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SOME COMMENTS ON THE EQUATIONS OF MOTION FOR
A PARTICLE IN AN EXTERNAL ELECTROMAGNETIC FIELD
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ABSTRACT

We review the equations of motion for a particle in an exter-
nal electromagnetic field by using a tensor equation valid in any
coordinate system. It is then an easy matter to get the equations
of motion in the curvilinear coordinate system normally used for
accelerators when the metric tensor guv has been calculated. By
using the equation for the longitudinal motion, it is possible to
write the equations for the transverse motion in a form different
from that normally found.

It is shown that when these equations are expanded to second
order in the coordinates, they differ slightly from the similar
equations found by K. Brown. However, to obtain the final equations
of motion, one also has to expand in the momentum deviation. It
then emerges that the difference is only of higher order. It is
also shown that one gets the same equations of motion by using the
Hamiltonian formulation as with the tensor equation.

When one is using perturbation theory the Hamiltonian has to
be divided into two parts. It is then customary to expand the
Hamiltonian. The Hamiltonian is expanded to the third order,
allowing for variation of the curvature. The second-order equations
so obtained are shown to be equivalent to the expansions of the
tensor equation.

Finally, we present a manifestly covariant Hamiltonian which
one does not have to expand.



1. EQUATIONS OF MOTION IN A CURVILINEAR COORDINATE SYSTEM
The equations of motion in a curvilinear system are given by
the tensor equation [1, 2]
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where u" is the four-velocity, ut = dxu/dt, m, the rest mass, and =

the proper time. The covariant derivative along the curve x“(t) of
a contravariant four-vector A" is defined by
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where Ttk is the affinity given by the metric tensor guv
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The metric tensor guv defines the differential distance in a parti-
cular coordinate system
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It obeys the following relation
gkg = 5 . (5)

The transformation from a contravariant vector A" to a covariant
vector Au is given by
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at = g*Va .

The four-force f' for an electromagnetic field is given by

v _ g i dx"
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where gq is the charge of the particle and Fuv is the electromag-
netic field tensor which, in a Cartesian inertial system, takes the

form
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The form of the field tensor in a general coordinate system may
then be calculated from the transformation rule of a contravariant

tensor

AHY o ax'¥ ax'V AuB

ax® axP

. (10)

By combining Egs. (1) and (7) we get the equations of motion for a
particle in an electromagnetic field

2_H v A Y
ax r# dx” dx~ _ g * dx
dx

2 vk dt dt m c v dt  ° (11)

This reduces, in an tnertial system, to the well-known Lorentz-
force law

9P _ q(E+ v xB), (12)

and from the time-like part of Eg. (11) assumes the form

SE-a - E, (13)

since the four momentum is given by
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It is seen that if the electric field E is orthogonal to the velo-
city or zero then the energy E of the particle is constant.

2. LOCAL COORDINATES FOR A PARTICLE IN AN ACCELERATOR

In accelerator theory it is convenient to use local coordi-

nates for a particle of the following type [3]

a
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where s is the distance along a reference curve R(s). The only
assumption for this curve is that it should 1lie in a horizontal
plane and have the local curvature

h(s) = . (15)
A general vector r may then be written as

Z(x,s,z) = R(s) + xx(s) + zz(s) . (16)

It follows that

-

dr(x,s,z) = dx x + (1 + hx) ds s + dz z (17)
so that
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From Egs. (5) and (18) we find for the metric tensor
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(19)



From Egs. (8) and (10) we may calculate the field tensor to be
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where we have used Es’Bs instead of Ey,By.

The only affinities different from zero are from Eq. (3):

1 2 L2 h 2 _ h'x
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where a prime denotes a derivative with respect to s. Equation (11)
gives the equations of motion:
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dt q[dt By * (1 + hx) §¢ Eg + 3¢ Ez]
a’x ds,” _ g [at ds dz
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a’s , _2h dxds, _h'x (gg]z
dtz 1l + hx dt drt 1 + hx (dt
_a (et B _ax Bz gz Px
m dt 1 + hx dt 1 + hx dt 1 + hx

&’z _ g [at ax 5 _ ds
= [dt E, + 3% Bs (1 + hx) 3 Bx] .

