MPS/Int. RF 65 - 3 10.3.1965

DIGITAL SOLID STATE FUNCTIONAL BLOCKS

A market and product survey of integrated logical elements and a report on the Microelectronics Conference in Munich (October, 1964)

INDEX

- 1. Introduction
- 2. Report on the Microelectronics Conference
 - 2.1 Present state of the art
 - 2.2 Future developments

3. Market survey

- 3.1 Manufacturers' addresses and agencies
- 3.2 Product survey
- 3.3 Market survey
- 3.4 Abbreviations
- 4. References
- 5. Acknowledgements
- 6. Appendix : letter from Philips of 10 December, 1964

1. Introduction

In our laboratories there is a growing interest in the use of the so-called integrated circuits, micro-miniature elements or whatever name is used.

When we got interested in these elements last year a list was drawn up of manufacturers and their products as well as of the characteristics of these products.

Gradually these lists grew into the form presented here; they were recently brought up to date and checked with the aid of ref. 1, and at the Microelectronics Conference in Munich.

The name "Solid State Functional Blocs" is a generic term which has been adopted by the American Bureau of Standards. One can argue about the merits of this expression, but such a term is certainly needed considering the variety of trade names.

The S.F.Bs are split into two categories : digital and linear. This report is entirely devoted to the digital category, D.S.F.B.for short.

While, for other than technical reasons, we shall not be able to use SFBs immediately, it was thought that at this stage the present survey could be of interest to other potential users in CERN. The author does not claim that this list is 100% complete.

The documentation he assembled during this market survey may be consulted at the office of the RF Group secretary.

2. <u>Report on the Microelectronics Conference</u>

2.1 Present state of the art

Near the end of the '50s smaller discrete components and the transistors allowed miniaturization of electronic instruments.

This process gradually entered the stage of micro-miniaturization but it was realised that this could not go on as the components grew too small to handle.

The development of integration technique presented a major breakthrough. Not only does this technique allow the manufacturer to decrease the size of the circuit, it also increases its reliability. Moreover the circuits can be produced at a cost much lower than that of all active and pastive components used for the same function.

As far as the cost is concerned, the break-even point of the prices for a J.K. flip-flop made of discrete (not miniature) components and a I.I. flip-flop S.F.B. is expected early in 1965 (U.S.A. market, ref. 5, Dr. H.G. Rudenberg).

The reliability shows the following trend :

	<u>Failure rates in</u>	<u>n %/10³ hrs</u> .	
1960	1964	1964	<u>1970</u>
			(expected)
Tube FF	Transis.FF	SFB FF	SFB FF
51.57?	5.87	0.08	0,04

These failure rates were further illustrated in a lecture by Dr. H.C. Jone ("Minuteman" reliability project) who quoted the following values :

Firm name	SBF failure rates	Confidence level				
	in $\%$ per 1000 hrs					
Westinghouse	0.044	60 %				
Texas Instruments	0.06	60 %				
Fairchild	0.0065	90 %				
Signetics	0.009	70 %				

This speaker expected that a few years from now monolithic SFBs will have failure rates similar to the ones of the discrete transistors.

As an anecdote it may be worth mentioning here that, although manufacturers boost the idea of space age electronics where SFBs are concerned, Mr. Worden (Hughes Aircraft) who gave a paper on Syncom Reliability was forced to admit that no SFBs are actually flying in any one of the three communication satellites.

While increased reliability and small size are naturally considered as advantages, there are some disadvantages which have as yet not been overcome. These disadvantages are :

- a) Interconnections
- b) Heat dissipation
- c) Testing
- 4) Circuit design techniques
- Sub a) : Especially the in erconnections between groups of SFBs is a difficult problem.
- Sub b) : The heat dissipation is still rather large considering the smallness of the actual circuit itself. Therefore the reduced dimensions of the SFBs cannot be fully utilized.

It has been calculated that 1 cubic inch of (non-encapsulated) SFBs with the maximum packing density would dissipate about 1 kW.

Many laboratories are engaged in low-level logic research (best results so far : Westinghouse).

Only when the solution to this problem has been found will the discrepancy between the sizes of a power supply and a group of SFBs diminish.

Sub c) : Even where possible, packing density has not been utilized; circuit tests and test points only increase the difficulties mentioned under a). - 5 -

- Sub c) (contd.) : Unless one adopts the philosophy of throwing away the units which malfunction, one has to increase the complexity by designing a test programme integrated in the unit or by further decreasing the packing density. The latter solution is usually adopted.
- Sub d) : The circuit designer has to change his idea about circuits just growing under one's hands. He will have to do much more theoretical work as he will not be able to do as many measurements on the circuit as before.

