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SUMMARY
It is relatively easy to measure the transverse impedance zT for acceleratorcomponents with large impedance such as kicker magnets. Useful results can alsobe obtained for components with small impedance, such as vacuum chambers, althoughin this case one is close to the limits of accuracy with ordinary laboratoryequipment. Finally, a relationship between longitudinal and transverse couplingimpedance is derived that differs from the one usually assumed.
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1. INTRODUCTIONA beam that oscillates from side to side with amplitude ±Δ induces differential currents and charges on the walls of the vacuum chamber. These in turn produce a transverse magnetic field B and electric field E which further deflect the beam. The thresholds for beam instability and the growth rates depend on the

-i ∙ ∙ j ɪ)transverse coupling impedance 2πRZT = ⅛ / (E + v × β)τ d≡, (Ω∕m) (1)
owhere I is the beam current, v is the beam velocity, and β = v/c. In the following, we concentrate on magnetic deflection, although electric deflection is also important in some cases.The source of the differential wall current is the dipole moment I∆ per unit length of the beam. The same wall currents and magnetic field B result if the beam is replaced by two parallel wires, or more simply by a loop of length £, width Δ, and current I. The field B in turn induces the voltagejωBℓ△  = ZIin the loop, which increases its impedance by Z. If Z is measured, then

and f from (1), zτ=⅛⅛ (2)
is the transverse impedance (Ω∕m) for a length ℓ  of structure. This is the basis for the measurements discussed in the following sections. Measurement techniques 2— 5 )for determining the longitudinal impedance Z are discussed elsewhere 

Lj

2. RELATION BETWEEN Z AND Z1 LuLet Ez(χ, χo) be the image field at x due to a current filament of intensity I at Xo. For a length £, define £ E (x, x0)Zi (x, x0)-------- - ------------ . (3)IThis is a measurable quantity, which reduces in the limit x →∙ Xq to the usual longitudinal impedance zL.The image field from two filaments separated by Δ and carrying equal but opposite currents I is əe (x, x0)
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and the image magnetic field perpendicular to the plane of the filaments* 92E (x, x0) β/ = Δ z___________jω 9x 9xois found by equating the integral of around a contour of length ℓ  and width dx,9E'-X— ℓ  dx , σXto the rate of change of flux through the contour, dx£B'. Insert B ' into (1) to find the transverse impedance, _ c 92Z1(x, x0)T ω 9x 9x0 , (4)x=xowhile the longitudinal impedance is given byZ = Z1(x, x0)∣ . (5)

X=X 0For the examples which follow, Z has the formLZL = const + F2(x0) , (6)so Z can be obtained directly from the position dependence of Z , T LZ = £ Í. dF.i ɑXT ω [dx0J *This is not true in general, however. For example, a beam between two parallel infinite plates sees a constant Z^ independent of position, with F everywhere zero, although Z is non-zero. Further discussion of the relation between Z and ɪ 1*6~θ) L zɪ can be found elsewhere
If the wall thickness is greater than the skin depth, a current filament of intensity I that is displaced by xq from the centre of a circular pipe induces the wall current density I 1 - ε2j = 2τrb 1 + ε2 - 2ε cos θ , (8)where ε = xo/b, and b is the pipe radius. For small ε, this reduces to the usual cos θ distribution, j -2⅛ (1÷2τ∞≡ θ) ∙ wFor finite wall resistivity, the electric field at the wall is E^ = ZR. J, where = (1 + j)L (ohm per square) (10)

3. CIRCULAR VACUUM CHAMBER



- 4 -is the surface impedance, p is the resistivity (Ω∙m), and δ is the skin depth.The resulting longitudinal field in the pipe at x is
giving

F — ɪ Í i + ? Xq 
z T⅛ + ’

7 z S f, ɪ n X0Xi 
z><x∙ x°> 2⅛ [1 + 2τ^J

for a length £. The impedances due to wall resistivity are thereforeÍ, 9 xoi'L 2πb [i b2Jand
7 £ ℓZT ω πb 3

