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Abstract: Motivated by recent discussions and the absence of exact global symmetries in UV com-

pletions of gravity we re-examine the axion quality problem (and naturalness issues more generally)

using antisymmetric Kalb-Ramond (KR) fields rather than their pseudoscalar duals, as suggested by

string and higher dimensional theories. Two types of axions can be identified: a model independent

S-type axion dual to a two form Bµν in 4D and a T -type axion coming directly as 4D scalar Kaluza-

Klein (KK) components of higher-dimensional tensor fields. For T -type axions our conclusions largely

agree with earlier workers for the axion quality problem, but we also reconcile why T -type axions can

couple to matter localized on 3-branes with Planck suppressed strength even when the axion decay

constants are of order the KK scale. For S-type axions, we review the duality between form fields

and massive scalars and show how duality impacts naturalness arguments about the UV sensitivity

of the scalar potential. In particular UV contributions on the KR side suppress contributions on the

scalar side by powers of m/M with m the axion mass and M the UV scale. We re-examine how the

axion quality problem is formulated on the dual side and compare to recent treatments. We study

how axion quality is affected by the ubiquity of p-form gauge potentials (for both p = 2 and p = 3)

in string vacua and identify two criteria that can potentially lead to a problem. We also show why

most fields do not satisfy these criteria, but when they do the existence of multiple fields also provides

mechanisms for resolving it. We conclude that the quality problem is easily evaded.
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1 Introduction

String theory giveth and string theory taketh away, at least where axions1 are concerned. On one hand

axions are said to be ubiquitous in the spectrum of particles predicted around most string vacua [4, 5].

This observation motivates the study of their phenomenological consequences [6], with a particular

focus of late on their possible role as a light form of dark matter [7].

On the other hand, string theory equally generally forbids2 the existence of exact rigid (or global)

symmetries [8], in principle including the rigid shift symmetries on which low-energy axion properties

are founded. For Goldstone bosons this breaking can keep them from being light, and can interfere

with any mechanisms that rely on the survival of axions down to the low-energy theory. As applied

to the QCD axion this has come to be known as the axion ‘quality’ problem [10].

So which is it? Are axions as abundant as dirt or as diamonds in low-energy string vacua? The

resolution (which has long been known) is that there is a sense they are both. The absence of global

symmetries really does mean that one never really directly finds scalar axions a with shift symmetries

in string vacua. Instead these scalars arise indirectly as Kaluza-Klein (KK) modes from fields that

1We follow the string literature and broadly refer to any low-energy Goldstone boson enjoying a rigid compact shift

symmetry as an ‘axion’ (as opposed to the ‘dilatons’ associated with rigid scaling symmetries), something that would be

called an ALP (axion-like particle) by particle phenomenologists. Our later focus is on those Goldstone bosons whose

symmetries have a QCD anomaly and so can take part in the strong-CP problem [1–3] (which is what a particle physicist

would usually mean by an ‘axion’).
2Although there are known ways out [9] the conclusion is nonetheless broadly true and global symmetries tend to be

both rare and approximate.
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not themselves scalars; commonly arising3 as components of 2-form Kalb-Ramond gauge fields [11],

B = 1
2 BMN dzM ∧ dzN , subject to the gauge symmetries B → dλ for some arbitrary field λM(x).

Fields like BMN arise so frequently in string vacua because they are related to other fields (notably

the metric) by supersymmetry in higher dimensions.

1.1 Types of UV axion pedigree

Low-energy scalars typically emerge in the 4D effective theory from such fields in one of two ways:

• T -type axions: b(x) are specific cases of Kaluza-Klein (KK) modes arising when dimension-

ally reducing the extra-dimensional components Bmn(x, y) = b(x)ωmn(y), where xµ denote the

observed 4 dimensions, ym are extra-dimensional coordinates and ωmn(y) is a harmonic 2-form

field within the extra dimensions.

• S-type axions: a(x) arise directly as the 4-dimensional components Bµν(x, y) = bµν(x)ω(y),

which in four dimensions are known to be dual to scalar fields with shift symmetries [12] through

relations of the form ∂µa ∝ εµνλρ∂νBλρ (much more about which below). Here ω(y) is a harmonic

0-form field – typically a y-independent constant that can depend on extra-dimensional moduli.

This UV provenance is of course relevant to the axion quality problem, which is in essence an issue

of UV sensitivity. One of our goals with this paper is to explore the ways that it helps, for both T -

and S-type axions. Some of our conclusions are similar to earlier discussions of this issue [13, 14], in

particular that the problem gets rephrased in dual form (for S-type axions) in terms of the existence

of multiple 3-form gauge potentials.

Since these issues have recently been revisited anew [15, 16] we clarify what properties these

fields must have to actually cause a quality problem and use this to argue why gravitational examples

specifically (and the great abundance of such potentials in string vacua more generally) need not pose

a problem in themselves. The dual formulation also suggests how the presence of multiple axions (as is

common in string theory) can help alleviate the quality problem. The upshot is that the UV can, but

need not, cause a quality problem. Whether or not it does cannot be decided purely at low energies

because it depends on what happens in the UV.4

But our discussion has implications that apply more broadly than just to the quality problem for

the QCD axion. Along the way we identify more generally how dimensional ‘naturalness’ arguments

for the scalar potential give very different estimates depending on whether they are made directly for

the scalar or are first done for its dual and then mapped to the scalar using duality. In particular

terms involving n powers of the canonically normalized scalar arise additionally suppressed by powers

of (m/M)n where M is the UV scale and m is the axion mass (an observation also made in the past

for inflationary models [18]).

We find a number of other ways that axion properties suggested by string-motivated extra-

dimensional physics can be informative. For instance we describe a simple model for which T -type

axions have physical axion-matter couplings gaff that are dramatically smaller than the naive value

1/f read off from the axion kinetic term. In the example given (motivated by the models of [19]) gaff
is order 1/Mp despite f being an ordinary particle-physics scale. Decoupling these scales from one

another could have practical implications for axion phenomenology.

34D axions can also arise as KK modes from other types of extra-dimensional fields, but we focus on the Kalb-Ramond

field because it allows a unified treatment of two different types of 4D axion.
4The same is is also true of other naturalness problems; they arise because of strong dependence on physical masses

for states that actually appear in the UV theory and not a dependence on cutoffs, as is sometimes mistakenly asserted

(for a summary of these issues see e.g. [17]).
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We show why the same hierarchy does not arise in these models for S-type axions and we clarify

why not. Physical couplings of S-type axions really are of order 1/f and we identify which interactions

in the UV completion are responsible for the breakdown of the E/f expansion at energies E >∼ f . S-

type axions illustrate how the scalar and dual representations can provide instances of weak/strong

coupling duality, for which both the scalar and the dual cannot be within the weakly coupled regime.

In the extra-dimensional example studied it is the Kalb-Ramond formulation that is weakly coupled.

This could also have phenomenological implications to the extent that an axion that is dual to a weakly

coupled system is unlikely to be well-described by the semiclassical methods that are universally used

when exploring its physical implications.

Some of these observations imply that the use of the scalar (rather than Kalb-Ramond) vari-

able can be misleading in some circumstances. This can seem surprising at first sight because the

duality between axions and Kalb-Ramond fields is in essence a field redefinition and so scalar and

dual formulations should be completely equivalent; it shouldn’t matter that string theory hands you

Kalb-Ramond fields if scalar axions are equivalent and are much simpler to work with. Why should

one care that a more complicated framework exists if it only obscures implications drawn using more

transparent methods? We argue here that phenomena like weak/strong coupling duality are special

cases of Weinberg’s Third Law of Progress in Theoretical Physics [20]: You can use any degrees of

freedom you like to describe a physical system, but if you use the wrong ones you’ll be sorry.

1.2 Non-propagating low-energy forms

These duality arguments touch on a related rich vein of physics with broader significance: the im-

portance of keeping non-propagating entities like auxiliary and/or topological fields when formulating

Wilsonian effective theories. These are fields that can be integrated out without changing the types of

particles that propagate, and so it is tempting to think one should do so once and for all and simply

ignore them thereafter. However such fields bring to the low-energy effective theory information about

how its UV completion responds, e.g. to environments with nontrivial topology. They arise in concrete

situations (such as in EFTs for 3-dimensional Quantum Hall systems, where the presence of emergent

non-propagating gauge fields is essential for capturing the fractional quantization of Hall plateaux and

the unusual charge and statistics of some excitations [21, 22]).

