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Abstract: Motivated by recent discussions and the absence of exact global symmetries in
UV completions of gravity we re-examine the axion quality problem (and naturalness issues
more generally) using antisymmetric Kalb-Ramond (KR) fields rather than their pseudoscalar
duals, as suggested by string and higher dimensional theories. Two types of axions can be
identified: a model independent S-type axion dual to a two form Bµν in 4D and a T -type
axion coming directly as 4D scalar Kaluza-Klein (KK) components of higher-dimensional
tensor fields. For T -type axions our conclusions largely agree with earlier workers for the
axion quality problem, but we also reconcile why T -type axions can couple to matter localized
on 3-branes with Planck suppressed strength even when the axion decay constants are of
order the KK scale. For S-type axions, we review the duality between form fields and massive
scalars and show how duality impacts naturalness arguments about the UV sensitivity of
the scalar potential. In particular UV contributions on the KR side suppress contributions
on the scalar side by powers of m/M with m the axion mass and M the UV scale. We
re-examine how the axion quality problem is formulated on the dual side and compare to
recent treatments. We study how axion quality is affected by the ubiquity of p-form gauge
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potentially lead to a problem. We also show why most fields do not satisfy these criteria,
but when they do the existence of multiple fields also provides mechanisms for resolving it.
We conclude that the quality problem is easily evaded.
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1 Introduction

String theory giveth and string theory taketh away, at least where axions1 are concerned.
On one hand axions are said to be ubiquitous in the spectrum of particles predicted around
most string vacua [5–9]. This observation motivates the study of their phenomenological
consequences [10, 11], with a particular focus of late on their possible role as a light form
of dark matter [12–14].

On the other hand, string theory equally generally forbids2 the existence of exact rigid
(or global) symmetries [15, 16], in principle including the rigid shift symmetries on which
low-energy axion properties are founded. For Goldstone bosons this breaking can keep them
from being light, and can interfere with any mechanisms that rely on the survival of axions
down to the low-energy theory. As applied to the QCD axion this has come to be known
as the axion ‘quality’ problem [18–21].

So which is it? Are axions as abundant as dirt or as diamonds in low-energy string
vacua? The resolution (which has long been known) is that there is a sense they are both.

1We follow the string literature and broadly refer to any low-energy Goldstone boson enjoying a rigid
compact shift symmetry as an ‘axion’ (as opposed to the ‘dilatons’ associated with rigid scaling symmetries),
something that would be called an ALP (axion-like particle) by particle phenomenologists. Our later focus is
on those Goldstone bosons whose symmetries have a QCD anomaly and so can take part in the strong-CP
problem [1–4] (which is what a particle physicist would usually mean by an ‘axion’).

2Although there are known ways out [17] the conclusion is nonetheless broadly true and global symmetries
tend to be both rare and approximate.
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The absence of global symmetries really does mean that one never really directly finds scalar
axions a with shift symmetries in string vacua. Instead these scalars arise indirectly as
Kaluza-Klein (KK) modes from fields that not themselves scalars; commonly arising3 as
components of 2-form Kalb-Ramond gauge fields [22], B = 1

2 BMN dzM ∧ dzN , subject to
the gauge symmetries B → dλ for some arbitrary field λM(x). Fields like BMN arise so
frequently in string vacua because they are related to other fields (notably the metric) by
supersymmetry in higher dimensions.

1.1 Types of UV axion pedigree

Low-energy scalars typically emerge in the 4D effective theory from such fields in one of
two ways:

• T -type axions: b(x) are specific cases of Kaluza-Klein (KK) modes arising when
dimensionally reducing the extra-dimensional components Bmn(x, y) = b(x)ωmn(y),
where xµ denote the observed 4 dimensions, ym are extra-dimensional coordinates and
ωmn(y) is a harmonic 2-form field within the extra dimensions.

• S-type axions: a(x) arise directly as the 4-dimensional components Bµν(x, y) =
bµν(x)ω(y), which in four dimensions are known to be dual to scalar fields with shift
symmetries [23] through relations of the form ∂µa ∝ εµνλρ∂νBλρ (much more about
which below). Here ω(y) is a harmonic 0-form field — typically a y-independent constant
that can depend on extra-dimensional moduli.

This UV provenance is of course relevant to the axion quality problem, which is in essence an
issue of UV sensitivity. One of our goals with this paper is to explore the ways that it helps,
for both T - and S-type axions. Some of our conclusions are similar to earlier discussions of
this issue [24, 25], in particular that the problem gets rephrased in dual form (for S-type
axions) in terms of the existence of multiple 3-form gauge potentials.

Since these issues have recently been revisited anew [26, 27] we clarify what properties
these fields must have to actually cause a quality problem and use this to argue why
gravitational examples specifically (and the great abundance of such potentials in string vacua
more generally) need not pose a problem in themselves. The dual formulation also suggests
how the presence of multiple axions (as is common in string theory) can help alleviate the
quality problem. The upshot is that the UV can, but need not, cause a quality problem.
Whether or not it does cannot be decided purely at low energies because it depends on
what happens in the UV.4

But our discussion has implications that apply more broadly than just to the quality
problem for the QCD axion. Along the way we identify more generally how dimensional
‘naturalness’ arguments for the scalar potential give very different estimates depending on
whether they are made directly for the scalar or are first done for its dual and then mapped to

34D axions can also arise as KK modes from other types of extra-dimensional fields, but we focus on the
Kalb-Ramond field because it allows a unified treatment of two different types of 4D axion.

4The same is also true of other naturalness problems; they arise because of strong dependence on physical
masses for states that actually appear in the UV theory and not a dependence on cutoffs, as is sometimes
mistakenly asserted (for a summary of these issues see e.g. [28]).
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the scalar using duality. In particular terms involving n powers of the canonically normalized
scalar arise additionally suppressed by powers of (m/M)n where M is the UV scale and m is
the axion mass (an observation also made in the past for inflationary models [29, 30]).

We find a number of other ways that axion properties suggested by string-motivated
extra-dimensional physics can be informative. For instance we describe a simple model
for which T -type axions have physical axion-matter couplings gaff that are dramatically
smaller than the naive value 1/f read off from the axion kinetic term. In the example given
(motivated by the models of [31]) gaff is order 1/Mp despite f being an ordinary particle-
physics scale. Decoupling these scales from one another could have practical implications
for axion phenomenology.

We show why the same hierarchy does not arise in these models for S-type axions and we
clarify why not. Physical couplings of S-type axions really are of order 1/f and we identify
which interactions in the UV completion are responsible for the breakdown of the E/f
expansion at energies E >∼ f . S-type axions illustrate how the scalar and dual representations
can provide instances of weak/strong coupling duality, for which both the scalar and the dual
cannot be within the weakly coupled regime. In the extra-dimensional example studied it is
the Kalb-Ramond formulation that is weakly coupled. This could also have phenomenological
implications to the extent that an axion that is dual to a weakly coupled system is unlikely
to be well-described by the semiclassical methods that are universally used when exploring
its physical implications.

Some of these observations imply that the use of the scalar (rather than Kalb-Ramond)
variable can be misleading in some circumstances. This can seem surprising at first sight
because the duality between axions and Kalb-Ramond fields is in essence a field redefinition
and so scalar and dual formulations should be completely equivalent; it shouldn’t matter that
string theory hands you Kalb-Ramond fields if scalar axions are equivalent and are much
simpler to work with. Why should one care that a more complicated framework exists if
it only obscures implications drawn using more transparent methods? We argue here that
phenomena like weak/strong coupling duality are special cases of Weinberg’s Third Law of
Progress in Theoretical Physics [32]: You can use any degrees of freedom you like to describe
a physical system, but if you use the wrong ones you’ll be sorry.

1.2 Non-propagating low-energy forms

These duality arguments touch on a related rich vein of physics with broader significance:
the importance of keeping non-propagating entities like auxiliary and/or topological fields
when formulating Wilsonian effective theories. These are fields that can be integrated out
without changing the types of particles that propagate, and so it is tempting to think one
should do so once and for all and simply ignore them thereafter. However such fields bring to
the low-energy effective theory information about how its UV completion responds, e.g. to
environments with nontrivial topology. They arise in concrete situations (such as in EFTs
for 3-dimensional Quantum Hall systems, where the presence of emergent non-propagating
gauge fields is essential for capturing the fractional quantization of Hall plateaux and the
unusual charge and statistics of some excitations [33–35]).
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Evidence is building that a similar role is played more widely by 3-form gauge potentials in
four spacetime dimensions, C := 1

6 Cµνλ dxµdxνdxλ subject to the gauge freedom C → C+dΛ
where Λµν(x) = −Λνµ(x) is an arbitrary 2-form field. These are known to bring to the
low-energy 4D effective theory topological information coming from integrated out extra
dimensions [36, 37], and more generally provide the origin for the auxiliary fields that appear
in the 4D supergravities that are the low-energy limits of string vacua [38, 39]. They appear in
the QCD quality story because they can give masses to Kalb-Ramond fields [40, 41] through
a Higgs mechanism that is dual to more mundane methods of axion mass generation. Because
the field strength H = dC often appears in the action with a definite sign (often as a square),
its presence can alter the implications of naturalness arguments for the scalar potential [42].
Indeed such terms provide the 4D understanding of why 6D SLED models [43–46] can in
some circumstances suppress the 4D vacuum energy, but also why they struggle to do so
enough to solve the cosmological constant problem [37, 47–49]. Their interplay with accidental
scaling symmetries lies behind a recent attempt to find a dynamical relaxation mechanism
for vacuum energies in four dimensions [31].

