
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN/PS 87-81 (CO)
6.10.1987

Project : NAPS
Domain : GENERAL MODULES
Category: CONF.PAPER
Status : FINAL

building softnare modules for driving haronare

CONTROLLING PHYSICAL VARIABLES: AN OBJECT-ORIENTED APPROACH

L. Casalegno, J. Cupérus, A. Daneels, C.H. Sicardl P. Skarek

Abstract

Software modules to control hardware devices and physical beam variables
have been written for several years in the CERN PS complex. They hide their
intricacies and thus provide a user-friendly interface to the higher level
application programmes. The concept leading to the design of these modules
has strongly evolved whereas the interface towards the application
programmes has been kept strictly the same for the sake of compatibility.
All the basic software has been rewritten in C to improve portability and to
be able to use the same techniques for driving hardware modules constrained
by strong real-time requirements. Object-oriented concepts have been
introduced in order to reduce the production time and to widen the
applicability of the software to a larger domain. The paper shows how the
concepts of dynamic creation of objects can be applied also in a domain such
as accelerator control where the fixed layout of the hardware requires
necessarily static images running on the target computers.

Paper presented at
the Europhysics Conference on Control Systems for Experimental Physics,

Villars-Sur-Ollon, Switzerland, 28.9. - 2.10.-1987

Geneva, Switzerland

BUILDINS SOFTWARE MODULES FOR DRIVING HARDWARE
CONTROLLING PHYSICAL VARIABLES: AN OBJECT ORIENTED APPROACH

L. Casalegno, J. Cuperus, A. Daneels, C.H. Sicard, P. Skarek
European Organisation for Nuclear Research

1211 Geneva 23
Software modules to control hardware devices

and physical beam variables have been written for
several years in the CERN PS complex . They hide
their intricacies and thus provide a user friendly
interface to the higher level application
programmes. The concept leading the design of these
nodules have strongly evolved whereas the interface
towards the application programmes has been kept
strictly the same for the sake of compatibility. All
the basic software has been rewritten in C to
improve portability and to be able to use the same
techniques for driving hardware modules constrained
by strong real time requirements. Object oriented
concepts have been introduced in order to reduce the
production time and to widen the applicability of
the software to a larger domain. The paper shows how
the concepts of dynamic creation of objects can be
applied also in a domain such accelerator control
where the fixed layout of the hardware requires
necessarily static images running on the target
computers.

Introduction

The CERN PS accelerator complex is constituted by
several proton accelerators, two antiproton
accumulators, two linacs, various transfer lines and
the LEP preinjector. All these machines are
controlled from a central control room through a
network of around 20 minicomputers and 1OO
microprocessors interfaced to the process hardware
through CAMAC. This network includes dedicated Front
End process Computers (FECs) which control
subsystems of the accelerators. The microcomputers
are located in the CAMAC crates as Auxiliary Crate
Controllers (ACCs or SMACCs for the newer projects).

SMACCs are double board MS8OOO based computers
running the real time operating system RMS68k. Each
SMACC is located in a CAMAC crate and controls the
hardware modules contained in the same crate. The
requests coming from the application programmes
running in the FECs or from consoles are accepted by
a routine resident in the FECs called DISPATCHER and
redistributed to the relevant SMACCs. The software
driving the equipments installed on the
accelerators has been moved from the FECs to the
5MACCs in order to delegate more and more the actual
control to local processors. The DISPATCHER refers
to routing dictionaries to send the commands to
the relevant SMACC.

The software procedures written to translate
and send the commands coming from the application
programmes into the hardware devices will be called
here Control Modules. Control Modules have been
conceived to hide the intricacies of the
underlaying structures, both hardware and software
and to create a homogeneous interface to the higher
level programmes.

Control Modules Structure

All Control Modules located in the SMACC are
implemented with a unique frame which drives
the specific code with the help of the data tables.
The layout of a generic Control Module is shown in
figure 1.

Data and code are separated in a Control
Module: data are stored in data tables which are

.Entry. . . .

.Routines. . .

P.B.R

..Preliminary.

....checks.

. Data Tables.

. . . Access Routines . . .

. Hardware.

. . . Access Routines . . .

. . . Error.Logging. .

figure 1
Layout of a Control Module

seen by the Control Module frame only which
accesses them by means of data tables access
routines.

The application programmes communicate with the
modules by means of messages, implemented in our
system with remote procedure calls. Part of the
message is the property (the selector in object-
oriented language) which indicates the required
action.

In the Module the choice of the routine
performing the required action is completely data
driven: the Property Branch Routine (PBR) scans the
Property Branch Table (PBT) which connects the
property identifier with the address of the routine
to be executed (Property Code).

The frame provides also the mechanism of
parameters checking and sending elementary commands
to the hardware (hardware access routines).

The flow of data in a Control Module is
depicted in figure 2. First the Property Branch
Table is scanned to find the address of the Property
Code to be executed and the property description ;
then parameters are checked according to the
property description; data reading from the data
tables is performed before entering the Property
Code. After execution of the specific code data are
rewritten in the data tables and errors possibly
generated are logged in an error table. In certain
cases, the action can be so simple (e.g. direct
hardware access) that it is executed directly by the
frame with the help of the data tables, without
accessing any specific code.

The first task of the Module writer is to fill
in the tables which describe the Module and the
objects in the Module. The programmer is helped in
this by a user friendly data entry system, built
with the powerful tools provided by the ORACLE data

figure 2
Data flow in a Control Module

base management system. From the data base tables,
the data are extracted by programmes which generate
the data tables as source code of the C language and
which produce printed documentation about the
Module. The process is illustrated in figure 3.