Evidence is building that a similar role is played more widely by 3-form gauge potentials in four

spacetime dimensions, C := 1
6 Cµνλ dxµdxνdxλ subject to the gauge freedom C → C + dΛ where

Λµν(x) = −Λνµ(x) is an arbitrary 2-form field. These are known to bring to the low-energy 4D

effective theory topological information coming from integrated out extra dimensions [23, 24], and

more generally provide the origin for the auxiliary fields that appear in the 4D supergravities that

are the low-energy limits of string vacua [25, 26]. They appear in the QCD quality story because

they can give masses to Kalb-Ramond fields [27] through a Higgs mechanism that is dual to more

mundane methods of axion mass generation. Because the field strength H = dC often appears in the

action with a definite sign (often as a square), its presence can alter the implications of naturalness

arguments for the scalar potential [28]. Indeed such terms provide the 4D understanding of why 6D

SLED models [29] can in some circumstances suppress the 4D vacuum energy, but also why they

struggle to do so enough to solve the cosmological constant problem [24, 30–32]. Their interplay with

accidental scaling symmetries lies behind a recent attempt to find a dynamical relaxation mechanism

for vacuum energies in four dimensions [19].

In what follows we build our case for the above story using concrete examples. We first, in §2,

briefly review the duality construction – in particular its extension to massive axions [27], which

provides a way to think about scalar masses arising through a Higgs mechanism. §3 then briefly
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reviews and clarifies its use to dualize the axion solution to the strong-CP problem [14], highlighting

in particular how the quality problem gets rephrased in the dual language and how the apparent UV

sensitivity of terms in the EFT differs between the axion formulation and its dual. Finally §4 provides

a concrete extra-dimensional example – inspired by a UV completion of [19] – that illustrates both

how axion/Kalb-Ramond duality can map weak to strong couplings, and how enormous hierarchies

can arise with gaff , gaγγ ∼ 1/Mp even with f as low as eV scales.

2 Axions and duality

We start with a review of why 2-form gauge potentials like Bµν are dual [12, 33] to scalar fields,

both in the standard shift-symmetric massless case and for massive scalars, following the discussion

of [27] (which in turn generalizes earlier arguments [34] aimed at describing particle/vortex duality in

Kosterlitz-Thouless transitions [35]).

2.1 Axion/2-form duality

Consider the following path integral

Ξ[J ] =

∫
DB eiS1[B] (2.1)

where S1 =
∫

d4x L1 with L1 chosen (at least to start) to be

L1(B) = − Z
2 · 3!

GµνλG
µνλ − 1

3!
εµνλρGµνλJρ , (2.2)

with G = dB the exterior derivative of a 2-form field Bµν and Z and Jρ possibly depending on other

fields (collectively denoted ψ). B = 1
2 Bµν dxµ ∧ dxν is only defined up to the gauge redundancy

B → B + dλ for an arbitrary 1-form λ = λµ dxµ.

The duality starts by trading the integration over Bµν for an integral over Gµνλ subject to a

constraint that imposes the Bianchi identity dG = 0. These are equivalent because the Bianchi

identity is sufficient to guarantee the local existence of a field Bµν with G = dB. The constraint is

imposed by integrating over a scalar Lagrange-multiplier field a, and so writing

Ξ[J ] =

∫
DGDa eiS0 (2.3)

where S0 =
∫

d4x L0 with

L0(G, a) = − Z
2 · 3!

GµνλG
µνλ − 1

3!
a εµνλρ∂µGνλρ −

1

3!
εµνλρGµνλJρ , (2.4)

Integrating out a imposes the Bianchi identity dG = 0 and allows the integral over G to be replaced

with the integral over B, leading back to (2.2).

The dual version is obtained from (2.4) by instead integrating out Gµνλ so that a is the remaining

field. The result inherits a shift symmetry a → a + constant because L0 transforms into a total

derivative. The G integration is gaussian, whose saddle point is Gµνλ = Gµνλ where

Gµνλ = −Z−1εµνλρ

(
∂ρa+ Jρ

)
, (2.5)

and so the integration gives the new lagrangian density

L2(a) = − 1

2Z
(∂µa+ Jµ)(∂µa+ Jµ) . (2.6)
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If Z = 1 then a is a canonically normalized massless scalar derivatively coupled to the same local

current Jµ as in the original formulation. Because (2.2) and (2.6) are both obtained from (2.4) they

must describe equivalent physics. Although the implied field redefinition from Bµν to a is in principle

nonlocal the physics on both sides is nonetheless local because this is true of the relation between the

field strengths given in (2.5).

Significance of Z ↔ Z−1

In reality the above gaussian action is always supplemented by other non-gaussian interactions Lint

within a low-energy Wilsonian effective field theory (EFT). To the extent that both Bµν and a are

derivatively coupled perturbative semiclassical methods in the presence of nongaussian terms like

(GµνλG
µνλ)2 ∈ Lint are ultimately justified by a low-energy derivative expansion that applies equally

well on both sides of a duality relationship because relationships like (2.5) involve equal numbers of

derivatives on both sides.

The inversion of Z → Z−1 as one passes from (2.2) to (2.6) is a noteworthy feature of duality.

When Z � 1 this implies 2-point correlators of Gµνλ are order Z−1 in size while those of ∂µa are

instead order Z. The significance of the change Z → Z−1 depends on whether or not Bµν and a can

be freely rescaled to remove Z by going to canonically normalized variables. If this is so then Z in

any case drops out of observables. For instance, when Jµ 6= 0 this rescaling shows that Ξ is really only

a function of J̃µ := Z−1/2Jµ rather than depending on Z and Jµ separately. Although Z ↔ Z−1 is

sometimes called weak/strong coupling duality, Ξ[J̃ ] is the same on both sides of the duality and so

both sides agree on its functional dependence if expanded order-by-order in powers of Z−1 (say).

One situation where this kind of rescaling is not possible is when Z depends on other fields and the

target-space metric in field space is not flat. Another case where physics can depend explicitly on Z is

when the field Bµν or a is quantized5, perhaps satisfying a boundary condition like
∮
W

dxµ∂µa = 2πnf

for some curve W, integer n and mass scale f , or perhaps
∮
C
B = 2πñf−1 for some 2-cycle C and

possibly different integer ñ and mass scale f̃ . In these situations physical results can depend on Z
(i.e. on f and/or f̃) and Jµ separately, and the relation Z → Z−1 can carry physical significance.

2.2 A Higgs mechanism for scalar masses

Although the above makes the shift symmetry (and so also masslessness) of a seem automatic, we

next summarize how duality extends to massive scalars, following [27]. A scalar potential is achieved

in the dual framing through a Higgs mechanism in which the field Bµν ‘eats’ (or is eaten by) a non-

propagating gauge potential6 Cµνλ. Because Cµνλ does not propagate this meal does not change the

number of propagating degrees of freedom.

To this end consider the following gaussian path integral

Ξ[J ] =

∫
DC DB eiS1 (2.7)

where S1 =
∫

d4x L1 and

L1(C,B) = − 1

2 · 4!
HµνλρH

µνλρ − 1

2 · 3!
(Gµνλ +mCµνλ)(Gµνλ +mCµνλ)

− 1

3!
εµνλρ(Gµνλ +mCµνλ)Jρ . (2.8)

5This is generic the case in string theory for which the symmetries associated to antisymmetric tensors and axions

are compact (meaning there always exist magnetic-like branes). For a general discussion see [36].
6Known string vacua can also contain a large number of these 3-form gauge potentials.
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Here Cµνλ is a 3-form gauge potential with field strength H = dC and Bµν is a 2-form gauge potential

with G = dB while m is a parameter with dimension mass.

This lagrangian has the gauge symmetry C → C + dΛ and B → B −mΛ for an arbitrary 2-form

Λ. So when m 6= 0 we can choose a gauge B = 0. The field equation for C that follows from this

action then is

DµH
µνλρ +m2Cνλρ +mενλρµJµ = 0 . (2.9)

This describes a single spin state propagating with mass m once all the gauge symmetries are used,

as can be seen by counting the massless states from which it is built. (In 4D Bµν is shown above to

be equivalent to a massless scalar and Cµνλ contains no propagating degrees of freedom at all because

one can always write Hµνλρ = h εµνλρ with field equation ∂µH
µνλρ = 0 in the massless limit, which

implies h is a constant and so does not propagate.)

The dual should therefore be a massive scalar and this can be verified by trading the integral over

B for an integral over G and introducing (as before) a lagrange multiplier a to impose the Bianchi

identity7 dG = 0, leading to the lagrangian density

L0(C,G, a) = − 1

2 · 4!
HµνλρH

µνλρ − 1

2 · 3!
(Gµνλ +mCµνλ)(Gµνλ +mCµνλ)

− 1

3!
a εµνλρ∂µGνλρ −

1

3!
εµνλρ(Gµνλ +mCµνλ)Jρ . (2.10)

Integrating out a returns us to the above formulation, but instead performing the integration over G

leads to the saddle point

Gµνλ = −mCµνλ − εµνλρ
(
∂ρa+ Jρ

)
, (2.11)

and so to the lagrangian

L2(C, a) = − 1

2 · 4!
HµνλρH

µνλρ − m

4!
a εµνλρHµνλρ −

1

2
∂µa ∂

µa− Jµ∂µa−
1

2
JµJ

µ . (2.12)

Next we perform the integral over Cµνλ, and this is equivalent to simply performing the gaussian

integral over Hµνλρ because the integrability condition for writing H = dC is dH = 0 which is always

true (in 4D). The saddle point for the H integral occurs for Hµνλρ = Hµνλρ where

Hµνλρ = −maεµνλρ (2.13)

and so leads to the scalar lagrangian

L2(a) = −1

2
(∂a)2 − m2

2
a2 − Jµ∂µa−

1

2
JµJ

µ . (2.14)

This is the expected massive scalar.

