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𝐿/𝑎 12 12 12 12 16 16 16 16 16 16
𝜅 0.135 0.137 0.139 0.140 0.135 0.137 0.139 0.140 0.1405 0.141

𝑁cnfg 7007 6210 5840 5380 12059 4285 9458 8465 6184 7879

𝐿/𝑎 20 20 20 24 24 24 24 32 32
𝜅 0.135 0.137 0.139 0.135 0.139 0.1405 0.141 0.139 0.140

𝑁cnfg 4046 1435 2747 2844 2540 2242 2000 1429 428

Table 1: Overview of lattice ensembles.

1. Introduction

We follow the Corrigan and Ramond large-𝑁𝑐 expansion [1] to check the predictions from
super-symmetric Yang-Mills (SYM) theories. The large 𝑁𝑐 dynamics of this limit was investigated
in [2] with crucial differences with respect to the ordinary large 𝑁𝑐 dynamics. Additionally at
leading order in this limit, it emerges a connection with the spectrum and dynamics of super Yang
Mills [3–5] with nontrivial consequences also for the thermodynamics of the system [6]. Assuming
that 𝑁𝑐 = 3 is large, we check whether such predictions are realised by the data. A previous study [7]
computed the mesonic spectrum. We improve upon their findings by considering a finer lattice
spacing, larger volumes, and tree-level improved actions. In the near future, we plan to extend this
to 𝑁𝑐 = 4, 5 and 6.

2. Lattice Setup

For three numbers of colours (𝑁𝑐 = 3) the two-index anti-symmetric representation coincides
with the conjugate representation, which allows us to employ "standard" lattice QCD simulations
and methods. For our lattice simulations we use one flavour of tree-level improved Wilson fermions
(𝑐𝑠𝑤 = 1) at a fixed gauge coupling of 𝛽 = 4.5. For the gluonic degrees of freedom, we utilise
the Symanzik-improved gauge action [8]. We use the openQCD software package [9] and, since
we only simulate a single fermion species, we rely solely on the RHMC algorithm [10]. For the
approximation needed in the RHMC, we use a Zolotarev functional with degree of tenth order. The
integration scheme in the HMC is divided into three levels with two Omelyan 4th and one 2nd
order integrators [11]. The number of integration steps is tuned to achieve a high acceptance, which
we find to be at least 84% for all our ensembles. To suppress auto-correlation effects we separate
configurations by at least 64 MD units. Table 1 shows an overview of the ensembles generated for
this study, which spans a wide range of volumes and hopping parameters 𝜅. To compare this setup
with other lattice simulations, we apply the Wilson flow [12] to the Yang-Mills action density and
obtain an indicative lattice spacing of 𝑎 = 0.06 fm. For this we assumed

√
8 𝑡0 = 0.45 fm, which is

between the values for 𝑁 𝑓 = 0 [12] and 𝑁 𝑓 = 2 [13].
Simulations of one flavour of Wilson fermions may suffer a sign problem. We discussed this

issue in our previous Lattice contribution [14], where we presented results for the sign of the Wilson
Dirac operator on our ensembles.

2



Exploring the large-𝑁𝑐 limit with one quark flavour Benjamin Jäger

0 5 10 15 20 25 30
t/a

0.25

0.30

0.35

0.40

0.45

a
m

amgr = 0.2791(15)

ii, Nev = 20

ii, Nev = 12

ii, Nev = 6

Figure 1: Example of a simultaneous fit to three vector-vector correlation functions with different LapH
smearings (indicated by the differently coloured markers). The spectrum is extracted using a three-state fit
ansatz. We show the effective masses for the three correlation functions (data points). We superimpose the
ground state fit result (magenta horizontal band) and the approach to the plateau (faintly coloured bands).

3. One Flavour for 𝑁𝑐 = 3

To check predictions from N = 1 SYM we study the spectrum of mesons. Since only a single
fermion species is present, disconnected diagrams appear in all correlation functions. To include
disconnected diagrams we use the Laplacian Heaviside (LapH) method [15, 16]. For comparison,
we also compute the purely connected correlation function as done in standard lattice calculations.
We use the connected correlation function of the pseudo-scalar to define the chiral point, i.e. where
the quark mass vanishes. As the connected pseudo-scalar is identified in standard lattice simulations
with the pion, we name the corresponding ground state fake pion. This nomenclature is used to
emphasise that this state is unphysical in our setup.

The LapH method has the additional advantage that we can change the level of smearing by
changing the number of eigenvalues used in the approximation of the Laplacian Heaviside kernel.
Due to the multiple smearings, we have access to more data, with the same spectrum but different
overlap coefficients. As can be seen from the effective mass plot in Figure 1, different smearing
choices result in different approaches to the ground state mass.

We perform a combined correlated fit to multiple correlation functions, which differ in their
LapH smearings. The fit ansatz includes three states, giving access to the ground state and two
excited states. However, we only use the two lower masses in our subsequent analysis as the second
excited state is prone to fit systematics from the choice of fitrange. The bands in Figure 1 show
the effective mass behaviour of the fit result for the correlation functions that enter the fit. The
horizontal magenta band indicates the ground state mass obtained from the fit.

