
CERN/PS 87-74 (LEA)(1987)

SOME COMMENTS ON THE EQUATIONS OF MOTION FOR A PARTICLE IN AN EXTERNAL ELECTROMAGNETIC FIELD
J. Bengtsson

ABSTRACTWe review the equations of motion for a particle in an external electromagnetic field by using a tensor equation valid in any coordinate system. It is then an easy matter to get the equationsof motion in the curvilinear coordinate system normally used for accelerators when the metric tensor using the equation for the longitudinal g has ≡,μv motion, been calculated, it is possible By towrite the equations for the transverse motion in a form different from that normally found.It is shown that when these equations are expanded to second order in the coordinates, they differ slightly from the similar equations found by K. Brown. However, to obtain the final equations of motion, one also has to expand in the momentum deviation. It then emerges that the difference is only of higher order. It is also shown that one gets the same equations of motion by using the Hamiltonian formulation as with the tensor equation.When one is using perturbation theory the Hamiltonian has to be divided into two parts. It is then customary to expand the Hamiltonian. The Hamiltonian is expanded to the third order, allowing for variation of the curvature. The second-order equations so obtained are shown to be equivalent to the expansions of the tensor equation.Finally, we present a manifestly covariant Hamiltonian which one does not have to expand.



1. EQUATIONS OF MOTION IN A CURVILINEAR COORDINATE SYSTEMThe equations of motion in a curvilinear system are given by the tensor equation [1, 2]

Duμ _ fμ Dτ m ' μ = 0, 1, 2, 3, 4, (1)
where uμ is the four-velocity, uμ = dxμ∕dτ, mɑ the rest mass, and τ the proper time. The covariant derivative along the curve xμ√τ) of a contravariant four-vector Aμ is defined by

DAμ _ dAμ rμ dxλ ʌvDt = dτ ɪ vλ dτ
where Γ^λ is the affinity given by the metric tensor g^ɪ^

The metric tensor g defines the differential distance in a parti- 3μvcular coordinate system
c2dτ2 ≡ g dxμ dxv . (4)≡μv

It obeys the following relation

The transformation from a contravariant vector Aμ to a covariant vector A^ is given by
A = g Av , μ =,μv (6)Aμ = gμvA . » V

The four-force fμ for an electromagnetic field is given by
μ = g pμ d√ c V dτ (7)
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where q is the charge of the particle and is the electromagnetic field tensor which, in a Cartesian inertial system, takes the form
∕0 ^exE 0XE CBy z∖E -cB∖ z y

-CB z0CB X
E XE y ∖ez

0 cB z-CB 0z CB -cBy X (8)
since the metric tensor is in this case

/ɪggμv 0∖0
0 0-1 00 -10 0

°∖ 0 (9)
The form of the field tensor in a general coordinate system may then be calculated from the transformation rule of a contravariant tensor

∂ , μ _ , V n,μv _ δx ∂x' .αβ a _ βX ∂xr
By combining Eqs. (1) and (7) we get the equations of motion for a particle in an electromagnetic field

,2 μ . V , λ , Vd_xjj. μ dx_ dx_ ɪ ɪ pμ dx_j 2 vλ dτ dτ m c v dτdτ o

This reduces, in an inertial system, to the well-known Lorentz- force law
|E = q(Ë + v X B) , (12)

and from the time-like part of Eq. (11) assumes the form
dE dt qv (13)Ê ,

since the four momentum is given by
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μ dxμ dt dxμ dxμ , -λ ÍE -ì . ,. x p = m d— = m 3— -TT- = m γ -τ- = m γ(c,v) = —, p . (14) * o dτ o dτ dt o , dt o’ , ) Ic tJ

It is seen that if the electric field Ē is orthogonal to the velocity or zero then the energy E of the particle is constant.
2. LOCAL COORDINATES FOR A PARTICLE IN AN ACCELERATORIn accelerator theory it is convenient to use local coordinates for a particle of the following type [3]

where s is the distance along a reference curve R(s). The only assumption for this curve is that it should lie in a horizontal plane and have the local curvature
h(s) = ɪ) . (15)