Modifications to a constructed circuit will be very difficult to carry out - if at all. Firms like Motorola and Fairchild run courses of one or two weeks' duration on Integrated Circuit Design (Motorola \$ 450.00 per week).

SFB technology is proceeding along two lines of approach, thinfilm and monolithic Si or Ge. Both have certain merits, but the thinfilm technology, although superior as far as the construction of resistances and capacitors is concerned, is severely handicapped as no thin-film transistor is produced yet which could reliably be manufactured in series.

All thin-film SFBs on the market now are hybrids which means that they make use of the active components from the other technology.

Data on reliability etc. of hybrid SFBs could not be obtained.

2.2 <u>Future developments</u>

Many research establishments are engaged in tackling the problem of the thin-film transistor.

A S.C.A.T. (surface controlled avalanche transistor) in thin-film the chnique was reported to exist. Dr. Robertson and Dr. Muller from R.C.A. have reported on a M.O.S. transistor with $f \ll_{CO}$ of well over 1 kMc.

Both the SCAT and the MOS transistor will not be marketed as such but will be integrated only in thin-film SFBs. It may be assumed that a few years from now these techniques will have advanced sufficiently for thin-film SFBs to be available with upper frequency limits approaching those of our fastest transistors nowadays.

On the other hand the thin film technique will make L.L.L. blocks feasable.

In the near future the package of SFBs and the supply voltage will become normalized.

The flat package will be adopted and the flattened T.O. 5 and T.O. 47 will disappear. Depending on the type of SFB, the flat packs will have one of the following dimensions (only the thickness changes) :

> 0.375 x 0.285 x 0.065 0.375 x 0.285 x 0.09 0.375 x 0.285 x 0.11 (inches)

The supply voltage will be 3 Volts for most STBs .

Another trend will be this : more and more designs will make use of the and/or type of logic and the importance of the nand/nor logic, so universally adopted nowadays, will diminish.

European firms, like Philips, Telefunken, etc. are heavily engaged in SFB research, but they do not think to be able to market within the next 2 - 3 years.

Intermetall, through its connection with Shockley Laboratories and Diever Electronics in America, may be in a somewhat better position.

In the United States the situation t some of the major SBF manufacturers is as follows :

<u>Westinghouse</u> has in the laboratory stage a new series of SBFs in D.T.L. configuration. Delays per function are less than 6 nsecs.

<u>Texas Instruments</u> are working on V.H.F. semiconductor functional blocks in the T.T.L. configuration. Typical delays are about 4 nsecs per function. They are of the T.T.C.L. non-saturated switching design and are envisaged for a clock frequency of some 50 Mc/s.

- 6 -

<u>R.C.A.</u> are not marketing at the moment but hope to market, within a few years, thin-film M.O.S. solid state function blocks.

Sylvania will, in a few years' time, market their line of 50 Mc/s AFBs (ref. 7).

- 7 -

The situation at <u>Fairchild</u>, <u>Molectro</u> and <u>Signetics</u> was reported to be similar.

The principal suppliers of SFBs to the American Government during the 1 st years have been : Texas Instruments, Fairchild, Signetics, Molectro and Westinghouse. Runners-up were reported to be Motorola and Sylvania.

An indication of preference could not be obtained.

3. <u>Market Survey</u>

The results of the market survey are given in tabulated form, as is the custom.

Table 3.1 gives the manufacturers' names, their addresses and the names and addresses of their European agents. Column no 1 indicates their key number which is used throughout the following tables.

The next set of tables gives the product survey. The significance of the columns is as follows :

Manufacturer's number as in table 3.1.

Configuration is the key to the circuit design, their abbreviations are given in the abbreviations list.

Clock is the upper frequency limit.

The temperature is denoted by A for 0-125°C and by B for -55 to $\pm125^{\circ}\text{C}$.

Prices are quoted in U.S. dollars unless otherwise stated.

Availability is denoted by Roman cyphers for the weeks,or by an "S" for stock.

Package is given by "V" for TO 5 or "F" for flat-pack. Packaging in T.O. 47 is neglected.

Table 3.3 is self-explanatory, the manufacturer and his products are listed and some observations added.

- 8 -

Table 3.3 and the product survey tables do not entirely complement each other, as especially the European firms did not send me their dates in a form that allowed tabulating them in a list.

