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1. INTRODUCTION

In most modern storage rings, the dominant non linear fields limiting 
the single particle stability come from chromaticity correction 
sextupoles. In order to minimize the reduction of acceptance due to these 
non linearities, the phase advance per FODO cell in the arcs where the 
sextupoles are placed is chosen to be a rational fraction of 2π whenever 
this is possible and n/2 or w/3 are the favourite values. However it has 
been recently proposed for HERA [1,2] many phase advances between 60 and 90 
degrees

μ = —2π (I)

The repetitive element of the lattice including the sextupoles is 
a super cell with the same phase advance (2k + 1 )2w in each plane. Under 
these conditions, the first order Sextupolar non linear terms are 
cancelled. The influence of the second order terms remains to be analyzed. 
The test parameter we have chosen to study is the horizontal betatron tune 
shift in the special case of a pure horizontal motion.

2. TUNE SHIFT EXPRESSION

In the first order 2rturbati0n theory, it can be shown that 
Sextupolar fields excite m< .es whose characteristic phases are [3,4]

⅛ ∙ M½ ∙ ⅛-2μy ∙ ¼
The virtue of the compensation is to annul integrals of the type

Lʃ f(s) cos ( m μχ(s) + n μy(s) ) ds 0
over the length L of a super cell. However, there is a cross-talk between 
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the sextupoles of a super cell and, as a consequence, a net deformation of 
the particle trajectory which provokes a tune shift. The effect is quite 
similar to the variation of chromaticity induced by the alteration of the 
β-function on off-momentum orbits. Several formalisms have been used to 
derive the expression of the tune shift [5,6,7,8) that we write

δ,<⅛ .⅛μ‰k<,> e® κ⅛∙>> .,~<*w>-⅜<∙>> 0 ’ ∞s3(-π¾ + ∣¾(s')∙μι(s))sin 3πQχ Ids'(2)

J is the action variable, k' the Sextupolar focusing strength, Q the 
betatron tune, 0 the 0-fu ion and μ the betatron phase advance. The 
expression can be simplifie., by taking the compensation assumption into 
account

L 
∫3∕2 

k'(s)βχ (s)expimμχ(s)ds = O m=lor3 (ʒ)
o

Let us note that

∣+L l
∫3/2 Ck'(<)βx (s') ∞s m(-πQχ+μχ(s')∙μχ(s))ds' =J k'(s')βχz2(s,)cosm(π¾+μχ(s')-μχ(s))ds∙

L o (4)

By performing the substitution

ɪɪ- L s s+L 

» O O L

and applying the rules (3) and (4), one finds

^,<⅛-⅛ Σ <5>
m=1∙3 Oo m U2

3. CQRRELATXQlig

A super cell is a string of n FODO cells each with a phase advance 
μo. The self-correlation terms which represent the interaction of a 
sextupole with itself can only occur for thick elements; they are not 
treated here. For the cross-correlation terms there is no loss of 
generality assuming that the sextupoles are thin lenses of integrated 
strength k'£ and, for a more precise model, it is always possible to 
perform an analytical integration over each lumped element [9]. The double 
ʃ can then be replaced by a double E
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ro∙1.3 ι≡l j≡l

If all the sextupoles are different, the above expression has to be 
calculated numerically. When the chromaticity is corrected with two 
families of sextupoles, interesting simplifications appear. The cross
correlations belong to four classes: F-F, D-D, F-D, D-F. In (6), the part 
which depends on the summation indices issm'‰βiii <k,¾⅛β⅛2 (k'l)jsinm(μxj-μ,i) (7)M j-ɪ

It can be split into the four contributions

Sm = I PxF <k' 1>f + PχD <k' 1>D 1 Σ Σ sin j(π⅛χ)
i-ɪ j-1

+ <βχpβχD) (k 1Mk'⅛i∑∑sin(2j-l)(mμ∕2) + ^^sin(2j-l)(mμZ2)] (8)

>=ι jɪɪ i=l J=I

The sum of the trigonometric series has a closed form which is derived 
from the expression

Jo-Jl . . jι j2*J3

Σ i(i-jΛ* sm(l-Jj+⅛∙j3)(μZ2) '<∙~2~ ^jjμ 
e “—ττ;—e (9)

j-j, sιn(μZ2)

which becomes 
∏-j, . jfjj
y> i(j∙j4)μ~ sm(l-j1-j3)(μ∕2) «(—-j4)μ
⅛e sin(μ∕2) ‘ (ɪɑ)

when the compensation condition 
ei"μ=l 

is applied. It can thus be shown that
sro = - n I (ßxrEx[/2(k'l)F(k’l)r ɪ( βxf (k∙l)2p + ßxD (k'⅛ ) cos(mμ∕2) ] ɑ ʊ 

sιn(mμ∕2) κ 7

4. RQLE QF CELL PHASE ADVANCE

The discussion of the correlations shows that the tune shift in a
super cell of n cells is 3J rɔ S 

δ2¾~ Σ ɪ 
m=l,3

(12)

The analysis can be continued assuming that the sextupoles are 
superimposed to the quadrupoles and that they correct the cell chromaticity 
only k, =VD
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where k is the quadrupole component of the integrated focusing strength kl 
related to μ and to the cell length Lc through the expressionkl = + (4∕Lc) sin(μΛ) (14)

+ or - signs standing for F- and D- elements respectively and D is the 
orbit dispersion l+(l/2) sin(μ∕2) D≡(Φ1√2)---------------------- (15)sin(μ∕2)
with Φ, the bending angle per magnet. The ^-function is given byIt sin(μ∕2) ¼-— sin μ

After substitution of k'l and 0 into (11), we get3J n w--∣Σ Fm^4πLcΦ2 m,ιt3

with

(16)

(17)

tan⅛ 2 Fm(μ)≈--------—. mμ msιn~- 2
Í ∞s3⅛∙

I 2,1___ mμ (l+sinU)3 (l-sin⅛.)3 1

►
—
∙ S'
 κ>

N
>|

r=
 4

M
| U M
∣ (!+ɪsiɪ^)2 (l-ɪsin^)2

J

(18)

This expression is better appreciated by applying it to a full ring of
circumference C (the integer value of Q does 
discussion!). For N super cells, we have

not matter in the present

so that

The function

δ2¾1 = nδ2QxC ≡N∏L
π =NnΦ

Δ2<⅜=
3Jχ(N∏V
4πjC

G(μ)

(19)
(20)

(21)

(22)

ɑθɪ) = Σ FmW
m>1.3

(23)

is
to

plotted in Fig. 1, it presents a sharp peak 
zero. This behaviour is not intuitive

near
and

v/2 and decays 
would deserve

quickly 
further

investigations especially in the case of real machines like LEP which have 
to be retuned to work at high energy. The test would consist of calculating 
the sextupolar tune shift at various working points near ιr∕2, finding when 
its sign changes and determining the dynamic aperture in these conditions.
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Fig. 1 Variation of the Sextupolar tune-shift 
with the betatron phase advance per cell
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