A general vector r may then be written as
r(x,s,z) = R(s) + xx(s) + zz(s) . (16)

It follows thatdr(x,s,z) = dx X + (1 + hx) ds s + dz z (17)
so that

c2dτ2 = c2dt2 - dr2 = c2 dt2 - dx2 - (1 + hx)2 ds2 - dz2 . (18)
From Eqs. (5) and (18) we find for the metric tensor

(19)3



From Eqs. (8) and (10) we may calculate the field tensor to be

where we have used E , B instead of E , B . s s y YThe only affinities different from zero are from Eq. (3):
Γ122 = -h(l + hx) , r2 r2 = —h r2 = h'x

r 1 2 r 2 1 1 + hx ' 2 2 1 + hx ’where a prime denotes a derivative with respect to s. Equation (11)gives the equations of motion:
dE _ dx dτ = $ dτ (1 + hx ) ds E + dz Edτ s dτ z

d2 d 2ʒ - h(l + hx) (ds/d) dt dτ (ɪ ÷ hx) ds/dτ dz dτ (21)

E +X
m o E X B z B s

d2 s + 2h dx ds + h'x dssj2d 2 + 1 + hx dτ dτ 1 + hx ( dτ Jdτ
m o .. E , B , Bdt s _ dx z + dz x dτ 1 + hx dτ 1 + hx dτ 1 + hx

,2 
d z

d 2 
dτ

- E + B dτ z dτ sm o (1 + hx) -7— Bv ) dτ x
As before, we see from the first equation of (21) that if the electric field is zero then the energy E of the particle is constant. We have in this case 4



E m 2 2 dtE = γmoc = moc dτ  -------------------------------------------♦ (22)d _ dt d d ds d ∙ d d2 2 ∙ 2 d2 2 " d dτ dτ dt γ dt γ dt ds γs ds ' ,2 γ s ds 2 + γ s ds , 
so that Eqs. (21) may be simplified to

x" + i- x' - h(l + hx) = - 2 (i + hx)B - z’B¿2 s P z s
7y (1 + hx) + 2hx' + h'x = - q z'b - x'BÔ P . x zJO (23)
z"+≡-z<=ΣS x∙b -(l+hx)B• 2 ∙ P S XS S l j

where a prime denotes the derivative with respect to s and we have used the fact that p = γm v = mv, where m is the relativistic mass.
0The second equation gives

s 2hx' + h,x v q ∣^ z'' _ xt• 2 - 1 + hx ∙ p 1 + hx X 1 + hx zs s v l j (24)
From Eq. (17) it follows that

v = ⅛ = jx2 + (1 + hx)2s2 + z2 = s Jx'2 + (1 + hx)2 + z'2 dt m * , (25)
where we have used

d _ ds d = ∙ d dt dt ds ds (26)
so that

∑ = jx'2 + (1 + hx)2 + z'2 . S
The motion along s may then be described by the two transverse coordinates x and z only by Eqs. (23), (24), and (27)

(27)
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x" - ɪ x'hχ (2hx' + h'x) -h(l + hx) = q/px∙2 + (1 + hx)2 + z’2
X - (1 hx) 1 + (l+hx)2-> z - z'B s 1 + hx Bx

z" - ɪ z*hχ (2hx, + h'x) = 3 jx’2 + (1 + hx) + z’2
X-x'Bs - (1 + hx) 1 + , -1 + . λ2 X (l+hx) j 1 + hx z

(28)
The number of degrees of freedom is two since the energy E is conserved and from

E = ʃ(pe)2 + (mθc2 )2 (29)
the total momentum is also [3-5] one normally finds longitudinal motion. It is

conserved. In the accelerator literature another equation than (23) for thederived from Eq. (27) and written as
1 d f∑f = ldid- 2 ds I ∙ J 2 ds dt s 1 1 d_2 ∙ dt s= x'x" + (1 + hx)(hx' + h'x) + z’z" (30)

since V is constant. This equation for s may be verified by solving for x" and z" in (23), using this in (30) and comparing the result with the second equation there.
3. EXPANSION OF THE EQUATIONS OF MOTION TO SECOND ORDER If we use the expansionsɪ - ɑ = 1 - α + α2 - a3 +0(4) (31) Jl +  = l+ 1/2a-∣a2 + 16 3 +0(4)
in Eqs. (28) and only keep terms to second order in the coordinates we find
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x’’ - x'(2hx' + h'x) - h(1 + hx)
= a (I + 2hx + h2 x2P 3 2 1 2+ x∙ x ’ + x z ' )B - ( 1 + hx ) z ’ B - x ’ z ' B

