VME space in a special mapping, which can be used by system programs and drivers.

Reminder:• The O.S. provides a special documentation for the mapping of VME space as seen from the system access (from drivers). This depends on the type of CPU board used.• The O.S. provides user programs with facilities to directly access the VME space see chapter "user memory mapping and VME".

Understanding VME space In a DSC 6-3

VME module visibility from the CPU board:When receiving a new module and before installing it, the user will have to gather the following basic information about the module:• AM supported by the module.• Adressing size: short, standard or extended• Functions supported:- data accessprogram accessA set of straps is inserted to filter the access according to the user’s choice, e.g.: on the TSVME 600 the user can restrict access only to supervisor mode.• Data port size: the module has got a data port of a given size, the access must follow this requirement (the VME chip interface must perform the data transfer correspondingly)..e.g.: the VME chip interface can be told to generate only word access, in this case long data transfer is done in 2 word data transfers.• The VME base address: this is usually set by strap, it defines the module’s VME offset in the corresponding VME subset range (short, standard or extended).
VME space mapping in the CPU adress space:This is dependent on the CPU board:
For the MVME147 SYS1147U/D1 CPU board :N.B.: see System manual in Operating instruction ch 3.3.1.1 p3-3The map of main memory is given by the following table:Address range Devices accessed Port size Size Notes

O-DRAMsize On board DRAM D32 4-32 MbDRAMsize-$efff ffff VME bus A32/A24 D32 3 Gb 1$ff00 0000-$ff7f ffff VME A32 D16 248 Mb$ffff0000-$fffffflff VME short D16 64 Kb
For the MVME147 MVME147S/D1 CPU board :see User’s manual in operating instructions ch 3 p 3-5Address range Devices accessed »’or! <rι-∙∙' .'*r.τ<4 NofPS

O-DRAMsize On board DRAM Γ).o∙2 4-32 MbDRAM size-$efff ffff VME bus A3- A2-∣ ’ >.,∙'2 3 Gb 1$ff00 OOOO-Sffffffff VME A2∣ •. ∙ IG Mb$fl00 0000-$ff7fffff VME A32 i I i<. 232 Mb$ffff0000-$ffffffff VME short D16 64 KbNOTES: 1. This A24 only applies to VMEbus space that falls below $1000 0000.VMEbus space below $1000 0000 only occurs on versions of the MVME147 I MVME147/S that have DRAMsize smaller than 16 Mb.

Understanding VME space In a DSC 6-4

For the THEMIS TSVME13x CPU board :See the manual TSVME 13x 68030 single-board computer
Address range Devices accessed Port size Size Notes
O-DRAMsize On board DRAM D32 1 or 4 MbDRAMsize-Sfcff ffff VMEbus A32 D32 3 Gb 1$fdOO OOOO-Sfdfefiff VME A24 D16 15 MbSfdffOOOO-Sfdfffeff VME A16 D16 IMb$ffff 0000-$ffff ffff VME short D16 64 Kb
Lynx O.S. facility to directly access the VME space:A user’s program normally has no access outside its memory space. To enable it to access VME space or any address range, Lynx O.S. provides a special function to extend the memory map of a non priviledged program to any physical space:
• smem_create: System call to get mapped onto the physical address range given in the arguments. It returns the virtual address in the caller’s virtual space extention of the physical area specified in the parameters.This virtual area works like a window giving direct access to the corresponding physical area. Choosing the physical address in a VME range gives access to this VME area.
Reminder:• The address given to smem_create as parameter is interpreted as a physical 32 bits address. To get a window mapped on a VME space area this value must be choosen according to CPU mapping of CPU board which depend on type of the

CPU. Note that such a program is CPU dependent ! ... so to run it on another type of cpu board it must be recompiled with the corresponding VME range declarations.• To prevent user program dependence on this mapping, general Hbraries facilities must provide dynamically this mapping.
N.B.: see LYNX OS ref. manual chapter 2 System Calls.
Hints to compute the 32 bit CPU address of a VME module :This information is necessary for people who need to directly access a VME module using the Lynx O.S. facihty in order to create an extention of a program virtual space (smem_create) mapped onto a VME space.The physical address of a VME module r,~ s*∙**n f»-nm tb<≈ c,ptt i*≡ computed by adding to the base address of the range 1 ` hɑn. , >- , ><<l i. n.∣,.,∣∣ t∣w. m,.,∣l∣∣p ∣,ns∙<* address set by the strap on the τnodυJt Hoar*∣

VME range CPU bɪ` - '<b1∙∙-- module VME ^∏,∙-
= VME module 32 bit CPU_addresse.g. : for the MVME147/S the VME short range is OxffffOOOOif the module base address (given by the straps) is 0xe000 the physical CPU address of the VME module is OxffffOOOO + 0xe000 ≡> OxffffeOOO

Understanding VME space In a DSC 6-5

VME space visibility from Lynx O.S.:The Lynx 0.S. uses the virtual memory mechanisms, therefore it hides the physical space completely from the program. Each program is given the visibility of a virtual space corresponding to its code and data.
System virtual address mapping (mem.h) :This may be dependent on the implementation of Lynx O.S., the mapping below correspond to the Lynx O.S based on a MVME147/S CPU:The table below describes the address space as seen from system level programs like
drivers, it gives a mapping for the valide VME address range.N.B.:The source of this documentation was extracted from the C header file : mem-h, used to compile system kernel and drivers.System memory mapping and VME address range:Virtual Memory address associated Physical Space

V2LlIU tt∏
VME short I/O (A16)Oxffiff 0000

OxffiOO 0000 On board PROM
OxfeOO 0000 VME Standard (A24)

OxfdOO 0000 Reserved
OxedOO 0000 VME Extended (A32)

OxebOO 0000 Physaddr (32 Mb)
OxeacO 0000 O.S. Addr (4 Mb)
STARTPROTECT SpecPageZStartstack (8 Mb)

SHARED MEM START
USpecPage' ∙.,r∙. of ΓSSENTR V for user to read

Ltstartstac τ :

PERLIMIT (8 Mb)
USER AREA0x0000 0000

Understanding VME space In a DSC 6-6

Hints to compute the system virtual address of a VME module :This information is necessary for people writing drivers.The virtual address of a VME module as seen from the system level is computed by adding the module base address set by the strap on the module board (The range base address is picked up from the system virtual address mapping) to the base address of the range (short, standard or extended) :
VME range system base address

+ module VME base address

≡ VME module system virtual address

e.g. : for the MVME147/S the VME standard range is OxfeOOOOOOif the module base address (given by the straps) is 0x080000 the physical CPU address of the VME module is0xfe000000 + 0x08000 => 0xfe080000

Understanding VME space In a DSC 6-7

7

VME - Addressing facilities library
Author: Alain Gagnaire

Habtamu Abie

The user is given an introduction to basic of VME addressing at chapter:
Understanding VME space in a DSC.

VME accesses via library calls for application portability:In a DSC the access to the VME is available from the low and basic level of the system, using directly the system call facilities to open a virtual space window on the physical space corresponding to the VME area target. This level of programming makes the program dependent on the current O.S. features (in our case Lynx O.S. with the smem_create system call) and moreover makes the application directly dependent on the CPU mapping of the VME space.Therefore a library interface was introduced in order to hold dependencies below application programs. It is up to the system managers to set up the Hbrary according to the actual Operating System and CPU environment.
The VME module address in the library interface:To Imderstand the VME addressing on a DSC see in this manual the chapter "Under

standing VME space in a DSC.A VME address for the user is made of 3 informations:• The Address Modifier (AM) : a part of it specifies the type of address size used for the access: short (16 bit address), standard (24 bits address), extended
(32 bits address). This is a fundamental characteristic of the addressed module to stand such or such address size and it determines which physical address range must be used by CPU to generate the associated AM Hnes on the VME bus by actual addressing.• The module base address : usually it can be set up by strap on the module board. This must be understood as an r,ff≈ot jŋ tb«> ∏bvsiml address space associated to the address size type• The module address offset : ’♦ mv<f b, understood as an offset in the module address space.The Hbrary determines the CPU ba , r,dd>< ∙ι tl»< ’’ME modulo computed from the interface address as follows:• The AM selected accordine ∣∙ ɪll ι. I| f,hr library which baseaddress of the Address size type Kange rained AR to take, this depends on the CPU mapping .• The VME module base address named MBA is given by the strap setting.

VME module physical base address = AR + MBAThe module address offset is finally added to make an access from the physical base address of the VME module.
VME - Addressing facilities library 7-1

The C library interface for the VME access facilities: (vmebuslib.o)Using this library to access a VME module makes programs independent of the O.S. features and of the CPU physical memory mapping.These facilities are basic functions to perform single data accesses in the VME space available on the DSC. A program VME address is defined, as explain above, by 3 informations:The AM, the module VME base address and the offset.
How to use the library:The source file of program using the library interface must declare in front the include file : <vm∙buslib.h>The Makefile building the user’s application must include the appropriate lines to give the path of the object file : ∕u∕d∙cps∕vmafclty∕vm∙bu∙lib. o
READ_VME, WRITE-VME : Reαd∕Write from the VME busThis functions process a read/write of a byte, word or long from/onto the VME bus at the VME address defined by the 3 informations: AM, module VME base address, user offset.

Formal C syntax definition:void READ_VME(AM,Module_add,offset,ref_data,size,coco)void WRITE_VME(AM,module_add,offset,ref_data,size,coco)unsigned long AM;unsigned long module_add;unsigned long offset;unsigned int *ref_data;unsigned int size;int *cocc>;
Syntax of a call:READ_VME(AM,module_add,offset,ref_data, size, coco);WRITE_VME (AM,module_add, offset, ref_data, size, coco);
Where:AM « The user select the AM corresponding to the type of addressing size he wants, the supported values are:$29 to select the short addressing data access.$39 to select the standard addressing data access.$09 to select the ex<or*ded ,,l,j,”»c ,∣ , -< ' -j:rmodule add = The address o< <h*? module defined by its strap offset = This is the offs®iŋ sid® Hi« tarc**t VME module ref data = address of <,∙, '∣r,1∙, ,*∣∙'''1 '»• H»» transactionsize = size of the d∏∙ ,∙ ∙ ∣.,, ∙ j fol n byte. 1’ for a wordano 4 for a long.coco = completion code if ><0 error occurred see local error code below.

VME-MNGT : Function to get rid of module visibility after accesses. This function is associated to the Lynx OS implementation to perform the VME access, this function release the Lynx OS resources implicitly reserved by the call to access function on a module. This function must be invoked when the access finished to release
VME - Addressing facilities library 7-2

the resources it sets up. When non released it would prevent to access other modules (maximum 8 different VME space can be simultaneously accessed by this way).
Formal C syntax definition:void VME_MNGT(AM,Module_add); unsigned long AM;unsigned long module_add;
Syntax of a call:VME_MNGT(AM,module_add);
Where:AM and inodule_add = specifies the module interface address of a previously accessed module.

Error codes:VMEBUS_UNSIZE ≡ byte number not allowedVMEBUS_ILLADDR - illegal base address vmebus_invam = AM value not supportedVMEBUS_SEGVIOL = Hardware error by VME accessVMEBUS_ILLWIN ≡ Cant get system resource to manage the VME access.VMEBUS_ILLNAME ≡ Internal errorVMEBUS_INVSIZE ≡ size not supportedVMEBUS_NSYSMEM « No more system resource for that access vmebus_einter = unexpected error code

VME - Addressing facilities library 7-3

The NODAL VME access interface:The Nodal interpreter function extensions provide NODAL user with the VME access facilities. The on-line documentation for that purpose is available under the NODAL or the console station by invoking the 4man, program.The NODAL function for the VME interface access are named :
VME R/W function

VMEMNGT Call function

SEE
The NODAL man pages manual :

PS/CO Note 91-0020
by F. Perriollatz G. Cuisinier, A. Gagnaire.

OR
under any console station

ask the man facility to display on line
the documentation of any NODAL function:

>man function-name

VME - Addressing facilities library 7-4

8

Installing a VME module in a crate
Authors: Alain Gagnaire,

Wolfgang Heinze

Inserting a board in a slot of a VME crate:Whatever manufacturer your crate is coming from, you must always take care of the 5 standard jumpers along each slot:
Setting of the jumpers:• IACK is the one to daisy-chain the interrupt acknowledge line, so remove it only

when a board is plugged in.• BGO, BGl, BG2, BG3 are the 4 ones grouped together serving the BGIN/BGOUT daisy chain. They have to be taken out only if a module is inserted which can take
mastership of the bus. At present, the main CPU board is the only master in the crate, this make these jumpers xmused in the other slots, so leave these 4 jumpers
untouched except for the CPU slot where they have to be removed.

Attention:There are some difference beetween crate coming from different manufacturers:• for WES crate type V422 the jumpers are on the left-hand side of each slot.• for ROTRONIX crates, the jumpers are on the left-hand side of each slot.• for MOTOROLA crates 1147, the jumpers are on the right-hand side of each slot.
Reminder:• remove all jumpers on the slot of CPU.• if there is an empty slot, install the IACK iumper on that slot.• if there is a board in a slot, renι' ∙t, I/' ’ !∙∙∙∙η∙<∙> I -∙.∏∣ I l>.∣t ;:l<>i

ÇATTTV U
Installing a module in on* ' , j,
for another type of sigυ-,ττ
the system.

