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Abstract. Models with pure momentum exchange in the dark sector have been
shown to provide a promising scenario to tackle the tension in the clustering in-
ferred from high- and low-redshift probes. A distinctive feature of these models is
that only the Euler equation for the dark matter component is modified and the
correction is such that the net effect can be associated to an additional friction
determined by the interaction rate. In this work, we show that the strength of the
interaction parameter needed to resolve the σ8 tension could be detected from the
dipole of the matter power spectrum that is expected to be measured in upcoming
surveys.
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1 Introduction

The standard model of cosmology, dubbed ΛCDM, has shown an excellent agree-
ment with most cosmological observations to date. However, as the amount and
precision of the available data have increased over the last decades, some tensions
have surfaced. If these tensions were statistical flukes, we would expect them to
disappear, within the cosmic variance limit, as we collect more data. However, not
only they do not disappear but, in some cases like the Hubble tension, they even
become more pressing [1, 2]. Among the existing tensions (with an admittedly mild
statistical significance), there is an apparent discrepancy between the amplitude
of the fluctuations today as extrapolated from the Cosmic Microwave Background
(CMB) measurements [1, 3] and those derived from low redshift surveys (shear
weak lensing [4–6], CMB lensing [7–9] and galaxy clustering [10–12]). This is the
so-called σ8 tension and might signal towards a possible weaker clustering than
that predicted by ΛCDM and, thus, to the existence of new physics.
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Of course, the σ8 tension could be caused by some unknown systematics, but
the variety and consistency of the probes where the tension is observed calls for a
scrutiny of possible physical mechanisms able to explain the discrepancy and this
has paved the way for numerous attempts in this direction. A popular approach
consists in modifying the dark sector, either by adding some features to the dark
matter component, or by modifying the dark energy sector that indirectly affects
the matter clustering or by including some type of interaction within the dark
sector. In this work we will be concerned with the latter and, in particular, with
a particular class of models with an interaction designed so that the background
cosmology remains unaltered and only the Euler equations are affected, i.e., up to
linear order in perturbation theory only momentum can be transferred between the
dark components. Since there is no energy exchange, these interactions are elastic
up to that order.1 These models have been shown to exhibit some interesting
virtues, including a promising scenario to alleviate the σ8 tension [13–20].

A very intriguing feature of these models is that the inclusion of measure-
ments of S8 as a Gaussian prior in the fit to data, not only improves the fit with
respect to ΛCDM, but it leads to a possible detection of the interaction. This fea-
ture was observed in [14] for a model of coupled quintessence with pure momentum
exchange. In [15] a model where dark matter and dark energy are coupled via a
(covariant) interaction driven by the relative velocity of the corresponding compo-
nents was analysed and a similar result was hinted. This model was later explored
in more detail in [18] and [19] where it was confirmed the crucial role played by
the inclusion of S8 measurements and that, in this case, a detection of the inter-
action could be inferred. The results for this model have also been independently
confirmed in [21]. Similar conclusions are also achieved when the baryonic sector
interacts with dark energy [22]. Finally, a model of pure momentum exchange
between dark matter and dark energy has been constructed in [23] by using the
Schutz-Sorkin Lagrangian formalism and similar results were also obtained for this
scenario in [19]. All these previous results make these scenarios worth being fur-
ther explored and the goal of this work is to unveil potential distinctive signatures
of these models that could eventually be detected. In particular, we will study if
future measurements of the galaxy power spectrum dipole could confirm a non-
vanishing value of the interaction parameter. To this aim, our approach will be as
follows: Since existing data (with the caveat of using S8 measurements in mind)
signal to the presence of the interaction, excluding the non-interacting case at sev-
eral sigmas, we will assume a fiducial model with the interaction. Then, we will
derive the effect of this interaction in the dipole of the matter power spectrum and

1Non-linear terms can introduce energy exchange, thus spoiling the elasticity of the inter-
action. Although this might be relevant for numerical simulations, we only consider the linear
regime so for our purposes the interaction is perfectly elastic.
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show the potential of future SKA-like data [24] to detect such an effect.
The work is organised as follows: In Sec. 2 we introduce the class of models

that we will analyse. We will then review the relativistic effects for the galaxy
clustering 3 and their relation with the Euler equation 4. Then in Sec. 5 we study
the particular signature of this class of models in the dipole of the galaxy power
spectrum. In Sec. 6 we present the numerical results taylored for a SKA-like survey
and in Sec. 7 we draw our conclusions.

2 A proxy for elastic dark interactions

We will start by introducing the model under consideration in this work. Let us
stress that, although we will work with a specific model, our results are expected
to hold for the general class of pure momentum exchange models able to alleviate
the σ8 tension, so we consider our specific scenario as a proxy for this class of
models. For reasons that will become clear soon, we will refer to it as covariantised
dark Thomson-like scattering. This model was first considered in Ref. [15] and
subsequently explored in [18, 19, 21, 25]. The philosophy behind this model is to
design an interaction in the dark sector that only affects the linear perturbations,
but leaves the background cosmology intact. This is straightforwardly achieved
by introducing an interaction at the level of the energy-momentum conservation
equations that is governed by the relative velocities of the involved fluids. By
invoking the cosmological principle, such an interaction drops from the background
evolution. More explicitly, the interaction is introduced as

∇µT
µν
dm = Qν , ∇µT

µν
de = −Qν , with Qν = ᾱ (uνde − uνdm) , (2.1)

where ᾱ measures the strength of the interaction. In principle, it could depend on
both space and time, but we will assume it to be constant. Furthermore, since it
has dimension 5, we will instead use the dimensionless quantity

α =
8πG

3H3
0

ᾱ , (2.2)

where the powers of H0 and G have been chosen for convenience. This interaction
clearly fulfills our requirements because all the cosmological fluids share the same
large scale rest frame so Qµ identically vanishes for the background evolution. For
the perturbed sector, peculiar velocities appear and the effects from the interaction
begin to be relevant. Thus, let us consider a perturbed Friedmann-Lemâıtre-
Robertson-Walker (FLRW) metric described by the line element

ds2 = a2(t)
[
− (1 + 2Φ) dt2 + (1− 2Φ) dx2

]
, (2.3)
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where we have fixed the Newtonian gauge and used the absence of anisotropic
stresses so the two gravitational potentials are the same.2 The perturbed conser-
vation equations read

δ̇dm = −θdm + 3Φ̇ , (2.4)

θ̇dm = −Hθdm + k2Φ + Γ(θde − θdm) , (2.5)

δ̇de = −3H
(
c2

s − w
)
δde + 3(1 + w)Φ̇− θde(1 + w)

(
1 + 9H2 c

2
s − w
k2

)
, (2.6)

θ̇de =
(
−1 + 3c2

s

)
Hθde + k2Φ +

k2c2
s

1 + w
δde − ΓR(θde − θdm) , (2.7)

where we denote with a dot the derivative with respect to the conformal time t, θ
stands for the divergence of the peculiar velocity, w and c2

s denote the equation of
state and the sound speeds of dark energy respectively, Γ is the interaction rate
between dark energy and dark matter and R is the dark matter-to-dark energy
ratio, both defined as