In what follows we build our case for the above story using concrete examples. We
first, in section 2, briefly review the duality construction — in particular its extension to
massive axions [40, 41], which provides a way to think about scalar masses arising through a
Higgs mechanism. Section 3 then briefly reviews and clarifies its use to dualize the axion
solution to the strong-CP problem [25], highlighting in particular how the quality problem
gets rephrased in the dual language and how the apparent UV sensitivity of terms in the
EFT differs between the axion formulation and its dual. Finally section 4 provides a concrete
extra-dimensional example — inspired by a UV completion of [31] — that illustrates both
how axion/Kalb-Ramond duality can map weak to strong couplings, and how enormous
hierarchies can arise with gaff , gaγγ ∼ 1/Mp even with f as low as eV scales.

2 Axions and duality

We start with a review of why 2-form gauge potentials like Bµν are dual [23, 50] to scalar
fields, both in the standard shift-symmetric massless case and for massive scalars, following
the discussion of [40, 41] (which in turn generalizes earlier arguments [51] aimed at describing
particle/vortex duality in Kosterlitz-Thouless transitions [52–54]).

2.1 Axion/2-form duality

Consider the following path integral

Ξ[J ] =
∫
DB eiS1[B] (2.1)

where S1 =
∫

d4x L1 with L1 chosen (at least to start) to be

L1(B) = − Z2 · 3! GµνλG
µνλ − 1

3! ε
µνλρGµνλJρ , (2.2)

with G = dB the exterior derivative of a 2-form field Bµν and Z and Jρ possibly depending
on other fields (collectively denoted ψ). B = 1

2 Bµν dxµ ∧ dxν is only defined up to the gauge
redundancy B → B + dλ for an arbitrary 1-form λ = λµ dxµ.
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The duality starts by trading the integration over Bµν for an integral over Gµνλ subject
to a constraint that imposes the Bianchi identity dG = 0. These are equivalent because the
Bianchi identity is sufficient to guarantee the local existence of a field Bµν with G = dB. The
constraint is imposed by integrating over a scalar Lagrange-multiplier field a, and so writing

Ξ[J ] =
∫
DGDa eiS0 (2.3)

where S0 =
∫

d4x L0 with

L0(G, a) = − Z2 · 3! GµνλG
µνλ − 1

3!a ε
µνλρ∂µGνλρ −

1
3! ε

µνλρGµνλJρ . (2.4)

Integrating out a imposes the Bianchi identity dG = 0 and allows the integral over G to be
replaced with the integral over B, leading back to (2.2).

The dual version is obtained from (2.4) by instead integrating out Gµνλ so that a is the
remaining field. The result inherits a shift symmetry a→ a + constant because L0 transforms
into a total derivative. The G integration is gaussian, whose saddle point is Gµνλ = Gµνλ where

Gµνλ = −Z−1εµνλρ
(
∂ρa+ Jρ

)
, (2.5)

and so the integration gives the new lagrangian density

L2(a) = − 1
2Z (∂µa+ Jµ)(∂µa+ Jµ) . (2.6)

If Z = 1 then a is a canonically normalized massless scalar derivatively coupled to the same
local current Jµ as in the original formulation. Because (2.2) and (2.6) are both obtained
from (2.4) they must describe equivalent physics. Although the implied field redefinition
from Bµν to a is in principle nonlocal the physics on both sides is nonetheless local because
this is true of the relation between the field strengths given in (2.5).

Significance of Z ↔ Z−1. In reality the above gaussian action is always supplemented
by other non-gaussian interactions Lint within a low-energy Wilsonian effective field theory
(EFT). To the extent that both Bµν and a are derivatively coupled perturbative semiclassical
methods in the presence of nongaussian terms like (GµνλGµνλ)2 ∈ Lint are ultimately justified
by a low-energy derivative expansion that applies equally well on both sides of a duality
relationship because relationships like (2.5) involve equal numbers of derivatives on both sides.

The inversion of Z → Z−1 as one passes from (2.2) to (2.6) is a noteworthy feature
of duality. When Z � 1 this implies 2-point correlators of Gµνλ are order Z−1 in size
while those of ∂µa are instead order Z. The significance of the change Z → Z−1 depends
on whether or not Bµν and a can be freely rescaled to remove Z by going to canonically
normalized variables. If this is so then Z in any case drops out of observables. For instance,
when Jµ 6= 0 this rescaling shows that Ξ is really only a function of J̃µ := Z−1/2Jµ rather
than depending on Z and Jµ separately. Although Z ↔ Z−1 is sometimes called weak/strong
coupling duality, Ξ[J̃ ] is the same on both sides of the duality and so both sides agree on
its functional dependence if expanded order-by-order in powers of Z−1 (say).

One situation where this kind of rescaling is not possible is when Z depends on other
fields and the target-space metric in field space is not flat. Another case where physics can
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depend explicitly on Z is when the field Bµν or a is quantized,5 perhaps satisfying a boundary
condition like

∮
W

dxµ∂µa = 2πnf for some curve W, integer n and mass scale f , or perhaps∮
C
B = 2πñf−1 for some 2-cycle C and possibly different integer ñ and mass scale f̃ . In

these situations physical results can depend on Z (i.e. on f and/or f̃) and Jµ separately,
and the relation Z → Z−1 can carry physical significance.

2.2 A Higgs mechanism for scalar masses

Although the above makes the shift symmetry (and so also masslessness) of a seem automatic,
we next summarize how duality extends to massive scalars, following [40, 41]. A scalar
potential is achieved in the dual framing through a Higgs mechanism in which the field
Bµν ‘eats’ (or is eaten by) a non-propagating gauge potential6 Cµνλ. Because Cµνλ does not
propagate this meal does not change the number of propagating degrees of freedom. We here
describe mass generation and the emergence of a scalar potential within a simple semiclassical
analysis. We return the specific case of axion potential generation by non-perturbative effects
in QCD in the Peccei-Quinn theory in section 3.1 below.

To this end consider the following gaussian path integral

Ξ[J ] =
∫
DC DB eiS1 (2.7)

where S1 =
∫

d4x L1 and

L1(C,B) = − 1
2 · 4!HµνλρH

µνλρ − 1
2 · 3!(Gµνλ +mCµνλ)(Gµνλ +mCµνλ)

− 1
3! ε

µνλρ(Gµνλ +mCµνλ)Jρ . (2.8)

Here Cµνλ is a 3-form gauge potential with field strength H = dC and Bµν is a 2-form gauge
potential with G = dB while m is a parameter with dimension mass.

This lagrangian has the gauge symmetry C → C+ dΛ and B → B−mΛ for an arbitrary
2-form Λ. So when m 6= 0 we can choose a gauge B = 0. The field equation for C that
follows from this action then is

DµH
µνλρ +m2Cνλρ +mενλρµJµ = 0 . (2.9)

This describes a single spin state propagating with mass m once all the gauge symmetries
are used, as can be seen by counting the massless states from which it is built. (In 4D
Bµν is shown above to be equivalent to a massless scalar and Cµνλ contains no propagating
degrees of freedom at all because one can always write Hµνλρ = h εµνλρ with field equation
∂µH

µνλρ = 0 in the massless limit, which implies h is a constant and so does not propagate.)
The dual should therefore be a massive scalar and this can be verified by trading the

integral over B for an integral over G and introducing (as before) a lagrange multiplier a to

5This is generic the case in string theory for which the symmetries associated to antisymmetric tensors and
axions are compact (meaning there always exist magnetic-like branes). For a general discussion see [55].

6Known string vacua can also contain a large number of these 3-form gauge potentials.
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impose the Bianchi identity7 dG = 0, leading to the lagrangian density

L0(C,G, a) = − 1
2 · 4!HµνλρH

µνλρ − 1
2 · 3!(Gµνλ +mCµνλ)(Gµνλ +mCµνλ)

− 1
3! a ε

µνλρ∂µGνλρ −
1
3! ε

µνλρ(Gµνλ +mCµνλ)Jρ . (2.10)

Integrating out a returns us to the above formulation, but instead performing the integration
over G leads to the saddle point

Gµνλ = −mCµνλ − εµνλρ
(
∂ρa+ Jρ

)
, (2.11)

and so to the lagrangian

L2(C, a) = − 1
2 · 4!HµνλρH

µνλρ − m

4! a ε
µνλρHµνλρ −

1
2∂µa ∂

µa− Jµ∂µa−
1
2JµJ

µ . (2.12)

Next we perform the integral over Cµνλ, and this is equivalent to simply performing
the gaussian integral over Hµνλρ because the integrability condition for writing H = dC
is dH = 0 which is always true (in 4D). The saddle point for the H integral occurs for
Hµνλρ = Hµνλρ where

Hµνλρ = −maεµνλρ (2.13)

and so leads to the scalar lagrangian

L2(a) = −1
2(∂a)2 − m2

2 a2 − Jµ∂µa−
1
2JµJ

µ . (2.14)

This is the expected massive scalar.