3.2 Product Survey

					Adders						
Manuf No	, Type	Config.	Clock (Mc/s)	Diss. (mW)	Supply (V)	Temp. (Key)	Delay (nsec)	0-level (vn)	Hevel (mV)	Price \$ avail. (key)	Package (key)
11 15 29 41	NWU 908 134 A PL 908 SN729/A	DCTL RTL DCTL RTL	2 4 2 -	10 12,5 10 10	3 3 3 3-4	A A B	90 25 90 70	100 150 150 200	900 800 900 800	19.50 S 19.50 S 19.50 S	VF VF VF VF
11 25 29 46	/uL901 SD 2005 PL 901 WM 203	DCTL RTL DCTL DTL	8 - 10 5	<u>Coun</u> 55 55 55 84	ter Adap 3 3 3 6	ters A B B B B	22 21 26 100	150 560 150	1000 810 1000	33.00 S 30.00 S 32.00 S S	VF VF VF VF
					ry Eleme:						
10 10 10 15 25 35 35 46	100 250 100 LSQ 100 SQ SC 1051 SD 1004 SE 124 CS 704 WM 213	CTL CTL CTL DTL DTL DTL DTL DTL DTL	0.1 0.25 0.1 0.1 4 20 10 10 10	150 150 150 150 6 20 16 16 16 40	24 24 24 4 6 -2.4 -2.4 6	A A 55 A B B B B B	100 100 100 20 60 60 50	1 mA 1 mA 1 mA 1 mA 300 710 300 300 1	12mA 12mA 12mA 12mA 4 V 5 V 3 V 3 V 3 V 1.8	80.00 S 90.00 S 55.00 S 22.00 S 40.00 IV 50.00 II 45.00 S 50.00 II S	
40	SNG5A/15	TTL	20	<u>And</u> 20	Nor Gat	es B	10	300	3.5₹	-	VF
3 41	G 54 Ser.	DCTL TTL	0.06 20		<u>Gates</u>	-10/80 B	8 ju	3V 2.5V	100 -	-	F F

Manuf No	Туре	Config.	Clock (Mc/s)	Diss. (mW)	Supply (V)	Temp. (Key)		O-level (mV)	l-level (mV)	Price \$ avail.		kage ey)
				Hal	f Adders	5						
11 11 15 25 26 29 36	/uL904 MW/uL902 134 H SD2002 MC 303 PL 904 PL 912 A 11	DCTL DCTL RTL RTL MECL DCTL DCTL DLT	8 2 4 - 10 2 10	35 8 10 45 60 45 8 40	3 3 3 10 3 5	A A B B B B B B B	22 90 25 17 6 22 80 36	150 100 565 -1550 150 150 900	1000 900 800 815 -750 1000 900 4800	25.00 S 17.00 S 17.00 S 22.00 S 17.00 S 25.00 S 17.00 S 36.00 I	V V V V V V V	ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч
2	B12001	DTL	-	5	uffers 4	В	100	1 V	1.7 V	47.00 S	V	F
11 11		DCTL airchild			3 t three			150 buffers	1000	16.00 S	V	F
14 15 21	NC/PC12 134 B G.B.	RTL TRL	15 4 5	200 12.5 60	4/12 3 6/12	A A A	8 25 25	300 150 200	2 V 800 -	30.00 S 14.00 S 15.00 S	V V	F F F
25 29 41	SD2007 PL 900 SN 535	RTL DCTL DCTL	- 10 5	45 30 22	3 3 3/4	B B B	17 25	560 150 300	815 900 1.5 V	15.00 S 16.00 S 20.00 S	V V	F F F
34	19 B 2 20 B 2		10 10	85 90	4 4 4	B B	10	250 250	2000 2000	20.00 5	v v	1
				<u>D:</u>	<u>rivers</u>							
3 25 26 26 35 41 43 46	D SD1003 MC 304 MC 205 SE 150 517 A 8213 WM 210	DCTL DTL MECL DTL DTL RCTL DTL DTL	0.06 - - 0.6 20 5	- 20 18 50 50 25 - 30	8 6 10 ,6 4 6 6 6	10/80 B B B B B B B B	- 35 - 55 35 - 15 35	- 710 - 600 300 2.5V 500 1	$ \begin{array}{c} - \\ 5000 \\ - \\ 2.5 \\ 3 \\ 300 \\ 3\frac{1}{2} \\ 1.8 \\ \end{array} $	40.00 II 7.00 S 50.00 S 40.00 S 40.00 S 105.00 II S	V V V V	ч Ч Ч Ч Ч Ч Ч Ч Ч Ч Ч Ч Ч