2 S X

z" - z’(2hx’ + h'x)
=q (1 + hx)x'Bs - (1 + 2hx + h2x2 + ɪ x’2 3 2+ ⅝ z'2)B + x'z'B2 x z(32)

If we compare with the equations derived by K. Brown, (2.6) in Ref. [6]z we find that they differ by some field terms on the right-hand side and also on the left-hand side where we have a term -2hx, ,2-2hx'z' instead of -hx' , -hx’z’, in the horizontal and vertical planes respectively.We now choose a trajectory for a particle with some momentum p0 as the reference curve (e.g. the closed orbit in a circular machine). We then define the momentum deviation δ by
P-P0 δ ≡ ——- . (33)Powhere p is the momentum for an arbitrary particle. The curvature h(s) is then given by the vertical field Bz(s) = -h(s)p0∕q. Since the reference curve was assumed to lie in a horizontal plane it follows that B is zero at this curve. What remains is then only the terms x' δ∕(l+δ) and x'z,δ∕(l+δ)z in the horizontal and vertical planes respectively. Since one should also expand in δ these terms are of higher (third) order.The well-known linear equations are obtained by using the field expansions [3, 4]

and by only keeping linear terms in the coordinates and δ in Eqs.(32), which then give
x" + (h2 - k)x = δh 
z" + kz = O . (35)
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4. HAMILTONIAN FORMALISMThere are two ways of carrying out a Hamiltonian formulation of a relativistic particle in an external field [7, 8]. Either one works in a specific Lorentz frame (non-covariant formulation) or one attempts a fully covariant description. We will start with the first one since it is the one normally applied to accelerators [5, 9-15]. We will see, however, that it has some drawbacks when one applies perturbation theory so we will therefore investigate if they may be solved by using the other formulation.
4.1 Hamiltonian for a specific Lorentz frameThe Hamiltonian is given by [8]

H = qΦ + c ] (p - qA)2 2 2+ m c o (36)
where A is the vector potential, Φ is the scalar potential for the external electromagnetic field,

B = VxA (37)E = τA— - v 3?∂t
and p the conjugate momenta. Hamilton's equations

dxi = SH dt Sxi (38)dpi _ _ SH dt ðpɪ
lead to the Lorentz force law (12) [12, 14].The Hamiltonian for the curvilinear system is obtained by a canonical transformation with the generating function [13]

F2(r,p) = p∙r = p∙[R(s) + xx(s) + zz(s)] , (39)
where R(s) is the reference curve,
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The old Hamiltonian may

dF
____ 2 
dXdF
____ 2 
dSdF
____ 2 
ÒZdF

2dpt×dF
2∂ phSdF
2dptZ

now

p∙x
p • s(1 + hx)
p∙ Z

dF
____ 2 ðt

(40)

be transformed and if we again use

P X
P s
P z
X X
S
Z

H H +

s
z

small letters for the new coordinates we have
H = eΦ + c i 2C P )7 7 I Q ?m c + ( p - eA ) + ■=------ r— - eA + ( p ~ eA ) ,

o x x' <1 + hx SJ pz z) '(41) where we have put q = e and A , A , A are the components of the vector potential in the curvilinear system . If Φ and Aχ, A , Az are time independent, then nɪ is a constant of motion which we may identify as the energy E. To change from t to s as the independent variable, we take -p as a new Hamiltonian [2, 9, 12-14].If we take Φ = O we haveH=E i = j (pc)2 + (mɑe2 ) , (42)
where p is the total momentum.The new Hamiltonian is then
H = -p = -(1 + hx) 2 s eA + ]p2 - (p - eA )2 - (p - eA )2 sw x «‰ Λλ 4∙λ