2.2.1 Scalar potential

For future reference notice that it is only this last step that would differ if we’d had higher-dimension

terms like δL = W (X) in the lagrangian with X = 1
4!ε

µνλρHµνλρ and so X2 = − 1
4!HµνλρH

µνλρ and

so on. The above discussion is the special case W = 1
2X

2 but one could entertain, for example,

W = c1M
2X +

1

2
X2 +

2c3
3M2

X3 +
c4

4M4
X4 + · · · (2.15)

7One can equivalently omit the mCµνλ terms everywhere and instead impose the modified Bianchi identity dG = mH.
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where the coefficients ci are dimensionless and M is a UV scale inserted everywhere on dimensional

grounds (with Hµνλρ canonically normalized).

For non-quadratic W the integral over H is no longer gaussian, but we can proceed assuming a

semiclassical saddle-point approximation is valid, in which case the saddle point (2.13) is modified to(
∂W

∂X

)
H=H

= ma , (2.16)

which agrees with (2.13) when W = 1
2X

2. For example, for the choice (2.15) this becomes

c1M
2 +X

(
1 +

2c3
M2

X +
c4
M4

X2 + · · ·
)
' ma (2.17)

and so

X ' ma− c1M2 − 2c3
M2

(
ma− c1M2

)2
+O

[(
ma− c1M2

)3
/M4

]
. (2.18)

Once used in the lagrangian this shows how non-quadratic pieces of W map over to non-quadratic

contributions to the scalar potential for a in the dual lagrangian L2. In particular the axion potential

becomes

V (a) = −W (X) +maX =
1

2

(
ma− c1M2

)2 − 2c3
3M2

(
ma− c1M2

)3
+ · · · . (2.19)

Two features are noteworthy about this potential:

• First, notice it shares the usual Legendre property

∂V

∂a
= mX +

(
−∂W
∂X

+ma

)
∂X

∂a
= mX , (2.20)

where the last equality uses (2.16). Even if new non-quadratic terms introduce new stationary

points for V (a) (or shifts the positions of old ones) eq. (2.20) ensures X = 0 for all of them.

• Second, once a is shifted so that the minimum is at a = 0 the potential depends on m and a only

through the combination ma. Consequently, a term proportional to an comes suppressed by a

power of (m/M)n relative to what would naively be expected on dimensional grounds for V (a).

This is how the dual theory reproduces the same M -dependence as found for higher powers of

Hµνλρ given that a has canonical dimension mass while H has dimension (mass)2. This shows

how a dimensional assessment of how UV scales appear in the low-energy theory can care about

the existence of a dual formulation.

3 Naturalness issues for dual systems

This section examines how naturalness arguments look for T - and S-type axions, and for S-type axions

how they depend on which side of the duality relation they are made. We do so using the axion quality

problem as a representative example.

3.1 QCD and the dual PQ mechanism

To this end we extend the above reasoning to the main event: QCD and the θ-term. The idea is to

dualize the coupling of the axion to QCD to see how the strong-CP problem gets formulated, along

the general lines of [14]. We then ask how UV physics might complicate the story in the dual theory.
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Consider then adding a gauge potential Aµ (with field strength Fµν) to represent the QCD gauge

sector8 and this time consider the path integral

Ξ[J ] =

∫
DGDADa eiS0 (3.1)

where S0 =
∫

d4x L0 and

L0(G,A, a) = − 1

2 · 3!
GµνλG

µνλ − a

3!
εµνλρ

(
∂µGνλρ −

1

4
Ωµνλρ

)
− 1

3!
εµνλρGµνλJρ

−1

4
FµνF

µν − θ

2
εµνλρFµνFλρ . (3.2)

We suppress both gauge-group indices and traces over them to avoid notational clutter. Fµν is the

field strength for the gauge potential Aµ but Gµνλ is an arbitrary 3-form until the integral over a is

performed.

Integrating out a imposes the Bianchi identity dG = Ω where Ω is a gauge-invariant quantity built

from the gauge field that on grounds of consistency must satisfy dΩ = 0, for which we take

1

12
εµνλρΩµνλρ =

1

f
εµνλρFµνFλρ (3.3)

The mass scale f is here required on dimensional grounds. Doing this allows the G integral to be

traded for one over B as before and gives the lagrangian

L1(B,A) = − 1

2 · 3!
GµνλG

µνλ − 1

3!
εµνλρGµνλJρ −

1

4
FµνF

µν − θ

2
εµνλρFµνFλρ . (3.4)

where G = dB + S where dΩ = 0 implies there locally exists an Sµνλ – the Chern-Simons 3-form –

that satisfies Ω = dS.

The dual formulation instead integrates out G and leaves a as the dual variable. Integrating out

G leads to the lagrangian density

L2(A, a) = −1

2
(∂a)2 − Jµ∂µa−

1

2
JµJ

µ +
a

4!
εµνλρΩµνλρ −

1

4
FµνF

µν − θ

2
εµνλρFµνFλρ

= −1

2
(∂a)2 − Jµ∂µa−

1

2
JµJ

µ − 1

4
FµνF

µν +
1

2

(
a

f
− θ
)
εµνλρFµνFλρ . (3.5)

This shows that the standard axion-gauge coupling is the dual of the 2-form/QCD coupling given in

L1 and that f can be interpreted as its decay constant.

Below the QCD scale

In the standard axion-QCD story integrating out QCD leaves a residual axion potential due its anoma-

lous coupling to F ∧F . This minimum is argued to be minimized where a = θ f (where θ is the usual

combination of θ and phases in the quark mass matrices) which ensures that the CP-odd contribution

turns off. We seek to express how physics below the QCD scale works in the dual language involving

Bµν .

Below ΛQCD the gauge degrees of freedom are integrated out, naively leaving only hadrons coupled

to Bµν . The key thought is that this is not quite right: the QCD EFT below ΛQCD contains a path

integral over low-energy hadrons and an integration over a low-energy field Cµνλ, whose emergent

8We do not write quarks explicitly but flag the few places where their implicit presence affects what is written.
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presence the strongly coupled vacuum of QCD makes mandatory. The field Cµνλ ∝ 〈Sµνλ〉 is the low-

energy counterpart of the Chern-Simons field appearing in the topological susceptibility [37] above the

QCD scale, where dS = F ∧ F .

Having this field in the low-energy theory below the QCD scale does not affect the existence of a

gap or the spectrum of the known hadrons because Cµνλ does not propagate. It is an auxiliary field

that is required in order for the low-energy theory to capture properly the response of QCD to any

topology in its environment. Similar fields are known to arise in this way in other concrete systems

like the EFTs describing Quantum Hall systems [21, 22]. This 3-form potential differs from many of

the others that often arise in string vacua because it arises from the IR properties of QCD rather than

from the physics of UV compactification.

On dimensional grounds we write H = dC with

1

12
Λ̃2

QCDε
µνλρHµνλρ = εµνλρ〈FµνFλρ〉 , (3.6)

where Λ̃QCD denotes a parameter of order the QCD scale that ensures that H has canonical dimension

(mass)2. The lagrangian (3.4) above the QCD scale is then replaced with its low-energy counterpart

L1(C,B) = − 1

2 · 3!
GµνλG

µνλ− 1

3!
εµνλρGµνλJρ−

θ

4!
Λ̃2

QCDε
µνλρHµνλρ−

1

2 · 4!
HµνλρH

µνλρ+ · · · , (3.7)

where the explicit term proportional to θX combines with quark mass phases – that also enter as

terms linear in X, as in the c1 term of (2.15) – to produce θX. The ellipses in (3.7) are at least cubic

in X (or involve derivatives of X).

Combining eq. (3.3) (and the discussion just above it) with (3.6) implies

dG = 〈Ω〉 =
Λ̃2

QCD

f
H , (3.8)

and so comparing this to dG = mH (as would follow from G = dB + mC) allows us to read off the

mass relation m = Λ̃2
QCD/f . We see that the mC term captures the expectation value 〈S〉/f of the

Chern-Simons term in the UV theory above the QCD scale if m scales with f in the same way that

the usual axion mass depends on its decay constant.