Nand Gates

Туре	Config.	Clock (Mc/s)	Diss. (mW)	Supply (V)	Temp. (key)	Delay (nsce)	O-level (mV)	l-leve] _(nV)	l Price ≸ avail.		kage ey)
NC 301 NCP 11 PC 15 101 G.A. RC 223 RC 224 CS 700 CS 701 UC1001B SN 344A SN 441A SN 5410 SN 5420 & 8214 MW 201 MW 204 MW 205	TTL DTL DTL TRL DTL DTL DTL DTL DTL DTL DTL TTL DTL DT	5 20 20 5 5 5 - 10 0.5 20 20 20 20 15 15 4	2 6 60 140 60 6 12 12 12 30 100 100 100 - - 50 7 7 84	3/6 3/12 3/12 12 6/12 4 4 4 4 3/6 3/6 5 5/6 6 6 6 6	A A A 80°C A A B B B B B B B B B B B B B B B B B	20 8 40 25 25 25 25 25 11 150 150 15 10 23 200	300 300 300 200 200 200 200 200 300 300	5000 5000 5000 7000 - 4000 4000 3000 3000 4000 6V 6V - - 3500 1800 1.8 -	9.00 S 40.00 S 75.00 S - 25.00 S - III 32.00 II 32.00 II 32.00 S 27.00 S 22.00 S - - 100.00 S S S	V V V V V V V V V	FTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
				Ind Gate	5						
SC1048 MC1111 MC 203 MC1112 MC1113 C1114 SE 105 2003	DTL DTL DTL DTL DTL DTL DTL DTL	4	6/node 200 - 300 400 100 - 8	4 10 10 10 10 10 -2.4 3	A B B B B B B B B B B B B B B B B B B B	30 15 - - - 10	300 300 250	2.5V	12.00 IV 26.00 S 17.00 S 30.00 S 32.00 S 24.00 S 15.00 II IV	V V V V V V	F F F F F
	NC 301 NCP 11 PC 15 101 G.A. RC 223 RC 224 CS 700 CS 701 UC1001B SN 344A SN 441A SN 5410 SN 5420 8214 MW 201 MW 204 MW 205 SC1048 MC1111 MC 203 MC1112 MC1113 C1114 SE 105	NC 301 TTL NCP 11 DTL PC 15 DTL 101 - G.A. TRL RC 223 DTL RC 224 DTL CS 700 DTL UC1001B DTL SN 344A DTL SN 5410 TTL SN 5420 TTL MW 201 DTL MW 202 DTL MW 203 DTL MW 205 DTL MW 205 DTL MC1111 DTL MC1112 DTL MC1113 DTL C1114 DTL SE 105 DTL	NC 301 TTL 5 NCP 11 DTL 20 PC 15 DTL 20 l01 - 5 G.A. TRL 5 RC 223 DTL 5 RC 224 DTL 5 CS 700 DTL - UC1001B DTL 10 SN 344A DTL 0.5 SN 441A DTL 0.5 SN 5410 TTL 20 SN 5420 TTL 20 MW 201 DTL 15 MW 204 DTL 15 MW 205 DTL 4 MC1111 DTL - MC1112 DTL - MC1113 DTL - MC1113 DTL - SE 105 DTL - 2003 DTL 15	NC 301 TTL 5 2 NCP 11 DTL 20 6 PC 15 DTL 20 60 101 - 5 140 G.A. TRL 5 60 RC 223 DTL 5 6 RC 224 DTL 5 6 CS 700 DTL - 12 UC1001B DTL 10 30 SN 344A DTL 0.5 100 SN 5410 TTL 20 - SN 5420 TTL 20 - SN 5420 DTL 15 7 MW 201 DTL 15 7 MW 205 DTL 4 84 MW 205 DTL 4 6/node MC1111 DTL - 200 MC 203 DTL - 300 MC1113 DTL - 400 C1114 DTL -	NC 301 TTL 5 2 3/6 NCP 11 DTL 20 6 3/12 PC 15 DTL 20 60 3/12 101 - 5 140 12 G.A. TRL 5 60 6/12 RC 223 DTL 5 6 4 RC 224 DTL 5 6 4 CS 700 DTL - 12 4 UC1001B DTL 10 30 3/6 SN 344A DTL 0.5 100 3/6 SN 5420 TTL 20 - 5 SN 5420 TTL 20 - 5 SN 5420 DTL 15 7 6 MW 201 DTL 15 7 6 MW 205 DTL 4 6/node 4 MC1111 DTL - 200 10 MC1112 DTL - 300 10 MC1113 DTL - 300 10	NC 301 TTL 5 2 3/6 A NCP 11 DTL 20 6 3/12 A PC 15 DTL 20 60 3/12 A 101 - 5 140 12 80°C G.A. TRL 5 60 6/12 A RC 223 DTL 5 6 4 A RC 224 DTL 5 6 4 A CS 700 DTL - 12 4 B UC1001B DTL 10 30 3/6 B SN 344A DTL 0.5 100 3/6 B SN 5410 TTL 20 - 5 B SN 5420 TTL 20 50 3/6 B MW 201 DTL 15 7 6 B MW 205 DTL 4 6/node 4 A MC1111 <td< td=""><td>NC 301 TTL 5 2 3/6 A 20 NCP 11 DTL 20 6 3/12 A 8 PC 15 DTL 20 60 3/12 A 8 101 - 5 140 12 80°C 40 G.A. TRL 5 60 6/12 A 25 RC 223 DTL 5 6 4 A 25 RC 224 DTL - 12 4 B 25 CS 700 DTL - 12 4 B 25 U01001B DTL 10 30 3/6 B 11 SN 344A DTL 0.5 100 3/6 B 150 SN 5420 TTL 20 - 5 B 15 SN 5420 DTL 15 7 6 B 23 MW 204 DTL 4 6/node<!--</td--><td>NC 301 TTL 5 2 3/6 A 20 300 NC 301 TTL 5 2 3/6 A 20 300 NCP 11 DTL 20 6 3/12 A 8 300 PC 15 DTL 20 60 3/12 A 8 300 101 - 5 140 12 80°C 40 400 G.A. TRL 5 60 6/12 A 25 200 RC 223 DTL 5 6 4 A 25 300 CS 700 DTL - 12 4 B 25 300 UC1001B DTL 10 30 3/6 B 11 400 SN 344A DTL 0.5 100 3/6 B 150 100 SN 5410 TTL 20 - 5 B 15 - 8214</td><td>NC 301 TTL 5 2 3/6 A 20 300 5000 NC 9 11 DTL 20 6 3/12 A 8 300 5000 PC 15 DTL 20 60 3/12 A 8 300 5000 101 - 5 140 12 80°C 40 400 7000 G.A. TRL 5 60 6/12 A 25 200 - RC 223 DTL 5 6 4 A 25 200 4000 RC 224 DTL - 12 4 B 25 300 3000 CS 700 DTL - 12 4 B 25 300 3000 UC1001B DTL 100 30 3/6 B 110 400 4000 SN 344A DTL 0.5 100 3/6 B 150 100 6V</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></td></td<>	NC 301 TTL 5 2 3/6 A 20 NCP 11 DTL 20 6 3/12 A 8 PC 15 DTL 20 60 3/12 A 8 101 - 5 140 12 80°C 40 G.A. TRL 5 60 6/12 A 25 RC 223 DTL 5 6 4 A 25 RC 224 DTL - 12 4 B 25 CS 700 DTL - 12 4 B 25 U01001B DTL 10 30 3/6 B 11 SN 344A DTL 0.5 100 3/6 B 150 SN 5420 TTL 20 - 5 B 15 SN 5420 DTL 15 7 6 B 23 MW 204 DTL 4 6/node </td <td>NC 301 TTL 5 2 3/6 A 20 300 NC 301 TTL 5 2 3/6 A 20 300 NCP 11 DTL 20 6 3/12 A 8 300 PC 15 DTL 20 60 3/12 A 8 300 101 - 5 140 12 80°C 40 400 G.A. TRL 5 60 6/12 A 25 200 RC 223 DTL 5 6 4 A 25 300 CS 700 DTL - 12 4 B 25 300 UC1001B DTL 10 30 3/6 B 11 400 SN 344A DTL 0.5 100 3/6 B 150 100 SN 5410 TTL 20 - 5 B 15 - 8214</td> <td>NC 301 TTL 5 2 3/6 A 20 300 5000 NC 9 11 DTL 20 6 3/12 A 8 300 5000 PC 15 DTL 20 60 3/12 A 8 300 5000 101 - 5 140 12 80°C 40 400 7000 G.A. TRL 5 60 6/12 A 25 200 - RC 223 DTL 5 6 4 A 25 200 4000 RC 224 DTL - 12 4 B 25 300 3000 CS 700 DTL - 12 4 B 25 300 3000 UC1001B DTL 100 30 3/6 B 110 400 4000 SN 344A DTL 0.5 100 3/6 B 150 100 6V</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	NC 301 TTL 5 2 3/6 A 20 300 NC 301 TTL 5 2 3/6 A 20 300 NCP 11 DTL 20 6 3/12 A 8 300 PC 15 DTL 20 60 3/12 A 8 300 101 - 5 140 12 80°C 40 400 G.A. TRL 5 60 6/12 A 25 200 RC 223 DTL 5 6 4 A 25 300 CS 700 DTL - 12 4 B 25 300 UC1001B DTL 10 30 3/6 B 11 400 SN 344A DTL 0.5 100 3/6 B 150 100 SN 5410 TTL 20 - 5 B 15 - 8214	NC 301 TTL 5 2 3/6 A 20 300 5000 NC 9 11 DTL 20 6 3/12 A 8 300 5000 PC 15 DTL 20 60 3/12 A 8 300 5000 101 - 5 140 12 80°C 40 400 7000 G.A. TRL 5 60 6/12 A 25 200 - RC 223 DTL 5 6 4 A 25 200 4000 RC 224 DTL - 12 4 B 25 300 3000 CS 700 DTL - 12 4 B 25 300 3000 UC1001B DTL 100 30 3/6 B 110 400 4000 SN 344A DTL 0.5 100 3/6 B 150 100 6V	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Nand/Nor Gates

