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ABSTRACT

Equations are derived for stress and deformation of tubular vacuum
chambers of quasi-elliptical cross-section, constrained at the minor
axis by suspensions. Graphs are included to facilitate computations

for race-track shaped tubes.
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INTRODUCTION

There are several stress analyses available for elliptical or quasi-elliptical
vacuum chambers, assuming a free deformation of the cross-section of the tube, with-

. . 1=-5
out constraint due to any suspension ).

In order to obtain an increase in stability, together with a decrease in stress
and deflection, eventually leading to a reduced wall thickness of such a tube, con-

} . . . 6-8
straints of the cross—section by means of a suspension have been examined ),

Fig. 1.

In Ref. 6 the stress analysis for a thin-walled, quasi-elliptical, or ellipti-
cal, vacuum chamber was presented as the first part of a study of the effect of the
constraint of the minor axis of the cross-section due to the suspension of the tube.
The analysis of the deflection of such a tube was announced to follow as a second
part. This is given in the present report. The basic equations are derived for a
tube that has any cross-section with two orthogonal axes of symmetry, where one axis
has an arbitrary elastic constraint. Hence, we allow for any constraint between a
perfectly rigid (minor) axis and a completely free cross—-section, Fig. 1. The equa-
tions are valid for variable bending stiffness along the ring, for example, for
variable wall thickness. In addition, the equations provide estimates for tubes
reinforced with ribs (see Section 5). The general results are specialized for the
particular profile as given in Fig. 2. For the latter, numerical results for bend-

ing moment and deflection are computed in a non-dimensional form and presented as

graphs.

BASIC EQUATIONS FOR SUSPENDED TUBES OF ARBITRARY DOUBLY-SYMMETRIC
PROFILE, ELASTICALLY CONSTRAINED ALONG ONE OF THEIR PRINCIPAL AXES

2.1 Geometric relations

We restrict our attention to elastic tubes of any cross-section, but possessing
two orthogonal axes of symmetry, for example, elliptical or quasi-elliptical tubes.
It is then sufficient to consider one quadrant of the ring cut off the tube (of
unit length), bounded by axes of symmetry, x, y, where (x,y,z) is a rectangular

Cartesian coordinate frame, Fig. 1.

One axis, for example, the minor axis of the cross-section, is elastically
constrained. This constraint on the ring may be represented by an elastic beam of

length £,, cross-section area 2A, (per unit length), and Young's modulus E,, Fig. 1,

The median line in the cross-section is represented in terms of polar coordin-
ates by a relation R = R(¢), Fig. 1. The arc element ds and the angle B, between
the tangent to the curve and a normal to the radius at a point (R,¢) of the curve,

®)

are given by

1
ds = (R2 + R'?) r do (1)

-(R'/R) . (2)

tan B

The prime indicates differentiation with respect to ¢.



2,2 Equations of equilibrium

If an external pressure p is applied and changed slowly enough so that inertia
effects are avoided, then, at any time, equations of equilibrium relating normal
and shear forces, P and S, respectively, and bending moment M (per unit length) in
the ring to the external pressure and the shape of the cross-section may be estab-
lished. At ¢ = o, a fictitious vertical force H has been introduced, which finally
will be set equal to zero. This allows for a simple calculation of the vertical

deflection v, at ¢ = a.

It follows from force equlilibrium by inspection of Fig. 1, after simple cal-
culations, and for 0 < ) <a,

P = pR cos B - (S, - H) cos (B + ¢) (3a)

S = -pR sin B + (S, - H) sin (B + ¢) , (4a)

where the fact has already been used that, as a consequence of symmetry, shear

forces must vanish at ¢ = 0, m/2.

Moment equilibrium about point B, bearing in mind that V = pR, - (8o - H),
with R, = R(0), yields
M= - (B)RE - kY + (5, - IR, - R cos ¢) . (5a)
Similarly, for a £ ¢ < 7/2,
P = pR cos B - S, cos (B + ¢) (3b)
S = -pR sin B + S, sin (B + ¢) (4b)
M =M, - (-E—](Rg - R?) + Se(Ro - R cos ¢) - H{R - R(a) cos a] . (5b)

The statically indeterminate bending moment M, and the constraint force S, are
still to be determined. (Due to symmetry conditions, the original problem, stati-
cally indeterminate to the fourth degree, has already been reduced to a problem

with 2 redundants, M;, S,, only.)