Figure 2 shows the extracted pseudo-scalar masses as a function of the bare quark mass

3



Exploring the large-𝑁𝑐 limit with one quark flavour Benjamin Jäger

0.45 0.40 0.35 0.30
am0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
a
m
P

L/a= 12
L/a= 16
L/a= 20
L/a= 24
L/a= 32

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
amfake

π

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

a
m
P

L/a= 12
L/a= 16
L/a= 20
L/a= 24
L/a= 32

Figure 2: Results for the pseudo-scalar meson as a function for the bare quark mass (left) and the fake pion
mass (right).
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Figure 3: Results of the scalar meson as a function of volume (left) and the mass of the fake pion (right).

𝑚0 = 1
2𝜅 − 4 on the left and of the connected pseudo-scalar mass (𝑚fake

𝜋 ) on the right. Using
the fake pion mass instead of the bare quark mass, we obtain a significantly smoother and less
volume-sensitive behaviour. Furthermore, this choice facilitates the definition of the chiral limit, as
it eliminates the need to determine the value 𝜅crit of the hopping parameter at which the quark mass
vanishes.

Some of the extracted energies strongly depend on the volume, whereas others display a clear
quark mass dependence. This behaviour is most visible for the scalar-glue correlation function,
which is shown in Figure 3. By carefully studying the quark-mass and volume dependencies of the
meson masses and overlap coefficients we disentangle mass-independent (glueballs and torelons)
from mesonic states. One conclusion from this study is that the smaller volumes are affected by
sizeable finite-volume effects, especially for the smallest quark masses used here. For the chiral
extrapolations, we explore linear and quadratic forms in terms of the fake pion mass with and
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Figure 4: Examples of the chiral extrapolation of the pseudo-scalar (top left), vector (top right) and scalar-
glue (bottom) meson masses to vanishing quark masses.

without an extrapolation to infinite volume. Examples of these chiral extrapolation fits for the
pseudo-scalar, vector, and scalar mesons are shown in Figure 4. We note that in the chiral limit the
mass of the pseudo-scalar meson extrapolates to a non-vanishing value. This is in agreement with
expectations due to the disconnected contributions.

4. One Flavour for 𝑁𝑐 > 3

In order to simulate larger numbers of colours on the lattice, we changed our simulation
software to Grid [17]. As an initial test, we explore quenched calculations, for which we employ
the Symanzik gauge action [8]. The large-𝑁𝑐 limit in pure gauge theory was proposed in the seminal
work by t’Hooft [18]. Accordingly, we rescale 𝛽 ∝ 𝑁2

𝑐 . Our choices are listed in table 2.
For all setups, we use a trajectory length of 2.0 to minimise auto-correlation effects [19]. We

use a single integrator level with step sizes tuned for acceptance above 80%. We observe that

5



Exploring the large-𝑁𝑐 limit with one quark flavour Benjamin Jäger

Name 𝑁𝑐 𝐿/𝑎 𝛽 MD steps Ncnfg Acceptance

pgnc4L12 4 12 8.0 30 500 97.4%
pgnc5L12 5 12 12.5 38 500 97.0%
pgnc6L12 6 12 18.0 38 500 98.4%
pgnc4L16 4 16 8.0 30 500 95.8%
pgnc5L16 5 16 12.5 25 500 86.4%
pgnc6L16 6 16 18.0 28 500 82.8%
pgnc4L24 4 24 8.0 30 500 93.4%
pgnc5L24 5 24 12.5 35 500 91.4%
pgnc6L24 6 24 18.0 35 500 85.2%

Table 2: Overview of the pure gauge simulations for 𝑁𝑐 = 4, 5 and 6.
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Figure 5: Values of the plaquette as function of MD time for 𝑁𝑐 = 4, 5, 6 (top, middle and bottom panel,
respectively) for three different spatial volumes.

the 2nd-order Omelyan integrator implemented in Grid scales unsatisfactorily with the numbers
of colours and therefore use a force-gradient integrator [20]. The Hamiltonian violations of this
integrator type are smaller and are less impacted by increases in the lattice volume, see [21], and
number of colours, which lead to a significant performance improvement in Grid for 𝑁𝑐 > 3 in our
preliminary examinations. Figure 5 shows the plaquette for three spatial extents (𝐿/𝑎 = 12, 16, 24)
and fixed time-extent of 𝑇/𝑎 = 48 after a conservative estimate of 500 thermalisation trajectories.

The evolution of the topological charge is shown in Figure 6. As expected, we observe that

6



Exploring the large-𝑁𝑐 limit with one quark flavour Benjamin Jäger

500 600 700 800 900 1,000
−10

0

10

500 600 700 800 900 1,000
−10

0

10

To
po

lo
gi

ca
lC

ha
rg

e

500 600 700 800 900 1,000
−10

0

10

Trajectory Number

𝐿/𝑎
12
16
24

𝑁𝑐 = 4

𝑁𝑐 = 5

𝑁𝑐 = 6

0 40 80
Frequency

Figure 6: Topological charge for different number of colours and spatial volumes.

fluctuations in the topological charge increase as the volume increases. However, histograms in the
right column of this Figure show that we have not yet generated sufficiently many configurations
to draw clear conclusions about the exploration of different topological regimes. We observe
indications that topological freezing is exacerbated at larger 𝑁𝑐 , due to the need to simulate at
values of 𝛽 as large as 18.

5. Conclusions and Outlook

We have presented an update on our current efforts to verify the predictions from supersym-
metric Yang-Mills theories by studying the mesonic spectrum of QCD with one flavour at 𝑁𝑐 = 3.
Additionally, we have shown that extending our simulations to larger 𝑁𝑐 becomes more costly, in
particular as the topological charge shows significantly reduced fluctuations.
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