Manuf. no	Туре	Config.	Clock (Mc/s)	Diss. mW (max)	Supply (V)	Temp. (key)	Delay (nsee)		l-level (mV)	Price \$ avail.		kage. key)
2 2 7 7 7	G. 12002 G 12003 H-MODS S-MODS E-MODS	DTL DTL DTL DTL DTL	- 5 1 0.1	1 400 400 400	12/6	B B 0-55 10-80 0-55	100 100 35 90 250	1000 1000 -10V 8V -10V	1700 1700 0 0 0	45.00 S 45.00 S 400.00 VI 400.00 VI 400.00 VI		F F F F F
7 7 11 11	L-MODS M-MODS /uL903 many mor	DTL DTL DCTL e types,	0.3 2 8	400 400 12	12/6 12/6 3	0-55 0-55 A	150 80 12	-10V -10V 150 rchild da	0 0 1000	400.00 VI 400.00 VI 14.00 S	V	F F F
15 15 15 20 23 26 26 35 36 36 36 36 36 40 40 40	134 G 134 D 2 SC1046 SC1047 XM3001 XM3002 HD 903 HD 904 MC 206 MC 201 SE 102 SE 102 SE 115 A 01 A 02 A 20 A 05 SNG 4A SNG 6A SNG 12	RTL RTL RTL RTL TTL DTL DTL DTL DTL DTL DTL DTL DTL D	4 4 5 5 2 - - 7 7 20	5 5 6/node 10 10 80 80 12 6 6 12 7 7/gate 7 15/gate 15 15	3 4 4 5 5 6 6 8 8 -2 9 5 5 5 5 5 5 5 5 5 5 5 5	A A A B B B B B B B B B B B B B B B B B	25 25 30 10-50 10-50 35 30 30 25 25 18 18 18 - 12 9 13	150 150 300 500 500 750 750 750 750 750 750 300 300 900 900 900 900 300 300 300	800 800 4000 5V 5V 3500 3500 2500 3V 2.5V 2.5V 2.5V 2.5V 2.5V 2.5V 3.5V 3.5V	12.00 S 12.00 S 24.00 IV 20.00 IV 60.00 VI 	V	אטאאאאאאא אאאאאאאאאאאאאאאאאאאאאאאאאאאא
40 40 41 41 41 41	SNG 14 SNG 16 SN 533 SN 533 SN5400	TTL TTL DTL DTL TTL vember 19	20 20 5 5 20	15 15 24 24 10	5 5 3 5 5 uments h	B B B B B	13 9 13 25 25 15 n marke	300 300 300 300 300 - ting 7 ne	3.5V 3.5V 3.5V 1.5V 1.5V -	20.00 S 20.00 S	V V	r F F F F F