As before, we see from the first equation of (21) that if the elec-
tric field is zero then the energy E of the particle is constant.
We have in this case
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so that Egs. (21) may be simplified to
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where a prime denotes the derivative with respect to s and we have
used the fact that p = ym v = mv, where m is the relativistic mass.
The second equation gives

(24)
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From Eq. (17) it follows that

ve=Z o[+ 1m0t 42 =5 [x? ¢ (1 rhe)? 42, (25)
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where we have used

3t "dt ds - S as (26)

so that

Y. I;,z + (1 + hx)? + z'% . (27)

s

The motion along s may then be described by the two transverse
coordinates x and z only by Egs. (23), (24), and (27)
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The number of degrees of freedom is two since the energy E is con-
served and from

E={(pc) + (mc*)” (29)

the total momentum is also conserved. In the accelerator literature
[3-5] one normally finds another equation than (23) for the
longitudinal motion. It is derived from Eq. (27) and written as

14 [zf _latd [2]2 _l1lgd [2]2 B} [2]2 s
2 ds S 2 ds dt S Z'S(it S S 'SZ
= x'x" + (1 + hx)(hx' + h'x) + z'z" (30)

since v is constant. This equation for é may be verified by solving
for x" and z" in (23), using this in (30) and comparing the result
with the second equation there.

3. EXPANSION OF THE EQUATIONS OF MOTION TO SECOND ORDER
I1f we use the expansions

(31)

3
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in Egs. (28) and only keep terms to second order in the coordinates
we find



x" - x'(2hx' + h'x) - h(l + hx)
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I1f we compare with the equations derived by K. Brown, (2.6) in Ref.
[6], we find that they differ by some field terms on the right-hand
side and also on the left-hand side where we have a term -2hx‘2,
-2hx'z' instead of —hx'z, -hx'z', in the horizontal and vertical
planes respectively.

We now choose a trajectory for a particle with some momentum
p, as the reference curve (e.g. the closed orbit in a circular
machine). We then define the momentum deviation & by

5§ 2 —m . (33)

where p is the momentum for an arbitrary particle. The curvature
h(s) is then given by the vertical field Bz(s) = -h(s)po/q. Since
the reference curve was assumed to lie in a horizontal plane it
follows that Bx is zero at this curve. What remains is then only
the terms x‘28/(1+8) and x'z2'6/(1+8), in the horizontal and ver-
tical planes respectively. Since one should also expand in & these
terms are of higher (third) order.

The well-known 1linear equations are obtained by using the
field expansions [3, 4]

b4 ! s !

L g =0
P, z

L5 =0 9. B =-h+k 4
D, D, * (34)

and by only keeping linear terms in the coordinates and 6 in Egs.
(32), which then give

x" + (h* - k)x = &h
(35)

z" + kz = 0 .



4. HAMILTONIAN FORMALISM

There are two ways of carrying out a Hamiltonian formulation

of a relativistic particle in an external field [7, 8]. Either one
works in a specific Lorentz frame (non-covariant formulation) or
one attempts a fully covariant description. We will start with the
first one since it is the one normally applied to accelerators
[5, 9-15]. We will see, however, that it has some drawbacks when
one applies perturbation theory so we will therefore investigate if
they may be solved by using the other formulation.

4.1 Hamiltonian for a specific Lorentz frame
The Hamiltonian is given by [8]

H=qd +c I(ﬁ - q}—\)2 + mzc2 (36)

where A is the vector potential, & is the scalar potential for the
external electromagnetic field,

B =V xA
(37)
= 3A
E -3t ve
and p the conjugate momenta. Hamilton's equations
ax;  am
t 3x,
(38)
Pi_ _en
dt api

lead to the Lorentz force law (12) [12, 14].
The Hamiltonian for the curvilinear system is obtained by a
canonical transformation with the generating function [13]

F (F,8) = BT = b [R(s) + xx(s) + zz(s)] , (39)

where ﬁ(s) is the reference curve,
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The old Hamiltonian may now be transformed and if we again use
small letters for the new coordinates we have

2

H =% + c im c? o+ ( - eA )2 + {——55—— - eA ] + ( - eA )2

1 0 Py x 1 + hx s P, z ¢
(41)

where we have put g = e and Ax, AS, Az are the components of the

vector potential in the curvilinear system'). If % and Ax, As’

Az are time independent, then H1 is a constant of motion which we
may identify as the energy E. To change from t to s as the inde-
pendent variable, we take -Pg @s a new Hamiltonian [2, 9, 12-14].