(11)
(12)
(13)

= ---- Zωb2 L (14)
χ0 = Owhich are the known results.The additional reactive impedance due to perfectly conducting walls can be found as follows. From (9), the wall current density due to two filaments separated by Δ and carrying equal and opposite currents I is

τ ɪ 2△ 0 (15)j = 2πb ^b^ cos θ > (15)which in turn produces a uniform vertical magnetic field= μ0I Δ 2πb b ,leading to
zτ - -j 2⅛∙ ’ <16>where Zq = 120π Ω is the impedance of free space. The complete expression9,ɪ7 - í zθ ɪ 1 Ì Í ɪ 1 i Z1 7∖zT j 2π [ β2 ^ ɪ J ∣a2 ^ b5J1 +11 electric magnetic beam wall

• ∙ ∙ " ɪ ∙ ∙includes the effect of the electric field E = β B and the direct action of the beam of radius a on itself. The latter can be found by noting that a uniform beam at +Δ∕2 minus one at -Δ∕2 leads to the surface current density (15) with b replaced by a. Although derived in the long wavelength limit, the above expressions remain valid up to frequencies well above the pipe cutoff1ɪ . The behaviour of zɪ at low frequencies is discussed in the Appendix.
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MeasurementsThe impedance of a loop of length ℓ  = 30 cm and width Δ = 3.2 cm was measured in free space and inside a stainless-steel pipe of diameter 2b = 8.4 cm. At a frequency of 32 MHz, the inductive and resistive components were:L R0.2545 ± 0.0002 μH, 0.0896 ± 0.002 Ω inside pipe0.2843 ± 0.0002 μH, 0.0742 ± 0.002 Ω free space .From (2), the resistive component leads to a transverse impedancec R Re Z = ≡ ʌ = 75 Ω∕m∕m ± 25Z 1 ω ∆zxper metre of pipe, while a direct calculation using p = 10 -6 Ω∙m gives

*) At high frequencies, the return currents may flow through the core, or along the conductors, etc., depending on the geometry of the magnet.

Re zT = 72 Ω∕m∕m .The reduction in loop inductance leads toIm zT = -29.1 kΩ∕m∕m ± 2% , while a direct calculation using (16) givesIm zT = -34 kΩ∕m∕m .The instrumental errors are indicated. The discrepancy between measurement and theory probably arises from the large value of ∆∕2b = 0.38 used, the uncertainty in the loop dimensions, and possibly end effects.In general, when measuring very small impedances, one should also subtract the radiation resistance from the loop measurements in free space. This is appreciable unless the loop is very short compared with a wavelength. Alternatively, one could place the loop in a circular copper pipe, for which the added impedance is easy to calculate. In addition, to some small extent, the current distribution over the cross-section of the loop conductor may change when the loop is inserted into a chamber, thus modifying its own impedance.
4. WINDOW-FRAME MAGNETA window-frame magnet is sketched in Fig. 1 with a beam passing at a distance xo from the magnet centre line. Not shown are the return currents, which are as- * ) sumed to flow along an external tank that encloses the magnet . Several effects should be distinguished. First, there is a relatively large longitudinal impedance due to the induced flux that circulates within the core. It is mostly inductive, 
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with a resistive component due to core losses. This flux does not link the magnet winding, and so is independent of the generator load Z&. There is also a transverse impedance due to the differential flux induced in the core. Part of this arises 7,12,13)from core losses , ’ , and part from coupling to the magnet winding. In thefollowing, we compute only that part of Z and Z that arises from coupling with L Tthe magnet circuit.