Flip-flops

lanuf. No	Туре	Config.	Clock (Mc/s)	Diss. (mW)	Supply (V)		Delay (nsec)	O-level (mV)	l-level (mv)	Price \$ avail. (key)		ckag cey)
										11037		
3	Z	DCTL	0.06	360 /uW	3	-10/80°		3000	100	-		F
	υ	DCTL	0.06	180′/uW	3	-10/800		3000	100	-		F
5	FFM	DTL	20	4	4/12	-35/550	8	1.5V	3.5₹	40.00 V		F
11	F/uL92329	1	8	60	3,6	A	25	250	1000	6.00 S	V	
	MW /u 913	DCTL	2	15	3	A	100	-100	900	33.00 S	V	\mathbf{F}
	/uL 902	DCTL	8	22	3	A	14	150	1000	17.00 S	V	F
	/uL 916	DCTL	8	54	3	A	25	150	1000	33.00 S	V	F
	DT/uL913	DTL	5	20	3/6	A	50	200	4000	36.00 S	V	F
14	NC/PC 8	-	25	200	4/12	A	8	300	5V	40.00 S	V	F
	PC 13	RCD	25	200	4/12	A	8	300	5₹	80.00 S		म्
16	1035	-	2 1	60	9	В	-	_	4V	50.00 S	V	F
17	100	-	2	260	12	800	40	400	7V	-		F
	200	-	0.5	250	12	800	150	400	77	-		F
22	FF	TRL	5	60	6/12	A	25	200		15.00 S		F
	UD	TRL	1	60	6/12	A	25	200		15.00 S		F
25	SD 1032	TTL	20	15	6	В	20	400	3000	60.00 II	V	F
	SD 2001	RTL	20	22	3	В	22	560	815	16.00 S	V	F
26	MC 302	MECL	_	35	10	В	10	-1,5V	-750	12.00 S	V	म्
	MC 308	MECL	-	52	10	В	10	-1,5V	-750	20.00 S	V	F
	MC 209	DTL	-	16	8	В	50	-	_	55.00 S	V	F
29	PL 902	DCTL	10	22	3	В	14	150	1000	17.00 S	V	F
	PL 916	DCTL	10	54	3	В	20	150	1000	33.00 S	V	F
38	12001	DCTL	15	30	3	В	20	250	2000	40.00 IV		F
39	UC1002B	DTL	10	3	3/6	В		400	4V	S		F
40	SFF 18	SUHL	20	30	5	В	15	300	3.5V	-	V	F
	SFF 2 A	SUHL	20	40	5	В	20	300	3.5V	-	V	F
	SFF 2 B	SUHL	20	45	5	В	20	300	3.5V	-	V	F
41	SN 530	DTL	5	50	3/4	В	_	300	1.5V	25.00 S		F
	SN 5470	TTL	20		3	В	_	-	-	-		F
43	8200	DTL	50!	100	3/6	В	10	500	3500	120.00 II		F
46	WM 202	DTL	15	15	6	В	23	1	1.8	S	V	F
34	16 B 2	TRL	10	90	4	В	-	250	2000	-	V	-