∙4∙* <h.>t use the P2 < <>nnector
.∙., ∣jw hoards in

Installing a VME module In a crate β-l

9

Loading drivers under Lynx O.S.
Author: Alain Gagnaire,

Habtamu Abie

Drivers for additional devices can be dynamically loaded under LYNX 0.S. The standard LYNX 0.S. documentation provides all information for that purpose but the complete recipe to follow is not given and the fundamental information is scattered in different places which make things not easy . In any case, the user must have read the LYNX O.S. standard documentation:• LYNX O.S. User’s Manual Vol 2 : Chapter 4.6 Writing Drivers• LYNX O.S. Utility Programs Manual, see the entries: devices, drivers, devin-
stall,, drinstall, drivers, mknod• LYNX O.S. System Calls, see the entries : cdv_install, cdv_uninstall,
bdv-install, bdv_uninstall, dr-install, dr_uninstall, mknod. to perform the dynamical loading of driver from a program written in C.Before you start your loading sequence the user should make some checks in the driver code in order to prevent misfunction in it:• Check order of the driver’s jump table entries which must as shown in table 4.1, page 76 in chapter 4, i.e.: Open, Close, Read, Write, Ioctl, Install, XJninstall !

Installing a driver using LYNX O.S. commands:This enables the user to dynamically install a driver by hand-typing the sequence of commands or editing a command file or a script file:N.B.: the command lines are headed with @ as the prompt character of LYNX O.S.1 Run your C program to build a file and fill it up with the sdata of the informa tion table required later at device installation:If the program is named setup_dev_info and the file dev_info_table perform:
©setup_dev_info >dev_info_table2 Load the driver object module, ∙>vhi< 11 » ■■ ∙1' lr∙<n> ∣ lɪ- < <>mj∏Hl i<∏> <4 dɪ iv<∙∣ ∙∙>oo<∙> code, into the system.If the driver’s object module is nam'd nt∖-rirv`rt ∙. n∏d the output of di install command is redirected into the file <∣, ι><'∙ ∣<i> - <. υ∙∙∣ f>∙> m
@drinstall ∙c mydriv∙" -■■■■3 Install the driver (as Mai'” ! "n<u:urafion of tl><∙ sysh∙mwith the command:
@devinstaU -c -d dev_info_table <driver_i4 Create the name of the associated Minor device to set up a handle for this device, with the following sequence:- Note the ID number of the corresponding Major device in the list displayed by the command devices , e.g nn the number for this example.

Loading drivers under Lynx O.S. 9-1

- Create the handle named mydeviceJiandle giving to Minor device the arbitrary value U (in the range [0..255]), with the ∞mmand:
@mknod TnydeviceJiandle c nn U

Installing a driver using LYNX O.S. system calls in a C program:This enable the user to install a driver by calling a dedicated program, here follows, as an example, the source file of such a program:
∕, Example of C program installing α driver into LYNXO.SCreated: Habtamu AbieThis program requires 3 option argument on the command line:-Dmydriver to specify the module of driver in this case mydriver-Idev_info_table to specify dev_info_table as file to receive the information table-NmydeviceJnandle to specify the name of the handle created by mknodWhen the program name is my_install a call Ioolcs like this:@my_install Dmydriver -Idev_info_table -Ndevice_handle
7♦include <io.h>♦include <stat.h>♦include <ffle.h>♦include <stdio.h>♦include <ctype.h>∕∙ info table: to provide hardware address */struct I long addr; long ivec; I info_table - (OxieeOOOOO, 3|;static char info_path[80], drvr_path[80], node_path[801int extra - 0;/’ set_path subroutine '/void set_path(path,arg)char, path,□ argQIintt 1-2;while (argil] I- ʌθɔ(path[i-2] - argil];

Ipath[i-2] - ,∖0';I/* swith_path s,Jbroutme "/void switch_path(arg)char argQI char ch.ch - arg[llswitch ((char) toupper((int)ch)) Icase TX:set_path(drvr_path, arg);
Loading drivers under Lynx O.S. 9-2

break;case T:setjxrth(inio_path, arg);break;case ,N':set_path(node_path, arg);break;default:break;Il
void get_path(argl ,arg2,arg3)char *argl, 'cag2, *arg3;I switch_path(argl);switch_path(arg2);switch_path(arg3);I∕∙ BODY of MAIN
7main (arge, argv)int arge; char *argvIint driverJD, id, MaJordev_ID, Minordev_ID;char ch[10], minor(80];if (arge I- 4) { fpiintf(stdeir, 'Usage; %s ¿Driver InfoJable Path]∖n",argv[O]);eɪtt(l); Iget_path(argv(1],argv(2],argv(3]);fprintf(stderr,Troducing InfoTable: %sXn",info_path);If ((fd - open(info_path,O_WRONLY I O_CREAT, 0755)) < O) IPerrorCCannot open or create INFO-table");eɔdt(l); Iif (write(fd,8dnloJable,srzeof(info_table)) < O) IperrorfError writing INFO-Table");exit(l); Iclose(fd);fprintf(stderr,"Installing driver : %s∖n",drvτ-path); if ((dnver_ID -dr_install(drvr_path,CHARDRIVER)) < O) IpenorCCanr--t inɔt ∙" tɪ` exit(l); Iiprintf(stderr."Driver ID - %ci τr if ((Majordev_ID - cdvj∏stalt "''r - r∙∙," l∙" > 11 ∙<+τ' ∣n < O) I

perroτ'--'^'' , ∙ -i∙

exit(l) Ifprintf(stderτ,"Creating node with Majordev_ID %d with node %s∖n",Majordev_ID,node_path);if (mknod(node_path,S_IFCHR,Ma]ordev_ID « 8) < O) IpeπorfErτor creating node");exit(l); Ido (printffDo you want make node with minor dev? (Y/N) ");scanff%s",ch); pnntff∖n");
Loading drivers under Lynx O.S. 9-3

if ((chor)toupper((int)ch(0]) — T) (PrintiCGiVB the minor device number: ɔ; scanfC%d',&Minordev_ID);printfC∖n*);sprintf(minor,*%s.%d', node_path,Minordev_ID);Ii (mknod(minor5_IFCHR,(Majordev_ID « 8 IMinordev_ID)) < 0) IPerrorCWriting to a ffleɔ; exit(l);|) I while ((char)touppθr((int)ch[OD ■■ TO;

Loading drivers under Lynx O.S. 9-4

10

SDVME - Serial Camac interface driver
Authors: Alain Gagnaire (software),

Wolfgang Heinze (hardware)
Introduction: This VME module provide access to a Serial Camac loop: to Read or Write from/to a Camac module embedded in a crate in the loop, to accept Lams from Camac modules in the loop as an interrupt signal in the VME crate. A full specification of the module is given by the reference manual of the VME board provided by the developers of the module:

- PS/CO/Note 91-022 Camac Serial Highway Driver in VME

by L. Antonov, V. Dimitrov, W.Heinze.The access to the driver’s facilities can be done on 2 levels:• The direct access to the driver interface based on UNIX i/o system call. This is not recommended because it makes the user program dependent on the drivers implementation and non portable.• The Hbraiy interface which provide global function hiding the UNIX system call interface and the driver specific interface to the programmer. This interface is available for C program and NODAL program.
Driver interface functionality:These functions are provided via the user interface of the standard Unix file system.

Cαmαc access : (ioctl function)• Single ReadZWrite Camac.• Multiple Camac access : perform a given sequence of Camac command• Repetitive Camac access: perform the same Camac command the number of time given, on data provided/retumed from/into an array.
Connection with α Camac LAM : <zi ∙∙→ι t∙Connect : to getan event assoc, > ed ∙∙ > >> ',Λ.M <∙∣ :• <∏v<>∣> slot from ;» jʃiv'ɪ`of the loop. When a LAM occurrt,d flv d∣-i- ʃ`r will put an event, made of 4 bv∣'∙s∙. in the ring buffer of the requesting’ d^>nr'∙ 'ɪ b∙ <'i∙∏n∣ is ∏ sp<μmncp <>f 4 l>vfps∙. if w»« represent this event by : byte [3 1 o∣ *,w of t∣v pwnf isbytes ∣^3.2]= 1 word = nnm>∙∙ made ∙∙' ’ ∖M - sinr<, Ilv Connorlmn

byte[l] = CratenumberofLAMsourte.- byte [0] = Slot number issuing the LAM.N.B.: the connect is exclusive, only one device can get the event for a given slot.• Disconnect : to get rid of a previous LAM source connection. The in coming LAM are no longer given to this device.
SDVME- SeriaICamacInterfacedriver 10-1

Synchronization with a Camac LAM : (select, read function)performed by means of the select or read function. The read will be used to get information on source of the incoming LAM (previously connected).Synchronization with Camac LAM (select, read file system call):• Select : if the device descriptor of the sdvme driver, dedicated for synchronization is given in the list of a select, and if a ∞nnect was made before on it,for one or more LAM source, the select will return when one of this LAM arrived. The knowledge of the LAM source is acquired by reading the incoming events from the ring buffer of the corresponding device descriptor.• Read : to get synchronized with a LAM source and to read the ring buffer in order to to know the LAM source. When ring buffer is empty the call is blocking during a laps of time, after which a time out is returned. The associated buffer must be tailored to receive at least one full event i.e.: minimum 4 bytes; the buffer is fed only with an integer number of events.

SDvME-SeriaICarnacInteffacedriver 10-2

SDVME CAMAC Driver library Interface : (camaclib.o gpsynchrolib.o)
Introduction:This interface inherited its main Hnes from the OS9 ESONE CAMAC IMPLEMENTATION FOR OPAL, it proposes a few subset of this whole interface and an extension with some more standard functions.The Hbrary hides to the programmer the UNIX system call of the driver’s direct interface. The user may Hke to have a minimum knowledge of the system resources involved by the Hbrary, for that purpose he has to read the further chapters giving the full description of the direct interface.In few words, the user must know that a Camac access is based on UNIX i/o system call, to access the driver faciHties the Hbrary has to open a device file, the currently opened device file identifier is stored in the global context of the library (local to the running process), this open is called at the first CAMAC access:For the CAMAC access request the library opens the device file dedicated for that purpose whose name is : ∕dev∕sdvxn∙lRW .For the synchronization request the Hbrary tries to get a free device file, non possible to be shared, out of the set of resources dedicated for that purpose whose names are:∕d∙v∕sdvmalθl to /dev/sdvmell6Using library access make program independent of the driver implementation and source code portable.
How to use the library :In the source file of program include the header file associated to these libraries:#include <camaclib.h>#include <gpsynchrolib.h>The Makefile building the user program must include the following lines• The general path to dsc Hbrary is defined in the makefile as :# general path to lead to dscps library:R∞T- /u• To work with the access routine define the Hbrary path:# define path to load camaclib.o# camaclib.o full pathCAMLIB= $(ROOT)/camdfclty/camaclib.o• To work with the synchronization ronfine': z-loβ∏o fhɛ Iihrnrv path:#define path t: 1 ə I ∏ .∙ ∙- ∙>∣ ɪ ∙tRTLIB= $(ROOT)/r*felt" σ∙ VTiehi <.∙li∣ ■. -.∙• To tell the loader to reference ∙h<∙ ∙ ;»»” - `ɪɪ- ∙∏rhι<l^ ih<∙ $(CAMLJB) ntvl/hr $(RTLIB) Inthecompilationzlinl- ∙ ∙τ∙>,.>∙....r ∙.∙,,
Primary routines :

cdreg : Encode a CAMAC addressThis function encode a CNA CAMAC address it performs no CAMAC access at all !.The returned encoded value is required in cf sa access function.
Formal C syntax definition:

SDVME - Serial Camac Interface driver 10-3

int cdreg(ref_camadd, Lr Cr Nr A) unsigned long *ref_camadd; unsigned short L;unsigned short C; unsigned short N; unsigned short A;
Syntazof a call:err ≡ cdreg(ref_camaddr Lr Cr Nr A);Where :ref_camadd - add of the returned encoded valueL - CAMAC Loop number (for the moment only 1 loop supported)C = Crate number in the loop (in the range [1 ..63]N - Slot number in the crate.A - Subaddress in the CAMAC module
qçamfunç ; Encode a CAMAC functionThis function encode a CNAF CAMAC address/function, it performs no CAMAC access at all !.The returned encoded value is required in multiple access function.
Formal C syntax definition:int gcamfunc (ref_caxnfunc, Lr Cr Nr Ar F)unsigned long *ref_camfunc;unsigned short L;unsigned short C;unsigned short N;unsigned short A;unsigned short F;
Syntax of a call:err «= gcamfune(ref_camfuncr Lr Cr Nr Ar F);Where :ref_camfunc = add of the returned encoded valueL ≡ CAMAC Loop number (for thp moment only 1 loop supported)C = Crate number ip I»»'*!’, '∙,∙ nm«-« |l G.,.∣N = Slot number in the ,rateA = Subaddress in the ' 'ΛM,A<" " ∙∙<∣"∣<-

F = Function numbβ,
Single CAMAC access routine :

cfsa : Read or Write CAMAC accessThe way of access : read/write depends on the F value, see CAMAC reference manual.
Formal C syntax definition: int cfsa(Fr encoded-value, ref_data, QX)

SDvME-SerlaICamacInterfacedriver 10-4

unsigned short F;unsigned long encoded_value;unsigned long *ref_data;unsigned short Q;
Syntax of a call:err - cfsa(F, encoded_value, ref_data, Q);Where :F = CAMAC function to perform at given encoded CAMAC address encoded_value = CAMAC encoded address ref_data - address of data for the read/write CAMAC access.QX = Q and X response of required CAMAC accessbit 15 = Q response and the sign of QX: QX < 0 Q response, QX>= 0 no Q responsebit 14 = X response.