Γ ≡ ᾱ
a

ρdm

, (2.8)

R ≡ ρdm

(1 + w)ρde

. (2.9)

The above equations, together with the usual Poisson equation that is also un-
affected by the interaction3, are the sets of equations governing the evolution of
the perturbations and, in particular, the clustering of dark matter. We see that,
at the level of linear perturbations, the interaction modifies the Euler equations
in the same form as a Thomson scattering (in fact, this term in the perturbation
equations was obtained by introducing a scattering between dark energy and dark
matter in [13]), hence the name covariantised Thomson-like interaction (since at
higher order in perturbation theory differences appear). This interaction is the re-
sponsible for erasing structures since it transfers pressure support from dark energy
to dark matter and, therefore, structure formation is less efficient. Furthermore,
since Γ ∝ a4, this effect tends to appear at low redshift when Γ is sufficiently large.
This is the main mechanism at work that makes this model able to alleviate the
σ8 tension as shown in the literature [15, 18, 21]. We refer to those references for a
more detailed explanation and analysis of the model. Here we only want to stress
that a value of α ' 1 is strongly favoured by data when including measurements
of S8 as a Gaussian prior. Although there might be some caveats of including
these measurements, it is intriguing that not only the fit with respect to ΛCDM is

2Since we work to linear order in perturbation theory and we neglect neutrinos, we can set
the two Bardeen potentials to be equal from the beginning.

3The evolution of the gravitational potential is of course indirectly affected.
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improved, but the non-interacting case is excluded at more than 3 sigmas. In the
following we want to explore to what extent SKA-like surveys will be sensitive to
the presence of this interaction through the dipole of the galaxy power spectrum.
Let us then proceed to see how the dipole can shed light on this interaction.

3 Relativistic description of galaxy clustering

Current and upcoming galaxy surveys [26–30] map the 3-dimensional positions
(line-of-sight direction n and redshift z) of tens of millions of galaxies covering a
large fraction of the sky. From these catalogs we can measure the perturbation of
the galaxy number density, i.e. the galaxy number counts

∆ (n, z) =
N (n, z)− 〈N〉 (z)

〈N〉 (z)
(3.1)

where 〈..〉 denotes the angular average at fixed observed redshift z. The galaxy
number counts has been derived in a full relativistic framework in Refs. [31–34] to
first order in perturbation theory and then extended to second order in Refs. [35–
37]. In this work we are interested in the linear relativistic terms proportional to
the peculiar velocity of galaxies. Indeed, as it has been pointed out in Refs. [38–
49] these terms will lead to a non-vanishing imaginary part of the cross-power
spectrum or, equivalently, they source the dipole of the power spectrum or 2-point
correlation functions for two different galaxy populations. In this approximation
(and neglecting integrated terms) the galaxy number counts is described by4

∆ = bδ +H−1∂rv||

+H−1∂rΦ−

(
1− 5s+

5s− 2

rH
− Ḣ
H2

+ fevo

)
v|| −H−1v̇|| +O

(
H2/k2

)
,

(3.2)

where v|| = n ·v and n is the unit vector pointing from the source to the observer.
In order to relate dark matter fluctuations with the observed galaxies we need to
introduce three bias parameters: the galaxy bias b, the magnification bias s and
the evolution bias fevo. The latter are defined as

s = −2

5

∂ lnn

∂ lnL

∣∣∣∣
L=L̄

, (3.3)

fevo =
∂ lnn

∂ ln a
, (3.4)

4The power counting is in terms of spatial derivatives, which in Fourier space become factors
H/k. For sake of simplicity we use the same notation in real and Fourier space.

– 5 –



where n denotes the comoving galaxy density. These two bias parameters capture
the effects of incomplete galaxy sample (in magnitude) and non-trivial distribution
of the galaxies in redshift due to galaxy formation, respectively. In particular a
volume limited survey is described by s = 0, while fevo = 0 is obtained when the
number of sources is conserved in a comoving volume. The first line of eq. (3.2)
denotes the standard terms in Newtonian approximation, while the second line
encodes the leading relativistic corrections.

In ΛCDM, all the matter particles move according to the Euler equation

v̇ +Hv +∇Φ = 0 , (3.5)

or, by contracting with the direction n, with a radial peculiar velocity satisfying

v̇‖ +Hv|| − ∂rΦ = 0 . (3.6)

As a consequence, the galaxy number counts to linear order is not sensitive neither
to the acceleration v̇‖ nor to the gravitational redshift ∂rΦ and is given by

∆ΛCDM = bδ +H−1∂rv||

−

(
1− 5s+

5s− 2

rH
− Ḣ
H2

+ fevo

)
v|| +O

(
H2/k2

)
. (3.7)

In this scenario, we can consider a single galaxy as a test particle whose motion is
described by the geodesic equations. It is well-known that, in a matter dominated
era and in ΛCDM, the Euler equation describes the geodesic motion. We leave its
derivation in Appendix C. This will become useful beyond ΛCDM. However, as
we will see in the next session, the equivalence between the geodesic equation and
the Euler equation is broken once we have interacting dark matter, even in the
matter dominated era ant this will be the main effect that will make it possible to
use the matter power spectrum dipole a smoking gun for the elastic interactions.

4 Deviation from Euler equation

Let us consider the modified dark matter Euler equation presented in the previous
section

θ̇dm = −Hθdm + k2Φ + Γ(θde − θdm) . (4.1)

For small enough scales, where precisely the interaction is efficient, and for realistic
values of the coupling α ∼ O(1), the dark energy velocity is negligible compared
to the dark matter one. Then, we can approximate the Euler equation for dark
matter as

θ̇dm ' −Hθdm + k2Φ− Γθdm . (4.2)
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Consequently, the interaction between dark matter and dark energy discussed
above leads to the following modified Euler equation for the dark matter field:

v̇ +H (1 + Θ)v +∇Φ = 0 , (4.3)

or, by contracting with the direction n, we obtain

v̇|| +H (1 + Θ) v|| − ∂rΦ = 0 , (4.4)

where the deviation from the standard scenario is encoded in the variable Θ defined
as

Θ ≡ Γ/H = α
H0a

Ωdm(a)H
. (4.5)

This modified Euler equation describes the dark matter motion in the interacting
scenario considered in this work and for the relevant scales. Since we observe
only galaxies, and the velocity appearing in the galaxy number counts (3.2) is the
galaxy peculiar velocity some assumptions need to be made to study the effects
of the interaction. In order to determine the galaxy velocity we will consider the
following two possible extreme cases:

• Dark matter tracers: Galaxies comove with dark matter (see e.g. [50–52]),
i.e., galaxies are faithful tracers of the dark matter velocity field.

• Gravitational potential tracers: Galaxies move according to the linear geodesic
equation so they move according to the gravitational potential (see e.g. [53]).

We will analyse these two scenarios for completeness. However, we believe that
galaxies will be good tracers of the dark matter velocity field, so we expect the
first scenario to be more realistic. The reasoning is that the bulk of structure
formation takes place when the interaction is not active so galaxies are locked at
the bottom of the dark matter haloes gravitational potentials. Since the realistic
values of α gives rise to a small effective friction for dark matter, we do not expect
this to be sufficient to drag galaxies away from the potential wells. This issue is
being currently investigated through numerical simulations and the results will be
presented elsewhere.