The normal circumferential stresses in the tube on the outer side, subscript
o, and on the inner side, subscript i, may be written

1 6M _1 6M
%'E[P'T]’ °1'E(P+h]’ (6)

where h is the local wall thickness (constant or slightly varying). The force P
and the stresses 0,» 0;, are positive when they are compressive. The moment M is

positive if it has the same sense as M in Fig. 1.
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SOLUTION FOR AN ELASTIC PROFILE WITH VARTIABLE BENDING STIFFNESS

The solution of the statically indeterminate elastic problem is conveniently
performed by employing the theorem of Castigliano, which states that the partial
derivative of the strain energy U of the structure with respect to the redundant

force S, or moment M, is equal to zero,

U _ QU
—_— =0, 35, 0. (7)

This is a set of two simultaneous equations for the redundants M,, § Moreover,

e
the deflection v under (and in the direction of) the given force H follows from

oU _
-a—H—V. (8)

The expression for the strain energy of the ring of unit length cut off the

tube is

1 M2 N2 KQz]
U"z‘f[‘ﬁ*ix*a—ds’ (9
L

where the terms on the right-hand side represent the strain energy due to bending
moment, axial force, and shearing force, respectively. The elastic and cross-

sectional constants have the usual meaning; s is the arc length along the median
line of the cross-section, and the integration is performed, because of symmetry,

along one quadrant of the profile, including the suspension.

In the present case, the influence of shear and of normal forces in the slende
ring may be neglected. Thus, with EJ as the variable bending stiffness in circum-

ferential direction of the ring, we have

) (10)

<4 s(n/z)
U = e-l + l ./’ M__ ds
2E1A;, 2 EJ
0

where M = M(M;,S,.) from Eqs. (5a) and (5b) has to be introduced. According to

Egqs. (7) we arrive at two equations:

s(m/2)
v _ M oM L
M, f Ey oM, 95 = 0 (11)
0
s(m/2)
U M M Se,
e = — =— ds + =0, 12
3s j’ EJ 3Se ©°  E A (12)

0
from which, with H = 0, My, and S, can be determined. The vertical deflection v at

¢ = a follows from Eq. (8):

s(m/2)
M f Ea—Mds =v . (13)

e
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Upon substitution of Eqs. (5a,b) into Eqs. (1l1) to (13) we obtain the explicit
expressions, with EJ = B(¢) = B,

mi2
5%% = f/ (M, - g(Rg - R®) + S_(R, - R cos ¢)](R? + R'2)1/2 d-];’i =0 (11a)
0
U _ Seh T " do
E's: " AT f [M, —123 (R‘;‘ - R?) + So(R, — R cos $) J(R, - R cos ¢) (R? +R'?) 2-B—=o
0
(12a)
ou i P(g? - R? 2 gr2yh 49
3H - == al‘ [Mo - 7(R0 - R°) +5,(Ro - R cos <1>)j(R0 -R cos ¢)(R* +R’'%) 3
/2
- j [, —% (R? = R®) + S,(R, - R cos ) ][R - R(a) cos aJ(R® + R'z)l/2 % =
Q (13a)

Note that the foregoing equations are valid for any cross-section that has two
orthogonal axes of symmetry, and for variable bending stiffness B = B(¢) = EJ. 1In

particular, they allow numerical evaluation for any given profile.

4, THE RACE-TRACK TUBE

We now specialize for the particular quasi-elliptical (race-track) tube, the
cross—-section of which consists of two parallel straight sections and two semicircles
at the major axis. (Such a cross-section is shown in Fig. 2 for the special case of
a bending stiffness which is piecewise constant in four sections.) The median line

of the cross—section is then given by the following equations.