Multiple CAMAC access routines:These functions use array of encoded CAMAC function returned by gcamf une.
pmcαmi : Block CAMAC functionThis function perform a sequence of CAMAC function given in an array.

Formal C syntax definition:int ρmcami (size,data_ar,camfunc_ar,retry,coco_ar, ref_coco)int size;int *data_ar;long *camfunc_ar;int retry;int *coco_ar;int *ref_coco;
Syntax of a call:err = placami (size, data_ar, camfunc_ar, retry, coco_ar, ref_coco) ;Where :size = number of cam?/' fun,'∙,' ” l" ∣w,r<f"∙n' in < :unarfnn< nn;iv data_ar = address of da<a a∏∙≈,y ∣∙∙, ∙∙<∙∏∙<∙s∣Muvhnf; ca∣nac lιmv∣∣on camacfunc ar = addresc ,>f cam;<< function array to h<> performedthe encode'1 i,>'>> 1>,∙,∙ `lɪɪ'" n`usf h*> set ∣∣p with gcamf'∣n<, retry = mode ot rAM ' ∣∣n∣-d:> 0 max retry ∙.>∣∙ ∙ , ∣∙∣l∙ < j Hlso. check Q response≡ O no retιy, check Q response< O no retry, ignore Q responsecoco_ar = array of corresponding completion code returnedelement = O no error, 170 no Xresponse, 169 no Qresponse ref_coco = Global completion code

SDVME - Serial Camac Interface driver 10-5

=O no error occured, 68 one error at least.
mcαmt : Repetitive CAMAC functionThis function perform several time the same CAMAC function using an array for the data.

Formal C syntax definition:int mcamt (size, data_ar, camfunc, retry, ref_perf, ref_coco)int size;int *data_ar;long camfunc;int retry;int *ref_perf;int *ref_coco;
Syntax of a call:err = mcamt (size,data__ar,camfunc,retry,ref_perf,ref_coco);Where:size ≡ number of repetition for the CAMAC function.data_ar = address of data array for the successive execution of the camac function .camacfunc - camac function to be performed.The encoded function values must be set up with gcam-

funcretry = mode of CAMAC access checking required:> 0 max retry on each action while Q false, check Q response= 0 no retry, check Q response< 0 no retry, ignore Q responseref_perf - number of action successfully performedref_coco - array of corresponding completion code returnedelement = 0 no error, 170 no Xresponse, 169 no Qresponse.

SDVME - Serial Camac Interface driver 10-6

gpevtconnect, gpevtdisconnect : Synchronisation routineThese facilities are not specific for synchronization with CAMAC LAM events, they intend to provide DSC programs with general purpose means to get connected with external events such as: CAMAC LAM, trigger from Front panel interrupt module (ICV196). timing Une events (PLS module).
gpevtconnect : Ask connection with α CAMAC LAMTo get synchronized with CAMAC LAM the program must first ask to get connected to. A call to gpevtconnect function for each of the expected CAMAC LAM must be done.A CAMAC action 1 or 2 single CAMAC access function can be associated to the call in order to let them performed by the driver as soon as corresponding LAM occurs.

Formal C syntax definition:int gpevtconnect(type,evt_yal, ref_EvtDescr)int type;int evt_val;long *evt_descr
Syntax of a call:synchro_device_id ≡ gpevtconnect(type, 0, ref_EvtDescr);Where :type = 1evt_val ≡ ignored parameter for CAMAC synchronisationref_EvtDescr - long ref_EvtDescr[5] can be redefine as an union structure pointer:union U_EvtDescr {long element[5];struct {short C, N;long Fl_add, Fl_data;long F2_add, F2_data;} atom;

I;
Where :ref_EvtDescr -> atom.C = CrateoftheLAMtoconnectref EvtDescr - ->*∙<->∏t i: 'I ∙1 .∙∣<I<I∙∙∙ ∙: <∣M∣,∙∙ 1,ΛM ∣f><∣t∣mc<∙lref_EvtDescr -> *∙. ■?»>. Γ ∣ 1 ∣ and ∣∙ 1 l-ɪɪ < -if Fl add >- ɑ civ»--- 'lι>' <>jwod^d CAMAC fŋnrlion to b<' first performed ∣, fl»< d∣>∙ ∙∙> >f I,AM processingref_EvtDescr - : ∣ ,∣ , _if >< ʊ ;”•* 1, , I !»• <∙nrod∙,d ('AM AC lnn< Í >»•*»to be Secondely performed by the driver at LAM processine synchro_device = returned value giving the device file identifier to be used when the program want to get synchronized either by means of the system file select command or in a specific request on this events source by means of the read system file command which returns as well in the associated buffer the event identifying the LAM source.

SDVME - Serial Camac Interface driver 10-7

qpevtdisco∩nec⅜ : Ask disconnection from α CAMAC LAMTo get rid of a previously connected event source the program must ask tn disconnection of this Soxirce of CAMAC LAM.

Formal C syntax definition:int gpevtdisconnect(type,evt_val, ref_EvtDescr)int type;long *evt_descr
Syntax of a call:synchro_device_id ≡ gpevtconnect(type, O, ref_EvtDescr);Where :type ≡ 1ref_EvtDescr ≡ same as for gpevtconnect with only the 2 first elemnts used:ref_EvtDescr -> atom.C - CrateofLAMsourcetodisconnectref_EvtDescr -> atom. N = Slot address of the source of the LAM.The other arguments are ignored.

select, read : Getting synchronised with CAMAC LAM eventAfter connection established with the expected CAMAC LAM sources the program has to get synchronized with event and has to identify from which source LAM occurred.For that purpose, the returned device file identifier from gpevtconnect call, the same for all the connection the program performs, allows the program to wait for this events, according to its needs, either by the select or by the read.
Events data structure:These events are pushed in the corresponding device file and can be read by the program, the data structure of the event is as follows:struct sdvmeT_Event {short count ;unsigned char C, N;1;Where : count = serial ' ■»”........... nn<∙. f.∙,∣C = crate where th<∙∙ LAM ,∙c ∙nr*>JN = Slot in the Cf?*” vb«?r« Î ∖τn fwr`nrred.Getting synchronized by the s°, ∙∙': , from the select the program m»v:« ∙∙< ’ 'l∣.. I >ndard UNIX wav. after r<∙l.ιιrι>

∣∙ -ɪ- ». < is > <>min∏ the eventIf the device file is the one of the ∙ •••»».., to know winch oui «»< allthe connected LAM source, generated a LAM the program must perform the reading of the device which returns in the buffer the data identifying the source : see below getting synchronized by read.
Getting synchronized by the read :

SDvME-SeflaICamacInterfacedriver 10-8

Reading from the device file descriptor given back on gpevtconnect is waiting for CAMAC LAM to occur or getting in the buffer associated to the read the event data identifying the source of event.This source depends on the kind of device generating the event, in case of sdvme module the structure of CAMAC LAM events is described above in the paragraph Event
data structure.

FormalC syntax definition: int read (synchro_device_id, buffer,byte_count);int synchro_device_id;char *buffer;int byte-count;
Syntax of a call:err ≡ read(synchro_device_id, buuffer, byte_count);Where :err = see Lynx O.S. reference manual for usage of readsynchro_device_id = Device file descriptor index given by the gpevtconnect call (always the same for all connect the program perform)buffer = buffer to get event descriptor: minimum size required = size of (sdvmeT_Event) i.e. = 4 bytes, if the buffer is bigger it can receive as many already received event as the buffer can completely contents, the actual maximum event awaiting a read for a device is 8. When device ring buffer is full a next event will purge all the ring buffer and a special event to warn the program is generated with all field set to 1:Specialeventincaseofpurge: Count- (-1) C= $ff N= $ffbyte_count = see Lynx 0.S. reference manual for usage of read

SDvME-SeriaICamacInterfacedrtver 10-9

The NODAL CAMAC functions interface:The NODAL interpreter got extension of its function to provide NODAL user with the CAMAC driver facilities. The on line documentation for that purpose is available by typing under a nodal session the man followed of the function name. The whole NODAL man pages can be printed out from a Console station as any system man pages.TheNoDALfunctionavailable are:
GCAMAD to encode CAMAC address

SCAM to perform a single camac accesses

CAMDR to perform a sequence of CAMAC accesses

MCAMT to perform a CAMAC block access

SEE
the NODAL man pages manual

PS/CO Note 91-0020
by F. PerrioIIatzG. Cuisinier, A. Gagnaire

OR
under any console station

ask the man facility to display on line
documentation of any NODAL function:

>man functio∩-name

SDVME - Serial Camac Interface driver 10-10

Serial Camac VME specifications summaries:
hardware:• VME board single 6U.• VME board, addressing short I/O, data port size 16 bits• Register generated single Camac access, conservative mode , PIO only• Bit and byte serial mode, 5, 2.5,1 and 0.5 MHz selectable• Stacking of serial demand message in a FIFO (1024 memory)• Reply and demand messages generates maskable interrupt.
Setting of jumpers:
Base address of the module:It is adjusted by the jumpers: [JAll .. JAl5] corresponding to the address Unes [All .. A15] giving 32 different selectable base address for the module (Jumper JAx present means Hne address Ax is zero):[JA15, JA14, JA13, JA12, JAll] = [0, 0, 0, 0, 0] for base address $0= [0, 0, 0, 0, 1] " " $800

,, " = [1, 1, 1, 1, 1] " " $f800
Address modifier supported by the module:It is fully determined ac∞rding to the setting of the JAM jumper, whose value is 0 when present:JAM = [0] stand AM = $2d for supervisor data access only.JAM = [1] stand AM = $29 Or $2d for supervisor/non-privileged data access

Driver installation :After hardware selection of appropriated setting of the VME module the installation of software driver requires some informations corresponding to the hardware setting:
• VME base address of the module,

• MC68153 interrupt vector : this vector is given to CPU at Demand interrupt to generate the interrupt in the CPU, therefore this value should be chosen carefully in order not to colHde an already allocated vector interrupt in the CPU
• MC68153 interrupt level : this value defines the level of the CPU triggered when an demand interrupt is generated.The installation can be made by calling ,1,<-∙ ∏υ-f.ιllnho∏ pro<τ∏m with fl∙>p following syntax:>sdvmeinstall -k<base addre? ~'> -^r∙ ∙∙ter ` -L<.interrupt M-∙elwith the constraints: vector valυ,∙ ` ',j ɔŋ' .,∙r'∙r∙Level vəlʊ' 1 ∙∙∙'∙lexemple: >sdvmeinstall -AO -V160 -Ll

SDVME - Serial Camac Interface driver 10-11

SDVME Driver system interface :For standard usage this level is hidden by a library interface .This interface follows the standard way of Unix for programming I/O serviced by a driver.
Device file: (associated LynxOS minor devices)the installation processing create devices file to provide user with system resources necessary to invoke driver services, there are 3 class of this resources:• /dev/≡dvmelRW : system resource to call Camac access services, shared by all simultaneous user.• /dev/sdvmelsuɪv : system resource to get synchronized with Power failure and spurious interrupt of the loop, non possible to be shared, the survey task should own this ressource.• /dev/SdvmelOl to sdvmell6 : system resource to get synchronised with LAM in the loop, these resources are non sharable, they are like handle which enable the owner to call services to ask for synchronisation with LAM and to get information on incoming LAM.
File system interface:The driver direct services interface is provided by the file system interface c.f. Lynx O.S. user’s manual:• open on the minor device name: to get a device descriptor to call file system function associated to the driver Unk to the device.• Ioetl : to perform a special service of driver.• select : to wait for the condition of the open file descriptor and other to change.• read : to read bytes from the open file descriptor.• close : to get ridd of the file descriptor from a previous open.The file definition <sdvme. h> must be included in the program
Cαmαc access:The common device file n∕dev∕sdvmelRW"must be open to get an appropriate device descriptor index for the ioctl function performing Camac access request.example:int fid_access;

fid_access = open("∕dev∕sdvτnelPW", O___ RDWR, 0755);
Single Cαmαc access call : (sdvmγ tc≈?-Invoked by means of the ioctl function = SΓ>vι nr._scaro passing an argument defined defined by the following C structure provided '∙v the header file < sdvτne .h> :struct sdvmeT_scarr ɪlong CaπιF,mlong data;unsigned short QX_response;unsigned short Reg_status;

1;Where the caller puts parameters of call, and gets back results:
SDVME - Serial Camac Interface driver 10-12

• Reg_cde = (RO.) Encoded camac function according to sdvme command register structure. See sdvme hardware manual : this is the value to put in the sdvme command register.• data =(RW.) Data Read/Write according to came function• QX_response = (WO.) bit[15] is Qresponse of camac function callbit[14] is X response of camac function call• Reg_status= (WO.) Hardware status of sdvme module, for further in vestiga- tion unexpected no X response oc cured. The 14 right most bits of the short are the corresponding bits of status register of sdvme module, see in sd vme hardware manual specification of status register.example of call:struct sdvmeT_3cam arg_scam;
cc≡ ioctl (fid_access, SDVME_scam, &arg_scam);Driver return specific error in eɪmo when error returned by the call:EFAULT Wrong parameter pointer (out of range or protected)EACCESS This file id does not stand this funstionEINVAL Illegal parameter found in arg.