We expect the low-energy presence of such a 4-form field H to give B a nonzero mass, as we check

by introducing the lagrange multiplier a in the usual way and integrating out G. This leads to the

result

L2(C, a) = −1

2
(∂a)2−Jµ∂µa−

1

2
JµJ

µ+
1

4!
(ma−θΛ̃2

QCD)εµνλρHµνλρ−
1

2 · 4!
HµνλρH

µνλρ+ · · · . (3.9)

Integrating out H leads to the saddle point Hµνλρ = Hµνλρ with

Hµνλρ =
(
ma− θΛ̃2

QCD

)
εµνλρ , (3.10)

and so gives the axion lagrangian

L2(a) = −1

2
(∂a)2 − Jµ∂µa−

1

2
JµJ

µ − 1

2

(
ma− θΛ̃2

QCD

)2

, (3.11)

showing that the minimum indeed occurs where a = θΛ̃2
QCD/m = θf , which turns off the CP-violating

term of (3.9).
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In general integrating out the UV QCD sector also generates more complicated low-energy in-

teractions involving C, such as the function W (X) of X = 1
4!ε

µνλρHµνλρ. As above, such terms

semiclassically change the saddle point to(
∂W

∂X

)
H=H

= ma− θΛ̃2
QCD , (3.12)

and so leads to the axion potential

V (a) = −W (X) + (ma− θΛ̃2
QCD)X . (3.13)

This satisfies
∂V

∂a
= mX +

(
−∂W
∂X

+ma− θΛ̃2
QCD

)
∂X

∂a
= mX , (3.14)

and so again ensures that X = 0 at any of the stationary points of V . We see that the presence of

interactions like W (X) show that V is minimized at ma = θΛ̃2
QCD if ∂W/∂X vanishes when X = 0.

3.2 The Quality Problem

We now have the tools required to explore UV sensitivity and the axion quality problem. We start

by restating the original formulaton of the quality problem and then how it is rephrased in 2-form

language for both T -type (this section) and S-type (next section) axions.

The axion quality problem asks two related questions [10]:

1. Do corrections to the QCD axion potential change its minimum in a way that preserves a

sufficiently small effective vacuum angle: θ̄eff . 10−10?

2. Do corrections to the QCD axion potential change the usual expression for the axion mass (that

assumes it is dominantly generated by the ‘IR-dominated’ QCD instanton with size ρ ∼ Λ−1
QCD)?

The first of these essentially asks if the QCD axion remains a good solution to the strong CP problem

when perturbed by new physics, whereas the second asks the same of our understanding of axion mass.

The axion mass question can apply more generally to ALPs as well, whereas the first one is specific

to the QCD axion.

Any UV completion must decide what happens at energies above the axion decay constant f

above which the low-energy expansion in powers of E/f breaks down. We consider in turn the

original formulation and the T - and S-type axions that arise within an extra-dimensional context.

3.2.1 Original formulation

In the initial formulation the UV completion for scales above f was assumed to involve a second scalar

that combines with the axion to linearly realize the PQ symmetry as a complex scalar Φ. In this

picture the modulus of Φ acquires a mass proportional to f ∼ 〈Φ〉 and the axion starts life as the

phase of Φ ∝ eia/f .

Motivated by string theory and black-hole thought experiments it is then assumed that UV physics

cannot support an unbroken global symmetry, and so at some large scale M the form of the scalar

potential for Φ cannot be assumed to be invariant under re-phasings of Φ. As an expansion in powers

of Φ, the generic potential form would be

VUV (Φ) =
M4

2

∞∑
n=1

(
cn

Φn

Mn
+ h.c.

)
, (3.15)
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where the cn’s are in general complex. This is true even if the UV physics is assumed to be CP-

invariant because cn will inherit the phase of the fermion mass matrix after chiral PQ rotations. In

the initial formulation M is assumed to be the Planck mass Mp, and although we can see that such a

choice would dominate smaller M for the terms with n < 4 it is likely that M < Mp would be more

dangerous for n > 4. Early workers typically assumed that the renormalizable part of the potential

would be tuned to make the axion potential sufficiently shallow and so effectively started the sum in

(3.15) at n = 5.

Freezing the modulus field at 〈Φ〉 = f and integrating it out at the classical level leads to the

following effective axion potential

VUV (a) =
M4

2

∑
n=1

|cn|
fn

Mn

(
eiδn eina/f + h.c.

)
= M4

∑
n=5

|cn|
fn

Mn
cos

(
na

f
+ δn

)
, (3.16)

where we shift fields so that the standard QCD solution is a = 0. The QCD minimum therefore

remains unchanged if V ′UV (0) = 0 and this would be true if all of the δn’s were to vanish. Although

the axion potential height (and therefore possibly axion mass) might still change due to the presence

of VUV (a), evasion of the strong CP problem requires only that the minimum for a remains unmoved.

Stability of the minimum:

For δn , |cn| ∼ O(1) we can estimate the size of the effective value of θ̄eff by perturbing around the

QCD minimum at a = aQCD:

θ̄eff ' −
V ′UV (aQCD)

fV ′′QCD(aQCD)
∼ VUV (aQCD)

VQCD(aQCD)
∼ M4

Λ4
QCD

(
f

M

)n0

, (3.17)

where n0 represents the first power appearing in the sum. For example, requiring θ̄eff < 10−10 for the

example f = 1012 GeV, M = Mp = 1018 GeV and ΛQCD ' 0.2 GeV in (3.17) requires n0 >∼ 15.

Stability of the axion mass:

The change to the axion mass induced by the UV axion potential is given by

δm2
a =

∂2VUV (a)

∂a2

∣∣∣∣
a=0

= M2
∑
n=1

n2|cn|
(
f

M

)n−2

cos δn , (3.18)

which can be significant unless the coefficients |cn|’s are extremely small even if all the δn’s could be

contrived to vanish. When significant such contributions spoil the relation maf ∼ mπFπ that holds

for the low-energy QCD contribution and on which most axion phenomenology is based. Because the

mass is not inversely proportional to f this expression shows that the relation between ma and f need

not be inversely proportional to one other, for example allowing a very heavy axion to be still very

weakly coupled to matter – a drastic change relative to standard axion phenomenology.

3.2.2 T -type axions

The story is similar for T -type axions, at least below the Kaluza-Klein scale where they are 4D scalars.

No quality issue arises above the KK scale because here the relevant fields are higher-dimensional form

fields HMNP and the only symmetries involved are gauge symmetries like B → B + dλ [13].

Recalling that T -type axions, b, arise as extra-dimensional reductions of the form Bmn(x, y) =

b(x)ωmn(y), with ωmn a harmonic form in the extra dimensions, the origin of the low-energy shift
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symmetry b → b + c (for constant c) has its origins as the extra-dimensional transformation Bmn →
Bmn + c ωmn. This is a symmetry of H = dB because harmonic forms are closed: dω = 0. It is

strictly speaking a ‘large’ gauge transformation because harmonic forms are not exact: there does not

globally9 exist a λm such that ω = dλ.

The quality problem arises because the shift symmetry in the low-energy 4D theory is not a local

gauge symmetry and so it in principle need not be respected by UV effects. One consequently cannot

completely preclude the generation of a scalar potential,

VUV (b) ∼M4
∑
n

cn

(
b

M

)n
, (3.19)

where cn are dimensionless order-unity coefficients. But its failure to be a local gauge symmetry is

a global obstruction rather than a local one and this means that UV effects cannot generate VUV (b)

until scales are integrated out that ‘see’ the topology that can distinguish ω from dλ. This implies

two sorts of changes to the standard quality-problem argument. First, the scale M where problems

first arise cannot be higher than the KK scale M ∼ 1/RKK corresponding to the size of the 2D cycle

in the extra dimensions whose presence is associated with the existence of the harmonic form ωmn(y).

Second, the physics at scale M that generates the potential must itself be sensitive to the nontrivial

topology, often leading to additional suppressions.

For instance, an example of physics that can generate PQ-violating operators in (3.15) identified

in [13, 38] is wormhole [41]. For these the coefficients cn in (3.16) are exponentially suppressed, given

by [13]

cn ∼ e−S ∼ e−(MpL)2 (3.20)

where S is a wormhole action and L the size of its throat. Maintaining the success of the PQ mechanism

requires S >∼ 190. More complicated configurations are possible for extra-dimensional theories, for

which Mp can be replaced by another UV gravity scale Mg, that might be the string scale or the

extra-dimensional Planck scale Mg in specific examples. Similarly L can be one of the geometric

scales of the background, that could (but need not) be approximately a compactification scale RKK .

All known semiclassical arguments of this type must assume MgL� 1 for the calculation to be under

control, because semiclassical methods are justified within an expansion in powers of (MgL)−1 within

any gravitational EFT. MgL ∼ 14 suffices to ensure S >∼ 190 and so satisfying this constraint seems

not that difficult within the semiclassical regime. These kinds of arguments were used in [18] to argue

for the absence of large gravitational correction to the inflaton potential.

3.3 The dual Quality Problem

For S-type axions the representation directly obtained from UV physics is the field bµν dual to the

scalar axion. And as alluded to earlier – c.f. §2.2.1 – issues of UV sensitivity can look very different

in dual formulations to scalar theories, with for example the existence of a dual implying that the

effective couplings for terms like an ∈ VUV (a) come suppressed by powers of the axion mass (m/M)n

relative to generic scalar estimates. Such suppressions can be enormous given the small size of m

relative to UV scales.