2.2.1 Scalar potential

For future reference notice that it is only this last step that would differ if we’d had
higher-dimension terms like δL = W (X) in the lagrangian with X = 1

4!ε
µνλρHµνλρ and so

X2 = − 1
4!HµνλρH

µνλρ and so on. The above discussion is the special case W = 1
2X

2 but
one could entertain, for example,

W = c1M
2X + 1

2 X
2 + 2c3

3M2 X
3 + c4

4M4 X
4 + · · · (2.15)

where the coefficients ci are dimensionless and M is a UV scale inserted everywhere on
dimensional grounds (with Hµνλρ canonically normalized8).

For non-quadratic W the integral over H is no longer gaussian, but we can proceed
assuming a semiclassical saddle-point approximation is valid, in which case the saddle
point (2.13) is modified to (

∂W

∂X

)
H=H

= ma , (2.16)

7One can equivalently omit the mCµνλ terms everywhere and instead impose the modified Bianchi
identity dG = mH.

8The dependence on the UV mass scale M here arises on dimensional grounds, assuming H is canonically
normalized. This normalization (which makes the coefficient of X2 simple) assumes the physics that generates
W (X) does not destabilize the saddle point used above and in section 2.1 to derive the duality between a and
Bµνλ.
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which agrees with (2.13) when W = 1
2X

2. For example, for the choice (2.15) this becomes

c1M
2 +X

(
1 + 2c3

M2X + c4
M4X

2 + · · ·
)
' ma (2.17)

and so

X ' ma− c1M
2 − 2c3

M2

(
ma− c1M

2
)2

+O
[(
ma− c1M

2
)3
/M4

]
. (2.18)

Once used in the lagrangian this shows how non-quadratic pieces of W map over to
non-quadratic contributions to the scalar potential for a in the dual lagrangian L2. In
particular the axion potential becomes

V (a) = −W (X) +maX = 1
2
(
ma− c1M

2
)2
− 2c3

3M2

(
ma− c1M

2
)3

+ · · · . (2.19)

Two features are noteworthy about this potential:

• First, notice it shares the usual Legendre property

∂V

∂a
= mX +

(
−∂W
∂X

+ma

)
∂X

∂a
= mX , (2.20)

where the last equality uses (2.16). Even if new non-quadratic terms introduce new
stationary points for V (a) (or shifts the positions of old ones) eq. (2.20) ensures X = 0
for all of them.

• Second, once a is shifted so that the minimum is at a = 0 the potential depends on
m and a only through the combination ma. Consequently, a term proportional to an
comes suppressed by a power of (m/M)n relative to what would naively be expected
on dimensional grounds for V (a). This is how the dual theory reproduces the same
M -dependence as found for higher powers of Hµνλρ given that a has canonical dimension
mass while H has dimension (mass)2. This shows how a dimensional assessment of
how UV scales appear in the low-energy theory can care about the existence of a
dual formulation.

3 Naturalness issues for dual systems

This section examines how naturalness arguments look for T - and S-type axions, and for
S-type axions how they depend on which side of the duality relation they are made. We
do so using the axion quality problem as a representative example.

3.1 QCD and the dual PQ mechanism

To this end we extend the above reasoning to the main event: QCD and the θ-term. The
idea is to dualize the coupling of the axion to QCD to see how the strong-CP problem gets
formulated, along the general lines of [25]. We then ask how UV physics might complicate
the story in the dual theory.

– 8 –
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Consider therefore coupling a 2-form potential Bµν to a gauge potential Aµ (with field
strength Fµν) representing the QCD gauge sector,9 of the form

L1(B,A) = − 1
2 · 3!GµνλG

µνλ − 1
3! ε

µνλρGµνλJρ −
1
4FµνF

µν − θ

2 ε
µνλρFµνFλρ . (3.1)

We suppress both gauge-group indices and traces over them to avoid notational clutter.
The current Jµ involves other fields in the problem and in general the 3-form field strength
is given by

G = dB + S , (3.2)

where Sµνλ is the Chern-Simons 3-form built from Aµ. S satisfies dS = Ω where Ω is a
gauge-invariant quantity that on grounds of consistency satisfies dΩ = 0, for which we take

1
12 ε

µνλρΩµνλρ = 1
f
εµνλρFµνFλρ . (3.3)

The mass scale f is here required on dimensional grounds. Doing this allows the G integral
to be traded for one over B as before and gives the lagrangian

Duality rewrites the functional integral

Ξ[J ] =
∫
DBDA eiS1(B,A) (3.4)

with S1 =
∫

d4x L1 as the equivalent path integral

Ξ[J ] =
∫
DGDADa eiS0(G,A,a) (3.5)

where S0 =
∫

d4x L0 and

L0(G,A, a) = − 1
2 · 3!GµνλG

µνλ − a

3! ε
µνλρ

(
∂µGνλρ −

1
4 Ωµνλρ

)
− 1

3! ε
µνλρGµνλJρ

− 1
4FµνF

µν − θ

2 ε
µνλρFµνFλρ . (3.6)

Eq. (3.5) with (3.6) is equivalent to (3.4) with (3.1) because integrating out a imposes the
Bianchi identity dG = Ω, whose solution locally is (3.2).

The dual formulation instead integrates out G and leaves a as the dual variable. In-
tegrating out G leads to the lagrangian density

L2(A,a) =−1
2(∂a)2−Jµ∂µa−

1
2JµJ

µ+ a

4! ε
µνλρΩµνλρ−

1
4FµνF

µν− θ2 ε
µνλρFµνFλρ

=−1
2(∂a)2−Jµ∂µa−

1
2JµJ

µ− 1
4FµνF

µν+ 1
2

(
a

f
−θ
)
εµνλρFµνFλρ , (3.7)

which is the axion-gauge lagrangian with f interpreted as its decay constant.10 This shows
that (3.1) is the required dual lagrangian that couples 2-forms to QCD.

9We do not write quarks explicitly but flag the few places where their implicit presence affects what
is written.

10Notice that the JµJµ term can equally well be put either in L1 or L2.
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Below the QCD scale. In the standard axion-QCD story integrating out QCD leaves a
residual axion potential due its anomalous coupling to F ∧ F . This minimum is argued to
be minimized where a = θ f (where θ is the usual combination of θ and phases in the quark
mass matrices) which ensures that the CP-odd contribution turns off. We seek to express
how physics below the QCD scale works in the dual language involving Bµν .

Below ΛQCD the gauge degrees of freedom are integrated out, naively leaving only hadrons
coupled to Bµν . The key thought is that this is not quite right: the QCD EFT below ΛQCD

contains a path integral over low-energy hadrons and an integration over a low-energy field
Cµνλ, whose emergent presence the strongly coupled vacuum of QCD makes mandatory. The
field Cµνλ ∝ 〈Sµνλ〉 is the low-energy counterpart of the Chern-Simons field appearing in the
topological susceptibility [56] above the QCD scale, where dS = F ∧ F .

Having this field in the low-energy theory below the QCD scale does not affect the
existence of a gap or the spectrum of the known hadrons because Cµνλ does not propagate.
It is an auxiliary field that is required in order for the low-energy theory to capture properly
the response of QCD to any topology in its environment. Similar fields are known to arise in
this way in other concrete systems like the EFTs describing Quantum Hall systems [33–35].
This 3-form potential differs from many of the others that often arise in string vacua because
it arises from the IR properties of QCD rather than from the physics of UV compactification.

On dimensional grounds we write H = dC with

1
12Λ̃2

QCDε
µνλρHµνλρ = εµνλρ〈FµνFλρ〉 , (3.8)

where Λ̃QCD denotes a parameter of order the QCD scale that ensures that H has canonical
dimension (mass)2. The lagrangian (3.1) above the QCD scale is then replaced with its
low-energy counterpart

L1(C,B) = − 1
2 · 3!GµνλG

µνλ− 1
3! ε

µνλρGµνλJρ−
θ

4! Λ̃2
QCDε

µνλρHµνλρ−
1

2 · 4!HµνλρH
µνλρ+· · · ,

(3.9)
where the explicit term proportional to θX combines with quark mass phases — that also
enter as terms linear in X, as in the c1 term of (2.15) — to produce θX. The ellipses in (3.9)
are at least cubic in X (or involve derivatives of X).

Combining eq. (3.3) (and the discussion just above it) with (3.8) implies

dG = 〈Ω〉 =
Λ̃2
QCD

f
H , (3.10)

and so comparing this to dG = mH (as would follow from G = dB +mC) allows us to read
off the mass relation m = Λ̃2

QCD/f . We see that the mC term captures the expectation value
〈S〉/f of the Chern-Simons term in the UV theory above the QCD scale if m scales with f in
the same way that the usual axion mass depends on its decay constant.