Cαmαc access sequence call: (SDVME_pmcami)Invoked by means of the ioctl function = SDVME_pmcami passing an argument defined by the following C structure provided by the header file < sdvme.h> :struct sdvmeT_pmcami {int sz;long *dval;long *AFNC;int retry;int *QX;int *coco;};Where the caller puts parameters of call, and gets back results:• sz= number of single camac command in the table• dval= table of data for ear*l> ɑf <f,........ ,"∣* • ••’»»»< l>∣∣∣l∣∣o∏ «<i fl>∙∙ s*'<∣∙∙*∙n< <∙Read/Write/Test to be "ecυ<∙• AFNC= table of the Camac command 3''η∙"'∏f'' <>ncod*,d according 1<> sdvm<∙ <∙<∙m- mand• retry = if > O number of retry ,∙ , '•••■....................>∙>∏d whil<∙ n<>,) v∙'∙∙po∏s∙'ir = O no retry, che, b 'if <0 no retry , ignore Q response• QX= completion array: QX[i] = 0 if ok, 170 if no X response, 169 if no Q response.• coco = global completion code: 0 if no error, value of error occuring at stop.Thedriverreturnsa Specificerrorinerrno Whenerrorreturnedbythecall:EFAULT Wrong parameter pointer (out of range or protected)
SDVME - SerlaICamacInterfacedrtver 10-13

EACCESS This file id does not stand this fimstionElNVAL Illegal parameter found in arg.
example of call:struct sdvmeT_pmcami arg_pmcami;

cc= ioctl (fid_access, SDVME_pmcami, &arg_pmcami);
Repetitive Cαmαc action call : (SDVME_mc*mt)Invoked by means of the ioctl function= SDVME mcaxmt passing an argument defined by the following C structure provided by the header file < sdvme.h> :struct sdvmeT_mcamt {int s z;long *dval;long AFNC;int retry;int *perf;int *coco;

1;Where the caller puts parameters of call, and gets back results:• sz≈ number of time the camac action will be repeated.• dval = table of data for each Camac action.• AFNC= Camac function encoded according to sdvme command to be repeated.• retry = meaning according to value:if > 0 number of retry,on each Camac command while no Q response- if = 0 no retry, check Q response- if <0 no retry , ignore Q response• perf = number of action performed• coco = global completion code: 0 if no error, value of error occuring at stop.The driver returns a specific error in ermo when error returned by the call:EFAULT Wrong parameter pointer (out of range or protected)EACCESS This file id does not stand thisEINVAL Illegal parameter found in are
example of call:struct sdvmeT_mca

cc= ioctl (fid_access, SDVME_mcamt, &arg_mcamt);

SDVME - Serial Camac Interface driver 10-14

Connection to α Camac LAM:The system resources to invoke this services are non sharable, the device file available are:∕d∙v∕sdvmelsuxv is the unique resource to get automatically connected with spurious LAM or power failure LAM and to get synchronised with these incoming LAM. This device file is dedicated to the task surveying the Camac loop./dev/sdvmel01 to /dev/sdvmell6 are the resources to ask connection with LAM in the loop, and get synchronised with these incoming LAMs.To invoke the associated services the resource must be opened in order to get a device descriptor identificator required for the further file system calls:example: int fid_synchro;
fid_synchro = open("/dev/sdvmel01", O__ RDONLY, 0755);

Request for connection with a LAM of a Camac Slot :Invoked by means of the ioctl function = SDVME_connect passing an argumentdefined by the following C structure provided by the header file < sdvme.h> :struct sdvmeT_connect {short C, N;long Fl_CamFun, Fl_Data;long F2_CamFun, F2_data;};Where the caller puts parameters of call, and gets back results:• C = Crate number of the LAM source to connect.• N = Slot number in the crate of the LAM source to connect.The following parameters allow the caller to let perform by the Interrupt service routine of the driver, a camac action, up to 2 actions, as soon as the LAM occured. This is used to disable the LAM source.• F1_CamFun = Camac function 1 to be performed if non zero by the driver when receiving the LAM• F1_Data = associated data to Camac function specified by Fl_CamFun• F2_CamFun = Camac function 2 to be performed if non zero and if Fl CamFun non zero as well, by the driver v∙ho∏τ.................... < h. » ∖ μ• F2_Data = associated data to C' >∏ιa∙ f∙∏∙<∙ «••»» <j>e'ι(>*><l l>y F : <',,<∣∣∣∣∙ -∏>The driver returns a specific error >” -^ι r ∏∙ ,∙ 1>∙∙n <∙>rr<>r ∏∙lurnwl l»v l⅛ mil:EACCESS The file id does not sf∏t∙ ' ,,>' ∙ *•••»»ENODEV "he file id does , ■ ∙. ..∙.t,,∙v ∣.<∙.∙hv∙<.∙n ∣nst∏llu∣ »»»»>program and oc»u<'I ' ∙∙, ' ∙ `ɪ -ɪEW0ULDBL0CK driver fatal error (internal table corruption detected)EINVAL Illegal parameter found in arg.EISCONN Try to connect to a LAM already in use by another user.example of call:struct sdvmeT_connect arg_connect;
SDVME - Serial Camac Interface driver 10-15

cc≡ ioctl (fid_access, SDVME__connect, &arg_connect);
Request for disconnection : (SDVMZ_disconnect)Invoked by means of the ioctl function = SDVME_disconnect passing an argument defined by the following C structure provided by the header file < sdvme.h> :struct sdvmeT_connect { short Cr N; long Fl_CamacFun, Fl_Data; long F2_CamacFun, F2_data;

};Where the caller puts parameters of call, and gets back results:• C= Crate number,of the LAm source to dis∞nnect.• N = Slot number in the crate of the Lam source to disconnect.Other parameters = non significant because ignored .The driver returns a specific error in ermo when error returned by the call:EACCESS The file id does not stand this cunstionENODEV The file id does not exist for the driver (discrepancy beetween installation program and actual configuration of the driver)Ewouldblock driver fatal error (internal table corruption detected) EINVAL Illegal parameter found in arg.EISCONN Disconnectrefused: either such connection or no owner of the connection.
example of call:struct sdvmeT_connect arg_connect;

cc- ioctl (fid_access, SDVME_disconnect, &arg_connect);

SDVME - Serial Camac Interface driver 10-16

Getting synchronised with α LAM : (select, read)Once the program get connected it can wait for incoming LAM from the specified camac module.If the program wants to wait for in∞ming event from different devices it has to use the standard Unix way: the select function which tell it which device got. an event.If the program uses only the camac events source it can wait by read on the device: • one or more events arrived, the read returns the event in the buffer• nothing arrived, the read blocked on wait until one event comes or time out occuredThe buffer must be big enough to receive a complete 4 bytes event, the buffer will receive as many complete events, he can get, as there are in the device.The design of an event is given by the following C Structxire: struct sdvmeT_Event { short flag; unsigned char C; unsigned char N; } ;Where :Flag = serial number of corresponding LAM since the ∞nnect was done.C = Crate number of the corresponding LAM source.N = Slot number of the corresponding LAM source.
/* %(example of C syntax usage: */
#include <sdvme.h>

int fid_access;int fid_synchro;struct sdvmeT_connect arg_connect;struct sdvmeT_Event Event;int cc;
/* open the channel to pert- rm the , aɪnəo acce∙π.': and the channel to t" ∙^tion wjr.b th- LAMfrom the mod’’1fid_access = ι ∙ :I>WF, ι∙7'∙r.) ;
fid_synchro = open("/dev/sdvme101",O_RDONLY,0755);
/* ask to be connected on the incoming LAM from the Camac modules */

SDVME - Serial Camac Interface driver 10-17

cc ≡ ioctl(fid_synchro, SDVME_connect, &arg_connect);
/* ask to get synchronised:the read will wait for LAM to come andgive back the first event in the buffer */ cc « read(fid_synchro, &Event, Sizeof(Event));
/it Then Process the received event */
)% *Z

SDVME - Serial Camac Interface driver 10-18

Miscellanious functions :
Control of driver behaviour :single ioctl functions , to control the behaviour of the driver:IOCTL whose argument is ignored, the supported function code are:SDVME_nowait if no event in device the read will not wait, it return O byteSDVME_wait default option, make the read wait if no event in device
Request to get information from a Slot:Invoked by means of the ioctl function = SDVME_ SlotInfo passing an argumentdefined by the following C structure provided by the header file < sdvme.h> :struct sdvmeT_SlotInfo {short C, N;int Owner;int count ;long Fl-CamacFun,F1_Data,F2_CamacFun,F2_data ;};Where the caller puts parameters of call, and gets back results:C = Crate number of the Slot.N = Slot number in the crate.Owner = Index of device if connected, -1 if not connectedCount = number of LAM having occured from this Slot.Fl-CamFun = Camac function 1 to be performed if non zero by the driver whenreceiving the LAMFl_Data = associated data to Camac function specified by Fl_CamFunF2_CamFun = Camac function 2 to be performed if non zero and if Fl_CamFun nonzero as well, by the driver Whenreceiving the LAMF2_Data = associated data to Camac function specified by F2_CamFunDriver returns specific error in eɪmo when error returned by the call:EACCESS The file id does not stand this cunstionENODEV The file id does not exist for the driver (discripancy beetween installationprogram and actual configuration of the driver)Ewouldblock driver fatal error * ∙l∙ι < ,.rv,.r<,1,4,.,4,,,1 >ElNVAL Illegal parameter founf∣ ,∏ m :EISCONN Try to connect to a LAJM əlrendv nsɑ 1∏∙ anolh^rusorexample of call:struct sdvmeT

cc= ioctl (fid_access, SDVME_connect, &arg_connect);

SDVME - Serial Camac Interface driver 10-19

11

TSVME404 - GPIB interface driver
Author: Nicolas de Metz-Noblat

Introduction The TSVME404 is a simple VME board allowing the connection of a GPIB (IEEE 488) bus. This board has no local processor, but is delivered with 16Kb RAM and 16Kb ROM with a simple firmware. The GPIB access is done through a TMS9914A chip.This driver was developped without using the local firmware, neither using the local RAM, because we wanted a multi-user interface and dont want to rely on an external untested RAM.By definition of the GPIB protocol, two main modes of operation can arise: either this board acts as the bus controller, or it acts as a slave board. This is specified when installing the driver, but if the jumpers allows it, it is possible to dynamically exchange the controller status with another computer on the same bus.As on any Unix system, access to the driver is achieved via the open, read, write, ioctl, select and close system call. On open, a special file (usually /dev/gpib) whose major device number correspond to the driver is opened. In order to simplify the usage of the GPIB from user’s programs and to allow concurrent usage of the bus by different tasks, several modes of operation are supported:In controller mode, the minor device zero correspond to the master device, i.e. allows an access to the whole bus functionnalities, but for practical reasons, this kind of open is restricted to a single task (only one task can be woken up by SRQ and interpret the result of a parallel poll). Several tasks can open different devices (whose just minor device number differs) at the same time and be woken up by the driver on SRQ of the uniq instrument to which they are related, by convention, the minor device is equal to the device number+1 (and usually the special file name is /dev/gpib.xx, where xx is the station number on th bus).In slave mode, either a single task can be blocked in wait on the master device, or several tasks can wait for different subaddresses.

TSVME404 - GPIB Interface driver 11-1

Hardware settings summary

Followingjumpers can be set on the board (see reference manual):The Sl jumper allows the choice to force the board to be system controller or slave, orto leave the choice to the software ("auto"). The prefered switch setting is this last position, i.e. the software controlled one.The S2 jumper enables selection of the type of output for the interface circuit of theGPIB data Hnes. In "T.S." position, the buffer outputs are Three-State type, exceptduring "parallel poll" cycles in which they automatically switch to an open-collectortype. In the "C.0. position, the buffer outputs are of open-collector type.The S3 jumper(s) allows to choice the software interrupt level. This will affect theoverall system response time and should be choosen carefully.The S4 jumpers choice the board address and must be coherent with the initialisationsoftware.The S5 jumper allows to restrict the board access to supervisor mode, and since this isa true driver, the prefered position is the "Sup" position.The five front-panel switches allow the choice of the board GPIB address on the bus.
Driver initialisation

When instalhng the driver, it does require the following informations:- VME base address of the device (see jumpers S4).- MC68030 interrupt vector: This number should be choosen carefully in order to avoidconflicts with other boards. Preferred default value is 120.- Initial state as controller or slave GPIB station.
The driver is normally installed by the dynaminst program. This one does requiresome informations found in the file /etc/msttab.