We therefore revisit earlier discussions of how the axion quality problem arises in the dual formu-

lation, partly motivated by recent discussions [15, 16] that argue that gravity causes new problems.

9The situation resembles a gauge field Am(x, y) dimensionally reduced on a circle, so Am(x, y + L) = Am(x, y). In

this case the massless scalar would be Am(x, y) = a(x)ω(y) where ω(y) is independent of y, for which the shift symmetry

a→ a+c locally corresponds to a gauge transformation Am → Am+∂mζ if ∂ζ/∂y = c, but this cannot be done globally

because the solution cannot satisfy ζ(y + L) = ζ(y).
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Although we confirm the important role played by multiple 3-form potentials [14] in the framing of

the dual quality problem, we also show that the many 3-forms found in string vacua do not generically

pose a problem. Problems are only caused where strongly interacting systems make instanton-like

effects important and this is not the case for the many ‘elementary’ 3-forms that descend from extra

dimensional vacua. We argue that for similar reasons 4D gravitational Chern-Simons forms also need

not cause problems (such as for string vacua where the UV completion of gravity is described by

weakly coupled physics).

To the extent that the shape of the axion potential V (a) is dual to interactions like W (X) involving

the 4-form field strength X = 1
4!Hµνλρε

µνλρ, one might think that the dual version of the axion quality

issue should hinge on the detailed form of UV contributions to W (X). This proves not to be right,

as we now argue. The central point turns on the Legendre transformation relating V (a) to W (X); in

particular on (3.12) and (3.14), that state(
∂W

∂X

)
H=H

= ma− θΛ̃2
QCD and

∂V

∂a
= mX . (3.21)

On the scalar side the strong-CP problem is not solved unless ma = θΛ̃2 at the minimum of V ,

and the quality problem is the statement that corrections to V can perturb the minimum so that this

relation fails. Although X always vanishes at a minimum for V , eq. (3.21) suggests that on the dual

side the criterion for satisfying the strong-CP problem is that ∂W/∂X = 0 is satisfied when X = 0.

So the quality problem seems to hinge on whether or not UV physics can introduce a linear term

δW = ηX whose inclusion would modify (3.21) in a way that obstructs having ma = θΛ̃2
QCD be a

solution to ∂V/∂a = 0.

Suppose, then, that one finds after integrating out the UV physics an EFT below the QCD scale

of the form (3.7), but with a linear term in X whose coefficient is not proportional to the CP violating

parameter θ:

L1(C,B) = − 1

2 · 3!
(Gµνλ +mCµνλ)(Gµνλ +mCµνλ)− 1

3!
εµνλρ(Gµνλ +mCµνλ)Jρ

− 1

4!
(θ + η) Λ̃2

QCDε
µνλρHµνλρ −

1

2 · 4!
HµνλρH

µνλρ + · · · , (3.22)

with two low-energy CP-violating parameters θ and η. Dualizing this system as above then shows that

scalar potential on the scalar side is given by a function of ma−(θ+η)Λ̃2, in which θ and η only appear

as a sum. The arguments of §3.1 now show that this potential is minimized when ma− (θ+ η)Λ̃2 = 0.

Repeating the calculation of the neutron electric dipole moment (edm) in this case – for a recent

review, see for example [42] – then shows that the neutron edm also depends only on the sum θ + η

and so would continue to vanish when a is evaluated at the potential’s minimum. Interestingly, just

introducing new terms linear in Hµνλρ in (3.7) appears not to cause a quality problem.

3.3.1 A second strong sector

Just introducing a linear term in Hµνλρ in (3.7) does not cause a quality problem because doing so

below the QCD scale is like introducing the new CP-violating parameter η only in the F ∧ F term of

(3.4) above the QCD scale (i.e. shifting θ → θ + η). This also would not cause a quality problem on

the scalar side. For there to be a problem requires there to be a CP-violating contribution to V (a)

that is independent of the CP-violation in the θ-term.

What might this look like on the dual side? One way to proceed is to imagine a specific type

of CP-violating UV completion and ask what happens in this case. One such an example would
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add another strongly interacting nonabelian gauge sector that also contributes to the axion anomaly.

In this case VUV (a) is obtained by integrating out the new gauge sector and this is by construction

independent of the QCD-generated part. A dual formulation of this type of system would involve a

new Chern-Simons form Eµνλ for the new sector in addition to the QCD field Cµνλ, since both gauge

sectors have their own Chern-Simons fields and either of these can be the field that is eaten by Bµν .

Instead of (3.22) below the QCD scale one would find the following low-energy action

L1(C,E,B) = − 1

2 · 3!
GµνλG

µνλ − 1

3!
εµνλρGµνλJρ −

1

4!
εµνλρ

(
θΛ̃2

QCDHµνλρ + ηΛ̃2
XKµνλρ

)
− 1

2 · 4!

(
HµνλρH

µνλρ +KµνλρK
µνλρ

)
+ · · · , (3.23)

where K = dE and H = dC and G = dB +mC + m̃E.

Proceeding as before we introduce a Lagrange multiplier a to enforce the G Bianchi identity and

then semiclassically integrate out G, H and K to find

L2(a) = −1

2
(∂a)2 − Jµ∂µa−

1

2
JµJ

µ − V (a) , (3.24)

where defining X = 1
4!ε

µνλρHµνλρ and Y = 1
4!ε

µνλρKµνλρ we find

V (a) = −W (X,Y ) + (ma− θΛ̃2
QCD)X + (m̃a− ηΛ̃2

X)Y , (3.25)

where W = 1
2 (X2 + Y 2)+(higher powers). At the saddle point (H,K) = (H,K) we have(

∂W

∂X

)
Y

= ma− θΛ̃2
QCD and

(
∂W

∂Y

)
X

= m̃ a− ηΛ̃2
X , (3.26)

where the subscripts indicate what is held fixed in the derivative. Differentiating (3.25) implies

∂V

∂a
= mX + m̃Y . (3.27)

This does have a quality problem because the competition between the two gauge sectors drives the

axion away from the minimum for which the neutron electric dipole moment vanishes. For the simplest

example – where W = 1
2 (X2 + Y 2) – we can see explicitly how the shift of the global minimum of the

axion potential is induced. From (3.27) we learn that ∂V (a)/∂a = 0 takes place at Y = −(m/m̃)X.

From (3.26), we obtain

X = ma− θ̄Λ̃2
QCD and Y = −

(m
m̃

)
X = m̃a− ηΛ̃2

X (3.28)

Equating these two expressions for X and solving for a, we obtain

amin =
mθ̄Λ̃2

QCD + m̃ηΛ̃2
X

m2 + m̃2
=
aQCD + (m̃ηΛ̃2

X/m
2)

1 + (m̃/m)
2 ' aQCD +

m̃ηΛ̃2
X

m2
, (3.29)

which denotes the global minimum before introducing an extra three form gauge field by aQCD =

θ̄Λ̃2
QCD/m. The approximate equality assumes m� m̃ so as not to spoil the QCD axion solution the

strong CP problem.

Finally, defining the UV contribution to the effective vacuum angle by θeff := (amin − aQCD)/f

where mf ' Λ̃2
QCD, we obtain the constraint

θ̄eff ∼ η
(
m̃

m

)(
Λ̃X

Λ̃QCD

)2

<∼ 10−10 . (3.30)
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Although this derivation assumed the simplest form W = 1
2 (X2 + Y 2), the reasoning presented here

can be applied to a more complicated W (X,Y ). In such a case (3.27) remains unchanged while (3.26)

and (3.28) are modified. But amin remains connected to the value for (X,Y ) that makes ∂V/∂a vanish

via (3.26) and (3.27). Once amin is expressed in terms of aQCD, one can always infer θ̄eff as above and

impose the constraint θ̄eff < 10−10.

The upshot is this: the requirement of multiple strongly coupled sectors on the dual side to

generate a quality problem is much more explicit because the contribution of each sector is described by

a separate 3-form potential, rather than having everything all be rolled into the same scalar potential.

3.3.2 Multiple fundamental 3-forms

At first sight the previous section makes it sound like string theory should typically have a huge

quality problem, because of the generic appearance there of multiple 3-form potentials. We identify

the circumstances under which these potentials could cause a quality problem and argue why such a

problem generically does not happen. We also discuss how these criteria bear on a recent realization

of these issues [15, 16].