The mutual inductance between magnet winding (index k) and beam circuit (index b) is easy to calculate. For a current in the magnet winding, the flux linking the beam circuit is ^oɪk φb = TT x∙t ’regardless of how the return currents are distributed on the external tank. The mutual inductance between winding and beam is the same as that between beam and winding, with M 2a x° ’Therefore a beam of intensity I at xq induces the voltageVk = jωM(x0)I
and current ∑k = Vk∕Zk in the winding. The impedance of the magnet circuit is Z = JcoL + Z , k g
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where L = μ0bℓ ∕a and is the generator impedance including cables. The currentIK in turn induces the emf k V = -jωM(x)I. = κ Z1at location x in the magnet, and thereforeZ1(x, x0) = .^M<x)M(xp) . (18)
The longitudinal and transverse impedances follow immediately from (4) and (5),

Z = ω PqXq&  (19)L 4a2Z ’ l 'kzT = c⅛⅞2 Ω⅛ ∙ (20)1 4azz1kNote that zɪ^ depends strongly on position, and is zero on the magnet centre line, so a relation such as (14) does not hold in this case.We can check that measurements with a loop of width Δ also give (20). In this case, the mutual inductance between test loop and magnet winding is
M = μoft∆2aso the additional impedance seen by the test loop is
Z ω2M2 zkand (20) follows from the relation (2).

5. C-MAGNETThe results of the last section are easily extended to any C-core type magnet(Fig. 2). The magnetic field in the median plane is now a function of position,B(x) = f(x)Ikso xΦb = £ ʃ B(x,)dxz-bxM = £ ʃ f(x,)dx'-band 9M9x £f (x)
The longitudinal and transverse impedances due to the magnet circuit are therefore
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Fig. 2

(21)
(22)
(23)
(24)
(25)

_ ω2M2(x0)β2 l zk_ cωf2(x0)fl2 T Z1 kFor a constant gap height of 2a,(x+b)μ0^ M-------- 2a-----and _ ω2(x0+b)2μ0λ2 4L 2^27k7 _ cωμ0λ2 T 4a2Z1 k
= ωbτ Zl| lx0 = OThe additional longitudinal impedance due to the flux that does not link the magnet circuit is very much reduced in this case by the air gap.

6. KICKERA possible kicker is shown in schematic form in Fig. 3, with cables at either end and a beam passing at a distance x0 from the axis. We assume that the beam return current flows either on the walls of the tank or on the surface of the "cold” conductor at -b. Not shown is the distributed capacitance that is usually added between "hot" and "cold" conductors to make the magnet circuit appear as a transmission line with the same characteristic impedance zC as the cables. The loads z1 and Z2 at the ends of the cable shown in Fig. 4 can be thyratrons, pulse--steepening lines, matched terminations, or other equipment.



K/c Ker cable i1Z1 cable

Fig. 4Steady excitation of the kicker with a wire at x produces sinusoidal voltage and current wave forms along the line. If the kicker is short, we find as before.. x + b n M — U o & »while for a longer kicker, this must be multiplied bysin θ∕2 G θ∕2 ’where θ(ω) is the electrical length of the kicker. In general, the finite propagation times of the beam or currents in the test conductor should also be included in G. Both can be neglected for the examples considered here and in the following section.The current IK at the centre of the kicker induced by the beam current I is kthen jωMGIIk Z1k
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where zk = ZÎ + Z'2 , and Z'1 and z'2 are the load impedances transformed to the kicker centre, including dissipation in the cables and kicker. Finally, the impedances seen by the beam have the form (24) or (25) found before, but now multiplied by G2.
MeasurementsThe real parts of and zɪ, were measured for a PS Booster ejection kicker module with equal lengths of cable on either side. Figure 5 shows the measured points and theoretical curve for the case of matched loads, z1 = Z2 = Z = 25 Ω. The agreement is reasonable considering the imperfect matching between kicker and cables, the poor RF qualities of the cables and terminations, and the fact that the kicker is not uniform along its length.Figure 6 shows the measured results with one cable open-circuited and the other matched. In this case,Zk∕Zc = 1 + [tanh (α+jβ)<Γ1 , where the real part of tanh (α+jβ)λ oscillates between tanh and (tanh ot£) ɪ.Figure 7 shows the measured results with both cables open-circuited. Now zɪ^/zɑ = 2[tanh (α+j∣3)ℓ]The peaks of Z and Z occur when there is a half an odd integer number of wave- length along the line.