We expect the low-energy presence of such a 4-form field H to give B a nonzero mass,
as we check by introducing the lagrange multiplier a in the usual way and integrating out

– 10 –



J
H
E
P
0
3
(
2
0
2
4
)
0
5
1

G.11 This leads to the result

L2(C, a) = −1
2(∂a)2−Jµ∂µa−

1
2JµJ

µ+ 1
4!(ma−θΛ̃

2
QCD)εµνλρHµνλρ−

1
2 · 4!HµνλρH

µνλρ+· · · .
(3.11)

Integrating out H leads to the saddle point Hµνλρ = Hµνλρ with

Hµνλρ =
(
ma− θΛ̃2

QCD

)
εµνλρ , (3.12)

and so gives the axion lagrangian

L2(a) = −1
2(∂a)2 − Jµ∂µa−

1
2JµJ

µ − 1
2
(
ma− θΛ̃2

QCD

)2
, (3.13)

showing that the minimum indeed occurs where a = θΛ̃2
QCD/m = θf , which turns off the

CP-violating term of (3.11).
In general integrating out the UV QCD sector also generates more complicated low-energy

interactions involving C, such as the function W (X) of X = 1
4!ε

µνλρHµνλρ. As above, such
terms semiclassically change the saddle point to(

∂W

∂X

)
H=H

= ma− θΛ̃2
QCD , (3.14)

and so leads to the axion potential

V (a) = −W (X) + (ma− θΛ̃2
QCD)X . (3.15)

This satisfies
∂V

∂a
= mX +

(
−∂W
∂X

+ma− θΛ̃2
QCD

)
∂X

∂a
= mX , (3.16)

and so again ensures that X = 0 at any of the stationary points of V . We see that the
presence of interactions like W (X) show that V is minimized at ma = θΛ̃2

QCD if ∂W/∂X
vanishes when X = 0.

3.2 The quality problem

We now have the tools required to explore UV sensitivity and the axion quality problem. We
start by restating the original formulaton of the quality problem and then how it is rephrased
in 2-form language for both T -type (this section) and S-type (next section) axions.

The axion quality problem asks two related questions [18–21]:

1. Do corrections to the QCD axion potential change its minimum in a way that preserves
a sufficiently small effective vacuum angle: θ̄eff . 10−10?

2. Do corrections to the QCD axion potential change the usual expression for the axion
mass (that assumes it is dominantly generated by the ‘IR-dominated’ QCD instanton
with size ρ ∼ Λ−1

QCD)?
11It would be interesting to more fully explore the implications of the 3-form QCD field C for the low-energy

chiral description of mesons and nucleons, to more fully explore how the axion/3-form mixing term adC
reproduces the usual description of low-energy axion-meson mixing.
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The first of these essentially asks if the QCD axion remains a good solution to the strong
CP problem when perturbed by new physics, whereas the second asks the same of our
understanding of axion mass. The axion mass question can apply more generally to ALPs
as well, whereas the first one is specific to the QCD axion.

Any UV completion must decide what happens at energies above the axion decay
constant f above which the low-energy expansion in powers of E/f breaks down. We
consider in turn the original formulation and the T - and S-type axions that arise within
an extra-dimensional context.

3.2.1 Original formulation
In the initial formulation the UV completion for scales above f was assumed to involve a
second scalar that combines with the axion to linearly realize the PQ symmetry as a complex
scalar Φ. In this picture the modulus of Φ acquires a mass proportional to f ∼ 〈Φ〉 and
the axion starts life as the phase of Φ ∝ eia/f .

Motivated by string theory and black-hole thought experiments it is then assumed that
UV physics cannot support an unbroken global symmetry, and so at some large scale M the
form of the scalar potential for Φ cannot be assumed to be invariant under re-phasings of Φ.
As an expansion in powers of Φ, the generic potential form would be

VUV (Φ) = M4

2

∞∑
n=1

(
cn

Φn

Mn
+ h.c.

)
, (3.17)

where the cn’s are in general complex. This is true even if the UV physics is assumed to be
CP-invariant because cn will inherit the phase of the fermion mass matrix after chiral PQ
rotations. In the initial formulation M is assumed to be the Planck mass Mp, and although
we can see that such a choice would dominate smaller M for the terms with n < 4 it is likely
that M < Mp would be more dangerous for n > 4. Early workers typically assumed that the
renormalizable part of the potential would be tuned to make the axion potential sufficiently
shallow and so effectively started the sum in (3.17) at n = 5.

Freezing the modulus field at 〈Φ〉 = f and integrating it out at the classical level leads
to the following effective axion potential

VUV (a) = M4

2
∑
n=1
|cn|

fn

Mn

(
eiδn eina/f + h.c.

)
= M4 ∑

n=5
|cn|

fn

Mn
cos

(
na

f
+ δn

)
,

(3.18)
where we shift fields so that the standard QCD solution is a = 0. The QCD minimum
therefore remains unchanged if V ′UV (0) = 0 and this would be true if all of the δn’s were
to vanish. Although the axion potential height (and therefore possibly axion mass) might
still change due to the presence of VUV (a), evasion of the strong CP problem requires only
that the minimum for a remains unmoved.

- Stability of the minimum:
For δn , |cn| ∼ O(1) we can estimate the size of the effective value of θ̄eff by perturbing
around the QCD minimum at a = aQCD:

θ̄eff ' −
V ′UV (aQCD)
fV ′′QCD(aQCD) ∼

VUV (aQCD)
VQCD(aQCD) ∼

M4

Λ4
QCD

(
f

M

)n0

, (3.19)
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where n0 represents the first power appearing in the sum. For example, requiring θ̄eff <

10−10 for the example f = 1012 GeV, M = Mp = 1018 GeV and ΛQCD ' 0.2GeV in (3.19)
requires n0 >∼ 15.

- Stability of the axion mass:

The change to the axion mass induced by the UV axion potential is given by

δm2
a = ∂2VUV (a)

∂a2

∣∣∣∣∣
a=0

= M2 ∑
n=1

n2|cn|
(
f

M

)n−2
cos δn , (3.20)

which can be significant unless the coefficients |cn|’s are extremely small even if all the
δn’s could be contrived to vanish. When significant such contributions spoil the relation
maf ∼ mπFπ that holds for the low-energy QCD contribution and on which most axion
phenomenology is based. Because the mass is not inversely proportional to f this expression
shows that the relation between ma and f need not be inversely proportional to one other,
for example allowing a very heavy axion to be still very weakly coupled to matter — a
drastic change relative to standard axion phenomenology.

3.2.2 T -type axions

The story is similar for T -type axions, at least below the Kaluza-Klein scale where they are
4D scalars. No quality issue arises above the KK scale because here the relevant fields are
higher-dimensional form fields HMNP and the only symmetries involved are gauge symmetries
like B → B + dλ [24].

Recalling that T -type axions, b, arise as extra-dimensional reductions of the form
Bmn(x, y) = b(x)ωmn(y), with ωmn a harmonic form in the extra dimensions, the origin
of the low-energy shift symmetry b → b + c (for constant c) has its origins as the extra-
dimensional transformation Bmn → Bmn + c ωmn. This is a symmetry of H = dB because
harmonic forms are closed: dω = 0. It is strictly speaking a ‘large’ gauge transformation
because harmonic forms are not exact: there does not globally12 exist a λm such that ω = dλ.

The quality problem arises because the shift symmetry in the low-energy 4D theory is
not a local gauge symmetry and so it in principle need not be respected by UV effects. One
consequently cannot completely preclude the generation of a scalar potential,

VUV (b) ∼M4∑
n

cn

(
b

M

)n
, (3.21)

where cn are dimensionless order-unity coefficients. But its failure to be a local gauge
symmetry is a global obstruction rather than a local one and this means that UV effects
cannot generate VUV (b) until scales are integrated out that ‘see’ the topology that can
distinguish ω from dλ. This implies two sorts of changes to the standard quality-problem
argument. First, the scale M where problems first arise cannot be higher than the KK

12The situation resembles a gauge field Am(x, y) dimensionally reduced on a circle, so Am(x, y+L) = Am(x, y).
In this case the massless scalar would be Am(x, y) = a(x)ω(y) where ω(y) is independent of y, for which the
shift symmetry a→ a+ c locally corresponds to a gauge transformation Am → Am + ∂mζ if ∂ζ/∂y = c, but
this cannot be done globally because the solution cannot satisfy ζ(y + L) = ζ(y).
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scale M ∼ 1/RKK corresponding to the size of the 2D cycle in the extra dimensions whose
presence is associated with the existence of the harmonic form ωmn(y). Second, the physics
at scale M that generates the potential must itself be sensitive to the nontrivial topology,
often leading to additional suppressions.