Input Gates

Manuf. No	Type	Config.	Clock (Mc/s)	Diss. (m₩)	Supply (V)	Temp. (key)	Delay (nsec)	O-level (mV)	l-level (mV)	Price \$ Avail. (key)		ckag cey)
15	1050	DTL	4	6/node	4	A	30	300	4	29.00 I	v v	F
-,	134 D	RTL	4	5	3	A	25	150	0.8	19.00 S	Jv	F
	365 D	TTL		12/gate	2 4•5	A	55	300	2.8		Ιv	F
	365 G	TTL		12/gate	4.5	A	55	300	2.8	30.00 I	1	F
	153 D	RTL	10	20	3	A	12/node		1.2	20.00 I		F
	543 G	CML	10	10	4.5	A	15	3500	4	20.00 I		F
25	SD 1001	DTL		20	6	В	18	710	5	33.00 I	1	- F
25	Molectro		8 more		in TTL a	ind RTL	10	1.20		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	v	F
26	MC 309	MECL	_	49	12	B	6	-1.55V	- 0.75	13.00 S	v	F
29	PL 915	DCTL	10	24	3	B	12	150	1	32.00 S	V	F
29	Philco m			4		i			_		v	F
36	B 01	TCL	30	40	4.5	B	10	500	2.5	39.00 I	V	F
-	B 02	TCL	30	40	4.5	В	10	500	2.5	39.00 I	l v	\mathbf{F}
41	516 A	RCTL	600kc	7	3	B	100	2.5V	300mV	32.00 I		F
46	WS 275	TTL	4	25	5.5	В	60	_	-	S	l v	F
	WS 276	TTL	4	25	5.5	В	60	-	-	S	v	F
				N	' or Gates							
				110	or Gales	5						
3	Mod C	DCTL	0.06	800	3	10/80	4 /u	3₹	0.1	_		F
5	4 NOR/D	DTL	15	4	6/12	-35/55	10	1.7V	5	35.00 I	7	F
-	4 NOR/R	RTL	15	4	1 1	-35/55	10	0.3V	5	30.00 I		F
14	PC 14	DTL	15	170	-3/12	125	8	0.3V	5	70.00	v	F
·	PC 10	DTL	15	170	-3/12	125	8	0.3V	5	35.00		F
17	102	-	5	140	12	80	40	400	7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		F
21	GG	TRL	5	60	6/12	125	25	200	12	13.00 S		F
29	903	DCTL	10	12	3	B	12	150	1	13.00 S	V	F
32	RC 103	DCTL	10	15	3	Ā	20	150	1	S	v	-
32	Raytheon 1		1	-					-		l v	F
43	8204	DTL	20	1100	<u>⊢</u> 3/6	B	10	500	3.5	105.00 II	1.	F
45	WL	DCTL	10	15	15	B	15	1	4	1 V.	1	-

Miscellaneous Circuits

Manufact. No	
14 26	RCD Steering network 5 Input or/nor and/nand gate 3 Input or/nor and/nand gate Dual inverter Memory diode matrices
	D.C. comparator
35	Dual diode array
40	Set/rest single-phase buffer
41	Dual and/or gate 5 Input and/or gate
43	20 Mc/s DTL pulse shaper
46	DTL diode clusters
15	Power gates
25	Power gates
26	Power gates
35	Power gates
11	Gate expanders
15	Gate expanders
26	Gate expanders
29	Gate expanders
32	Gate expanders
36	Gate expanders
40	Gate expanders
3	2-40 Jus PRF 60 kc flatpack one-shot multivib
21	25 ns PRF 5 Mc T 05 and F one-shot multivib
43	30-1000ns PRF 20 Mc flatpack one-shot multivib
14	PRF 10 Mc/s clock multivib. NC/FC 16 T 05, F
14	PRF 10 Mc/s clock multivib PC - 18 F
21	PRF 5 Mc/s clock multivib DM series F
14	5 Mc/s Schmidt trigger type NC/PC 17 T 05, F
21	5 Mc/s Schmidt trigger type ST F