To start consider how the EFT (3.23) above the QCD scale would be modified by the presence of

many 3-form potentials CA

µνλ (where A = 1, . . . , N distinguishes the different UV potentials):

L1(B,A, C) = − 1

2 · 3!
GµνλG

µνλ − 1

3!
εµνλρGµνλJρ −

1

4
FµνF

µν − θ

2
εµνλρFµνFλρ

− 1

4!
ηAHA

µνλρε
µνλρ − 1

2 · 4!
HA

µνλρHµνλρA + · · · . (3.31)

where HA = dCA and G = dB + S for the QCD Chern-Simons 3-form that satisfies Ω = dS with Ω as

given in (3.3). To the extent that none of the new fields HA

µνλρ appear in the Bianchi identity dG = Ω

they do not couple to QCD or to Bµν and so play no role in the duality transformation from Bµν to

a. One then arrives below the QCD scale with the lagrangian

L1(C, B) = − 1

2 · 3!
GµνλG

µνλ − 1

3!
εµνλρGµνλJρ −

θ

4!
Λ̃2

QCDε
µνλρHµνλρ −

1

2 · 4!
HµνλρH

µνλρ

− 1

4!
ηAHA

µνλρε
µνλρ − 1

2 · 4!
HA

µνλρHµνλρA + · · · . (3.32)

Dualization proceeds as before, with the introduction of the scalar a to enforce dG = Ω, and the

saddle point in the integral over the 3-form potentials becomes(
∂W

∂X

)
Y

= ma− θΛ̃2
QCD and

(
∂W

∂Y A

)
X

= −ηA , (3.33)

where

W =
1

2
X2 +

1

2
Y AYA + (higher powers) , (3.34)

and we define as before X = 1
4!ε

µνλρHµνλρ and Y A = 1
4!ε

µνλρHA

µνλρ. The dual lagrangian is

L2(a) = −1

2
(∂a)2 − Jµ∂µa−

1

2
JµJ

µ − V (a) , (3.35)

where

V (a) = −W (X,Y A) + (ma− θΛ̃2
QCD)X − ηAY

A

= −1

2
X2 + (ma− θΛ̃2

QCD)X +
1

2
ηAη

A , (3.36)
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and so
∂V

∂a
= mX . (3.37)

We see that X = 0 in the vacuum and this implies from (3.33) and (3.34) that the strong-CP problem

remains solved.

These arguments also show that two ingredients are required for additional 3-form potentials to

cause a problem:

1. The additional 3-form potential CA0 must contribute to the Bianchi identity for G, and so κA0
6= 0

in the expression dG = Ω + κAHA, where HA = dCA; and

2. The additional 3-form potential must appear linearly in W , so ηA0
6= 0 in (3.32).

When both of these are satisfied then a couples to HA and leads to the competition of minima as in

(3.26) along the lines described in §3.3.1. The need for both of these conditions to be true is why the

bound (3.30) is proportional to both η and Λ̃2
X . The good news is that the vanishing of κA can be

enforced by a gauge symmetry, since κA can only be nonzero if B transforms as B → B−κAΛA under

the 3-form gauge transformations CA → CA + dΛA.

There is at least one example of a 3-form potential which we know must exist and which also

contributes to the Bianchi identity dG: the gravitational Chern Simons 3-form, Sg. The existence of

a PQ-Lorentz-Lorentz anomaly requires this form to appear in G and so have a nonzero coefficient κg
in the same way that the PQ-QCD-QCD anomaly requires the QCD Chern Simons form to appear

there. Ref. [14] argues that this is real trouble whose evasion requires model-building, such as that

done in [16].

Whether the existence of this form is a problem or not depends on whether it also satisfies item

2 above: i.e. whether or not it appears linearly in the lagrangian with coefficient ηg 6= 0. How big

should ηg be expected to be? Because any 4-form field strength H = dC is locally a total derivative it

wants to drop out of perturbative physics when it appears linearly in the action (much as does F ∧F ).

Consequently its appearance in a low-energy action requires some sort of nonperturbative process (like

an instanton) to contribute to physical processes. This is indeed what happens for QCD for which the

linear term in Ω appears with coefficient

Λ̃2
QCD ∝M2 e−2πb/α (3.38)

with M a UV scale, b a pure number and α = g2/4π the QCD coupling. The tell-tale nonperturbative

dependence on α is a semiclassical consequence of the topological character of
∫
F ∧ F and

∫
H.

This suggests that for gravity a linear term in Hg should similarly be of size

η ∝M2 e−(ML)2 (3.39)

for a characteristic instanton length scale L and gravitational UV scale M given that (ML)−2 plays

the role of the semiclassical expansion parameter (compare to (3.20)). This can be extremely small

within the domain of validity of semiclassical reasoning, for which ML � 1 (as would presumably

apply when the UV completion is weakly coupled, such as for perturbative string vacua).

Examples of three forms characterized by η in (3.39) include Eguchi-Hanson instantons [39, 40] and

the gravitational Chern-Simons 3-form made up of gravitational connection. For the Chern-Simons

3-form ref. [14] argues that gravity indeed becomes strong in the UV, as would be required for η to

be significant. This could well be true, but the evidence for there being a problem hinges on how

convinced one is about gravitational interactions becoming strong in the UV.
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3.3.3 Multiple-axion solution

We close this section by remarking that having multiple axion candidates (as is often true for string

vacua) can alleviate the above problem associated with multiple 3-form fields, even if the above two

conditions are satisfied.10 This observation points to an equally general quality control mechanism on

the scalar side of the duality as well.

To see why, we introduce a second Kalb-Ramond field Bµν to the model of §3.3.1, and supple-

menting the lagrangian of (3.23) with the appropriate additional kinetic term gives

L1(C,E,B,B) = − 1

2 · 3!
GµνλG

µνλ − 1

2 · 3!
GµνλG

µνλ − 1

3!
εµνλρGµνλJρ (3.40)

− 1

4!
εµνλρ

(
θΛ̃2

QCDHµνλρ + ηΛ̃2
XKµνλρ

)
− 1

2 · 4!

(
HµνλρH

µνλρ +KµνλρK
µνλρ

)
+ · · · ,

where as before K = dE and H = dC and G = dB +mC + m̃E, but now also

G := dB +m?E . (3.41)

This system dualizes much as before: we introduce Lagrange multipliers a and b to enforce the G

and G Bianchi identities dG = mH + m̃K and dG = m?K and then integrate out G, G, H and K to

find

L2(a) = −1

2
(∂b)2 − 1

2
(∂a+ J)2 − V (a, b) , (3.42)

with

V (a, b) = −W (X,Y ) + (ma− θΛ̃2
QCD)X + (m̃a+m?b− ηΛ̃2

X)Y , (3.43)

and we define as before X = 1
4!ε

µνλρHµνλρ and Y = 1
4!ε

µνλρKµνλρ. For the simplest example of

W = 1
2 (X2 + Y 2), at the saddle point (H,K) = (H,K) gives the following relation between (X,Y )

and (a, b): (
∂W

∂X

)
Y

= ma− θΛ̃2
QCD and

(
∂W

∂Y

)
X

= m̃ a+m? b− ηΛ̃2
X . (3.44)

Differentiating (3.43) with respect to a and b implies

∂V

∂a
= mX + m̃Y,

∂V

∂b
= m?Y . (3.45)

and so shows that all extrema of the potential satisfy X = Y = 0 (provided m, m̃ and m? are nonzero).

Because ∂W/∂X vanishes at X = 0 it follows that the dynamics chooses amin to satisfy θΛ̃2
QCD/m = θf

through (3.44); the axion quality problem essentially disappears.

What happened? Why does introducing another axion resolve the quality problem? The crux of

the mechanism lies in the difference between eq. (3.45) and (3.27). The derivative of the potential

always sets a linear combination of 4-form field strengths to zero and if there are as many equations

as there are fields the only solution is generically to have all 4-form field strengths vanish. Once this

is true then the first of eqs. (3.44) ensures that this solution solves the strong-CP problem. Trouble

only arises – as it did in §3.3.1 – when there are fewer equations than unknowns (i.e. fewer axions

than 3-form potentials), since then X need not vanish and eqs. (3.44) become competing conditions

on the same axion variable.

10The use of multiple axions to solve the quality problem is mentioned also in [43], who have different but related

motivations for there being a plethora of form fields present in the UV.
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A similar mechanism also exists on the scalar side of the duality. If two sectors generate con-

tributions to the QCD axion potential then the problem arises because these compete in the value

they imply for the axion expectation value. Introducing a second anomalous U(1) symmetry that also

has anomalies with the same two sectors provides enough latitude to minimize each sector’s potential

separately, thereby removing the troublesome competition.

For instance, suppose there was a new non-Abelian gauge sector G and suppose the usual PQ

symmetry has both a QCD anomaly and an anomaly in the G sector. This is the kind of thing that

can cause a quality problem because of the contradictory conditions the two sectors impose on the

QCD axion. But also introducing another global U(1) with only a G-sector anomaly can help because

there is a linear combination of the PQ symmetry and the new U(1) that is anomaly free in the G
sector and the PQ mechanism then goes through using this new symmetry.11

4 UV completion and matter couplings

Since the motivations both for considering Kalb-Ramond fields and for the absence of global symmetries

come from the UV, it is useful to ask whether there are other potential surprises for axion physics

having their roots in the UV. This section examines two such examples; one each for T -type and

for S-type axions. For T -type axions we provide simple examples for which physical axion-matter

couplings like gaff can be much smaller than the naive value 1/fb read off from the axion kinetic term.