Normal usage: normal user will just use the driver as follow:#include <t404.h> /* speri?' tsvτnρ404 ioctl Hpfinitions */int dev; ∙'∙∙ l,.,n.-t ∙: .∣dev = open("/dev/gpib.21"."r"); /* l;illr w∙∣h station 21 ,/write(dev., buf. Ien); ςor>∕l . >mnκ>nr∣ to instrument */read(dev. buf. sizeoflbuf)); ∙∙ ∙>∣ » <>sp∩ns<, 1 7close! dev);
Software specialist usage:

In order to have full access to the gpib functionnalities,#include <t404.h>int dev; /* special tsvme404 ioctl definitions ♦//* buffered device */
TSVME404 - GPIB Interface driver 11 -2

dev = open(,7dev∕gpib","r"); /* reserve the whole bus */ioctl(dev, T404_LISTEN, 21); /* set station 21 as Ustener ♦/write(dev, buf, len); /* send command to instrument */ioctl(dev, T404_UNLISTEN, 21); /* stop any listener ♦/n = ioctl(dev, T404_SPOLL, 21) /* poll station 21 ♦/ioctl(dev, T404_TALK, 21); /* set station 21 as talker ♦/read(dev, buf, sizeof(buf)); /* Read instrument response ♦/ioctl(dev, T404_UNTLK, 21); /* stop any talker */close(dev);
Ioctl special function codes:

General ioctl calls:

T404_DEFEOC define end of transfer conditions. The int parameter is interpreted as follow:- the MSB byte is a flag to generate EOI on the last byte of each write command.- the two LSB bytes define the End of Line character(s): Oxffiff means end only on EOI or byte count, Oxyyff means stop on reception of char yyOxyyzz means stop on reception of char yy followed by char zz (usually OxOdOa).
T404_BUS_STATUS

T404_TMS9914

read the status of the HPIB bus Unes.allows to send special commands to the tms9914 chip.
ioctl functions restricted to controller mode:The following ioctl functions are available to modes, but restricted to the opened device if not on the master device.

T404_LOCAL_LOCKOUT Lockout the Local/Reset command of the instrument

T404_CLEAR Device clear. This command is either a general device clear command if applied on the master device with parameter -1. or a selected device clear of the specified instrument.
T404_LOCAL Set specified instrument into local mode.
T404_REMOTE Set specified instrument into remote control mode.
T404_SIGNAL Define the >jyrυ< ∣ ' ■ I ∙∙nf ∙.>< . |.'<J 11 <>∣n I Iv .>∣>. ∙∣∣<∙(] in ∙ « ∙< ment.
T404_ SPOLL Serial poll <*∣>"iw∙∙'l ∣∏.∙h>∏n∙∙nl

TSVME404 - GPIB Interface driver 11 -3

ioctl function restricted to the master device:

T404_LISTEN put specified instrument in Ustener mode.
T404_TALK put specified instrument in talker mode.
T404_SEND_SECOND send a Secundary device address.
T404_STANDBY Let the requested operation execute, (this is normally used once a Hstner and a talker have been selected and we are notinterested in Ustening to the transfer).

T404_PASS_CONTROL Pass control to another controller.
T404_UNLISTEN

T404_UNTALK

T404_IFC

Stop any Hstener.Stop any talker.Generate InterFace Clear signal.
T404_GET

T404_PPCONF

T404_PPUNC

T404_PPDIS

T404_PPOLL

Send Group Execute Trigger command.Configure para∏el poll on deviceUnconfigure parallel pollDisable parallel pollExecute a parallel poll
ioctl functions restricted to slave device:

T404_SRQ

T404_STSPOL

T404_STPPOL

Request for servicePrepare Serial Poll responsePrepare Parallel Poll Response
T404_READ_SECUND Fetch specified secundaiy device address

Waiting for SRQ from a device.A task driving an instrument that can generate an SRQ has to open this HPIB device and to issue an ioctl(d,T404_SIGNAL,signum), where signum is a signal that will be generated to the requesting if the polhng of this instrument has the bit 6 on.Any instrument that can generate SRQ should be serviced by a task that will handle it.

TSVME4O4 - GPIB Interface driver 11 -4

Usage example: HP5335A universal counter.

/« ——— ———---------- ---------- ——-— *//* HP5335-A universal Frequency counter test program */
J * ⅛⅞sπ ⅛⅛a≈srs! .i. ★ J#include <stdio.h>#include <sys/types.h>#include <sys/stat.h>#include <signal.h>#include <fcntl.h> #include <t404.h> #define ASK(t,f,v) {printf(t); fflush(stdout) ; scanf(f, v) ; }#define ASKOK() {printf("Ok ?") ; fflush(stdout); getchar();}#define ERR(l,t) {perror(t); exit(1);}#define SYSERR (-1)#define SIGSRQ SIGUSR1 /* Our signal for SRQ *//* Open device number */int hp5335;int station; /* HPIB station number for 5335-A */char device[80]; /* Special file name */char dummy[80] ; /* Dummy response buffer */int cr ;int service_request;
f** i /★ SRQ signal handler *//**/ static sig_srq () { printf ("SRQ arrived∖n") ; ++service_request; } Z** / /* Write command to hp5335 *//***¼/ write_command (txt) char *txt; { char txtl[128]; /* Intermediate buffer */int len; sprinti (txtlz "%s∖r∖n", txt); Ien = strlen (txtl); if ((cr = write (hp5335, ∣. ..L1, ∙ ` > , 1 >> » ’’’ , < ,, , •-« ` ■}
∕≠r≠,⅜≠r≠r∙⅛≠r≠r≠r'⅜≠r≠r≠r≠r≠r∙fc≠r≠r≠r*≠r÷≠r≠r-*'u-∙' t α- ∙x j χ x. x x x √ i i/* Test 2 : **** LOCAL∕RESET, che . ∣

A-JJlJ * ɪ XXJ XXXX1XXJXJXXXJ I XJltest_2 () { if ((cr = ioctl (hp53^ " . '"f.~F.τ ’ >ERR (2- "hp5335 Sel- * if ((cr = ioctl (hp5335, 1 ∙ ∙ •_? l. ¡ 1 '. ., ∙ ∙ » » - ɪ SxSEEE) ERR (2, "Remote"); write_command ("IN"); /* initialize */printf ("∖n"); printf ("Press LOCAL/RESET on 5335A front panel and verify∖n"); printf ("that REMOTE LED goes out.∖n"); ASKOK () ; }
TSVME404 - GPIB Interface driver 11 -5

/* Test 3 : **** LOCAL LOCKOUT check */
/**/test_3 () {if ((cr « ioctl (hp5335, T404_REMOTE, 0)) — SYSERR)ERR (2, "Remote");if ((cr - ioctl (hp5335, T404_LOCAL_LOCKOUT, 0)) == SYSERR)ERR (2, "Local Lockout");printf ("Press LOCAL/RESET on 5335A front panel and verify∖n");printf ("that REMOTE LED stays ON.∖n∖n");ASKOK ();if ((cr - ioctl (hp5335, T404_LOCAL, 0)) — SYSERR)ERR (2, "hp5335 Local mode");)̂
//* Test 4 : ** 'WAIT' & 'SRQ' mode test **** *//W***itest_4 () {int (*sig_old) (); /* saved alarm signal handler */int i ;char buf[1024];printf ("Verify that following LEDs are lit for 5 measures :∖n");printf (" - TALK∖n - LISTEN∖n - SRQ∖n - REMOTE∖n");ASKOK ();write_command ("IN,GA.02"); /* Initialize, Gate adjust */sig_old ≡ signal (SIGSRQ, sig_srq);service_request = 0;if ((cr - ioctl (hp5335, T404_SIGNAL, SIGSRQ)) — SYSERR)ERR (2, "Enabling SRQ requests");/* Wait to Send mode on, Enable SRQ */write_command ("WAI,SRl");sleep (1);for (i = 0; i < 5; i++) {if ((cr = read (hp5335, buf, sizeof (buf))) < 0)ERR (2, "reading");buf[cr] ≡ 0;printf (" %s∖n", buf) ;if (i<4) {write_command ("RE") ; /* reset for new measurement */sleep (1);)}write_command ("SR0");ASKOK ();) ' ' ' 1 l j ^ , , 1 ‘ ɪ ' ’ i ɪ j * x 1 x x 1 1 */★ Test 5 : **** Teach - Lea?.- n∣ 1

∙*'-*-j-', j x -l - x x x x. x A 1 ɪ a A λ ~* a x x x a AXX a atest_5 () {int i,1 ;char buf[512], bufi[5121:printf ("Verify that 5^"^∙" ,r> j ι ,. ∣∣7, n"'if ((cr = ioctl (hp5237. ’ √ΓEFT'>ERR (2, "Remote");/* select function 1, set scale value 11222448800 */write_command ("FUl,MS1122448800");ASKOK ();printf ("Reading current setting∖n");write_command ("PQ");if ((cr - ioctl (hp5335, T404_DEFEOC, -1)) == SYSERR)ERR (2, "Define end of transfer conditions");
TSVME404 - GPIB Interface driver 11 -6

for (;;) {if ((1= read (hp5335, buf, 30)) < 0)ERR (2, "reading");if ((buf[23] == 17) && (buf[24] == 34) && (buf[25] == 68)&& (buf[27] = 0) && (buf[28] ≡≡ 0)) break;)printf ("Verify that 5335A displays 100. 000 00 -9 with S∖n"); printf ("and function PER A LED's ON and GATE LED flashing∖n"); write_command ("FU9");ASKOK ();printf ("Rewriting setting∖n");bufi[0]='P';bufi[1]='B';for (i≡=0 ; i<l; i++) bufi[i+2]=buf[i] ;if ((er = write (hp5335, bufi, 1+2)) < 0)ERR (2, "writing");printf ("Verify that 5335A displays: '11. 224 49 +15 Hz'.∖n"); ASKOK ();)
∕*******************⅛**i/* Main program */main (arge, argv)int arge;char **argv;{ int i;(n ★ ∖ ɪ-ɪ π) ∙ printf ("* 5335-A HPIB verification program *∖n"); printf ("************************************∖∏∖nπ); for (;;) {ASK ("Enter HP 5335-A station number: ", "%d", &station); if ((station >≡ 0) && (station < 31))break;printf ("Illegal HPIB station number !∖nπ););sprinti (device, "/dev/hpib.%d", station);if ((hp5335 - open (device, O_RDWR, 0)) < 0) ERR(2,device)printf ("Connect Time Base Out from rear panel to Input A.∖n")printf ("Set 'GATE ADJ' to CCW and Channel A & B .input to.∙∖n")printf ASKOK (" Preset, O ; 50 Ohms, XI, DC and positive slope∖n");printf test_2 ("Test 2 : O ; **** LOCAL/RESET check ★ ***∖n");printf test_3 ("Test 3 : O ; **** LOCAL LOCKOUT check ≠ ■***∖n");print f test_4 ("Test 4 : O ; 4- 4. * * I ∙ - ∙ ∙ -r- ∙ - .π I , ,

' ɪ , ;printf test_5 ("Test 5 : O ; * * ♦ * Te^∙i"h - ∏V ∙' U> t>:'7*- * *∙ ■* ∙t τ>" ` ;

TSVME404 - GPIB Interface driver 11 -7

12

ICV196VME - ITX interface driver
Authors : Friedtjof Berlin

Alain gag∩aire

Introduction This ICV196 VME module contains 96 I/O lines, arranged as 12 ports of 8 lines. The lines O to 15 (ports O and 1) are used for external interrupts and these are the lines which are supported by the driver.The driver supports up to 4 of the icvl96 modules, each containing 16 interrupt lines and permits a user program to connect to one or more of the 4*16 interrupt lines provided by the modules. Which Unes are available depends of course on how many modules are physically installed.The additional I/O ports contained on the icvl96 module (port2 - portll) are not supported by the driver, with one exception: the direction of these ports has to be set by an ioctl() function on the desired module (see chapter:"Ioctl special function codes").Before using the driver, it must be installed. The program icvl96vmeinstall, which is provided with the driver, performs the installation (see chapter "Instalhng the driver").On the DSC’s, the driver object code, its installation program and a testprogram "tes- ticv" is situated in the directory /usr/local/drivers/icvl96. The directory /u/dscps/icvl96vme contains the source code for all programs concerning the driver.
Driver interface functionalityThe following is a very brief description of the calls executed in an application program to interact with the driver. For more details, see chapter "Calling the driver from a user program" and the program examples given.Similar as for other drivers developped under LynxOS at PS, the library functions gpevtconnect () and gpevt dis connect O are υs*id for connecting to and disron- necting from an icv 196 interrupt l,n<- Tb- . .∙ ι1½, ∙,..∣ •< .∙.<∣∙nf∣i>∙∕∙ ∙ ∏..∙<∣t.v,∙. ,nterface.In short the following calls access th< dnv∙∙ι b-∏n .∣ nɛor program1) gpevtconnect () : connects to `ŋ ,nf< ∙∙l b∣>.∙ ■ flu» desir,`d modulo2) gpevtdisconnect () : di>u∙m<∙ l-............... -l........... 1 » lɪno on ∣ hr d<√∙∣> <-d nvdυb∙3) read () : waits for an inter”’: ■ •••>■ -- ∙, |.!)b module' ∙ml ’turns information on the event (e. g. which line was the source of the interrupt) wlw>n it arrives. If more than one event has occcurred since the last read (), information on all the events (up to 8) is returned.4) select () : This call is used to wait for interrupts which may come from either one of the 4 icvl96 modules in the driver or from another source. If, in this case, it was detected that the icvl96 module gave the interrupt, a read () call has to be executed to find which Une was the source of the interrupt.

ICVl96VME - ITX Interface driver 12-1

5) ioctl () : reads/sets parameters in the driver.6) open () : this call is used for connecting to the driver if no interrupt synchroni
sation is wanted. The open is performed on the so called "service handle" which allows reading different status information from the driver and setting parameters in the driver via the ioctl () call.