For instance, an example of physics that can generate PQ-violating operators in (3.17)
identified in [24, 57] is wormhole [60]. For these the coefficients cn in (3.18) are exponentially
suppressed, given by [24]

cn ∼ e−S ∼ e−(MpL)2 (3.22)

where S is a wormhole action and L the size of its throat. Maintaining the success of
the PQ mechanism requires S >∼ 190. More complicated configurations are possible for
extra-dimensional theories, for which Mp can be replaced by another UV gravity scale Mg,
that might be the string scale or the extra-dimensional Planck scale Mg in specific examples.
Similarly L can be one of the geometric scales of the background, that could (but need not)
be approximately a compactification scale RKK. All known semiclassical arguments of this
type must assume MgL� 1 for the calculation to be under control, because semiclassical
methods are justified within an expansion in powers of (MgL)−1 within any gravitational
EFT. MgL ∼ 14 suffices to ensure S >∼ 190 and so satisfying this constraint seems not that
difficult within the semiclassical regime. These kinds of arguments were used in [29, 30] to
argue for the absence of large gravitational correction to the inflaton potential.

3.3 The dual quality problem

For S-type axions the representation directly obtained from UV physics is the field bµν dual
to the scalar axion. And as alluded to earlier — cf. section 2.2.1 — issues of UV sensitivity
can look very different in dual formulations to scalar theories, with for example the existence
of a dual implying that the effective couplings for terms like an ∈ VUV (a) come suppressed by
powers of the axion mass (m/M)n relative to generic scalar estimates. Such suppressions
can be enormous given the small size of m relative to UV scales.

We therefore revisit earlier discussions of how the axion quality problem arises in the
dual formulation, partly motivated by recent discussions [26, 27] that argue that gravity
causes new problems. Although we confirm the important role played by multiple 3-form
potentials [25] in the framing of the dual quality problem, we also show that the many 3-forms
found in string vacua do not generically pose a problem. Problems are only caused where
strongly interacting systems make instanton-like effects important and this is not the case for
the many ‘elementary’ 3-forms that descend from extra dimensional vacua. We argue that for
similar reasons 4D gravitational Chern-Simons forms also need not cause problems (such as
for string vacua where the UV completion of gravity is described by weakly coupled physics).

To the extent that the shape of the axion potential V (a) is dual to interactions like
W (X) involving the 4-form field strength X = 1

4!Hµνλρε
µνλρ, one might think that the dual

version of the axion quality issue should hinge on the detailed form of UV contributions to
W (X). This proves not to be right, as we now argue. The central point turns on the Legendre
transformation relating V (a) to W (X); in particular on (3.14) and (3.16), that state(

∂W

∂X

)
H=H

= ma− θΛ̃2
QCD and ∂V

∂a
= mX . (3.23)
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On the scalar side the strong-CP problem is not solved unless ma = θΛ̃2 at the minimum
of V , and the quality problem is the statement that corrections to V can perturb the minimum
so that this relation fails. Although X always vanishes at a minimum for V , eq. (3.23) suggests
that on the dual side the criterion for satisfying the strong-CP problem is that ∂W/∂X = 0 is
satisfied when X = 0. So the quality problem seems to hinge on whether or not UV physics
can introduce a linear term δW = ηX whose inclusion would modify (3.23) in a way that
obstructs having ma = θΛ̃2

QCD be a solution to ∂V/∂a = 0.
Suppose, then, that one finds after integrating out the UV physics an EFT below the

QCD scale of the form (3.9), but with a linear term in X whose coefficient is not proportional
to the CP violating parameter θ:

L1(C,B) = − 1
2 · 3!(Gµνλ +mCµνλ)(Gµνλ +mCµνλ)− 1

3! ε
µνλρ(Gµνλ +mCµνλ)Jρ

− 1
4!(θ + η) Λ̃2

QCDε
µνλρHµνλρ −

1
2 · 4!HµνλρH

µνλρ + · · · , (3.24)

with two low-energy CP-violating parameters θ and η. Dualizing this system as above then
shows that scalar potential on the scalar side is given by a function of ma− (θ + η)Λ̃2, in
which θ and η only appear as a sum. The arguments of section 3.1 now show that this
potential is minimized when ma− (θ + η)Λ̃2 = 0. Repeating the calculation of the neutron
electric dipole moment (edm) in this case — for a recent review, see for example [61] — then
shows that the neutron edm also depends only on the sum θ + η and so would continue to
vanish when a is evaluated at the potential’s minimum. Interestingly, just introducing new
terms linear in Hµνλρ in (3.9) appears not to cause a quality problem.

3.3.1 A second strong sector

Just introducing a linear term in Hµνλρ in (3.9) does not cause a quality problem because
doing so below the QCD scale is like introducing the new CP-violating parameter η only in
the F ∧ F term of (3.1) above the QCD scale (i.e. shifting θ → θ + η). This also would not
cause a quality problem on the scalar side. For there to be a problem requires there to be a
CP-violating contribution to V (a) that is independent of the CP-violation in the θ-term.

What might this look like on the dual side? One way to proceed is to imagine a specific
type of CP-violating UV completion and ask what happens in this case. One such an example
would add another strongly interacting nonabelian gauge sector that also contributes to the
axion anomaly. In this case VUV (a) is obtained by integrating out the new gauge sector and
this is by construction independent of the QCD-generated part. A dual formulation of this
type of system would involve a new Chern-Simons form Eµνλ for the new sector in addition
to the QCD field Cµνλ, since both gauge sectors have their own Chern-Simons fields and
either of these can be the field that is eaten by Bµν . Instead of (3.24) below the QCD scale
one would find the following low-energy action

L1(C,E,B) = − 1
2 · 3!GµνλG

µνλ − 1
3! ε

µνλρGµνλJρ −
1
4!ε

µνλρ
(
θΛ̃2

QCDHµνλρ + ηΛ̃2
XKµνλρ

)
− 1

2 · 4!
(
HµνλρH

µνλρ +KµνλρK
µνλρ

)
+ · · · , (3.25)

where K = dE and H = dC and G = dB + mC + m̃E.
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Proceeding as before we introduce a Lagrange multiplier a to enforce the G Bianchi
identity and then semiclassically integrate out G, H and K to find

L2(a) = −1
2(∂a)2 − Jµ∂µa−

1
2JµJ

µ − V (a) , (3.26)

where defining X = 1
4!ε

µνλρHµνλρ and Y = 1
4!ε

µνλρKµνλρ we find

V (a) = −W (X,Y ) + (ma− θΛ̃2
QCD)X + (m̃a− ηΛ̃2

X)Y , (3.27)

where W = 1
2(X2 + Y 2)+(higher powers). At the saddle point (H,K) = (H,K) we have(

∂W

∂X

)
Y

= ma− θΛ̃2
QCD and

(
∂W

∂Y

)
X

= m̃ a− ηΛ̃2
X , (3.28)

where the subscripts indicate what is held fixed in the derivative. Differentiating (3.27) implies

∂V

∂a
= mX + m̃Y . (3.29)

This does have a quality problem because the competition between the two gauge sectors
drives the axion away from the minimum for which the neutron electric dipole moment
vanishes. For the simplest example — where W = 1

2(X2 + Y 2) — we can see explicitly how
the shift of the global minimum of the axion potential is induced. From (3.29) we learn that
∂V (a)/∂a = 0 takes place at Y = −(m/m̃)X. From (3.28), we obtain

X = ma− θ̄Λ̃2
QCD and Y = −

(
m

m̃

)
X = m̃a− ηΛ̃2

X (3.30)

Equating these two expressions for X and solving for a, we obtain

amin =
mθ̄Λ̃2

QCD + m̃ηΛ̃2
X

m2 + m̃2 = aQCD + (m̃ηΛ̃2
X/m

2)
1 + (m̃/m)2 ' aQCD + m̃ηΛ̃2

X

m2 , (3.31)

which denotes the global minimum before introducing an extra three form gauge field by
aQCD = θ̄Λ̃2

QCD/m. The approximate equality assumes m� m̃ so as not to spoil the QCD
axion solution the strong CP problem.

Finally, defining the UV contribution to the effective vacuum angle by θeff := (amin −
aQCD)/f where mf ' Λ̃2

QCD, we obtain the constraint

θ̄eff ∼ η
(
m̃

m

)( Λ̃X
Λ̃QCD

)2
<∼ 10−10 . (3.32)

Although this derivation assumed the simplest form W = 1
2(X2 +Y 2), the reasoning presented

here can be applied to a more complicated W (X,Y ). In such a case (3.29) remains unchanged
while (3.28) and (3.30) are modified. But amin remains connected to the value for (X,Y )
that makes ∂V/∂a vanish via (3.28) and (3.29). Once amin is expressed in terms of aQCD, one
can always infer θ̄eff as above and impose the constraint θ̄eff < 10−10.

The upshot is this: the requirement of multiple strongly coupled sectors on the dual
side to generate a quality problem is much more explicit because the contribution of each
sector is described by a separate 3-form potential, rather than having everything all be
rolled into the same scalar potential.

– 16 –



J
H
E
P
0
3
(
2
0
2
4
)
0
5
1

3.3.2 Multiple fundamental 3-forms
At first sight the previous section makes it sound like string theory should typically have a
huge quality problem, because of the generic appearance there of multiple 3-form potentials.
We identify the circumstances under which these potentials could cause a quality problem
and argue why such a problem generically does not happen. We also discuss how these
criteria bear on a recent realization of these issues [26, 27].