In the example shown here gauge invariant matter couplings like gaff are order 1/Mp despite fb being

an ordinary particle physics scale, while anomalous gauge couplings remain order 1/fb in size (if they

exist at all).

For S-type axions we show that the corresponding physical couplings indeed are of order 1/fa
and we identify the UV physics to which couplings of size E/fa match at energies E >∼ fa. We also

show how S-type axions can be examples of weak/strong duality, and that it is the Kalb-Ramond

side of the duality that is usually weakly coupled. Weak/strong coupling interchange due to duality

could be relevant to applications for which the effects of scalar axions are explored using semiclassical

reasoning, and if so would provide a further motivation for taking the Kalb-Ramond formulation as

primary.

4.1 Extra-dimensional UV completion

To this end suppose that both Kalb-Ramond field and the standard model arise within an extra-

dimensional model. For concreteness’ sake we take the higher-dimensional kinetic term for the 2-form

field and the Einstein-Hilbert part of the action to be12

Skin = −1

2
M2+d

∫
d4x ddy

√
−g̃(D)

(
R̃+

1

3!
e−λφGMNPG

MNP

)
, (4.1)

where there are D = 4+d spacetime dimensions and M is a UV scale – the higher-dimensional Planck

scale. R̃ here denotes the Ricci scalar and g̃(D) is the determinant of the full D-dimensional metric

g̃MN . As above H = dB+ · · · is the Kalb-Ramond field strength and φ is the extra-dimensional dilaton

that often arises within the higher-dimensional gravity supermultiplet. The parameter λ depends on

11Ref. [16] uses a special case of this general mechanism by introducing an extra U(1) symmetry in the leptonic sector

to resolve the problem raised by the assumption that gravity is strongly coupled.
12For simplicity we ignore extra-dimensional warping in this discussion. We also do not canonically normalize BMN ,

which here is taken to be dimensionless.
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higher-dimensional details, with (d, λ) = (2, 2) for chiral 6D supergravity [44], (d, λ) = (6, 1) for Neveu-

Schwarz 2-forms in 10D supergravity and (d, λ = −1) for Ramond 2-forms in 10D supergravity [45]

(for example).

The derivation of this type of lagrangian as the low-energy limit of a string vacuum usually relies

on two approximations: the low-energy approximation (or α′ expansion) where energies are well below

the string scale E � Ms; and the weak string coupling approximation, which involves expanding in

powers of eφ � 1. For simplicity we restrict ourselves to this limit as well, and specialize to the

simplest case (d, λ) = (2, 2) corresponding to 6D chiral supergravity.

Dimensional reduction to 4D proceeds by integrating out the two extra dimensions and putting

the 4D Einstein-Hilbert term into standard form (4D Einstein frame) by appropriately rescaling the

4D part of the metric

g̃µν =

(
V2?

V2

)
gµν =

1

V2

(
M2
p

M2

)
gµν where Vd := Md

∫
ddy
√
g̃(d) (4.2)

is the dimensionless extra-dimensional volume and the subscript ‘?’ on a field denotes its present-day

value13 and the 4D Planck massis is defined by

M2
p = V2?M

2 . (4.3)

S-type axion

The kinetic term for bµν in 4D Einstein frame that is obtained by dimensional reduction is

Lkin = − 1

12
M2V2

√
−g̃(4) e

−2φg̃µν g̃βρg̃ξζ HµβξHνρζ = − M4

12M2
p

√
−g e−2φ V2

2 hµνβh
µνβ , (4.4)

where hµνλ = ∂µbνλ + (cyclic). This last form can be written in terms of a scalar by dualizing as in

earlier sections, imposing the Bianchi identity14 dh = Ω/M2, leading to the dual result

Ldual = −
√
−g

[
M2
p e

2φ

V2
2

∂µa ∂
µa +

1

3!
a εµνβρΩµνβρ

]
(4.5)

which suggests its decay constant can be written fa = (Mp/Vd?) eφ? .

Two things are noteworthy here. First, notice that the volume dependence means that fa can

be very much smaller than Planckian size. In the extreme case of two large extra dimensions (and

working in the weak-coupling regime for which eφ is moderately small) the size of the extra dimensions

can be as large as MRKK
<∼ 1014 and so V2 ∼ (MRKK)2 <∼ 1028 can be enormous (potentially allowing

fa ≪Mp to be as small as eV energies).

Second, notice that although (4.4) has large coefficients when e2φ � 1, the same is not true of the

kinetic term in (4.5). This reflects how Kalb-Ramond/axion duality is a weak-strong coupling duality

from the point of view of the string coupling gs ∼ eφ. To the extent that semiclassical expansions

rely on the leading action being proportional to the inverse of a small coupling15 – L0 = L0/g
2
s –

semiclassical methods should fail for the scalar representation but hold for its dual.

13The factor of V2? ensures the rescaling is trivial at present, as required to not change present-day units of length.
14The factors of M here are chosen so that Ω has dimension (mass)4.
15When this is true then powers of g2s and powers of ~ are equivalent when evaluating a path integral over eiS0 .
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T -type axion

For T -type axions we use Bmn(x, y) = b(x)ωmn(y) where in six dimensions the harmonic form can

be taken to be proportional to the extra-dimensional volume form εmn(y). Typically ωmn satisfies

a quantization condition that states the integral of ωmn over the two extra dimensions
∮
C
ω is a

pure number, proportional to an integer. Because this result is volume independent it follows that

ωmn = V−1
2 εmn.

The kinetic term for the T -type scalar b obtained in this way is therefore proportional to

Lkin = −1

2
M2V2

√
−g̃(4) e

−2φg̃µν∂µb ∂νbV−2
2 = −

√
−g M2

p e
−2φV−2

2 gµν∂µb ∂νb . (4.6)

Notice that the kinetic term, both here and in (4.5), takes the form

Lkin = −1

2

√
−gM2

p

[
(∂b)2

τ2
+

(∂a)2

σ2

]
(4.7)

with τ = V2 e
φ in (4.6), and σ = V2 e

−φ in (4.5).

4.2 Coupling strengths

What matters for phenomenology is the couplings of the fields b and a to matter. This is controlled

by the size of F for axion couplings of the form

Lax = −1

2
∂µa ∂

µa− 1

F
∂µaJ

µ , (4.8)

where a is the canonically normalized axion field and Jµ is a matter current. F−1 = gaff is the

axion-fermion current if Jµ is built from fermion bilinears and F−1 ' gagg or gaγγ if Jµ is the Hodge

dual of the QCD or QED Chern-Simons 3-form.

For concreteness’ sake we evaluate the size of this coupling in the perturbative semiclassical regime

where V2 is large and the UV physics is weakly coupled (and so eφ small). In this limit we have

fb >∼Mp/V2 >∼ fa and both are much smaller than Mp. In both cases we will see that F can (but need

not) be simply given by the corresponding decay constant fa or fb.

In higher dimensional constructions very often ordinary matter is localized on a space-filling brane,

Σ, within the extra dimensions. Σ could be a four-dimensional 3-brane or a higher-dimensional p-

brane with 3 ≤ p ≤ 3 + d. If p > 3 then the extra-dimensional part of the brane typically wraps some

topological cycle within the extra dimensions, and if this were a two-cycle (e.g. if p = 5) it would

also have an associated harmonic 2-form ωmn(y) required to ensure that T -type axions appear in the

low-energy 4D theory. We here explore the simplest case p = 3.

S-type axion

A generally covariant low-dimension interaction between HMNP and matter fields living on the brane,

that is linear in BMN is16

Sint = −ĉ
∫

Σ

e−βφH ∧ J = − c

3!

∫
d4x
√
−g e−βφ εµνλρhµνλJρ , (4.9)

where Jρ is a current built from brane-localized matter fields and β is a parameter – like λ in (4.1) – that

is predicted by any specific extra-dimensional UV completion. The matter current Jρ has dimension

16The first equality shows that this interaction is independent of the metric, and this can also be seen after the second

equality from the observation that εµνλρ = ±
√
−g and so εµνλρ = ±(−g)−1/2.

– 20 –



(mass)3 – making the coupling parameters ĉ and c dimensionless – and so could be a fermion bilinear

or the Hodge dual of a gauge boson Chern-Simons term (though for the Chern Simons term gauge

invariance would require β = 0). Because this term is covariant without use of the metric it does not

acquire factors of V2 or Mp/M when going to 4D Einstein frame.

The dual effective theory for a is then found by adding (4.9) to the kinetic term (4.4), imposing

the Bianchi identity dG = Ω/M2 and integrating out hµνλ, modifying (4.5) to

Ldual = −
√
−g

[
M2
p e

2φ

2V2
2

DµaD
µa +

1

3!
a εµνβρΩµνβρ

]
(4.10)

where

Dµa := ∂µa +
c

M2
p

e−(β+2)φ V2
2 Jµ = ∂µa +

c

f2
a

e−βφ Jµ . (4.11)

As before we use the kinetic term to identify fa = (Mp/V2?) e
φ? . Using M2

p = M2V2? with V2? =

(MRKK)2 for a Kaluza-Klein length scale RKK , this implies fa ∼ MV−1/2
2? eφ? ∼ (1/RKK) eφ? , and so

fa ∼ mKK ∼ 1/RKK when eφ? is not that much smaller than order unity.