4.1 Dark matter tracers

The galaxy number counts, see eq. (3.2), is sensitive to the radial galaxy velocity.
In this section, we consider the assumption that galaxies lie at the bottom of
the gravitational potential generated by dark matter halos. From this viewpoint,
galaxies are forced to be comoving with the dark matter halos. Therefore, we will
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have v||
gal = v||

DM and we can use the dark matter Euler equation (4.4) to obtain
the relativistic number counts as follows

∆ (x) = bδ +H−1∂rv|| +

(
Ḣ
H2

+
2− 5s

rH
+ 5s− fevo + Θ

)
v|| +O

(
H2/k2

)
. (4.6)

In this expression, the density contrast is assumed to be evaluated at some redshift
z, although we will omit the redshift dependence to alleviate the notation. By using
the dark matter continuity equation (µ = x̂ · k̂)

∂rv||
DM = fDMHµ2δDM and v||

DM = −iµfDMδDMH/k (4.7)

the galaxy number counts becomes proportional to the dark matter density con-
trast5

∆ (k) = bδ(k) +

[
fµ2−iµfH

k
R+

(
H
k

)2 (
F0 + F2µ

2
)]
δdm (k) (4.8)

where

R =
Ḣ
H2

+
2− 5s

rH
+ 5s− fevo + Θ (4.9)

and we have introduced F0 and F2 to keep track of the subleading relativistic
effects, that we will include for consistency in the derivation of the variance. A
difficulty arises here because we have two stochastic density variables in (4.8). We
will deal with this issue by assuming that the ratio δdm/δ is constant for the scales
and redshifts of interest (see Fig. 1). Under this assumption, we can absorb this
factor into the growth rate of the interacting dark matter6 and write

∆ (k) =

[
b+ fµ2−iµfH

k
R+

(
H
k

)2 (
F0 + F2µ

2
)]
δ (k) . (4.10)

4.2 Gravitational potential tracers

Alternatively, we could consider galaxies as test particles in an external gravita-
tional field where their motion is determined uniquely by the geodesic equation.
In this scenario, the motion of galaxies is fully determined by the gravitational
potential which in turn is determined by the total matter perturbation via the
Poisson equation, which means that we should use the total density contrast in

5In this section we simply denote f = fDM to alleviate the notation.
6And F0 and F2, although this will not be relevant since these will not contribute to the

dipole covariance at leading order as we will see below.
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Figure 1. In this Figure we plot the ratio of the density contrasts of the dark matter
component and the total matter (dark matter plus baryons). We can see that the error
of assuming that the ratio δdm/δ is constant and scale independent is below of order
1%, which, as we will see, is below the sensitivity for the measurement of the interaction
parameter α. This justifies our assumption since including this effect will lead to a
correction smaller than the precision of the measurement.

our expressions relating the peculiar velocities with the density perturbation. The
two descriptions agree in ΛCDM, where the geodesic equation reduces to the Eu-
ler equation in the matter domination era, but they differ in more generic cases.
As shown in Appendix C in detail, in this case galaxy geodesic equation leads to
the usual Euler equation (i.e. the Euler equation for non-interacting dark matter)
describing the evolution of galaxy velocities (3.5). Therefore, under this assump-
tion the dipole is sensitive to Θ only through its impact on the other cosmological
parameters, e.g. Hubble parameter H, the amplitude of perturbations σ8 or the
growth rate f . In our case, as the interaction is unable to modify the background
cosmology the impact is carried by the growth of structures related variables, like
the growth rate f , the gravitational potential Φ and the σ8 parameter. We can
therefore simply use eqs. (4.9-4.10) by setting Θ = 0 and considering the growth
rate f including baryons. As we will see in Sec. 6, this will reduce the sensitivity
of the dipole to Θ, leading to much weaker constraints.

5 Signature in the dipole of the power spectrum

In order to obtain a first forecast on the ability of upcoming galaxy surveys to
constrain or rule out the elastic interacting model, we work in flat-sky approxima-
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tion7 and neglect integrated effects.8 In the flat-sky limit, we can define the dipole
estimator as follows

P̂AB
1 (k) =

3

2V

∫
dΩk̂

2π
µ∆A (k) ∆B (−k) (5.1)

where µ = x̂ · k̂ = −n · k̂ and V is the survey volume. By computing the power
spectrum from eq. (4.10) and expanding it in multipoles with respect to µ we find
a non-vanishing dipole sourced by relativistic effects for the cross-correlation of
two different galaxy populations

PAB
1 (k) = −ifH

k

[
3

5
f(RA −RB) + (bBRA − bARB)

]
P (k) +O

(
H3/k3

)
. (5.2)

In the limit RA = RB the dipole of the galaxy power spectrum reduces to

PAB
1 (k) = if

H
k

(bA − bB)

(
Ḣ
H2

+
2− 5s

rH
+ 5s− fevo + Θ

)
P (k) +O

(
H3/k3

)
.

(5.3)
This equation highlights the importance of the dipole in constraining or detecting
the parameter Θ. Indeed, while in other multipoles the elastic scattering between
dark matter and dark energy can be detected through the changes in the growth
rate and the matter power spectrum only, the dipole depends explicitly on the Θ
parameter. In order to forecast the detectability of the elastic interaction with
future surveys, we need to compute the variance of the dipole (see Appendix A for
its derivation)

〈P̂AB
1 (k) P̂ ∗AB1 (q)〉c =

=

{
− 9

5

(
PAB

1 (k)
)2 − 23

35

(
PAB

3 (k)
)2 − 36

35
PAB

1 (k)PAB
3 (k)

+3

[(
1

2
PBB

0 (k) +
1

5
PBB

2 (k)

)
NA +

(
1

2
PAA

0 (k) +
1

5
PAA

2

)
NB

+
1

2
NANB

]}
(2π)2

V

δD (k − q)
k2

= σ2
P1

(k)
(2π)2

V

δD (k − q)
k2

. (5.4)

From this variance, we clearly see the importance of the dipole in detecting rela-
tivistic effects and, therefore, deviations from the Euler equation induced by the

7The amplitude of wide-angle corrections can be reduced by working with a symmetric esti-
mator with respect to the line of sight, see e.g. Ref. [54, 55].

8Since most of the information is carried by the lowest redshift bins, integrated effects have
been shown to be small, see Ref. [56].

– 10 –



model under consideration. Indeed, while the dipole is suppressed by a factor
H/k with respect to the even multipoles, see eqs. (A.3-A.7), its variance is not
affected by the cosmic variance of the even multipoles. Therefore the detection of
the dipole is mostly limited by shot-noise, as we will confirm with our numerical
results in the next section.