To start consider how the EFT (3.25) above the QCD scale would be modified by the
presence of many 3-form potentials CAµνλ (where A = 1, . . . , N distinguishes the different
UV potentials):

L1(B,A, C) = − 1
2 · 3!GµνλG

µνλ − 1
3! ε

µνλρGµνλJρ −
1
4FµνF

µν − θ

2 ε
µνλρFµνFλρ

− 1
4! ηAH

A
µνλρε

µνλρ − 1
2 · 4!H

A
µνλρH

µνλρ
A + · · · , (3.33)

where HA = dCA and G = dB + S for the QCD Chern-Simons 3-form that satisfies Ω = dS
with Ω as given in (3.3). To the extent that none of the new fields HA

µνλρ appear in the Bianchi
identity dG = Ω they do not couple to QCD or to Bµν and so play no role in the duality
transformation from Bµν to a. One then arrives below the QCD scale with the lagrangian

L1(C, B) = − 1
2 · 3!GµνλG

µνλ − 1
3! ε

µνλρGµνλJρ −
θ

4! Λ̃2
QCDε

µνλρHµνλρ −
1

2 · 4!HµνλρH
µνλρ

− 1
4! ηAH

A
µνλρε

µνλρ − 1
2 · 4!H

A
µνλρH

µνλρ
A + · · · . (3.34)

Dualization proceeds as before, with the introduction of the scalar a to enforce dG = Ω,
and the saddle point in the integral over the 3-form potentials becomes(

∂W

∂X

)
Y

= ma− θΛ̃2
QCD and

(
∂W

∂Y A

)
X

= −ηA , (3.35)

where
W = 1

2X
2 + 1

2Y
AYA + (higher powers) , (3.36)

and we define as before X = 1
4!ε

µνλρHµνλρ and Y A = 1
4!ε

µνλρHA
µνλρ. The dual lagrangian is

L2(a) = −1
2(∂a)2 − Jµ∂µa−

1
2JµJ

µ − V (a) , (3.37)

where

V (a) = −W (X,Y A) + (ma− θΛ̃2
QCD)X − ηAY A

= −1
2 X

2 + (ma− θΛ̃2
QCD)X + 1

2ηAη
A , (3.38)

and so
∂V

∂a
= mX . (3.39)

We see that X = 0 in the vacuum and this implies from (3.35) and (3.36) that the strong-CP
problem remains solved.

These arguments also show that two ingredients are required for additional 3-form
potentials to cause a problem:
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1. The additional 3-form potential CA0 must contribute to the Bianchi identity for G, and
so κA0 6= 0 in the expression dG = Ω + κAHA, where HA = dCA; and

2. The additional 3-form potential must appear linearly in W , so ηA0 6= 0 in (3.34).

When both of these are satisfied then a couples to HA and leads to the competition of minima
as in (3.28) along the lines described in section 3.3.1. The need for both of these conditions
to be true is why the bound (3.32) is proportional to both η and Λ̃2

X . The good news is that
the vanishing of κA can be enforced by a gauge symmetry, since κA can only be nonzero if B
transforms as B → B − κAΛA under the 3-form gauge transformations CA → CA + dΛA.

There is at least one example of a 3-form potential which we know must exist and which
also contributes to the Bianchi identity dG: the gravitational Chern Simons 3-form, Sg. The
existence of a PQ-Lorentz-Lorentz anomaly requires this form to appear in G and so have a
nonzero coefficient κg in the same way that the PQ-QCD-QCD anomaly requires the QCD
Chern Simons form to appear there. Ref. [25] argues that this is real trouble whose evasion
requires model-building, such as that done in [27].

Whether the existence of this form is a problem or not depends on whether it also satisfies
item 2 above: i.e. whether or not it appears linearly in the lagrangian with coefficient ηg 6= 0.
How big should ηg be expected to be? Because any 4-form field strength H = dC is locally a
total derivative it wants to drop out of perturbative physics when it appears linearly in the
action (much as does F ∧ F ). Consequently its appearance in a low-energy action requires
some sort of nonperturbative process (like an instanton) to contribute to physical processes.
This is indeed what happens for QCD for which the linear term in Ω appears with coefficient

Λ̃2
QCD ∝M2 e−2πb/α (3.40)

with M a UV scale, b a pure number and α = g2/4π the QCD coupling. The tell-tale
nonperturbative dependence on α is a semiclassical consequence of the topological character
of
∫
F ∧ F and

∫
H.

This suggests that for gravity a linear term in Hg should similarly be of size

η ∝M2 e−(ML)2 (3.41)

for a characteristic instanton length scale L and gravitational UV scale M given that (ML)−2

plays the role of the semiclassical expansion parameter (compare to (3.22)). This can be
extremely small within the domain of validity of semiclassical reasoning, for whichML� 1 (as
would presumably apply when the UV completion is weakly coupled, such as for perturbative
string vacua).

Examples of three forms characterized by η in (3.41) include Eguchi-Hanson instantons [58,
59] and the gravitational Chern-Simons 3-form made up of gravitational connection. For
the Chern-Simons 3-form ref. [25] argues that gravity indeed becomes strong in the UV,
as would be required for η to be significant. This could well be true, but the evidence
for there being a problem hinges on how convinced one is about gravitational interactions
becoming strong in the UV.
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3.3.3 Multiple-axion solution

We close this section by remarking that having multiple axion candidates (as is often true for
string vacua) can alleviate the above problem associated with multiple 3-form fields, even
if the above two conditions are satisfied.13 This observation points to an equally general
quality control mechanism on the scalar side of the duality as well.

To see why, we introduce a second Kalb-Ramond field Bµν to the model of section 3.3.1,
and supplementing the lagrangian of (3.25) with the appropriate additional kinetic term gives

L1(C,E,B,B) =− 1
2·3!GµνλG

µνλ− 1
2·3!GµνλG

µνλ− 1
3! ε

µνλρGµνλJρ (3.42)

− 1
4!ε

µνλρ
(
θΛ̃2

QCDHµνλρ+ηΛ̃2
XKµνλρ

)
− 1

2·4!
(
HµνλρH

µνλρ+KµνλρK
µνλρ

)
+· · · ,

where as before K = dE and H = dC and G = dB + mC + m̃E, but now also

G := dB +m?E . (3.43)

This system dualizes much as before: we introduce Lagrange multipliers a and b to
enforce the G and G Bianchi identities dG = mH + m̃K and dG = m?K and then integrate
out G, G, H and K to find

L2(a) = −1
2(∂b)2 − 1

2(∂a+ J)2 − V (a, b) , (3.44)

with
V (a, b) = −W (X,Y ) + (ma− θΛ̃2

QCD)X + (m̃a+m?b− ηΛ̃2
X)Y , (3.45)

and we define as before X = 1
4!ε

µνλρHµνλρ and Y = 1
4!ε

µνλρKµνλρ. For the simplest example
of W = 1

2(X2 + Y 2), at the saddle point (H,K) = (H,K) gives the following relation
between (X,Y ) and (a, b):(

∂W

∂X

)
Y

= ma− θΛ̃2
QCD and

(
∂W

∂Y

)
X

= m̃ a+m? b− ηΛ̃2
X . (3.46)

Differentiating (3.45) with respect to a and b implies

∂V

∂a
= mX + m̃Y,

∂V

∂b
= m?Y , (3.47)

and so shows that all extrema of the potential satisfy X = Y = 0 (provided m, m̃ and m? are
nonzero). Because ∂W/∂X vanishes at X = 0 it follows that the dynamics chooses amin to
satisfy θΛ̃2

QCD/m = θf through (3.46); the axion quality problem essentially disappears.14

What happened? Why does introducing another axion resolve the quality problem? The
crux of the mechanism lies in the difference between eq. (3.47) and (3.29). The derivative of
the potential always sets a linear combination of 4-form field strengths to zero and if there
are as many equations as there are fields the only solution is generically to have all 4-form
field strengths vanish. Once this is true then the first of eqs. (3.46) ensures that this solution

13The use of multiple axions to solve the quality problem is mentioned also in [62], who have different but
related motivations for there being a plethora of form fields present in the UV.

14See [70] for phenomenological implications of this solution.
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solves the strong-CP problem. Trouble only arises — as it did in section 3.3.1 — when there
are fewer equations than unknowns (i.e. fewer axions than 3-form potentials), since then X
need not vanish and eqs. (3.46) become competing conditions on the same axion variable.

A similar mechanism also exists on the scalar side of the duality. If two sectors generate
contributions to the QCD axion potential then the problem arises because these compete in
the value they imply for the axion expectation value. Introducing a second anomalous U(1)
symmetry that also has anomalies with the same two sectors provides enough latitude to
minimize each sector’s potential separately, thereby removing the troublesome competition.