(43)
*) They are defined by A = A x + As + A z, and p , p , p are in X S Z XSZfact the covariant components of the vector p in the curvilinear system. 9



Hamilton’s equation gives
' dx aH2 (1 + hX)(PX ^ eAX)x ^ ds ∂ pχ ^ j-------
, dz aH2 (1 + hx><pz ^ eAZ)ɪ - ds - apz - J------

dp aκ aAp' = -s-2 = - ÷-Z- = (1 + hx) e ≤ + heA + h J hX ds ∂ X ` ∂x s'1ÔA ∂A(p - eA )e T—— + (p - eA )e ——+ (1 ÷ hx) -12---------2i__ð*--------1∑≡----------- z ax1— (44) dp aH ∂ A
I z 2 / 1 . ∖ ʌ SP = ~3---- = - ≈---- = ( 1 + hx ) e ----hz ds ∂x ∂ z ∂ A ∂A(p - eA )e X—- + (p - eA )e ——,. . x X X ðz tz z ∂z+ (1 + hx) -----------------------------------------------------------------I—

1 = dt a∏2 _ (1 + hx)E _ m(ɪ + hx )
d(-H ) ∂ H 

1 2

where
≡ Jp2 - (px - eAx)2 - (pz - eAz)2 ∙ <45>

From these equations it follows that
χ∙2 + (ɪ + hx)2 + Z-2 = P(1 t--⅛.) = E_ = 22 = V J ms ms s (46)

We may solve for pχ and pz in the first two equations of (44) and then take the derivative with respect to s
(47)
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where we have used
d ∙ d⅛ d ∙ _ s ds s ' ds dt s (48)

Since we assumed that ∂Aχ∕∂t = ∂Az∕∂t = O we find
A'X dA___ X ds ∂A ∂A » x . xX ' ≈---- + z—∂x ∂s ∂A X∂z (49)A’ z dA___ z ds ∂A ÒA, Z ɪ Z x ∂x ðs ∂A z∂zz ’

Combining Eqs. (44), (46), (48), and (49) gives
x" + — x’ - h(l + hx) s2

V e 
¿ p

∂A ∂AhA + (1 + hx) —- - z—- z
S ÒX ÔS

ÒA ÒA λ
____ X _ _____Z 
ðz ∂ x )(50)ÒA ÒA ÒA

/ — 1— ∖ S ∙ X ∙ ɪ+ (1 + hx ) x— + x — - x ≈-— ,v ' ∂ z δz δx
where s is calculated by taking the derivative of the fifth equation in (44)
≤L ⅛ = ≡ ɪ ≤___ J __ds ds m(l + hx)

= -(h'x + hx’ ) ------“------------m(l + hx)2
(p - eA )(p’ - eA’) + (p - eA_)(pl - θʌ’) ʌ ʌ ʌ ʌ Aλ ¿j L Ltm(l + hx)J

• 2hx’ + h’xs 1 + hx e _______ 1m (1 + hx)2 ∂A(1 + hx) v ∂x ÒA ∙ xasx ’ hAs
1+ hx ) ∂λ ∙ saz (51)
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Since
B = VxA, (52)

and in an orthogonal coordinate system [1]
hi Y iJk ð K X' 'i h h h Z_i ɜ j k k 123 T> ∂xj

where hɪ are the diagonal elements of g v in (19), we have
P — _x ~ 1 + hx ðs ∂A s

ÒZ

(54)B s . ∂A _ ∂Ar = h a + ___ S _ 1 ___ Xz 1 + hx s ∂x 1 + hx ∂s ’
The equations of motion are then

x" + — x, - h(l + hx) = - - [(1 + hx)B - z’B ] S P S ZS
2

— (1 + hx) + 2hx' + h’x = — - [z’B - x’B ] (55)P∙lxzS S
2

z ” + ~— z ’ = - - [x’B - (1 + hx)B ] p ∙ S xs *s
2in agreement with Eqs. (23).