7. APPLICATION TO THE PS BOOSTERIt has not yet been possible to measure in situ the fast injection kicker (IKF) or the ejection kicker (EK), so the following estimates are based on the measurements discussed in the last section.IKF is a single module, matched at one end, and about twice as long but otherwise similar to an EK module. The impedances should therefore be about four times those shown in Fig. 6, but falling to zero around 12 MHz, with a maximum value of Z around 40 kΩ∕m. The longitudinal impedance Z varies quadratically ɪ Lacross the aperture from zero on the side closest to the machine centre, and with peak values on the axis of around 20 Ω.EK consists of four modules connected to a common steepening line and a common spark gap as shown in Fig. 8. In the ring, the four modules are reversed in pairs. For symmetric modes, with all modules driven in phase, zT is about four times the values shown in Fig. 7b, but somewhat reduced by damping in the steepening line, and with different resonant frequencies that depend on the pulse steepening line and installed cable lengths.
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Fig. 6

Fig. 7 b)
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The envelope of the expected peak impedances of the kickers are shown in Fig. 9, together with the resistive-wa11 impedance for the 52 m of thin wall corrugated vacuum chamber in the PSB bending magnets. As can be seen, the ejection kicker impedance is considerably larger than the resistive-wall impedance for frequencies above 1 MHz. This could explain the horizontal instabilities observed 14 ) in the PS Booster . A similar instability has been observed in the KEK ɪ 5) Booster

1. Envelope of impedance peaks for four EK modules with cables open-circuited.2. Estimated envelope of EK impedance peaks with pulse steepening line and spark gap connected.3. EK impedance with all cables matched.4. Estimated envelope for IKF.5. Resistive wall impedance.
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Because the modules are reversed in pairs, the longitudinal impedance is zero on axis for the symmetric mode, and rises quadratically as the beam is displaced to either side. In the limiting position, the beam couples to only two of the four modules. The undriven modules act as loads in this case, so the resulting total impedance is similar to that of a single module, with an expected peak value of around 200 Ω.There are also antisymmetric modes, with two modules driven in oppositephase. In this case ZT is zero and ZT is independent of position and about four ɪ Ltimes the values shown in Fig. 6a, with an expected peak value of around 80 Ω.

AcknowledgementsWe wish to thank Mr. A. Plunser for the measurements on the kicker module.
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APPENDIX

Zτ IN THE LIMIT OF LOW FREQUENCIES
For frequencies such that the skin depth is greater than the wall thickness d, R ÷ p/d. For even lower frequencies, the wall currents induced by the beam or test loop approach zero. This can be seen from the equivalent circuit diagram • * )shown below, where the subscript L refers to the loop and W to the wall= ⅛° δ

p = 8 P w 8 d 2πbThe current induced in the wall is given byjωMIL (Rw + jω⅛) 1w ,so JCOMIl1W = Rw ÷ jωLWwhich approaches zero for frequencies below
rW 2 p ω = — = — ɪ- . c L Vo bdWThe voltage induced in the loop by the wall current iszlL = -Jwmiw ∙ so the added loop impedance is Z = ω2M2’ ⅛ + >lw 

_ ^jω⅛ + rW Δ21 + (ω ∕ω)2 4b2 ' CThe transverse impedance obtained from (2) is the same as that found before[Eqs. (13) and (17)J, except that the component due to the wall current is multiplied by ω2∕(ω2 + ω2). For a stainless-steel vacuum chamber of 5 cm radius, 1 mm c -6thickness, and p = 10 Ω∙m, the critical frequency f is 5 kHz.
*) We assume a circular pipe of radius b. The effective wall resistance is a factor of 8 larger than the d.c. resistance of a pipe of length ℓ , radius b, and thickness d: a factor of 2 arises because the current flows down one side of the pipe and returns on the other side, and a factor of 4 because the cos θ distribution restricts the current in one direction to effectively 1/4 of the pipe circumference.