For instance, suppose there was a new non-Abelian gauge sector G and suppose the
usual PQ symmetry has both a QCD anomaly and an anomaly in the G sector. This is
the kind of thing that can cause a quality problem because of the contradictory conditions
the two sectors impose on the QCD axion. But also introducing another global U(1) with
only a G-sector anomaly can help because there is a linear combination of the PQ symmetry
and the new U(1) that is anomaly free in the G sector and the PQ mechanism then goes
through using this new symmetry.15

4 UV completion and matter couplings

Since the motivations both for considering Kalb-Ramond fields and for the absence of global
symmetries come from the UV, it is useful to ask whether there are other potential surprises
for axion physics having their roots in the UV. This section examines two such examples;
one each for T -type and for S-type axions. For T -type axions we provide simple examples for
which physical axion-matter couplings like gaff can be much smaller than the naive value
1/fb read off from the axion kinetic term. In the example shown here gauge invariant matter
couplings like gaff are order 1/Mp despite fb being an ordinary particle physics scale, while
anomalous gauge couplings remain order 1/fb in size (if they exist at all).

For S-type axions we show that the corresponding physical couplings indeed are of order
1/fa and we identify the UV physics to which couplings of size E/fa match at energies
E >∼ fa. We also show how S-type axions can be examples of weak/strong duality, and
that it is the Kalb-Ramond side of the duality that is usually weakly coupled. Weak/strong
coupling interchange due to duality could be relevant to applications for which the effects of
scalar axions are explored using semiclassical reasoning, and if so would provide a further
motivation for taking the Kalb-Ramond formulation as primary.

4.1 Extra-dimensional UV completion

To this end suppose that both Kalb-Ramond field and the standard model arise within an
extra-dimensional model. For concreteness’ sake we take the higher-dimensional kinetic term
for the 2-form field and the Einstein-Hilbert part of the action to be16

Skin = −1
2 M

2+d
∫

d4x ddy
√
−g̃(D)

(
R̃+ 1

3! e
−λφGMNPG

MNP

)
, (4.1)

15Ref. [27] uses a special case of this general mechanism by introducing an extra U(1) symmetry in the
leptonic sector to resolve the problem raised by the assumption that gravity is strongly coupled.

16For simplicity we ignore extra-dimensional warping in this discussion. We also do not canonically normalize
BMN , which here is taken to be dimensionless.
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where there are D = 4 + d spacetime dimensions and M is a UV scale — the higher-
dimensional Planck scale. R̃ here denotes the Ricci scalar and g̃(D) is the determinant of the
full D-dimensional metric g̃MN . As above H = dB + · · · is the Kalb-Ramond field strength
and φ is the extra-dimensional dilaton that often arises within the higher-dimensional gravity
supermultiplet. The parameter λ depends on higher-dimensional details, with (d, λ) =
(2, 2) for chiral 6D supergravity [63, 64], (d, λ) = (6, 1) for Neveu-Schwarz 2-forms in 10D
supergravity and (d, λ = −1) for Ramond 2-forms in 10D supergravity [65–69] (for example).

The derivation of this type of lagrangian as the low-energy limit of a string vacuum usually
relies on two approximations: the low-energy approximation (or α′ expansion) where energies
are well below the string scale E �Ms; and the weak string coupling approximation, which
involves expanding in powers of eφ � 1. For simplicity we restrict ourselves to this limit as
well, and specialize to the simplest case (d, λ) = (2, 2) corresponding to 6D chiral supergravity.

Dimensional reduction to 4D proceeds by integrating out the two extra dimensions and
putting the 4D Einstein-Hilbert term into standard form (4D Einstein frame) by appropriately
rescaling the 4D part of the metric

g̃µν =
(V2?
V2

)
gµν = 1

V2

(
M2
p

M2

)
gµν where Vd := Md

∫
ddy

√
g̃(d) (4.2)

is the dimensionless extra-dimensional volume and the subscript ‘?’ on a field denotes its
present-day value17 and the 4D Planck massis is defined by

M2
p = V2?M

2 . (4.3)

S-type axion. The kinetic term for bµν in 4D Einstein frame that is obtained by dimensional
reduction is

Lkin = − 1
12 M

2V2
√
−g̃(4) e

−2φg̃µν g̃βρg̃ξζ HµβξHνρζ = − M4

12M2
p

√
−g e−2φ V2

2 hµνβh
µνβ ,

(4.4)
where hµνλ = ∂µbνλ + (cyclic). This last form can be written in terms of a scalar by dualizing
as in earlier sections, imposing the Bianchi identity18 dh = Ω/M2, leading to the dual result

Ldual = −
√
−g

[
M2
p e

2φ

V2
2

∂µa ∂
µa + 1

3! a ε
µνβρΩµνβρ

]
(4.5)

which suggests its decay constant can be written fa = (Mp/Vd?) eφ? .
Two things are noteworthy here. First, notice that the volume dependence means that

fa can be very much smaller than Planckian size. In the extreme case of two large extra
dimensions (and working in the weak-coupling regime for which eφ is moderately small) the
size of the extra dimensions can be as large as MRKK

<∼ 1014 and so V2 ∼ (MRKK)2 <∼ 1028

can be enormous (potentially allowing fa ≪ Mp to be as small as eV energies).
Second, notice that although (4.4) has large coefficients when e2φ � 1, the same is

not true of the kinetic term in (4.5). This reflects how Kalb-Ramond/axion duality is a
17The factor of V2? ensures the rescaling is trivial at present, as required to not change present-day units

of length.
18The factors of M here are chosen so that Ω has dimension (mass)4.
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weak-strong coupling duality from the point of view of the string coupling gs ∼ eφ. To the
extent that semiclassical expansions rely on the leading action being proportional to the
inverse of a small coupling19 — L0 = L0/g

2
s — semiclassical methods should fail for the

scalar representation but hold for its dual.

T -type axion. For T -type axions we use Bmn(x, y) = b(x)ωmn(y) where in six dimensions
the harmonic form can be taken to be proportional to the extra-dimensional volume form
εmn(y). Typically ωmn satisfies a quantization condition that states the integral of ωmn over
the two extra dimensions

∮
C
ω is a pure number, proportional to an integer. Because this

result is volume independent it follows that ωmn = V−1
2 εmn.

The kinetic term for the T -type scalar b obtained in this way is therefore proportional to

Lkin = −1
2 M

2V2
√
−g̃(4) e

−2φg̃µν∂µb ∂νbV−2
2 = −

√
−g M2

p e
−2φV−2

2 gµν∂µb ∂νb . (4.6)

Notice that the kinetic term, both here and in (4.5), takes the form

Lkin = −1
2
√
−gM2

p

[
(∂b)2

τ2 + (∂a)2

σ2

]
(4.7)

with τ = V2 e
φ in (4.6), and σ = V2 e

−φ in (4.5).

4.2 Coupling strengths

What matters for phenomenology is the couplings of the fields b and a to matter. This is
controlled by the size of F for axion couplings of the form

Lax = −1
2 ∂µa ∂

µa− 1
F
∂µaJ

µ , (4.8)

where a is the canonically normalized axion field and Jµ is a matter current. F−1 = gaff
is the axion-fermion current if Jµ is built from fermion bilinears and F−1 ' gagg or gaγγ if
Jµ is the Hodge dual of the QCD or QED Chern-Simons 3-form.

For concreteness’ sake we evaluate the size of this coupling in the perturbative semiclassical
regime where V2 is large and the UV physics is weakly coupled (and so eφ small). In this
limit we have fb >∼Mp/V2 >∼ fa and both are much smaller than Mp. In both cases we will
see that F can (but need not) be simply given by the corresponding decay constant fa or fb.

In higher dimensional constructions very often ordinary matter is localized on a space-
filling brane, Σ, within the extra dimensions. Σ could be a four-dimensional 3-brane or
a higher-dimensional p-brane with 3 ≤ p ≤ 3 + d. If p > 3 then the extra-dimensional
part of the brane typically wraps some topological cycle within the extra dimensions, and
if this were a two-cycle (e.g. if p = 5) it would also have an associated harmonic 2-form
ωmn(y) required to ensure that T -type axions appear in the low-energy 4D theory. We here
explore the simplest case p = 3.

19When this is true then powers of g2
s and powers of ~ are equivalent when evaluating a path integral

over eiS0 .
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S-type axion. A generally covariant low-dimension interaction between HMNP and matter
fields living on the brane, that is linear in BMN is20

Sint = −ĉ
∫

Σ
e−βφH ∧ J = − c3!

∫
d4x
√
−g e−βφ εµνλρhµνλJρ , (4.9)

where Jρ is a current built from brane-localized matter fields and β is a parameter — like λ
in (4.1) — that is predicted by any specific extra-dimensional UV completion. The matter
current Jρ has dimension (mass)3 — making the coupling parameters ĉ and c dimensionless
— and so could be a fermion bilinear or the Hodge dual of a gauge boson Chern-Simons
term (though for the Chern Simons term gauge invariance would require β = 0). Because
this term is covariant without use of the metric it does not acquire factors of V2 or Mp/M

when going to 4D Einstein frame.
The dual effective theory for a is then found by adding (4.9) to the kinetic term (4.4),

imposing the Bianchi identity dG = Ω/M2 and integrating out hµνλ, modifying (4.5) to

Ldual = −
√
−g

[
M2
p e

2φ

2V2
2

DµaD
µa + 1

3! a ε
µνβρΩµνβρ

]
(4.10)

where
Dµa := ∂µa + c

M2
p

e−(β+2)φ V2
2 Jµ = ∂µa + c

f2
a

e−βφ Jµ . (4.11)

As before we use the kinetic term to identify fa = (Mp/V2?) eφ? . Using M2
p = M2V2?

with V2? = (MRKK)2 for a Kaluza-Klein length scale RKK, this implies fa ∼MV−1/2
2? eφ? ∼

(1/RKK) eφ? , and so fa ∼ mKK ∼ 1/RKK when eφ? is not that much smaller than order unity.
The physical coupling that comes from comparing the kinetic and ∂µa Jµ term to (4.8) is

gagg ∼ gaff = 1
Faff

∼ cV2?e
−(β+1)φ?