6 Numerical results

In this section we study the signal-to-noise ratio to detect a non-vanishing value
for the parameter Θ through the dipole of the galaxy power spectrum. In our case,
a non-zero value of Θ is associated to the momentum transfer between dark energy
and dark matter that modifies the Euler equation as explained in Section 4. Such
momentum transfer is controlled by the coupling parameter of the model α, as
summarised in Section 2. For this purpose, we compute the Fisher element Fαα
defined as

Fαα =
∑
i

Vi
4π2

∫
dkk2

∣∣∣∣∂P1 (k, zi)

∂α

∣∣∣∣2 σ−2
P1

(k, zi) , (6.1)

where the coupling parameter of the model α is related to Θ as follows

Θ =
H0

ΩDM(z)H(z)(1 + z)
α . (6.2)

Since α has no impact on the background cosmological quantities likeH, H0 and Ωi,
the Fisher elements of α and Θ are trivially related. Then, as we are only varying
one parameter we obtain the expected uncertainty from the Fisher element simply
as

∆α =
2

F
1/2
αα

. (6.3)

We obtain the different cosmological functions such as the matter power spectrum
or the Hubble function from a modified version of the publicly available CLASS
code [57] developed in Ref. [18]. This modified code accounts for the effects of
the interaction as it includes the new terms that appear in the Euler equations
due the dark matter-dark energy momentum transfer [see eqs. (2.5) and (2.7)].
We perform our calculation using as background cosmology a wCDM model since
the interaction necessitates w 6= −1, as required by the Euler equations (2.5)
and (2.7). We compute the quantities related to the perturbation sector using
the Newtonian gauge. We set the coupling parameter to α = 1 for our fiducial
cosmology motivated by the best fit value to cosmological observations of the
model [15, 18]. We remind the reader that the parameter α is the only new
parameter in this model, which controls the efficiency of the momentum transfer
between dark matter and dark energy. The remaining parameters of our fiducial
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cosmology are set to Ωbh
2 = 0.02264, Ωc = 0.1163, ns = 0.9721, As = 2.063 10−9,

τ = 0.0502, w = −0.948 and h = 0.6788, corresponding to the results obtained in
Ref. [18] using cosmological data of Planck 2018 TT, TE, EE and lensing data [58,
59] + JLA [60] + BAO [61–63] + PlanckSZ [64] + CFHTLens [65] (see the full
explanation of Section 4 of [18] for more details). In any case, our results are not
expected to have a strong dependence on the fiducial cosmology used (with the
exception of the value of α of course). Background and early Universe parameters
or quantities are insensitive to the interaction by the very intrinsic nature of the
coupling, but the only strong correlation is with the value of σ8. Since we use
σ8 as a derived parameter, then we do not fix its value, the dependence with the
fiducial cosmology is mainly encoded in the value of α for a reasonable choice of
parameters.

In the following we will analyse the two scenarios explained above for the
velocity of galaxies, namely: galaxies as tracers of the dark matter velocity field
and galaxies as tracers of the gravitational potential. We will assume that the
two populations of objects are split evenly, that is the density of each population
fulfills nA (z) = nB (z) = n (z) /2 where n (z) is the value reported in Table 1. For
the bias, we will follow the prescription

bA (z) = b (z) + 0.25 , (6.4)

bB (z) = b (z)− 0.25 , (6.5)

such that bA (z)− bB (z) = 0.5 as reported in Ref. [50]. We will also consider the
configuration with fevo = 09 for both A and B populations and we also set sA =
sB = 0. Considering other scenarios where fevo,A 6= fevo,B and/or sA 6= sB will only
improve our results, since in general the more pronounced the differences between
both populations the larger the detection capabilities. Thus, our analysis will be
conservative. For the shot-noise, we consider the simple prescription NA = 1/nA
and NB = 1/nB while the volume is defined as

Vi =
4π

3
fsky

[
r (zmax)3 − r (zmin)3

]
, (6.6)

where r(z) is the comoving distance to redshift z and fsky is the fraction of the
sky, that for the case of Square Kilometre Array (SKA) [66] survey is fsky =
30000/(3602/π) ' 0.73.

6.1 Galaxies as dark matter tracers

In the first scenario galaxies are assumed to be perfect tracers of the dark matter
velocity field. Under this assumptions and using a fiducial cosmology with α =

9In the next paragraph we study what happens when fevo 6= 0.
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zmin zmin n(z) [Mpc−3] b(z)

0.1 0.2 6.20 10−2 0.623

0.2 0.3 3.63 10−2 0.674

0.3 0.4 2.16 10−2 0.730

0.4 0.5 1.31 10−2 0.790

0.5 0.6 8.07 10−3 0.854

0.6 0.7 5.11 10−3 0.922

0.7 0.8 3.27 10−3 0.996

0.8 0.9 2.11 10−3 1.076

0.9 1.0 1.36 10−3 1.163

1.0 1.1 8.70 10−4 1.257

1.1 1.2 5.56 10−4 1.360

1.2 1.3 3.53 10−4 1.472

1.3 1.4 2.22 10−4 1.594

1.4 1.5 1.39 10−4 1.726

1.5 1.6 8.55 10−5 1.870

1.6 1.7 5.20 10−5 2.027

1.7 1.8 3.12 10−5 2.198

1.8 1.9 1.83 10−5 2.385

1.9 2.0 1.05 10−5 2.588

Table 1. We consider the galaxy bias b (z) and the number density as reported in
Table 3 of Ref. [67] for SKA.

1, as motivated by the fits to current data, we obtain the following expected
uncertainty from the measurement of the dipole:

∆1σα = 0.198 . (6.7)

This is a main result of this paper, namely: with future SKA-like surveys we
should definitely see the interaction. This result represents a clear prediction of
the model and, therefore, it provides a smoking gun for these models. Let us recall
that, although we are focusing on the covariantised Thomson-like scattering in the
present work, this is utilized only as a proxy for the general class of models with
pure momentum exchange so we expect similar results for those models within this
class able to alleviate the σ8 tension. Furthermore, the latest data available gives
a value for the coupling parameter α = 1.01+0.26

−0.33 [18] so, with the employed speci-
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fications, we will be able to improve the best current constraints on the interaction
parameter.

For completeness, we will explore the impact of having different evolution bias
for both populations. A simple prescription would be fevo = (b− 1)fδc [68] given
the different bias b of population A and population B as bA (z) − bB (z) = 0.5,
where10 δc ' 1.686. For simplicity we keep the magnification bias as before.
Then, we obtain ∆α = 0.166. As expected, the more the differences between
both populations the better the constraining power. Although one could wonder
the effect of including a different magnification bias for each population sA 6=
sB we have seen the improvement is modest when changing the evolution bias.
Moreover, as can be observed from Fig. 4, most of the constraining power comes
from the lowest redshift bins, where galaxy surveys are more complete and so the
magnification bias becomes closer to 0. However, we should not forget that, even
in the previous scenario where both evolution and magnification bias are the same
for both populations, an SKA-like experiment would have for a fiducial cosmology
α = 1 a predicted uncertainty of ∆α = 0.198, which will improve the constraints
obtained with the latest experiments as obtained in Refs. [15, 18].