Hardware settings summary

The icv 196 module contains the following jumpers (see reference manual):ST 1....ST 4: define the address offset of the module. Thejumpers define bits ?? to ?? of the adddress offset.ST 5: sets the board access mode; supervisor mode or general access.ST 6: timer output on/off (the timer is not supported by the driver).For farther information on the jumpers, see the icvl96 hardware manual.
Installing the driverAfter having initialised the hardware settings on the icvl96 module, the following data must be provided to the installation program for the driver, icvl96vmemstall

VME base address of the module.
MC68153 (CPU) interrupt vector: this vector is given to the CPU at an interrupt demand to generate the interrupt in the CPU. It should not already be used by an other interrupt source!
MC68153 interrupt level: this value defines the level of the interrupt triggered by the icvl96 module.As there can be up to 4 icvl96 modules supported by the driver, the index mod given in the installation syntax below can have the values A..D representing module nr. 0..3.The installation can be performed by calling the installation program with the following syntax:>icvl96vmeinstall -<mod>O<base address> -<mod>V<vector> -<mod>L<interτupt level>with the constraints: 64 < vector < 255.1 < interrupt level < 6.example: >icvl9θvme^nst? ∣∣ ` *'>r∙<><>oo<> ∖vr.,t: ,λ∣,2This installs module 0 with the follow,n ∙; p;»> ∙<∙∣∙'∣ >Address offset: 0x0500000 (hexadécimal ’Interruptvector: 128 (decimal)Interruptlevel: 2 (decimal)

Calling the driver from a user program

HeadersZlmks:In the source file of the user program, the following header files must be included:
ICV196VME - ITX Interface driver 12-2

1) /u/dscps/rtfclty/gpsychrofib.h2) /u/dscps/icvl96vme.hIn the makefile, it must be linked with the file:/u/dscps/rtfclty/gpsynchrolib .o
The following is a closer description of the calls used in a user program to interact with the driver.
qpevtcoπnectQ: Connect to on interrupt lineThis call connects the user program to the given module and line and enables interrupts on that line.
Formal C syntax definition:int gpevtconnect(type, evtval, ref_dat)int type;long evtval;struct icvl96T_UserConnect *ref_dat;
Syntax of a call:synchro_device_id - gpevtconnect(type, 0, ref_dat)
where: type = 2 /*for icvl96vmedriver */evtval = 0; /*ignored in this context*/

ref_dat ɪ struct icvl96T_UserConnect {unsigned char module ;/*mod. number */ unsigned char line; /*line number */..short mode;/*explained under read()*/
If synchro_device_id <= 0, the call failed.
q Pevtdisconnect: Disconnect from an interrupt lineThis call disconnects the user program from a previously connected interrupt line.
Formal C syntax definition:int gpevtdisconnect(type, evtval, ref_dat)int type;l-`ng c---4∙ --■=> i ■

••‘vu 1 ! ∙ ∙ - : ∙ > > I ∙ ‘ ɪ . J I » ∙Syntax of a call:retval = gpevtdisconnect(type. f>. , o< 'ln< ∙
where: type = 2 /*for ■ ∙ i , ` ∣∙ ∙evtval = 0; 4 ,ref_dat = struct ι√vl ?*. i_> ∙. -. .∙l ,.∖nnect {char module ;/*module number */ char line; /*line number */short mode; /*ignored */)If filedescriptor < 0, the call failed.

ICV196VME - ITX Interface driver 12-3

select, read : Getting synchronised with an external interruptAfter the connections are established to the desired interrupt lines, the program can synchronize with events occurring on these Unes.For that purpose, the returned device file descriptor from the gpβVtconnect () call allows the program to wait for events by calling select () or read(). The file descriptor returned by gpevtconnect is always the same for one program, even when gpevtconnect () is called several times to connect to several interrupt hnes.As mentioned in the introduction, select () is used to wait for interrupts which may come from either one of the 4 icvl96 modules in the driver or from another source. If, in this case, it was detected that a icvl96 module gave the interrupt, a
read () call has to be executed to find which fine was the source of the interrupt.
Getting synchronized by sçlççtQ: this is the standard UNIX/LynxOS way to synchronize with external events. After select (), read () gives the events having occurred (the active interrupt Unes) in the icvl96vme module, if any. For details on read () see below.The select () call is described in the LynxOS manual under system calls.
¾⅛fting gyjaçhrQnizçd ⅛y.-S⅜⅜⅜ () ;Reading from the device file descriptor given back on gpevtconnect () means reading the events which have occurred since the last read () call. This means that the specified buffer in the read () call will be filled with one or more structures as described below (Event data structure).

Formal C syntax definition:int read(synchro_device_id, buffer,byte_count);int synchro_device_id;char *buffer;int byte_count;
Syntax of a call:err = read(synchro_device_id, buffer, byte_count);

Where :err = if read() failed. -1 is r*'H"∙n^Λsynchro_device_id = ∣'∙".ι<∙' *∙∣'∙ ∙∏∣><.∙, ,<∙jv'∙n l>v Ilv 'jpe∙v∙tc''∙,nect () call (always the sanv for < .∙nrvH flv pmp-nn∣ perform««»
buffer = buffer ♦ ", ∙,,,∙",> sιz<∙ ∙∙∙<∣i∣∣∙<m∣ ∣ .of (icvl96T_UserEvent » .∣∙' ςι∖∙∙s space for one event,maximum is 8. If 8 events have occurred after a read(), and no new read() has been executed, the 9 th event will purge the driver internal buffer, and a special event to warn the program is generated with all fields set to 1: special event in case of purge: count= (-1) module= $ff line= $ff

ICV196VME - ITX Interface driver 12-4

byte_count = gives the number of bytes read.
The cumulative mode:When calling gpevtconnect(), the parameter mode in the structure icvl96T_UserConnect has two possible values; 0 = non-cumulative mode and 1 = cumulative mode. The mode chosen determines how to interprete the parameter count in the structure icvl96T_UserEvent described below.The non-cumulative mode means that count indicates the number of events having occurred since the interrupt Une was enabled.The cumulative mode means that count indicates the number of events having occurred since the last read () call.In this way, using the cumulative mode, it can be tested if a program has missed interrupts since the last read (). It also prevents the internal event buffer in the driver to fill up with events of the same kind. This may be useful if it’s not neccessary to read all the events of this kind, and the driver is delivering more events than the conn- nected task(s) can read.
Event data structure:The events which can be read through the read () call have the following structure:struct icvl96T_UserEvent {short count;unsigned char module, line;};

Where : count = event counter (see expl. above)module ≡ module where the interrupt occuredline = Une in the module where the interrupt occurred.
ioctl : Reαding∕setting parameters in the driver

The ioctl() system call provides an interface to the parameters in the driver which can be read or set from a user program.Examples on how to execute ioctl O callc= nυ the irviQG driver mn hr found in the file/u/dscps/icvl96vme/testicv.c on fK"v∙'>∙5 , -ι-..τ, ... <ι>. r; : . ,ιn∣ 11,∣ ll∣.∣>u<tl(Formal C syntax definidorioctl (synchro_de" 1 _ ,. ∙∙ r>-∙~<∙ , at :ɪ);int syn ∙ ∣ ∙ '

Syntax of a call:err = ioctl (synchro_device_id, request, arg);

ICV196VME - ITX Interface driver 12-5

Where:err = if read() failed, -1 is returned, success = Osynchro_device_id = Device file descriptor index given by the gpevt- connect call (always the same for all connect the program performs)request = code for driver ioctl actionarg = pointer to a structure containing data to be read/written. This structure may be different for different values of request (see below).

Ioctl special function codes:The ioctl special function codes below replace the parameter request in the ioctl () call.For the description of the data structures used to transmit the data to and from the driver, see the end of this section. These structures are all defined in the file "icvl96vme.h".ICWME_getmoduleinfoFunction: get general information on the installed moduleVariable to transmit data:struct icvl96T_Module!nfo arg[4];/*array of 4 module info blocks*/
I CWME_conne ctFunction: connect to an interrupt Ene on a given module. Normally, this call is not used by a program, as it is integrated in the gpevt connect () call described above.Variable to transmit data:struct icv!96T_connect arg;
I CWME_dis connectFunction: disconnect from an interrupt Ene on a given module. Normally, this call is not used by a program, as it is integrated in the gpevt dis connect () call described above.Variable to transmit data:struct icvl96T_connect arg;
ICWME_dflagFunction: Toggles (sets/resets) debue f∣∙, <" ∙,l>∙ driver on serial channel 3 of tb*j ŋɔ' " ι∙∙fj..t∙' ∙>(∣∏essag<*s from <b<j

ICWME_nowaitFunction: sets non-blocking read, meaning that the read() call returns immediately whether data has been read or not.
ICWME wait

ICV196VME - ITX Interface driver 12-6

Function: sets blocking read, meaning that the read() call returns after the data hasbeen has arrived or on timeout.
ICWME_setupTOFunction: sets timeout for read(). The value should be given in milliseconds. Default:6000 ms. TThe old timeoutvalue is returned.Variable to transmit data:int *arg;
ICWME_int countFunction: reads the interrupt counters for all Unes in the module given in the argument.Variable to transmit data:struct icvl96T_Service arg;/* the interrupt counter values are *//* returned in arg.data[0..15] */
I CWME_set reenableFunction: When the reenableflag is set, the interrupt Hne is automatically reenabledafter an interrupt to be ready for the next event.Variable to transmit data:struct icvl96T_connect arg;
ICWME_clearreenableFunction: When the reenableflag is cleared, the interrupt Une is not automatically reenabled after an interrupt. In this mode, the Une must be enabled with ioctl(..., ICV-VME_enable, ...) after each interrupt to be ready for the next event.Variable to transmit data:struct icvl96T_connect arg;
ICWME_enableFunction: Enables an interrupt Une.Variable to transmit data:struct icvl96T_connect arg,
I CWME_di sableFunction: Disables an interrupt !invariable to transmit data:struct ic*^ 196T_connect
I CWME_r β adioFunction: The I/O ports contained on the icvl96 module (port2 - portll) which are notused as interrupt Unes, can be written to and read from Uke standard I/O lines. Library routines are available; Chapter 9 in this manual: VME - addressing facilities library or /u/dscps/icvl96vmefclty. The direction of these ports can only be set by the

ICV196VME - ITX Interface driver 12-7

ioctl function ICWME_setio. In order to read back the status of the ports (ɪn- put/output), ioctl (...,ICWME_readio,....) is called.Variable to transmit data:struct icvl96T_Service arg; /* arg.data[0] contains the bit *//* pattern corresponding to the I/O*/ /* port status. Bit 2 ≡ port 2, *//* etc... input = 0z output =1 */
Note: line number ignored as argument for this call, as the call is not Une specific.
ICWME_s∙tioFunction: Set I/O port direction (see above).Variable to transmit data:struct icvl96T_Service arg;/* arg.data[0] :I/O port to be set *//* arg.data[1]: direction of the port *//* 0 = input, 1 ≡ outputNote: Une number ignored as argument for this call, as the call is not line specific.
ICWME_IntenmaskFunction: read the interrupt enable mask of a icvl96 module.Variable to transmit data:struct icvl96T_Service arg; /*arg.data[0] contains the bit /*pattern corresponding to the/♦interrupt enable mask. /*Bit 0 = line 0z etc.../*enabied = lz disabled = 0Note: Une number ignored as argument for this call, as the call is not line specific.
ICWME_ reenflagsFxmction: read the reenable flags for all the interrupt lines on a icvl96 module.Variable to transmit data:struct icvl96T_Service arg; /* the reenable flags are returned *//* in arg.data[0..15] /* 0 = not setz 1 = setNote: Une number ignored as argument for this *mll. a? th® o∏11 is not Ii no specific.
ICWME_get handleinfoFxmction: Get information on a user ha',,∣ι. 1 ’ 'τ l, τ∙,,∙",t∙*∙ id ɑl Hv pmr®ss using Ilv handle 2) The connected interrupt 1 in®*?Variable to transmit data:struct icvl96T_Handle!nfo ary;
Structures defined in icvl96vme.h for transmitting data via ioctl O :struct icvl96T—UserConnect { unsigned char module;unsigned char line;

ICV196VME - ITX Interface driver 12-β

short mode I;

The open() cell is used for connects , l>- ∙,∙ ∙ ` >' ,∙,∙ interrupt syn<∙b remigati is wanted. Tho open is perTr,w,',z, .. . ɪ ■ h∏∏di√, which nllows r«>ing different ~tatus informɔ*1''" ∙ " ”> ∙ '>aranv lor`; in f he di ιvviatheioctl() call.

struct icvl96T_UserEvent { short count;unsigned char module; unsigned char line; } ;struct icvl96T_UserLine { unsigned char group; /*module number */ unsigned char index; /*line number */ 1;
struct icvl96T_Service { unsigned char module;unsigned char line;unsigned long data[ICV_IndexNb]; 1;
struct icvl96T_ModuleParam{unsigned long base; /*offfset in VME address space */ unsigned long size; /* size of used VME space */unsigned char vector[icv_LineNb]; /* interrupt vect. *//* for each interrupt line */ unsigned char level[icv_LineNb] ;/* interrupt level *//* for each interrupt line*/ 1;
struct icvl96T_HandleLines {int pid; /* id of process using the handle */ struct icvl96T_UserLine lines[ICV_LogLineNb];};
struct icvl96T_HandleInfo {struct icvl96T_HandleLines handle [ICWME_MaxChan] ; }
struct icvl96T_Module!nfo {int ModuleFlag;struct icvl96T_ModuleParam ModuleInfo;1;
open : Dnversaccessexclusi el∖, f, `ɪ ∣ ■■ ∣ι.l∣∣ h_i ,.< !lirici pen* ∣u>i `leis

Syntax of a call:static char path[] = n∕dev∕icvl96service" serv-ice_filedesc ≡ open(path,O_RDONLY);
ICV196VME - ITX Interface driver 12-9

program example: Synchronizing with eventsThe following program gives an example on how to use the driver for synchronising with events. The task connects to two different interrupt Unes and waits for interrupt on these two Unes. Depending on which Hne gives the interrupt, different parts of the program is executed.