The second task of the Module writer is to
produce the various property codes which will
execute the specialised actions required. Many of
these codes are fairly standard and can be taken
from other Modules with little or no adaptation. The
property codes are included in a library of
subroutines which will be linked to the frame and
data table code.

The development of Control Modules is not
realised directly on the target machine (SMACC); the
DBMS seats on an IBM running VM/CMS whereas the
routine libraries, the compilers and the linker are
installed on a VAX running ULTRIX. The process of
Module creation is illustrated in figure 3.

Control Modules and Classes

One Control Module usually serves many
identical members differing only by the data
contained in the data tables. One can think of a
Control Modulo as a class of objects, e.g. a power
supply driver, and an entry in the data tables as an
instance of that class, e.g. a power supply.

The data base records all the classes present
in the system and all the instances belonging
to those classes.

The DBMS allows to create and delete Control
Module instances : it takes care of the disk space
not used any more, acting as a mass storage garbage
collector■

Classes can have similarities ; the data base
interface programme allows to derive a class from
an already existing one inheriting the list of
the ancestor's class properties and the definition
of the structure of the data tables.

A property can be of type class or instance:
the response of a class property does not depend on
the object being accessed but only on the Control
Module (class), whereas the response of an instance
property usually changes from object to object.
Logically speaking a class property belongs to or is
inherited by the class as a whole; an instance
property belongs to or is inherited by an object.

It is possible to redefine the property code
corresponding to a given function in a child class
by overloading the property description of the
ancestor's class. The Control Module sees its
property description only and not the ancestor's
one; access to the ancestor's code is possible by
means of an explicit call inside the child's
property code.

A programme extracts information from the data
base and generates which are included in the module

figure 3
Creating a new Control Module versionVAX and ULTRIX are trademarks of DEC

inage to be loaded on the target computer. The
objects are now frozen in the running code: they
cannot be changed neither in size nor in nunber;
only the data declared in the data tables as being
read∕write can be modified.

Thus some of the characteristics usually found
in an object oriented language have been moved to
the data base recording the classes present in the
system. Whilst no dynamic creation or deletion of
objects is allowed nevertheless the same operation
can be accomplished by a two step mechanism (load
information in the data base and then rebuild the
target image) that in a widely distributed and
heterogeneous system as the PS complex, guarantees
safety, maintainability and coherence between
documentation and actual layout.

On the other hand the selection mechanism
realised by means of the Property Branch Routine and
the Property Branch Table allows on line dynamic
binding: the Control Module will accept different
data types as arguments depending on the required
property; the property code can be written to treat
just one object at a time or an array of objects.

Finally, with the help of the frame, data are
hidden from the user programmes and are accessed
only by means of the properties that are an
abstraction of the data themselves.

The development environment

The SMACCs are strongly process oriented and do
not have a native development environment. As
development environment a VAX running UNIX has been
chosen, on which Cross Compilers were installed to
produce object code for the M63000 . C was chosen as
development language for the Control Module frame
because it guarantees portability that is
considered paramount in such a situation.

The code was debugged and tested with the
native compiler with the help of the powerful
symbolic debugger dbx(l). Then it was optimised
with the help of the profil(l) facility.: the
execution time has been reduced by a factor of more
than 2 .

By means of these optimisation techniques it
has been possible to supply a high level language
code time effective enough to be used also in
critical real time tasks such as performing the
modulation of the beam characteristics from one
pulse to another . The code written in assembler was
reduced to less than 100 statements.

Conclusions

Object Oriented programming principles have
been applied to build Control Modules : data hiding,
late binding, data abstraction at run time;
inheritance, method overloading, instance creation
and initialisation, garbage collection with the help
of a data base keeping the description of the
Modules. The system described in this paper has
demonstrated that the same methodology are
applicable to very time sensitive tasks with the
help of code optimisation techniques that enable a
strong reduction in the code bulk and in the
execution time.

References

(1] L. Casalegno et al. , ‘Distributed application
software architecture applied to the LEP
preinjector controls', presented at the 7th
IFAC Workshop on Distributed Computer Control
Systems, MayschossZBad Neuenahr, Fed. Rep. of
Germany, September 30 - October 2, 1986.

[2] A. Daneels, P. Skarek, A General Software
Module for CAMAC, Equipment and Composite
Variable Control, in Accelerator Control
Systems, North Holland, 1986, pp. 141-145.

[3] B.J. Cox, Qbiect Oriented Programming: An
Evolutionary Approach. Reading: Addison-Wesley
Publishing Company, 1986.

[4] K.J. Schmucker, Object-Oriented Programming for
the Macintosh. Hasbrouck Heights: Hayden Book
Company, 1986.

(5] B. Stroustrup, The C++ Programming Language, Reading: Addison-Wesley Publishing Company,
1986.

(6) Issue on Object Oriented Programming, Bvte,
vol 8, August 1986.

[7] Unix User's Manual

Specific test programmes and techniques have
been implemented to validate the code being written
and to perform repetitive tests in case of
modifications and enhancements. A set of test cases
has been written and kept in a file; the file can be
edited by means of a dedicated editor to append,
insert or delete tests. A programme scans the file
and performs the tests in the given order. A test
report is produced and kept as a documentation
together with the test cases list. These simple
techniques have been found very powerful: they save
production and maintenance time and enhance
reliability .

UNIX is a trademark of Bell Laboratories