6.2 Galaxies as tracers of the gravitational potential

In the scenario where galaxies are just test particles moving within the gravita-
tional potential, we obtain the forecasted uncertainty

∆1σα = 1.30 , (6.8)

which is substantially worse than (6.7). In particular, this uncertainty in the in-
teraction parameter α means that, under these circumstances, the dipole measure-
ments will not show a clear signal of the interaction. The reason for the worsening
of the result is that now the motion of galaxies is not directly affected by the
interaction, since their cosmological evolution is determined by an unmodified Eu-
ler equation, but only indirectly through the effects on the gravitational potential,
which is modified by the different clustering of the dark matter. This induces a de-
coupling between the motion of galaxies and dark matter. In other words galaxies
are no longer a good tracer of the dark matter velocity field where the interaction
plays a predominant role at low redshift. As commented above, we believe the

10We are taking the ΛCDM value of δc. In our scenario, this value will receive corrections
from the effects of the interaction in the clustering. Since our interaction is relevant only at low
redshift the spherical collapse model remains unaffected for most of the structure formation. A
full account of the effect of the interaction on the spherical collapse and the value of δc (that
presumably will even become scale-dependent) will require a detailed treatment. We do not
expect however a large deviation from the standard model so the corrections to our results are
not expected to be relevant. In any case, the corrections will not spoil our main result about the
detectability of the interaction.
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scenario with galaxies being good tracers of the dark matter velocity field is more
realistic, so the actual situation would yield the tighter constraint (6.7).

To conclude, we can see in Figure 2 the expected constraints for the model
parameter α considering the case where galaxies are comoving with dark matter
halos both with fevo,I = 0 (purple line) and with fevo,I = (bI − 1)fδc (green line),
and the scenario where galaxies are just test particles (blue line). In black we
have the result obtained in Ref. [18] where they use the last available data to
constrain the parameter obtaining α = 1.01+0.26

−0.33. The same is depicted in Figure 3
as function of the maximum scale kmax used in the computation of the Fisher
element [see equation (6.1)] of the coupling α. Therefore, we can conclude that
as long as galaxies are comoving with dark matter halos, future experiments will
have the potential to improve the constraints of the model parameter α, compared
to current experiments. However, if the comoving assumption is not valid, an
SKA-like experiment will not be able to improve our current results as the effect
will be diluted since the interacting partner is not baryons, that is galaxies, but
dark matter.

From Figure 3, we observe that most of the information is obtained from the
linear regime, in particular from scales below kmax < 0.1h/Mpc. As commented
in the previous section, regardless of the suppression factor H/k in the dipole, we
do not obtain a relevant amount of physical information from scales comparable
to the horizon, i.e. k ∼ H, and the detectability of the dipole, and therefore of α,
depends on the bias difference of the two populations and is limited by shot-noise
on small scales.

Figure 2. Constraining power for the case when dark matter halos and galaxies are
comoving with fevo,A = fevo,B = 0 (purple), with fevo,I = (bI − 1)fδc, I = A,B (green)
and the case when galaxies are just test particles moving with the gravitational potential
created by dark matter halos (blue). The black line corresponds to the constraints
obtained with real data for this mode in Ref. [18].
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Figure 3. Constraining power as a function of kmax used for the case when dark
matter halos and galaxies are comoving with fevo,A = fevo,B = 0 (purple), with fevo,I =
(bI − 1)fδc, I = A,B (green) and the case when galaxies are just test particles moving
with the gravitational potential created by dark matter halos (blue). The black region
corresponds to the constraints obtained with real data for this mode in Ref. [18].

7 Conclusions

In this work we have explored the ability of future SKA-like measurements of
the dipole of the galaxy power spectrum to detect a class of interactions between
dark matter and dark energy with pure momentum exchange introduced in [15,
18]. In previous works [50, 51], it was established that certain corrections to
the dark matter Euler equation could be detected with the dipole of the galaxy
power spectrum. We have shown how these corrections naturally arise within the
considered interacting models via the momentum exchange between dark matter
and dark energy and exploited this fact to show that the interaction affects the
dipole of the galaxy power spectrum.

Current observations spark a debate on the detection of this class of interac-
tions and the role of low-z surveys. When using such low-z data-sets like Planck
Sunyaev-Zeldovich [64] information from cluster counts, the interacting model is
clearly favoured over ΛCDM, with a measurement of the interaction at more than
3σ significance. When only using Planck data or with Supernovae and/or BAO
data such detection is unattainable and the model performance is similar to ΛCDM
with no statistically significant difference. This feature is not exclusive of the model
studied here, but it emerges as a generic feature of momentum transfer for a variety
of realisations [14, 16, 22, 69] (see also [18, 19] for detailed discussion). Thus, we
interpret the considered model as a proxy and our findings are expected to apply
to similar scenarios where a momentum exchange of dark matter gives appreciable
effects, in particular those able to alleviate the σ8 tension. Thus, since fits of the
interacting model to some sets of current data favour a detection of the interac-
tion with a definite prediction for the strength of the interaction, the effect on the
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dipole provides a smoking gun for these models. Our goal in this work has been to
determine weather future measurements of the dipole could indeed observe these
effects.

A cautionary remark should be made because the interaction only affects the
dark matter component, while baryons evolve as usual, so some care need to be
taken in the computation of the relevant velocities and growth factors. This can be
regarded as a sort of fake violation of the equivalence principle since dark matter
and baryons evolve differently. Of course, this is simply due to the extra friction
that dark matter suffers because of its interaction with dark energy. To tackle this
issue, we have employed two scenarios: One with galaxies being perfect tracers
of the dark matter velocity field, and another one where galaxies are detached
from dark matter halos and move as test particles. We have obtained that the
first scenario clearly permits to observe the effects of the interaction on the dipole,
even improving current constraints, while the second scenario is not sufficiently
sensitive to observe them.

The question is then which scenario is more realistic. We have argued in this
work that the first one with galaxies providing good tracers of the underlying dark
matter velocity field seems more realistic so we would be in the optimal scenario
to see the interaction in the dipole. Although this might seem wishful-thinking
to some extend, we should notice that galaxies are virialised objects within dark
matter halos and the preferred value for the interaction is not large so we find it un-
likely that it will drag galaxies away from their host dark matter haloes.11 In order
to clarify the viability of this scenario, numerical simulations will be necessary. We
are currently investigating this issue [70]. Numerical simulations for an analogous
model featuring elastic interactions in the dark sector were performed [71, 72], but
they did not consider a distinction between baryons and dark matter particles.
In [73] the authors carried out numerical simulations for a model featuring an
elastic interaction between dark energy and baryons, which is radically different
from the models under consideration in this work so their results cannot be used
to decide between our two scenarios. The results of this work could however be
used for the analogous model explored in [23].

In summary, we can conclude that upcoming galaxy surveys will certainly
have the statistical power to detect the possible signature of the elastic interactions
in the dark sector under conservative conditions. If confirmed, our results will
promote the dipole of the galaxy power spectrum to be a clear smoking gun to
robustly corroborate the evidence in favour of the momentum exchange in the dark
sector, or else to completely rule it out. In any case, we believe our findings further
calls for a deeper scrutiny of this class of models.