4.2 Expansion of the Hamiltonian to third order To apply perturbation theory, one has to divide the Hamiltonian into two parts
H ≡ H + V , (56)owhere Hθ is the part of the Hamiltonian for which the equations of motion can be solved. To do this for the Hamiltonian (43) one normally expands the square root. We expand in powers of the deviations from a reference orbit x, pχ, z, pz, δ defined by a reference particle with momentum pɑ. In (33), δ is defined as 12



The Hamiltonian (43)
H3 = -po(1 + hx) e po

ε≡i2∆ 
Pomay then be written as

A + (1 + δ)
O

1 ɔ<Pχ - eAx> _ <Pz - eAz> P0 (1 + δ )2 P0 (1 + δ)2 2η

(57)The square root may be expanded from Eqs. (31) as
∏-vτ = 1 ÷ ɪ a - ɪ 2 

α
116 α3 + 0(4)

The Hamiltonian to third order is then
H = -p (14 hO + hx ) ePo A + 1 + δ s (p - eA )2 v x_________x2po(l + δ) (p - eA) z z 2 η2pθ(l + δ) _ . (58)
Hamilton’s equations now give

x’ an4ap*x (1 + hx ) p - eAt× xP0 (1 ÷ δ)
z ’ an4aptz (1 + hx ) p - eA tz zP0d ÷ δ)

ÔHP ’*x ÒX P h tO
+ (1

eP0 A s + 1 δ (p - eA ) v x_________x2po(l + δ) 2 (p - eA )2 tz_______ z2po(l + δ)
+ hx) eP0 aAS ax p - eA*× XP0 (ɪ ÷ δ) aA xax p - eA*z zP0 (ɪ + δ) aAZ ax(59)

P0 (1 + δ)aκ a aP ' = pz ___ 4_ az (1 + hx) 2- po S ax px eA x ∂A x∂z pz eA zP0 (1 + δ) aA Z∂z
1 ÔH• a( -H s = ⅛ (1 + hx ) 1 + (p - eA )2 v x_________x2p2(l + δ) (pz ^ eAz)2'2pθ(l + δ)
d(-Hι ) ds an___ 4at O . 13



Since the Hamiltonian is expanded to third order, the equations ofmotion are correct to second order.Solving for pχ and Pz in Eqs. (59), we have
d ds Pχ d ds Γp0<1 δ)+ hx + eA X

P0 (1 + δ)+ hx (h,X + hx,)X, 1 + hx1 + hx eP0 A’ X
I- P ds z d ds Γpocl + δ) (60)+ hx + eA z

P0 (1 + , 1 + hxδ) (h,x ÷ hxt)z, 1 + hx1 + hx eP0
Putting this only keeping equal to pχ second-orderand p; in (59) by using Eqs. (49) andterms we find

1
1

1

x" - x’(h’x + hx’)

X

z

X ’

z ’
1 + δ

z

= h(l + hx) 1 - ɪ x'2 - ɪ z’2 +(l-δ+δ2)(l+hx)- po
x hAs ÒA+ (1 + hx) τ-≡ ∂x ∂ A—≤ ÷ ðs ∂A ∂A >lz xÔX ÒZ J (61)

z" - z’(h’x + hx’)
∂A ∂A= (l-δ + δ2) - (l + hx) 5-- - —- + x, v P ðz ðstO

SA ÒA ʌ___ X ___ Z∂z ∂x J

where we have used Eqs. (31). By using Eqs. (54) we finally have
x" - h’XX’ - ɪ (x’2 ~ z’2 ) - h(l + hx)