For 0 £ ¢ £ ¢, = arctan b/a, we have

R =a cos ¢ + bA , A= /i - (a/b)? sin? ) (1l4a)

where a + b = R, R(0) and b = R(7/2) are (half the) major and minor axes of the

cross-section, respectively. From Eq. (1) we then get for the element of arc:

ds = [i%’i—q’ + l]b dé (15a)
and for the angle R:
_a sin ¢
tan R = T (16a)

For ¢, £ ¢ < m/2, we have

R = (14b)



for the element of arc:

b
ds = a7 g 40 (15b)

and for the angle R, simply:

B=m/2-¢ . (16b)

Since we are interested in the deflections of the flat region of the tube, we assume
a > ¢,.

Upon introduction of the normalized (non-dimensional) bending moment km’ con-

straint force ks, and deflection Ky s according to

= k oR? - - . PRy
MO = mpRO s Se = kSpRO ’ v = kV K (17)
together with the abbreviations
- a - b _ - Be
= —— = = l - = 3 ].8

where B, denotes a reference bending stiffness, for example, Fig. 2, the basic

equations (lla) to (l3a) read, for the present profile,

¢, m/2
B2 93U _
pR3 My j K, d¢ + f Ky d¢ = 0 (11b)
0 do
B 2,8 i
__2—£: 172 - 2 -
pRg BSe =k E1A1R8 f K; (1 & cos® ¢ nA cos ¢) do
0
m/2
" j’ K,(1 - ncot ¢)dp = 0 . (12b)
b
g
kv = - J K, (1 - & cos? ¢ - nA cos ¢) do
0
o m/2
- .[ K,(1 - n cot ¢)dé - .[ K,(1 - n cot o) dé , (13b)
b o

where the abbreviations

Ky = [kn + kg(1 = € cos® ¢ = nb cos ) = 3 (1 = £% cos? ¢ - n24% - 26nA cos $)] x
x [gc_oz_q)__}_n]Y
= - _l - nz .
K, = [km * kg(l - neot o) -3 (1 sin? ¢)J sin® ¢ Y (19)
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have been employed. The normalized bending moment k; and the normalized constraint
force kg follow from the first two, the normalized deflection kv from the third of

Egs. (11b) to (13b) which may be written

a11km + a12ks = b1 (11c)
ay ky + az kg = b2 (12¢)
ky + agiky + ag,kg = by (13¢)
Hence
k= Dx/D » kg =D2/D (20)
where
D =a)a,, = 3,3,
D, =bya,, ~ap,b (1)
D, = a;,b, = ba,,
The coefficients ajj and b; are not written out explicitly here; they follow
directly from Eqs. (11b) to (13b) and they contain integrals of the type
%
I 32%—9 Yy d¢ , etc . (22)

0

For the special case of piecewise constant bending stiffness y, these integrals

9)

reduce to pseudo-elliptical integrals which can be obtained in closed form

Now the expression for the bending moment M, Eqs. (5a,b) with H = 0, may be

written

M= k¢pR§ , (23)
where the normalized bending moment k¢ is a function of (¢; b/Ry = n =1 - &;
BQI/EIAIR:) and is given by

k¢ =k + ks[1 - (£ cos ¢ + nA) cos ¢]

- %-[1 - (£ cos ¢ + nA)zj . (24)

Two particularly important cases are included:

i) Free deformation of the cross-section. This implies E;, = 0, and the normalized

bending moment reduces to

Ky = kn -3 [1 - (€ cos 0 + 2], (25)

where now k = b;/a;;; kg is now a function of the position ¢ along the ring,

and of b/Ry.
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ii) Rigid constraint of the minor axis. This implies E, > », and the normalized

bending moment k¢ follows again from Eq. (24).

For comparison, for both the free tube and the rigidly supported tube k¢ is
plotted as a function of ¢ for certain values of b/Ry, giving the moment at any -
point along the profile, Figs. 3, 4. There, a uniform wall thickness has been

assumed.

The expression for the normal force P, Eq. (3), can be evaluated in the same

manner. In particular, we have at the major and minor axes

P(0) = PR, = S, ,  P(T/2) = pb , (26)

respectively.