11This applies to dark matter dominated objects. The situation would be different for objects
with a low concentration of dark matter.
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A Dipole Variance

In this section we compute the variance of the dipole defined in eq. (5.1), starting
from

〈P̂AB
1 (k) P̂ ∗AB1 (q)〉c =

9

4V 2

∫
dΩk̂

2π

dΩq̂

2π
µkµq〈∆A (k) ∆B (−k) ∆A (−q) ∆B (q)〉

=
9

4V 2
δ

(3)
D (0) (2π)6

∫
dΩk̂

2π

dΩq̂

2π
µkµq

[
PAA (k)PBB (−k) δD (k− q)

+PAB (k)PBA (−k) δD (k + q)
]

=
9

4

(2π)6

V 2

δ
(3)
D (0)

2π

δD (k − q)
k2

×
∑
`1`2

[
PAA
`1

(k)PBB
`2

(k)− PAB
`1

(k)PBA
`2

(k)
] ∫

dµµ2L`1 (µ)L`2 (−µ) . (A.1)

Before proceeding to simplifying the variance, we will compute the multipole ex-
pansion of the power spectrum

PAB (k) =

[
bA + fµ2−iµfH

k
RA +

(
FA0 + FA2 µ2

)(H
k

)2
]

×

[
bB + fµ2+iµf

H
k
RB +

(
FB0 + FB2 µ2

)(H
k

)2
]
P (k) . (A.2)
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By decomposing into Legendre polynomials, we obtain the following multipole
coefficients:

PAB
0 (k) =

[
bAbB +

1

3
(bA + bB) f

+
f 2

5

(
1

3
(bA(3FB0 + FB2 ) + bB(3FA0 + FA2 )) +

1

3
f 2RARB

+
1

15
f(5FA0 + 5FB0 + 3(FA2 + FB2 ))

)(
H
k

)2
]
P (k)

+O
(
H3/k3

)
, (A.3)

PAB
1 (k) = −ifH

k

[
3

5
f(RA −RB) + (bBRA − bARB)

]
P (k)

+O
(
H3/k3

)
, (A.4)

PAB
2 (k) =

[
2

3
f(bA + bB)

+
4f 2

7

(
2

3
(bAFB2 + bBFA2 ) +

2

3
f 2RARB

+
2

21
f(7FA0 + 7FB0 + 6(FA2 + FB2 ))

)(
H
k

)2
]
P (k)

+O
(
H3/k3

)
, (A.5)

PAB
3 (k) = −2

5
if 2H

k
[RA −RB]P (k) +O

(
H3/k3

)
, (A.6)

PAB
4 (k) =

[
8

35
f 2 +

(
8

35
f(FA2 + FB2 )

)(
H
k

)2
]
P (k) +O

(
H3/k3

)
. (A.7)

As expected the odd multipoles are sourced by the relativistic effects only, while
these contribute to the even multipoles only at subleading order O (H2/k2). More-
over the odd multipoles do not vanish only if we consider two different tracers
A 6= B. At this point we can compute the sum in eq. (A.1) as

〈P̂AB
1 (k) P̂ ∗AB1 (q)〉c =

δ
(3)
D (0)

2π

(2π)6

V 2

δD (k − q)
k2

[
9

5
(bBRA − bARB)2

+
18

7
f (RA −RB) (bBRA − bARB) + f 2 (RA −RB)

]
H2

k2
f 2P 2 (k)

=
(2π)2

V

δD (k − q)
k2

[
9

5
(bBRA − bARB)2

+
18

7
f (RA −RB) (bBRA − bARB) + f 2 (RA −RB)

]
H2

k2
f 2P 2 (k) . (A.8)
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where we have used that δ
(3)
D (0) ' V/ (2π)3 for a finite volume survey. Let us

emphasise that the sub-leading terms F0 and F2 do not contribute to the dipole
covariance at the order O (H2/k2).

We also need to include the shot-noise contribution. Only the monopole of
the auto-correlation power spectra have a non-vanishing shot-noise contribution.
Therefore we need to add to eq. (A.1) the following term

PAA
`1

(k)PBB
`2

(k) →
(
PAA
`1

(k) + δ`10NA

) (
PBB
`2

(k) + δ`20NB

)
= PAA

`1
(k)PBB

`2
+ δ`20P

AA
`1
NB + δ`10P

BB
`1

NA + δ`10δ`20NANB ,

(A.9)

where NA and NB are the shot-noise power spectra of the populations A and B
respectively. Combining all together we find the following variance for the dipole
of the power spectrum

〈P̂AB
1 (k) P̂ ∗AB1 (q)〉c =
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. (A.10)

B Degeneracy with evolution bias

In this Appendix we will comment on the apparent degeneracy that might be
expected by looking at eq. (4.6) between Θ and fevo. However, the relation between
Θ and α is redshift-dependent, see eq. (6.2), and this together with the dependence
on the power spectrum and the growth rate on α will break the degeneracy. In
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the following we will show how well this degeneracy is broken in more detail. We
indeed include fevo in our Fisher analysis as

F =

(
Fαα Fαfevo
Ffevoα Ffevofevo

)
, (B.1)

where Fαα is calculated in equation (6.1), while Fαfevo and Ffevofevo are

Fαfevo =
∑
i

Vi
4π2

∫
dkk2∂P1 (k, zi)

∂α

(
∂P1 (k, zi)

∂fevo

)∗
σ−2
P1

(k, zi) , (B.2)

Ffevofevo =
∑
i

Vi
4π2

∫
dkk2

∣∣∣∣∂P1 (k, zi)

∂fevo

∣∣∣∣2 σ−2
P1

(k, zi) . (B.3)

The derivative of the dipole P1 with respect to fevo can be computed analytically
since the only dependence comes from the factor R. By using that ∂R

∂fevo
= −1 we

then obtain
∂P1 (k, zi)

∂fevo

= −if H
2k
P (k, z) , (B.4)

where the factor 1/2 arises from the assumption bA (z) − bB (z) = 0.5. Conse-
quently, one can obtain the expected error for the parameter α marginalizing over
fevo for the case when both dark matter halos and galaxies are comoving with
fevo,A = fevo,B = 0, obtaining

∆α = 2
√
F−1
αα = 0.242 . (B.5)

As we can see in Fig. 4, α and fevo are strongly degenerated in any single redshift
bin. However, due to the redshift evolution, the direction of degeneracy rotates
as we change from one bin to another, thus leading to the much smaller error-
bar (B.5), once we account for the range of redshifts given in Table 1.

On one side our Fisher matrix approach may slightly under-estimate the
degeneracy since we assume all the redshift bins to be independent and the fiducial
model is set to fevo,A = fevo,B = 0. On the other side, we have not assumed any
prior on fevo that we will realistically have for any upcoming surveys [74, 75].