The physical coupling that comes from comparing the kinetic and ∂µa J
µ term to (4.8) is

gagg ∼ gaff =
1

Faff
∼ cV2?e

−(β+1)φ?

Mp
∼ c e−βφ?

fa
for couplings to J . (4.12)

In the special case where Jµ is the Hodge dual of a gauge-field Chern Simons term, gauge invariance

also requires we take β = 0, and once this is done the coupling in (4.12) agrees (up to numerical factors)

with the physical coupling to Ω implied by (4.10). This coupling becomes strong when E ∼ fa, which

we’ve seen is of order the Kaluza-Klein scale in the special case of two extra dimensions.

T -type axion

The lowest-dimension generally covariant and gauge invariant interaction that couples HMNP to matter

localized on a space-filling 3-brane and that is linear in the components Hµmn has the form

Sint =

∫
Σ

e−2φ ?H ∧ J 3
M2
p

M2

∫
d4x
√
−g e

−2φ

V2
2

gµν∂µb(x)Jν(x) , (4.13)

where ?H denotes the 6D Hodge dual and we choose the φ coupling to be the same as the kinetic

term.

The kinetic and interactions terms combine to give the effective action (in 4D Einstein frame)

Seff =

∫
d4x
√
−g

M2
p

τ2

[
(∂b)2 +

∂µbJ
µ

M2

]
(4.14)

where τ := V2 e
φ as before. Inspection of the kinetic term identifies the decay constant as fb 'Mp/τ?

with τ? ∝ V2? denoting the present value of τ . Because M2
p 'M2V2? we see that fb ∼MV−1/2

2? ∼ R−1
KK

is of order the KK scale in size.

Canonically normalizing by rescaling b = Mp b/τ? —- then produces a lagrangian of the form (4.8)

with

F ∼ M2τ?
Mp

∼Mp � fb ∼
Mp

τ?
. (4.15)

As is typical for KK modes the field b ∈ Bmn couples with gravitational strength. Notice that the

ratio F/fb ∝ V2? can be enormous, since V2? can be as large as 1028 in the extreme case of two large
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eV-scale dimensions. In this case gauge invariance precludes choosing J to be the dual of the Chern

Simons form of a brane localized gauge sector, even in the absence of any φ-dependence in (4.13).

It is not that surprising to have a breakdown of 4D EFT methods at the KK scale, but the above

discussion shows there is a difference between what happens at this scale for T - and S-type axions.

For T -type axions the coupling to matter is order 1/Mp and this remains true above the KK scale.

The breakdown of the 4D EFT is about the appearance of a multitude of new KK modes, all of which

couple with gravitational strength. But the S-type axion’s coupling to matter is proportional to E/fa
and so actually grows to become order unity at the KK scale; what does this order unity coupling

match to in the UV theory? It matches to a dimensionless extra-dimensional coupling in the UV

theory: either to the coupling c appearing in (4.9) or to the coupling gcs of BMN to the Chern-Simons

term SMNP that is implied by the field strength G = dB+gcsS. Although gcs is order 1/M2 when BMN

is dimensionless (as above), it is dimensionless once BMN is canonically normalized in six dimensions.

Since gauge invariance prevents the coupling (4.13) from containing a coupling between T -type

axions and a gauge sector localized on a 3-brane, one can ask whether such couplings are more generally

forbidden. The answer to this is ‘no’ if we allow ourselves to consider gauge sectors localized on higher-

dimensional branes. For instance for a six-dimensional 5-brane Σ6 they can arise from an interaction

of the form

Sint,g = cM2

∫
Σ6

B ∧ F ∧ F ∝ c
∫

d4x
√
−g b εµνλρFµνFλρ , (4.16)

where the explicit factor of V2 coming from the integration over the additional two dimensions cancels

the normalization of the harmonic form ωmn ∝ V−1
2 εmn. For a canonically normalized scalar this

would imply gaγγ ∼ 1/fb.

The upshot is this: the model-dependent T -type axions can couple surprisingly weakly to non-

gauge matter compared to the scale set by their decay constant: 1/F ∼ 1/Mp � 1/fb ∼ RKK . By

contrast, the model-independent S-type axion couples to matter with strength 1/F ∼ 1/fa ∼ 1/fb
and the same is true of T -type couplings to gauge fields on higher-dimensional branes. From the point

of view of the underlying string coupling eφ the duality that maps bµν to a is also a strong/weak

coupling duality.

5 Conclusions

Axions (or ALPs) are often motivated by appealing to string theory, which seems to provide them

with abundance. But string theory also provides strong concrete evidence for the assertion that exact

global symmetries cannot survive contact with quantum gravity; the observation that underlies the

UV quality problem for attempts to solve the strong-CP problem using a global PQ symmetry.

We here reconsider some of the implications that follow from the observation that axions arise

as antisymmetric tensor fields in higher dimensions and that Standard Model fields usually live in

localised objects like D-branes within the extra dimensions. Axions arise in two general types in this

way: the model independent S-type axion originating from a two-form field in 4-dimensions after

compactification; and the model dependent T -type axion such as arises as a Kaluza-Klein mode for

an extra-dimensional tensor field (of which we focus for simplicity on two-form potentials in two extra

dimensions).17

These allow for a rich structure of axion phenomenology and each type of axion can be adapted

to realize the PQ solution to the strong CP problem. It has been known for a while that UV effects

17Axions may come from other forms such as three or four forms in ten dimensions depending of which type of string

theory.
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can affect the original PQ proposal by generating effective interactions that violate the global PQ

symmetry and modify the prediction for the axion mass: the axion quality problem. We revisit how

this problem arises for the two types of axion using the UV tools at hand.

We find that for T -type axions the quality problem resembles the form originally studied, since the

UV theory directly provides a pseudoscalar field once compactified to four dimensions. Our framework

differs from early versions of the quality problem that imagine the PQ symmetry to be linearly realized

by a complex scalar at energies E > f , but generally agree with estimates based on the contributions

due to wormholes or gravitational instantons below a compactification scale. To the extent that these

contributions are exponentially suppressed their constraints are mild.

The S-type case is more interesting since both the strong CP and axion quality problems must

first be reformulated in terms of the two-form field and its field strength. The PQ mechanism involves

giving a mass to the axion and so on the dual side involves the ‘eating’ of a 3-form potential along

the lines proposed in [27]. The required 3-form potential is generated by the QCD sector itself as a

non-propagating topological field in the EFT below the QCD scale. As applied to QCD our re-analysis

broadly agrees with that of [14] in concluding that the quality problem gets recast as an issue that

arises when there are multiple 3-form fields present in the low-energy theory. This might be imagined

to be a problem for string theory, for which 3-form potentials are as ubiquitous as axions.

Prompted by recent discussions of this problem [15, 16] we formulate the two properties which

new 3-form fields must have if they are to threaten the PQ solution to the strong CP problem, arguing

why string-generated 3-form fields are not generically a problem, largely because these fields need not

couple to QCD (in string theory it depends on how bulk fields couple to brane fields and usually only

one couples to QCD). The gravitational Chern-Simons term does couple to QCD but whether or not it

sparks a new strong CP problem depends on whether or not gravity is strongly coupled in the UV. The

discussions of [14, 16] assume that it is, but we argue that if it is not (such as if the UV completion is a

weakly coupled string vacuum) then the estimates for the size of the problem are again exponentially

suppressed and so would not pose a quality problem.

Finally we also explore other UV implications for axion physics. We found that depending on the

brane configuration hosting the Standard Model, extra dimensions can dramatically suppress physical

couplings between the axion and Standard Model sector relative to the axion decay constant appearing

in the axion kinetic term, especially if the volume of the extra dimensions is very large. This is possible

for T -type axions but in the the examples examined does so only for non-gauge couplings (making

this observation more pertinent for ALPs, whose properties would tend to be ‘fermiophobic’).

For S-type fields both kinds of couplings have similar size.18 For this case though, we argue that

the duality relating the 2-form to the axion field swaps weak and strong couplings, and suggests a

semiclassical description of 2-form response need not correspond to the usual semiclassical description

of a scalar axion. This again motivates better exploring the 2-form side of the theory.

It is an old argument that UV information can have important implications for low-energy natu-

ralness questions such as the strong CP problem. The observation that this could be informative in

situations where the questions are solved using features like global symmetries that apparently should

not be present at very high energies has sparked a revival of studies of generalised and non-invertible

symmetries. Many of these ideas resonate well with string-motivated constructions, such as those we

explore here.

18For supersymmetric realizations this can be seen because both the Kähler potential and gauge kinetic function

depend directly on the S field.
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