♦include <icvl96vme.h>♦define SIZE 32 ♦define INT_ISR 0INT_RT 1 extern int gpevtconnect();gpevtdisconnect(); ♦defineextern int
main () { struct icvl96T_UserConnect connct;int i, j, k;int type;int retval;int evtval;int synchro_fd;int byte_count;char buff[SIZE];struct icv!96T_UserEvent *event;

connct.module =0; /* module numbers: 0 to 3 */connct.line = INT_ISR; /* line numbers : 0 to 15 */connct.mode ≡ 1; /* cumulative mode */type ≡ 2; /* type = 2 for icvl96 */evtval ≡ 0; / * no initialization of event */

/* connect to line 0 */if ((synchro_fd = gpevtconnect(type, evtval, &connct))<0){ perror("could not connect to line 0∖nπ);exit (1);}connct.line = INT_RT;/* connect to line 1 *if ((synchro_fd = gpevt nn- -* (∣-, c∙∙t∙∙∏l, ∙'onn∙ ’) ' ∙'0) (perror ("could not eoŋŋeo'- *■ ∙ 1 ? ∙>- ∣ ,n"i.∙exit(1); }
for (i =0; i < 1000; x∙i--for (j==0; j < SIZE; j++) buff[j] = 0;/* clear buffer */ byte_count = SIZE;/* read max 8 events */ if ((retval = read (synchro_fd, buff, byte_count)) < 0) {perror("could not read∖n");continue;1

ICV196VME - ITX Interface driver 12-10

event ≡ (icvl96T_UserEvent *) buff;if byte_count == 0 {perror("timeout on read∖n"); continue;}for (;event->count != 0;event++){ /* treat ALL events in the buffer !*/if (event->line == INT_RT) { /* TASK RT */
)if (event->line — INT_ISR) { /* TASK ISR */
}} /* end event buffer treatment */} /* end for loop waiting for events *//* disconnect from line 0 */if ((retval = gpevtdisconnect(type,evtval,&connct)) < 0) { perror("could not disconnect from line 0∖n");exit (1);}connct.line = INT_RT;/* disconnect from line 1 */if ((retval = gpevtdisconnect(type,evtval,&connct)) < 0) { perror("could not disconnect from line 0∖n");exit (1);) /* end main */

ICV196VME - ITX Interface driver 12-11

13

FPIPLSVME - PLS Telegram and FPI driver
Authors: AIainGagnaire (software),

Claude dehavay (hardware)
Introduction: The FPIPLSVME module has 2 functions :• To receive, decode and memorize the PLS (Program Line Sequence) pulse train (maximum 1023 bits).• To generate up to 8 different VME interrupts corresponding to the 8 trigger sources: the trigger pulse of the PLS telegram, and the 7 external Unes associated to the 7 plugs of the front panel.A full specification of the module is given by the reference manual of the VME board provided by the designers of the module:

PLS Receiver and Front Panel Interrupt VME module 80401 CO

by Claude Dehavay (Cern PS-CO). PS/CO/Note 91-xxxThe software interface of the driver facilities is proposed at 2 levels:• The direct access to the driver interface based on UNIX i/o system call. This is not recommended because it makes the user program dependent on the drivers implementation and non portable.• The Hbrary interface which provides global functions hiding to the programmer the UNIX system call interface and the driver specific interface. This interface is available for C program and NODAL program.
Driver interface functionality:The driver supports up to 4 fpiplsvme modules, and allows an application program to be connect to one or more of the 4*8 interrupt fines provided by the modules and to read the 4 telegrams coming from the 4 different PLS sources. The number of available lines and telegrams depends of couv'^' ðŋ b'`v n∣∏∏v in<>⅞l∏<; ∏∏> pl-∣vsirnllv installed in the DSC crate.These functions are provided via the user ιn∣H.∙v∙r of ∣∣v, standard Unrx fil<∙ sysi<∙tn

The access to the Pls telegram : < Iʌ , 11∙ ∣∣ »• ∣ion >• Reading from one of the mr>dιd< ' ,'.................... * ’ ” ' ∣d∙>∏r∏m

Connecticntoaninterruu?!:; ¡. ■ √1• Connect function command : in order to get further an event associated with a trigger of a given line from one of the fpiplsvme module. When the trigger occurred the driver will put an event,in the ring buffer of the requesting device. The event is a sequence of 4 bytes, if we represent this event by : byte [3,2,1,0] the structure of the event is:
FPIPLSVME - PLS Telegram and FPI driver 13-1

bytes [3,2]= 1 word = number of trigger occurrences since the connection was made.byte [1] = fpiplsvme module index ([0 ... 3]) of the trigger source.byte [0] = Line index of the trigger ([0...7]) source.N.B.: the connect is multiple, several device (up to 8) can get the event associated to the same trigger source.• Disconnect function command : to get rid of a previous trigger source connection. The in coming trigger are no longer associated to the device.
Synchronisation with a trigger :Performed with a call to the select or read function. The read will be used as well to get information on source of the in∞ming trigger (previously connected).Synchronisation with a trigger (select, read file system call):• Select : if the device descriptor of the fpiplsvme driver, dedicated for synchronization is given in the Ust of a select, and if a connect was previously made on it,for one or more trigger source, the select will return when one of this trigger occurred. The knowledge of the trigger source is acquired by reading the incoming events from the ring buffer of the corresponding device descriptor.• Read : to get synchronized with a trigger source and to read the ring buffer in order to know the trigger source. When the ring buffer is empty the call is blocking during a laps of time, after which a time out is returned. The associated buffer must be tailored to receive at least one full event i.e.: minimum 4 bytes; the buffer is fed only with an integer number of events.

FPIPLSVME - PLS Telegram and FPI driver 13-2

FPIPLSVME Driver interface library: (fpiplslib.o , gpsynchrolib.o)
Introduction:The library hides to the programmer the UNIX system call of the driver direct interface. The user may want to have a minimum knowledge of the system resources involved, for that purpose he has to read the next chapters describing the direct interface.In a few words, the user has to know that this interface is based on UNIX i/o system call. To access the driver facilities, the library has to open a device file, the currently opened device file identifier is stored in the global context of the library (local to the running process). There are two different devices involved :• one for reading the PLS telegram. This resource is unique and shared by the different user processes, a semaphore is used to make exclusive the access to the hardware.For reading the PLS telegram, the library opens the device file dedicated for that purpose whose name is : ∕dβv∕fpiplβRTgm.• one for the synchronization, open at the first Hbrary call. This resource is exclusive (one device resource for each different user process)For the synchronization request on the type Evtsrce_fpi, the library tries to get a free and exclusive device file, out of the set of resources dedicated for that purpose whose names are : ∕dev∕fpiplsΓpiO2 to ∕dβv∕fpiplsΓpiO8 .For the special PLS task a dedicated device is reserved, this is /dev/fpiplsPls. The selection of this resource is done at the connect using the type Evtsrce_pls .N.B. : using Hbrary access makes program independent of the driver implementation and source code portable.
How to use the library :In the program source file include the header file associated to these Hbraries:#include <fpiplslib.h>#include <gpsynchrolib.h>The Makefile building the user program must include the following lines• rThe general path to dsc Hbrary is defined in the Makefile as :# general path to lead to the dsc library:R∞T= /u• To work with the access routine, define the library path:# define path to load camaclib.o# camaclib.o full -->+hFpiplslib= $ (root) ι ; ip i ∙ ∣ ∙ ` * ∙.∙ ι∣ ʌɪ i ■ i ɪi-.∙ ∙• To work with the synchronization *∙<<υlιn'∙: ∣- Gιw> ll»«< ∣il>∏∣ry p:dh#define path to ■ 1 ∙∙ ∙∙ ’ 1 :RTLIB= $ (r<∙∙ τ . . ɪ i• To tell the loader to reference 1 ∙∙. ∣r∣∣ ι n∙.,<n∣υ th»? $ (FriI LSLlB) ;nwl/"> $ (RTLIB) in the compilation/hnk command line .

FPIPLSVME - PLS Telegram and FPI driver 13-3

Services routines :

fpiSe⅜TO :Set the time out attached to a synchronization device.
Formal C syntax definition:int fpiSetTO(fdid, ref_val)int fdid;int *ref_val;
Syntax of a call:err » fpiSetTO(fdid, ref_val);

Where : f did « file descriptor index returned at the connection call.ref_val = at call : new time out for the synchronization(in 1/100 s.) at return : previous time out value.
PIsReadTqm :To read the pls telegram from a module.

Formal C syntax definition:int PlsReadTgm(module, ref_buffer, buffer_size)int module;short *ref_buffer;int buffer_size;
Syntax of a call:err - PlsReadTgm(module, ref_buffer, buffer_size);

Where : module = number of the module to read the telegram.ref_buf fer = address of a buffer, to receive the telegram in it.buffer_size = actual size of buffer. This size must be as big as a full telegram, i.e. 32 short.

FPIPLSVME - PLS Telegram and FPI driver 13-4

gpevtconnect, gpevtdisconnect : Synchronisation routineThese facilities are not specific for synchronization with FPIPLS events, they intend to provide DSC programs with general purpose means to get connected with external events such as: CAMAC LAM, trigger from Front panel interrupt module (ICV196), timing Une events (PLS module).
gpevtconnect : Ask connection with α TRIGGERTo get synchronised with a Front panel the program must first ask to get connected to. A call to gpevtconnect function for each of the expected trigger must be done.

Formal C syntax definition:int gpevtconnect(type,evt_val, ref_EvtDescr)int type;int evt_val;long *evt_descr
Syntax of a call:synchro_device_id ≡ gpevtconnect(type, 0, ref_EvtDescr);

Where :type = Evtsrce_fpi the Hbrary will use a device in the pool fpiplsFpitype = Evtsrce_pls the library Willusethedevice: /dev/fpiplsPl evt_val ≡ ignored at this moment.ref_EvtDescr - long ref_EvtDescr[5] can be redefine as an union structure pointer:union U_EvtDescr {long element;struct { char group;char index;word mode;} atom;1; Where :ref_EvtDescr -> atom, group = module ([0..3]) of line to connectref_EvtDescr -> atom, inde:: = Iinp number ([0. 7^∣) to connectref_EvtDescr ,∙ ∙∏, ∙∙∙ 1Oil»«? <J'∙li∙∏l' valuers used.1 ' ∙1nm∣3h∙ it nitons that onlv one <,v<∙nf t>.∙C'---- » ><,..| ɪ. 1,...... l <.∙our∙c,∙ Tlw <'v<∙nl will not>t∖∙‘1. vtii;d t ∏σ∣<crs: <h < ∣iπ<,(I ,.∙ιn<<∙
2 a la queue Ieuleu , for each trigger an event is generated in the ring buffer of the device.The default is cumulative for the device fpiplsPls. ‘à la queue leuleu’ for the other.synchro_device = returned value giving the device file identifier to be used

FPIPLSVME - PLS Telegram and FPI driver 13-5

- when the program wants to get synchronized either by means of the system file select command or in a specific request on this events source by means of the read system file command which returns as well in the associated buffer the event identifying the trigger source.- in the service routines : fpiSetTO.
qpevtdisconnec⅜ : Ask disconnection from α TRIGGERTo get rid of a previously connected event source the program must ask to be disconnected from this trigger.

Formal C syntax definition:int gpevtdisconnect(type, ref_EvtDescr)int type;long *evt_descr
Syntax of a call:synchro_device_id ≡ gpevtdisconnect(type, ref_EvtDescr);

Where :type - Evtsrce_fpi the library WilluseadeviceinthepoolfpiplsFpi type ≡ Evtsrce_pls the library Willusethedevice: /dev/fpiplsPl
ref_EvtDescr ≡ same as for gpevtconnect

select, read : Getting synchronised with TRIGGER eventAfter connections have been established with the expected trigger sources, the program has to be synchronised with the events associated to the lines and has to identify from which source they are coming from.For that purpose, the returned device file identifier from gpevtconnect call, which is the same for all the connection the program performs, allows the program to wait for these events either by the select or by the read, according to its needs.
Events data structure:These events are pushed in the corresponding device file and can be read by the program, the data structure of the event is as follows:struct fpiplsT_Event {short count;unsigned cħ∙≡, τ-->∏ . !∏-u--- ∙I ;

Where :

count = accordio." t,' ro,ru, ∙. J nv><l∙∙ ∏t connection:- .∣ ,<. . l. ()io number »»< trigger re. I- ‘a la queue Ituieu ιn∙>de : gives the serial number <»(trigger since connection.group = module number of the associated trigger .line - Une index of trigger in the group..