C Galaxy motion through geodesic equation

In this appendix we want to consider the case where the velocity of galaxies is fully
determined by the geometrical perturbations, by solving the geodesic equation for
a massive body

d2xµ

dτ 2
+ Γµαβ

dxα

dτ

dxβ

dτ
= 0 , (C.1)
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Figure 4. We show the 2-dimensional contour plot for the evolution bias fevo and the
parameter α. Different colors refer to individual redshift bins. In the bottom panel
we zoom in to see how the different degeneracies, generated by the redshift evolution
of α, strongly reduce the error-bars in fevo and α. We can also see that most of the
information is carried by the lower redshift bins, where the dipole amplitude is larger.

where τ is the proper time defined by

gµν
dxµ

dτ

dxν

dτ
= −1 . (C.2)

Our system of coordinates are defined as (xµ) = (t, r, θ, φ), where t is the conformal
time. Therefore we need to determine

v|| = n · v = −vr = −dr
dt

= −dr
dτ

dτ

dt
, (C.3)

v̇|| = −∂tvr . (C.4)
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At the background level we have

d2t̄

dτ 2
+H

[(
dt̄

dτ

)2

+

(
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dτ

)2

+ r̄2

(
dθ̄

dτ

)2

+ r̄2 sin2 θ̄

(
dϕ̄

dτ

)2
]

= 0 , (C.5)
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= 0 , (C.6)

d2θ̄
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= 0 , (C.7)
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dθ̄

dτ
= 0 . (C.8)

As expected from isotropy and homogeneity, dθ̄
dτ
≡ dϕ̄

dτ
≡ 0 are solutions of the

differential equations (C.7-C.8). So at the background we need only to solve

d2t̄

dτ 2
+H

[(
dt̄

dτ

)2

+

(
dr̄

dτ

)2
]

= 0 , (C.9)

d2r̄

dτ 2
+ 2H dt̄

dτ

dr̄

dτ
= 0 . (C.10)

The latter equation leads to

dt̄

dτ

dūr

dt̄
+ 2H dt̄

dτ

dr̄

dτ
= 0⇒ dūr

dt̄
+ 2Hūr = 0⇒ ūr =

C1

a2
. (C.11)

By plugging in this into the first differential equation we obtain

ūt
dūt

dt̄
+H

[(
ūt
)2

+
C2

1

a4

]
= 0⇒ ūt = ±

√
a2C2 + C2

1

a2
. (C.12)

From the normalization condition (C.2) we get C2 = 1 such that

(ūµ) =

(
±
√
a2 + C2

1

a2
,
C1

a2
, 0, 0

)
(C.13)

and the peculiar velocity

vr =
dr

dt
=
ur

u0
=

C1√
C2

1 + a2
+O (ε) . (C.14)

Due to background homogeneity we should set C1 = 0. So we have

(ūµ) =
(
a−1, 0, 0, 0

)
. (C.15)
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Going on to first order in perturbation theory we have from the normalization
condition (C.2)

u0 =
1− Φ

a
. (C.16)

By solving the geodesic equation for δur we obtain

vr =
δur

ū0
=
a2

IN

a
δurIN − a−1

∫ t

tIN

a∂rΦ (t′, r (t′)) dt′ (C.17)

where the integral runs over the galaxy path. Then, the acceleration of the radial
velocity is determined by

v̇|| = −∂tvr =
a2

IN

a
HδurIN −

H
a

∫ t

tIN

a∂rΦ (t′, r (t′)) dt′ + a−1∂t

∫ t

tIN

a∂rΦ (t′, r (t′)) dt′

=
a2

IN

a
HδurIN −

H
a

∫ t

tIN

a∂rΦ (t′, r∗) dt
′ + ∂rΦ (t, r∗)

= H
(
a2

IN

a
δurIN − a−1

∫ t

tIN

a∂rΦ (t′, r∗) dt
′
)

+ ∂rΦ

= Hvr + ∂rΦ = −Hv|| + ∂rΦ (C.18)

where we have set r (t) = r∗ (at background). This fully agrees with the Euler
equation in ΛCDM, see eq. (3.6). But it is important to remark that in this
derivation we never assumed any particular model of dark matter or dark energy.
Therefore in the limit of galaxy being treated as test particle in a gravitational
field, their motion is fully determined by the geometry through the equivalence
principle.
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[29] O. Doré et al., Cosmology with the SPHEREX All-Sky Spectral Survey,
arXiv:1412.4872.

[30] D. J. Schlegel et al., Astro2020 APC White Paper: The MegaMapper: a z > 2
Spectroscopic Instrument for the Study of Inflation and Dark Energy,
arXiv:1907.11171.

[31] J. Yoo, A. L. Fitzpatrick, and M. Zaldarriaga, A New Perspective on Galaxy
Clustering as a Cosmological Probe: General Relativistic Effects, Phys. Rev. D 80
(2009) 083514, [arXiv:0907.0707].

[32] J. Yoo, General Relativistic Description of the Observed Galaxy Power Spectrum:

– 26 –

http://arxiv.org/abs/2103.01571
http://arxiv.org/abs/2106.11222
http://arxiv.org/abs/1709.02384
http://arxiv.org/abs/2209.06217
http://arxiv.org/abs/2004.14661
http://arxiv.org/abs/2012.12204
http://arxiv.org/abs/2209.12583
http://arxiv.org/abs/1611.00036
http://arxiv.org/abs/1110.3193
http://arxiv.org/abs/1305.5422
http://arxiv.org/abs/1412.4872
http://arxiv.org/abs/1907.11171
http://arxiv.org/abs/0907.0707


Do We Understand What We Measure?, Phys. Rev. D 82 (2010) 083508,
[arXiv:1009.3021].

[33] C. Bonvin and R. Durrer, What galaxy surveys really measure, Phys. Rev. D 84
(2011) 063505, [arXiv:1105.5280].

[34] A. Challinor and A. Lewis, The linear power spectrum of observed source number
counts, Phys. Rev. D 84 (2011) 043516, [arXiv:1105.5292].

[35] J. Yoo and M. Zaldarriaga, Beyond the Linear-Order Relativistic Effect in Galaxy
Clustering: Second-Order Gauge-Invariant Formalism, Phys. Rev. D 90 (2014),
no. 2 023513, [arXiv:1406.4140].

[36] D. Bertacca, R. Maartens, and C. Clarkson, Observed galaxy number counts on
the lightcone up to second order: I. Main result, JCAP 09 (2014) 037,
[arXiv:1405.4403].

[37] E. Di Dio, R. Durrer, G. Marozzi, and F. Montanari, Galaxy number counts to
second order and their bispectrum, JCAP 12 (2014) 017, [arXiv:1407.0376].
[Erratum: JCAP 06, E01 (2015)].

[38] P. McDonald, Gravitational redshift and other redshift-space distortions of the
imaginary part of the power spectrum, JCAP 11 (2009) 026, [arXiv:0907.5220].

[39] C. Bonvin, L. Hui, and E. Gaztanaga, Asymmetric galaxy correlation functions,
Phys. Rev. D 89 (2014), no. 8 083535, [arXiv:1309.1321].

[40] R. A. C. Croft, Gravitational redshifts from large-scale structure, Mon. Not. Roy.
Astron. Soc. 434 (2013) 3008–3017, [arXiv:1304.4124].

[41] C. Bonvin, Isolating relativistic effects in large-scale structure, Class. Quant.
Grav. 31 (2014), no. 23 234002, [arXiv:1409.2224].