= (1 - δ + δ2) — [(1 ÷ 2hx + h2χ2)B - (1 + hx)z,B ] P∏ zsz,, - z ’ ( h ’ x + hx ’ )
= (1 - δ + δ2) — [(1 + hx)x'B - (1 + 2hx + h2χ2)Bχ] .P0 s x
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This differs slightly from Eqs. (32), but by again taking into account that h is given by Bz = -hpθ∕q, and that the reference curve was assumed to lie in a horizontal plane so that Bχ is zero, it is seen that the difference is only in higher-order terms.As we have seen, one normally has to expand the Hamiltonian we used. This is no problem and may, at least in principle, be extended to any order. However, at least from an aesthetic point of view, it would be nice to use a formalism where one only has to find expansions for the vector potential and not the Hamiltonian itself. That would mean that one does not have to approximate the dynamical part of the system, only the driving sources. Of course, one still has the problem of finding solutions to the equations of motion, which is normally done by applying some sort of perturbation theory which then gives approximate solutions.
5. MANIFESTLY COVARIANT HAMILTONIAN FORMALISM5.1 A covariant HamiltonianIn the case of a particle in an external electromagnetic field it is possible to define a covariant Hamiltonian valid in any coordinate system by [8]
H = — ( p - qA )(pμ - qAμ2mθ c tμ μ 1___2m c o p pμ - 2qp Aμ + q2A Aμ (63)
where A1* ≡ (|, A)

pμ ≡ mθ uμ + qAμ (64)
dxμ dτ dxμ , -ʌ= V dt" = Y(C'V)

Hamilton’s equations are in a Cartesian system
dxμ _ ¾H dτ ^ ∂p μ (pμ - qAμ ) (65)1m c o
dpμ = _ ¾H dτ òx μ (P - qAv) aμAv

Since
dAμ dxv _ .μ dτ dτ v (66)15



and solving in (65) for pμ
U OX » lɪ z Γ r, Xp = moc d≡~ + qA ' (67)

gives in the second equation of (65)
d2xμ 
dτ2

ɪ (aμA - a Aμ) ≤≡- = ɪ Fμ ⅛- , 
me V v,dτ me vdτ'

0 0
(68)

where we have used the definition of the electromagnetic fieldtensor [8]. This may be compared with Eq. (11).
5∙2 Hamiltonian for the curvilinear systemThe metric tensor is in this case given by (19). The normal components of the vector potential A , A , A , in the curvilinear system (see subsection 4.1) are related to the contravariant and covariant components by

A1 = A , X 2 1 + hx ' _3 _ _ O ΦA=A, A = — z c (69)
ΦA = -A , A = -(1 + hx)A , A = -A , A = - .

1 X , 2 , S 3 Z ' O C
If we then use x, s, z instead of 1, 2, 3 to label the covariant components of the conjugate momenta, we find with (6) and (63) that

Γ 2H = -ɔɪ Í— - q —Ì - (p + qA )2 - [■=— s. + qA ) - (p + qA )2 2m Ic cj x x Il + hx sj tz z' 0L (70)
We assume that there is no electric field, Φ = 0, and that the vector potentials are time independent:

∂A x∂t ∂A ∂ A___ s _ ___ z at ^ at (71)o .

The Hamiltonian is then time independent and simplified to
H 12m o E2 2ʒ- - (pχ + qAχ)C Í Ps11 + hx 2 

qAs) - (P, + qaz)2 (72)
16



Hamilton’s equations give

0
c ÉÍ dH Ec dτ = C dE m < o1 dE 1 dHc dτ C dtdx dH = - L-dτ dp hX m o (pχ + qAχ)

C = γC

dp ∂A ( P Λ rd A hp -ipx dH q . ɪ _ y ___ X ɪ I pS ɪ . ___ s hsdτ dx mɔ (px $ x dx Il + hx $ sJ _dx q(l+hx)2-
+ <P2 + SA

ds _ ∂H ɪ _ 1_ ɪ [ ps + - Idτ dp m 1+hxll + hx i*sJ s o (73)dp -ʌ,, Γ dA z p vðʌ . ,hs dH q z , _ x x , ( ts , _ s hx’ i-3— = - τ- = ɪ- ( P + qA ) ----- + ∙=—-—T— + qA ----- - ---------------dτ ds m *x ^x,ds (l + hx ^1s(lds , , ,. x 2 I o q(l+hx) j
+ (Pz + qaz) dA zds

dz _ dHdτ dpz ⅛- (pz 0 qA. )
dpz dHdτ dz (Pχ dA ɪ ∖ × + qA ) τ----x, dz ps+ hx dAS dz

+ (P qAz) dA Zdz
m o 1

From the first equation one has
d _ dt d d_ ds d ∙ d_ dτ dτ dt dt dt ds ds * (74)
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Using this in (73) one obtains
dx ds

z
⅛

(Pχ + qAχ)
dz ds (Pz + qA ) 