FPIPLSVME - PLS Telegram and FPI driver 13-6

Getting Sjmchromsed by a select call: this is the standard UNIX way, after return from the select the program must identify which device the event is coming from.If the device file is the one of the TRIGGER event source, to know which out of all the connected TRIGGER source generated an interrupt, the program must perform the reading of the device which returns in the buffer the data identifying the source : see below getting synchronised by read.
Getting synchronised by a read call :Reading from the device file descriptor given back on gpevtconnect is waiting for trigger to occur or getting in the buffer associated to the read the event data identifying the source of event.This source depends on the kind of device generating the event, in case of the fpipls- vme module the structure of trigger events is described above in the paragraph
Event data structure.

Formal C syntax definition:int read(synchro_device_id, buffer,byte_count);int synchro_device_id;char *buffer;int byte-count;
Syntax of a call:err = read(synchro_device_id, buffer, byte_count);

Where :err = see Lynx 0.S. reference manual for usage of readsynchro_device_id = Device file descriptor index given by the gpevtconnect call (always the same for all connect the program performs)buffer = buffer to get event descriptor: minimum size required = size of (sdvmeT_Event) i.e. = 4 bytes, if the buffer is bigger it can receive as many already received event as the buffer can completely contents. The actual maximum number of event awaiting a read for a device is 8. When the device ring buffer is full, the arrival of one more event will purge all the ring buffer and generate special event to warn the program :Specialeventincaseofpurge: Count= (-1) C= $ff N= $ffbyte_count = see Lynx 0.S. reference manual for usage of read

FPIPLSVME - PLS Telegram and FPI driver 13-7

The NODAL FPIPLS functions interface:The NODAL interpreter has now new functions to provide NODAL user with the FPIPLS driver facilities. The on Une documentation for that purpose is available by typing under a nodal session the man followed of the function name. The whole NODAL man pages can be printed out from a Console station as any system man pages.
The available NODAL functions are:
FPICNCT, PLSCNCT to get connected
FPIDCNCT, PLSDCNCT to get rid of α previous connection
PLSRTGM to read the pls telegram from a module

SEE
the NODAL man pages manual

PS/CO Note 91-0020
by F. PerrioIIatzG. Cuisinierz A. Gagnaire

OR
under any console station

ask the man facility to display on line
documentation of any NODAL function:

>man function-name

FPIPLSVME - PLS Telegram and FPI driver 13-8

FPIPLSVME specifications summaries:
hardware:• VME board single 6U.• VME board, addressing short I/O, data port size 16 bits
Setting of jumpers:
Base address of the module:It is adjusted by the jumpers: SW1..SW4 corresponding to the address lines [A15 .. A12] giving 16 different base addresses for the module (Jumper SWx present means Une address Ax is zero):[SW1, SW2, SW3, SW4] = [0, 0, 0, 0, 0] for base address $0= [0, 0, 0, 0, 1] ', " $8000

= [1, 1, 1, 1, 1] ,, ,t $f000
Address modifier supported by the module:

Driver installation :After hardware selection of appropriated setting of the VME module, the installation of software driver requires some informations corresponding to the hardware setting:
• VME base address of the module,

• MC68153 interrupt vector : this vector is given to CPU at Demand interrupt to generate the interrupt in the CPU, therefore this value should be chosen carefully in order not to collide an already allocated vector interrupt in the CPU
• MC68153 interrupt level : this value defines the level of the CPU triggered when a demand interrupt is generated.The installation can be made by calUng the installation program with the following syntax:>fpiplsvmeinstall ∖

<-×O<base address> -XV<vector [64..255] > -XL<int. level[1..5]>..>where X ≡ A, B, C or D and several sets of declaration in sequence according to the actual module in the configuration.module declared as A gets the module number ,named also group number, 0,module B group number 1,module C group number 2,module D group number 3 .exemple:>fpiplsvmeinstall -COeOOO -,^" 1 * ,' - -;»• ∣<∙no —A'7l∙>l -ALcorresponding to a configuration "ɔ' ’....... -, ∙∙...,∙.∣,. <∏-<>up ;»nd τn<w∣∏le group 2

FPIPLSVME - PLS Telegram and FPI driver 13-9

FPIPLSVME Driver system interface :For standard usage this level is hidden by a Iibraiy interface .This interface follows the Unix standard way for programming I/O devices serviced by a driver.
Device file: (associated LynxOS minor devices)The device installation create devices file to provide user with system resources needed to invoke driver services. There are 3 classes of these resources:• ∕dev∕fpiplsRTq∏L system resource to read the PLS telegram, shared by all simultaneous users.• /dev/fpiplsPl∙ : system resource dedicated for the PLS task and to be synchronised with trigger.• ∕dev∕fpiplsΓpiO2 to fpiplsFpiO8 : system resource to be synchronised with triggers, these resources are non sharable, they are like handle which enable the owner to call services for synchronisation with trigger , to get informations on incoming triggers.
File system interface:The driver direct services interface is provided with the file system interface c.f. Lynx O.S. user’s manual:• open : to get a device descriptor to call file system function associated to the driver.• Ioctl : to call a special service of driver.• select : to wait for the condition of the open file descriptor and other to change.• read : to read bytes from the open file descriptor.• close : to get rid of a previously open file descriptor.Thefiles <fpiplsvme. h> and <fpiplsvmeP.h> provide some definitions.
Before to invoke the services and the synchronization functions of the driver, a device file "/dev/fpiplsXXXXX"must be open to get an appropriate device descriptor index for the ioctl function performing the request.with XXXXX - Fpi02 .. Fpi08 or Plsfor reading of the telegram, the device file "/dev/fpiplsRtgm" must be open first:example:int fid_access;

fid_access = open (" ∙ : ∙ ■ , 1 ' " ,>∣L. > . ”'<•);
Set Time Out function call :Invoked by means of the ioctl functv”- τ τ τ∙ `

cc = ioctl (fid_access, FPIPLS_setupl_', òval)With the argument of ioctl as follows :int val;Where the call routine puts parameters of call, and gets back results:• val = at call, new value to set up the time out value in 1/100 s.
FPIPLSVME - PLS Telegram and FPI driver 13-10

at return, to give back the previous value of time out setting.The driver returns a specific error in ermo when error returned by the call:EFAULT Wrong parameter pointer (out of range or protected)EACCESS This file id does not stand this function
PIsReadTqm :The reading of the pls telegram from a module is Hke read from a standard file .The system resource for that purpose is the dedicated device /dev/fpiplsRTgmTo select the module whose telegram has to be read, the seek must be use to position the reader on the target module:exemple :

short buff[(0x400 » 1)];int cc;int m≡=0;int fid_access;
fid_access = open("/dev/fpiplsRtgm", O_RDONLY, 0755);

/* select the module whose telegram is to be read */cc = Iseek(fid_access, m, 0);
/* read the telegram from the selected module */cc = read(fid_access, buff, sizeof(buff));

FPIPLSVME - PLS Telegram and FPI driver 13-11

Connection to α trigger :The system resources for invoking these services are non sharable, the device files available are:∕dev∕fρiρlsPls is the unique resource dedicated for the special PLS task to be synchronised with the PLS telegram trigger./dev/fpiplsFpiO2 to fpiplsΓpiO8 are in the pool of resource available for being synchronised with external triggers.Before to invoke the associated services, an open must be performed in order to provide a device descriptor identifier which is required for further file system calls:example: int fid_synchro;
fid_synchro = open("∕dev∕fpiplsFpi03"z O_RDONLY, 0755);

Request for connection with a trigger:Performed with a call to ioctl with the function code = FPIVME_connect and passing an argument defined by the following C structure (c.f. : in the header file < fpiplslib.h>) :struct T_FpiplsArg {struct fpiT_LineUserAdd Add;short mode;I;with the structure fpiT_LineUserAdd defined by:struct fpiT_LineUserAdd { char group;char index;)
Where the call routine puts parameters of call:• group ≡ value [0..3] giving the module number of line to connect.• index = value [0..7] giving the line number to connect.• mode = 0 the default value *s " '1 cumulative mo,l, it n*'∙∙∣n <∣>af <∙nl-. <>n<- <∙v*>nt is ∏∙∙wrat**d f<∙* a trigger source. Th»- ev<,nf v *H n<>fifv th<, use»' <»n Iww many actual trigger occurred si”',∣'>l ∙ ∙ ',l2 ‘à la queue leu∣c " l," ɪ` an °ven∣ g*,n∙∙∣∙ated in I In-ring buffe* °f 41,*∙ ∙,The default is ∣. ∙ . .|. v∏.> f∣>∣p∣sΓ∣s. a Ia <pιm<∙leuleu’ for the other.

FPIPLSVME - PLS Telegram and FPI driver 13-12

Getting synchronised with α trigger : (select, read)Once the program is connected, it can wait for incoming trigger from the specified
fpiplsvme module.If the program must wait for incoming event from different devices, it has to use the standard Unix way: the select function which tells it, from which device he received an event.If the program uses only the trigger events source, it can wait and receive the event in one call to the read from the device:• one or more events arrived, the read returns the event in the buffer• nothing arrived, the read blocked on wait until one event comes or time out occurs.The buffer must be big enough to receive a complete 4 bytes event, the buffer will receive as many complete events, present in the devices, as there is enough room in the buffer.The design of an event is given by the following C Structxire:struct fpiT_Event { short count ;unsigned char group;unsigned char index;1 ;Where :• count = according to requested mode at connection:- cumulative mode : give the number of trigger received since previous read.- ‘à la queue leuleu’ mode : gives the serial number of trigger since connection has been established.• group ≡ module number of the associated trigger .• line - line index of trigger in the group..
/* %(example of C syntax usage: it∕
#include <gpsynchrolib.h.h>

int fid_access;int fid_synchro;struct T_fpiplsA-. » ∙ istruct fpiT_Evemint CC ;
/* open the channel to perform the Camac access andthe channel to get synchronisation with the LAM from the module accessed */fid_access = open("/dev/fpiplsFpiO3",O_RDONLY,0755);

FPIPLSVME - PLS Telegram and FPI driver 13-13

fid_synchro ≡ open("/dev/fpiplsRTgm",O_RDONLY, 0755) ;
/* ask to be connected to the incoming trigger from the fpiplsvme module
CC = ioctl (fid_synchro, FPIVME_connect, &arg_connect) ;
/* ask to be synchronised:the read will wait for trigger to come and to return the first event in the buffer */
CC — read(fid_synchro, &Event, Sizeof(Event));
/* Then process the received event it∕
)% it∕

FPIPLSVME - PLS Telegram and FPI driver 13-14

PS DivisionABIE Habtamu PS/POADORNI Valerio PS/COAMENDOLA Giandomeniro PS/HIARRUAT Michel PS/OPASSOR Jean-Luc PS/COBenincasa Gianpaoio PS/COBERLIN Fridtjof PS/COBOBBIO Piero PS/COBOUCHE Jean-Marc PS/COBOUCHERON Jean PS/RFCENDRE Jean-Claude PS/OPCHERIX Etienne PS/OPCHOHAN Vinod PS/ARCROTEAU Pascal PS/COCUISINIERGerard PS/COCUPERUS Jan PS/COCYVOCT Georges PS/OPDAEMS Gilbert PS/CODE METZ-NOBLAT Nirolas PS/CODEHAVAY Claude PS/CODELOOSE Ivan PS/OPDI MAIO Franck PS/CODUPUY Bnmo PS/OPELYN Jean-Michel PS/OPEVANS John PS/RFFALK Ehsabeth PS/BDFERNIER Pascal PS/OPFRAMMERY Bertrand PS/OPFUCHS Joachim PS/OPGAGNAIREAlain PS/COGELATO Gianni PS/BDGIUDICI Francois PS/COGueugnon Daniel PS/OPHEINZE Wolfgang PS/COHOH Roger PS/OPLelaizant Monique PS/COLEWIS Juhan PS/COLUSTIG Hans-Dieter PS/COMalmedal Teije PS/OPMANGEOT Bernard PS/OPMERARD Lucette PS/COMETRAL Gabriel PS/OPMULDER Hendrik PS/OPMUNKOE Leif PS/CONONGLATON J-Michel PS/OPOVALLE Ernesto PS/OPPACE Alberto PS/OPPasinelli Sergio PS/OPPerriollat Fabien PS/COPETTERSSON Thomas PS/ARpriestnall Kevin PS/OPRAlCH Ulrich PS/CORENAUD Yves PS/OPRosenstedt Anker PS/CORUETTE Michel PS/OPSERRE Christian PS/COSHEPHERD Peter PS/COSICARD Claude-Henri PS/COTANKE Eugene PS/HI

TEDESCO Jean Simon PS/BDTERRIER Jean-Pierre PS/RFVandorpe Bernard PS/OPVICENTE Victor PS/OPWildner-Malandain Eiena PS/OPZelepoukine Seriozha PS/CO
Pour Information:HÜBNER Kurt PSSIMON daniel PS+ Psgroupleaders
SL Division:ANDRE Airy SL/COBLAND Alastair SL/COBURNS Alan SLZBICHARRUE Pierre SL/COCHRISTIANSEN Hans Peter SL/COGAREYTE Claire SL/COGHINET François SL/COKISSLER Karl-Heinz SL/COKOSTRO Krzysztof SL/CORAUSCH Raymond SL/CO
Division ECP:PETERSEN Jorgen ECP/DS

FPIPLSVME - PLS Telegram and FPI driver 13-17