3.4 List of abbreviations

CDL	Core diode logic
CML	Current-made logic
CTL	Core transistor logic
CTR	Core transistor register
DCTL	Direct coupled transistor logic
DTL	Diode transistor logic
DL	Diode logic
LLL	Low level logic
MECL	Motorola emitter coupled logic
MOS	Metal oxide semi-conductor
RCTL	Resistor-capacitor transistor logic
RTL	Resistor-transistor logic
SCAT	Surface-controlled avalanche transistor
SFB	Solid-state functional block
SLT	Solid logic technology
SUHL	Sylvania Universal High Level
TCL	Transistor coupled logic
TDL	Tunnel diode logic
TFFT	Thin-film field effect transistor
TICL	Texas Instruments current mode logic
TRL	Transistor resistor logic
TTL	Transistor transistor logic
ETL	Emitter coupled logic
FET	Field effect transistor

4. <u>References</u>

- <u>Integrated Microcircuits</u>. A Guide to characteristics, prices and sources.
 Electronic Products, July 1964, part II, pp. 88 et seq.
- 2. <u>Advances in Micro-miniaturization</u> Electronics, February 15th, 1963.
- 3. <u>Integrated Circuits</u>. A direct report Solid State Design, July 1963
- 4. <u>Zuverlässigkeit von Bauelementen</u> Nachrichten technischer Fachbücher, NTF-Band 24, Verlag Vieweg, Braunschweig 1964.

5. <u>Microelectronics</u>

Proceedings of the Microelectronics Symposium, Munich, October 1964. Verlag R. Oldenbourg, München (to be published).

- 6. John L. Sprague : <u>Integrated Circuits</u> International Science and Technology, April 1964
- 7. Bohn, R., et al.: <u>50 Mc Monolithic Integrated Circuits for Digital</u> <u>Application</u> Solid State Design, July 1963.
- 8. Charles Clough (ed.) : <u>Texas Instruments Press Release</u> Munich, October 21st, 1964.
- 9. Flood, J. : <u>Integrated Circuit Reliability</u> Motorola Monitor, Vol. 2, No 1, July 1964.
- Further : Catalogues and Data Sheets of practically all above-mentioned firms and manufacturers.

5. Acknowledgements

A survey like this can hardly be compiled without the cooperation of the many firms and their representatives.

I wish to express my gratitude in particular to Mr. E. Klonjian, emeritus chairman of the Microelectronics Circuit Application Committee of the E.I.A. in America who kindly commented on the tables contained in this paper.

Also M. Lucas, of Young Electronic, Paris, helped me a great deal in completing the survey.

K. Gase

<u>Distribution</u> : (open) MPS Scientific and Technical Staff

6. Appendix

Letter from N.V. Philips' Gloeilampenfabrieken, Electronica Department, of December 10th, 1964:

Dear Mr. Gase,

Dr. de Troye of our Research Laboratory informed me about the interest which you expressed on behalf of CERN in the present and future activities of N.V. Philips with regard to integrated circuits.

As the undersigned is in charge of a new product group which has newly been formed for integrated circuits (on semiconductor, thin film and hyvrid thin film basis) I may take the freedom to inform you about our activities at present and the plans we have for the future.

It is our absolute belief that integrated circuits will take a very important place in the building elements activity over the coming years. From the technical point of view integrated circuits are still in their infancy and we may expect a technical evolution as we have experienced so far on semiconductors. This is the reason that our efforts will not be concentrated on one of the available technologies but on all three. We are namely also of the opinion that for every single application it will be necessary to determine which technology will lend itself best - both technically as well as economically - to the given application.

This approach implies that our activities will be concentrated on customer requirements primarily.

From a commercial point of view it will of course be necessary to offer also a standard range of both digital and linear circuits.

We have at present available a linear semiconductor integrated circuit which has primarily been developped for use in hearing aids. We furthermore develop at present a range of DTL and TTL digital circuits which we hope to have available mid-1965. Apart from these ranges we undertake development of any device or range of devices on customer requirement if such a development is justified.

This however implies a thorough technical and commercial contact with the customers and I would therefore welcome very much if you could let us know either by writing or by personal contact your specific wishes.

Hoping to have been of service to you and awaiting your reaction, I remain

Yours faithfully,

pp N.V. Philips' Gloeilampenfabrieken

A.A. Opstelten