Mp
∼ c e−βφ?

fa
for couplings to J . (4.12)

In the special case where Jµ is the Hodge dual of a gauge-field Chern Simons term, gauge
invariance also requires we take β = 0, and once this is done the coupling in (4.12) agrees
(up to numerical factors) with the physical coupling to Ω implied by (4.10). This coupling
becomes strong when E ∼ fa, which we’ve seen is of order the Kaluza-Klein scale in the
special case of two extra dimensions.

T -type axion. The lowest-dimension generally covariant and gauge invariant interaction
that couples HMNP to matter localized on a space-filling 3-brane and that is linear in the
components Hµmn has the form

Sint =
∫

Σ
e−2φ ?H ∧ J 3

M2
p

M2

∫
d4x
√
−g e

−2φ

V2
2
gµν∂µb(x)Jν(x) , (4.13)

where ?H denotes the 6D Hodge dual and we choose the φ coupling to be the same as
the kinetic term.

20The first equality shows that this interaction is independent of the metric, and this can also be seen after
the second equality from the observation that εµνλρ = ±

√
−g and so εµνλρ = ±(−g)−1/2.
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The kinetic and interactions terms combine to give the effective action (in 4D Ein-
stein frame)

Seff =
∫

d4x
√
−g

M2
p

τ2

[
(∂b)2 + ∂µbJ

µ

M2

]
(4.14)

where τ := V2 e
φ as before. Inspection of the kinetic term identifies the decay constant as

fb ' Mp/τ? with τ? ∝ V2? denoting the present value of τ . Because M2
p ' M2V2? we see

that fb ∼ MV−1/2
2? ∼ R−1

KK is of order the KK scale in size.
Canonically normalizing by rescaling b = Mp b/τ? —- then produces a lagrangian of

the form (4.8) with

F ∼ M2τ?
Mp

∼Mp � fb ∼
Mp

τ?
. (4.15)

As is typical for KK modes the field b ∈ Bmn couples with gravitational strength. Notice
that the ratio F/fb ∝ V2? can be enormous, since V2? can be as large as 1028 in the extreme
case of two large eV-scale dimensions. In this case gauge invariance precludes choosing J
to be the dual of the Chern Simons form of a brane localized gauge sector, even in the
absence of any φ-dependence in (4.13).

It is not that surprising to have a breakdown of 4D EFT methods at the KK scale, but
the above discussion shows there is a difference between what happens at this scale for T - and
S-type axions. For T -type axions the coupling to matter is order 1/Mp and this remains true
above the KK scale. The breakdown of the 4D EFT is about the appearance of a multitude
of new KK modes, all of which couple with gravitational strength. But the S-type axion’s
coupling to matter is proportional to E/fa and so actually grows to become order unity at the
KK scale; what does this order unity coupling match to in the UV theory? It matches to a
dimensionless extra-dimensional coupling in the UV theory: either to the coupling c appearing
in (4.9) or to the coupling gcs of BMN to the Chern-Simons term SMNP that is implied by the
field strength G = dB + gcsS. Although gcs is order 1/M2 when BMN is dimensionless (as
above), it is dimensionless once BMN is canonically normalized in six dimensions.

Since gauge invariance prevents the coupling (4.13) from containing a coupling between
T -type axions and a gauge sector localized on a 3-brane, one can ask whether such couplings
are more generally forbidden. The answer to this is ‘no’ if we allow ourselves to consider
gauge sectors localized on higher-dimensional branes. For instance for a six-dimensional
5-brane Σ6 they can arise from an interaction of the form

Sint,g = cM2
∫

Σ6
B ∧ F ∧ F ∝ c

∫
d4x
√
−g b εµνλρFµνFλρ , (4.16)

where the explicit factor of V2 coming from the integration over the additional two dimensions
cancels the normalization of the harmonic form ωmn ∝ V−1

2 εmn. For a canonically normalized
scalar this would imply gaγγ ∼ 1/fb.

The upshot is this: the model-dependent T -type axions can couple surprisingly weakly
to non-gauge matter compared to the scale set by their decay constant: 1/F ∼ 1/Mp �
1/fb ∼ RKK. By contrast, the model-independent S-type axion couples to matter with
strength 1/F ∼ 1/fa ∼ 1/fb and the same is true of T -type couplings to gauge fields on
higher-dimensional branes. From the point of view of the underlying string coupling eφ the
duality that maps bµν to a is also a strong/weak coupling duality.
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5 Conclusions

Axions (or ALPs) are often motivated by appealing to string theory, which seems to provide
them with abundance. But string theory also provides strong concrete evidence for the
assertion that exact global symmetries cannot survive contact with quantum gravity; the
observation that underlies the UV quality problem for attempts to solve the strong-CP
problem using a global PQ symmetry.

We here reconsider some of the implications that follow from the observation that axions
arise as antisymmetric tensor fields in higher dimensions and that Standard Model fields
usually live in localised objects like D-branes within the extra dimensions. Axions arise in two
general types in this way: the model independent S-type axion originating from a two-form
field in 4-dimensions after compactification; and the model dependent T -type axion such as
arises as a Kaluza-Klein mode for an extra-dimensional tensor field (of which we focus for
simplicity on two-form potentials in two extra dimensions).21

These allow for a rich structure of axion phenomenology and each type of axion can
be adapted to realize the PQ solution to the strong CP problem. It has been known for a
while that UV effects can affect the original PQ proposal by generating effective interactions
that violate the global PQ symmetry and modify the prediction for the axion mass: the
axion quality problem. We revisit how this problem arises for the two types of axion using
the UV tools at hand.

We find that for T -type axions the quality problem resembles the form originally studied,
since the UV theory directly provides a pseudoscalar field once compactified to four dimensions.
Our framework differs from early versions of the quality problem that imagine the PQ
symmetry to be linearly realized by a complex scalar at energies E > f , but generally agree
with estimates based on the contributions due to wormholes or gravitational instantons
below a compactification scale. To the extent that these contributions are exponentially
suppressed their constraints are mild.

The S-type case is more interesting since both the strong CP and axion quality problems
must first be reformulated in terms of the two-form field and its field strength. The PQ
mechanism involves giving a mass to the axion and so on the dual side involves the ‘eating’
of a 3-form potential along the lines proposed in [40, 41]. The required 3-form potential
is generated by the QCD sector itself as a non-propagating topological field in the EFT
below the QCD scale. As applied to QCD our re-analysis broadly agrees with that of [25]
in concluding that the quality problem gets recast as an issue that arises when there are
multiple 3-form fields present in the low-energy theory. This might be imagined to be a
problem for string theory, for which 3-form potentials are as ubiquitous as axions.

Prompted by recent discussions of this problem [26, 27] we formulate the two properties
which new 3-form fields must have if they are to threaten the PQ solution to the strong CP
problem, arguing why string-generated 3-form fields are not generically a problem, largely
because these fields need not couple to QCD (in string theory it depends on how bulk fields
couple to brane fields and usually only one couples to QCD). The gravitational Chern-Simons

21Axions may come from other forms such as three or four forms in ten dimensions depending of which type
of string theory.
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term does couple to QCD but whether or not it sparks a new strong CP problem depends on
whether or not gravity is strongly coupled in the UV. The discussions of [25, 27] assume that
it is, but we argue that if it is not (such as if the UV completion is a weakly coupled string
vacuum) then the estimates for the size of the problem are again exponentially suppressed
and so would not pose a quality problem.

Finally we also explore other UV implications for axion physics. We found that depending
on the brane configuration hosting the Standard Model, extra dimensions can dramatically
suppress physical couplings between the axion and Standard Model sector relative to the
axion decay constant appearing in the axion kinetic term, especially if the volume of the extra
dimensions is very large. This is possible for T -type axions but in the examples examined
does so only for non-gauge couplings (making this observation more pertinent for ALPs,
whose properties would tend to be ‘fermiophobic’).

For S-type fields both kinds of couplings have similar size.22 For this case though,
we argue that the duality relating the 2-form to the axion field swaps weak and strong
couplings, and suggests a semiclassical description of 2-form response need not correspond to
the usual semiclassical description of a scalar axion. This again motivates better exploring
the 2-form side of the theory.

It is an old argument that UV information can have important implications for low-
energy naturalness questions such as the strong CP problem. The observation that this
could be informative in situations where the questions are solved using features like global
symmetries that apparently should not be present at very high energies has sparked a revival
of studies of generalised and non-invertible symmetries. Many of these ideas resonate well
with string-motivated constructions, such as those we explore here.
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