The stresses in the tube may finally be calculated from Egs. (6). For a rough
check of the stresses a good estimate is already obtained from k¢.

A plot of the normalized deflection k, is presented in Figs. 5 and 6, for both
the free tube and the tube with rigid constraint; again, a uniform wall thickness

has been assumed there.

RESULTS AND CONCLUSIONS

The program SUVAC (Egspended vacuum chamber, see Appendix) has been established
for the prediction of the deflection in the most interesting regions of the vacuum
chamber, i.e. in the flat portion ¢, < o < ¢,, and at the point of suspension.
Moreover, the program computes the values of the stresses at any point along the

profile of the tube.

The program has been used for the prediction of stress and deflection of certain
special vacuum chambers, as shown in Fig. 2, constructed for the West and North
Experimental areaslo). There was rather good agreement between the results pre-
dicted for stress and deflection and actual measurements, see, for example, Fig. 7
(reproduced from Ref. 10). (In fact, the actual chambers had reinforcing ribs
welded on to the tube in the region of the major axis of the cross-section; and
the suspension straps were fixed at discrete points of the minor axis along the
tube. Therefore, the actual chamber had to be replaced by a fictitious uniform tube
where the discontinuities had been smeared out. The actual elasticity of the suspen-

sion had directly been taken into account.)

From the results for the chamber with profile according to Fig. 2 the following

conclusions can be drawn:

. . . . . . 6 .

i) as in the case for corresponding elliptic profiles ), for a free cross—-section,
i.e. without constraint, the maximum stresses occur always at the major axis
(¢ = 0), and the stress values along the profile vary in a rather wide range.

In the case of a rigid constraint the maximum stresses are much lower; they
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occur at the minor axis (¢ = m/2), and there is not so much variation of the
stress values along the profile. The wall thickness of the tube may then be

considerably reduced.

ii) For a given (major) diameter (say 2R,) of the chamber there exists a critical
ratio of minor to major diameters b/R, [at about (b/Rg).y Vv 0.35 for the free
tube, Fig. 5, and about (b/RU)cr ~ 0.16 for the tube with rigid constraint,
Fig. 6] for which the deflection v in the flat portion of the tube is a maxi-

)

. . . * . .
mum. Thus, starting with a circular tube ', b/R, = 1, the deflection increases
for decreasing b/R, (i.e. increasing eccentricity), arriving at a maximum value
for (b/Ro)cr' For still lower values of b/R, (still higher eccentricity), the

deflection decreases again.

Acknowledgement
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%) We note that for a circular tube, even if its cross—section is free to deform,
a zero deflection is predicted (in point ¢ = m/2). This has to be expected,
since bending cannot occur and since we have neglected from the outset any
deformation due to circumferential stress. 1In fact, for practical elliptic
or quasi-elliptic tubes the only significant contribution to the deflection is
due to bending.
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(a)

Fig. 1 a) Suspended tube under external pressure p;

b) shape of the median line of the cross-section, forces and moments
acting on the ring;

¢) constraint force in suspension.
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Fig. 2 Race-track-shaped tube with variable bending stiffness EJ = B(¢).
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Fig. 3  Bending moment k¢ = M¢/(pR§) at intermediate points ¢

(free tube with uniform wall thickness).
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Fig. 4 Bending moment kg =M /(pRg) at intermediate points ¢ (rigidly constrained
tube with uniform walT thickness).
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free tube (E1=0)

X /Rg ——

Fig. 5 Deflection k, = vBe/(pR:) at intermediate points xX/R, (free tube
with uniform wall thickness).
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tube with rigid constraint (E,~)

X /R o

Fig. 6 Deflection ky = vBo/(pRj) at intermediate points X/R, (rigidly
constrained tube with uniform wall thickness).
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APPENDIX

THE PROGRAM SUVAC

The program SUVAC (vacuum chamber suspended at a principal axis, stress and

deflection analysis) is written for a vacuum chamber with piecewise constant wall

thickness hg,, hy, h;, he, Fig. 2. Geometrical and material data (as well as pres~
sure) must be given as shown on the two following pages for two typical cases.

The output is self-explanatory.
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