[42] C. Bonvin, L. Hui, and E. Gaztanaga, Optimising the measurement of relativistic
distortions in large-scale structure, JCAP 08 (2016) 021, [arXiv:1512.03566].

[43] F. Lepori, E. Di Dio, E. Villa, and M. Viel, Optimal galaxy survey for detecting
the dipole in the cross-correlation with 21 cm Intensity Mapping, JCAP 05 (2018)
043, [arXiv:1709.03523].

[44] M.-A. Breton, Y. Rasera, A. Taruya, O. Lacombe, and S. Saga, Imprints of
relativistic effects on the asymmetry of the halo cross-correlation function: from
linear to non-linear scales, Mon. Not. Roy. Astron. Soc. 483 (2019), no. 2
2671–2696, [arXiv:1803.04294].

[45] E. Di Dio and U. Seljak, The relativistic dipole and gravitational redshift on LSS,
JCAP 04 (2019) 050, [arXiv:1811.03054].

[46] F. Beutler and E. Di Dio, Modeling relativistic contributions to the halo power
spectrum dipole, JCAP 07 (2020), no. 07 048, [arXiv:2004.08014].

[47] E. Di Dio and F. Beutler, The relativistic galaxy number counts in the weak field
approximation, JCAP 09 (2020) 058, [arXiv:2004.07916].

– 27 –

http://arxiv.org/abs/1009.3021
http://arxiv.org/abs/1105.5280
http://arxiv.org/abs/1105.5292
http://arxiv.org/abs/1406.4140
http://arxiv.org/abs/1405.4403
http://arxiv.org/abs/1407.0376
http://arxiv.org/abs/0907.5220
http://arxiv.org/abs/1309.1321
http://arxiv.org/abs/1304.4124
http://arxiv.org/abs/1409.2224
http://arxiv.org/abs/1512.03566
http://arxiv.org/abs/1709.03523
http://arxiv.org/abs/1803.04294
http://arxiv.org/abs/1811.03054
http://arxiv.org/abs/2004.08014
http://arxiv.org/abs/2004.07916


[48] I. Tutusaus, D. Sobral-Blanco, and C. Bonvin, Combining gravitational lensing
and gravitational redshift to measure the anisotropic stress with future galaxy
surveys, arXiv:2209.08987.

[49] D. Sobral-Blanco and C. Bonvin, Measuring the distortion of time with relativistic
effects in large-scale structure, arXiv:2205.02567.

[50] C. Bonvin and P. Fleury, Testing the equivalence principle on cosmological scales,
JCAP 05 (2018) 061, [arXiv:1803.02771].

[51] C. Bonvin, F. O. Franco, and P. Fleury, A null test of the equivalence principle
using relativistic effects in galaxy surveys, JCAP 08 (2020) 004,
[arXiv:2004.06457].

[52] S. Castello, N. Grimm, and C. Bonvin, Rescuing constraints on modified gravity
using gravitational redshift in large-scale structure, Phys. Rev. D 106 (2022), no. 8
083511, [arXiv:2204.11507].

[53] K. Koyama, R. Maartens, and Y.-S. Song, Velocities as a probe of dark sector
interactions, JCAP 10 (2009) 017, [arXiv:0907.2126].

[54] E. Gaztanaga, C. Bonvin, and L. Hui, Measurement of the dipole in the
cross-correlation function of galaxies, JCAP 01 (2017) 032, [arXiv:1512.03918].

[55] E. Castorina and M. White, Beyond the plane-parallel approximation for redshift
surveys, Mon. Not. Roy. Astron. Soc. 476 (2018), no. 4 4403–4417,
[arXiv:1709.09730].

[56] E. Castorina and E. Di Dio, The observed galaxy power spectrum in General
Relativity, JCAP 01 (2022), no. 01 061, [arXiv:2106.08857].

[57] D. Blas, J. Lesgourgues, and T. Tram, The Cosmic Linear Anisotropy Solving
System (CLASS). Part II: Approximation schemes, JCAP 2011 (July, 2011) 034,
[arXiv:1104.2933].

[58] Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological
parameters, Astron. Astrophys. 641 (2020) A6, [arXiv:1807.06209].

[59] N. Aghanim et al., Planck 2018 results. V. CMB power spectra and likelihoods,
A&A 641 (Sept., 2020) A5, [arXiv:1907.12875].

[60] SDSS Collaboration, M. Betoule et al., Improved cosmological constraints from a
joint analysis of the SDSS-II and SNLS supernova samples, Astron. Astrophys.
568 (2014) A22, [arXiv:1401.4064].

[61] L. Anderson et al., The clustering of galaxies in the SDSS-III Baryon Oscillation
Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9
Spectroscopic Galaxy Sample, Mon. Not. Roy. Astron. Soc. 427 (2013), no. 4
3435–3467, [arXiv:1203.6594].

[62] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera,
The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance

– 28 –

http://arxiv.org/abs/2209.08987
http://arxiv.org/abs/2205.02567
http://arxiv.org/abs/1803.02771
http://arxiv.org/abs/2004.06457
http://arxiv.org/abs/2204.11507
http://arxiv.org/abs/0907.2126
http://arxiv.org/abs/1512.03918
http://arxiv.org/abs/1709.09730
http://arxiv.org/abs/2106.08857
http://arxiv.org/abs/1104.2933
http://arxiv.org/abs/1807.06209
http://arxiv.org/abs/1907.12875
http://arxiv.org/abs/1401.4064
http://arxiv.org/abs/1203.6594


measure at z = 0.15, Mon. Not. Roy. Astron. Soc. 449 (2015), no. 1 835–847,
[arXiv:1409.3242].

[63] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell,
Q. Parker, W. Saunders, and F. Watson, The 6dF Galaxy Survey: Baryon
Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc.
416 (2011) 3017–3032, [arXiv:1106.3366].

[64] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. XXIV. Cosmology
from Sunyaev-Zeldovich cluster counts, Astron. Astrophys. 594 (2016) A24,
[arXiv:1502.01597].

[65] C. Heymans et al., CFHTLenS tomographic weak lensing cosmological parameter
constraints: Mitigating the impact of intrinsic galaxy alignments, Mon. Not. Roy.
Astron. Soc. 432 (2013) 2433, [arXiv:1303.1808].

[66] SKA Collaboration, D. J. Bacon et al., Cosmology with Phase 1 of the Square
Kilometre Array: Red Book 2018: Technical specifications and performance
forecasts, Publ. Astron. Soc. Austral. 37 (2020) e007, [arXiv:1811.02743].

[67] P. Bull, Extending cosmological tests of General Relativity with the Square
Kilometre Array, Astrophys. J. 817 (2016), no. 1 26, [arXiv:1509.07562].

[68] D. Jeong, F. Schmidt, and C. M. Hirata, Large-scale clustering of galaxies in
general relativity, Phys. Rev. D 85 (2012) 023504, [arXiv:1107.5427].

[69] J. Lesgourgues, G. Marques-Tavares, and M. Schmaltz, Evidence for dark matter
interactions in cosmological precision data?, JCAP 02 (2016) 037,
[arXiv:1507.04351].
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