AA Aa

V 1 f ps - pl+hxll+hx qs
P hx - dpχ ds -q ∂A, x x τ— ∂x hA + (1

O
+ hx ) ∂A5-≡ * ≈ ∂x ∂A z3x

(75)

P 'hs

P S (ɪ ÷ hx )
- dpX ds
- dpS ds

-q
-q

x'
x’

∂ A ___ x ðz hx ) ÒAS ∂ z ∂Az∙ t-ξ ðz
∂A x∂s + (1 + hx ) ∂ A Sðs + z' ∂A Z∂s

P ’
h ’ xAS

- p | (1 + hx)h'x .
If one solves for p , p , and p in the first three equations of (75), takes the derivative with respect to s for pχ, pg, pz, puts this equal to the last three equations using Eq. (48), and remembers that the vector potential is time independent

∂A ∂A òA_ , , x ɪ x ɪ „, ___ xA’ = x ⅛— + τz- + z τz-x δx ∂s ozSA ∂A ∂Ar,A' = x' T-- + TZ^ + z’ TZ^S ÒX ðs OZ∂A ÒA ∂Ar,»»—i Z Z1 Z
(76)
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one finds
x" + x’ - - h(l + hx) s

ï s
¿ p

hAS ∂Ahx) T—- - , dx ∂A X∂s ∂A Z∂ X ∂ A X∂z
⅛ <1 + S hx ) + 2hx’ + h ’ x (77)

= ∑2¿ P
Z Z ’

From (54)

X ’
S
• 2 
S

11 + hx
= ∑ q

¿ P

follows
X x ’
S

• 2 
S

(1 +
Z Z ’

∂A x∂s
x’ ∂A Xðz

h1 + hx
∂A Z∂x

A s ∂A X∂s z ’ 1 1_____+ hx ∂ A Zðs ∂A S∂Z
+ (1 ÒA+ hx) ∂  z ∂A ZÒS

S W / 1 . V, ∖ vQ— - h ( 1 + hx ) = — 
s s P

hx) + 2hx’ + h'x
s
• 2 
S

= ï a [x'b 
à p

The second equation of (78) gives
S
• 2 
S

2hx, + h1 + hx x
and from the metric tensor g 3μv

dr = dxx + (1 +
gives

[(1 + hx)Bz
= ï S [z'B sp x
(1 + hx)Bχ]

v S [Z.B ¿ P

z ,B si

- x’B ] Z

x ’ B ] z

hx) ds s + dz z

(78)

(79)

(80)
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v = ≡∣ = ]x2 + (1 + hx)s2 + z2 = s Jx’2 + (1 + hx)2 + z’2 (81)
so that

y = jx’2 + (1 + hx)2 + z’2 . (82)S
As expected, Eqs. (78) agree with Eqs. (23) obtained from the tensor equation.The development of canonical transformations, Poisson brackets, and the Hamilton-Jacobi theory can also be applied to the covariant Hamiltonian [8].If we introduce an eight-dimensional phase space (pμ, xμ), the canonical transformations may be defined by the equation

p uμ - H = p'u,μ - H' + (83)tμ μ dτ
where uμ and u,μ are four-velocities. In the particular case, for instance, where

F ≡ F(xμ, x*μ, τ) , 
we have

(84)

6. CONCLUSIONSWe have shown that the Hamiltonian formalism, in the case when the curvature is a function of s, leads to the same second-order equations as those derived by K. Brown.We have also shown that the exact equations of motion in the curvilinear system obtained by the Hamiltonian formalism are the same as those derived from a tensor equation.Finally we have presented a Hamiltonian formalism where one does not have to expand the Hamiltonian. It is not a big problem to 20



get equations of motion to second order by the normal formalism. The other formalism may, however, be preferable for higher-order calculations. It is also easier to extend from a given order, since we just have to find the new higher-order terms in the vector potential.Of course, there still remain the problems of finding expansions for the vector potential, and of applying some sort of perturbation theory to find solutions of the non-linear equations, which have not been treated here.
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