If we take & = 0 we have

H =E=|(pc)’ + (mc?) (42)

where p is the total momentum.
The new Hamiltonian is then

H, = -pg = -(1 + hx) [eAs + 10? - (p, - er )’ - (p, - ea)?| . (43)

*) They are defined by A = Axx + Ass + Azz, and Py, Py, P, are in

fact the covariant components of the vector p in the curvilinear
system.



Hamilton's equation gives

- o . ax _ BHZ ) (1 + hx)(px - eAx)
ds apx J'——
Z' = Q = aHz = (1 N hX)(pz _ eAz)
ds apz J'_
dpx 3H2 aAs
pi =d T T ex T (1 + hx) e 3x heAs +h r~——
an aAz
(p, - eA )e 35— + (p, - eA )e 3—
+ (1 + hx) X X X Zz 4 X
. (44)
dp H 3A
Py =@ = " 3% = (1 +hx) ez
an aAz
(p, —eA_)e —— + (p_ - eA_)e —
+ (1 + hx) X X 0z Z z 3z
1_at_ °% (14 h0)E_ m+ hx)
s ds (-3H1) CZ \[—-— J——
d(-Hl) . 3H2 -
L ds - 2t
where
_ 2 _ _ 2 _ 2
| H Jp (px eAx) (pz eAz) . (45)
From these equations it follows that
I;,z + (1 + hx)* +2z'? = p(l + hx) | ET == =7, (46)

' ms ms s

We may solve for Py and P, in the first two equations of (44) and
then take the derivative with respect to s

I W )_s(.. s_] :
ds Px @ v * * Ay = vixt 52 X * eAx
(47)
d d S S " S ' v
ds Pz T @s [; z' 4 eAz] Y [z * g? z ] *ehy
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where we have used

d _dtada . _ s
'a-s- —dSEES—g' (48)
Since we assumed that an/at = aAz/at = 0 we find
dAx an an an
v o = w! —_— Ve
Ay = ds ¥ 3x T3s *tZ% 3z
(49)
dA oA dA oA
v o zZ _ z z ' z
A, = ds X 3x t3s *tZ 3z
Combining Egs. (44), (46), (48), and (49) gives
. S
x" + = x' - h(1l + hx)
s
v e BAS an [BAX oA )
- - - — e e = V| D e
- s P hag + (1 + hx) 53 ds 2z X
(50)
; v e 3Az aAs BAx aAz
" - X F | —< — Ve e '
Y z' = 2 P 9s + (1 + hx) 3z ¥ 3z ax '
s [3
where ; is calculated by taking the derivative of the fifth
equation in (44)
a ;.s_a _[—
ds B ~ ds m(1 + hx)
Cthw e ey —
m(l + hx)
- LI ' - L. 1
) (py, - eA )(p, - eA)) + (p, eA )(p, - eA)) )
m(l + hx)|
oA oA
. 2hx' + h'x e 1 ,[ s x]
= - ————" ~ = x'|lhA_ + (1 + hx) — - —
1 + hx m (1 + hx)z { s ax as
Az axs
—'.———- ———
z [:s ( 1+ hx) 3z ] . (51)
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Since
B=VzxaA, (52)

and in an orthogonal coordinate system [1]

h z:

= _ i ijk 3

(v x A)i *FEh € ——3 hkAk , (53)
1 ik ax

where hi are the diagonal elements of guv in (19), we have

A A
B = 1 z _ s
X 1 + hx 3s 3z
an aAz
Bs =2z T x (54)
N . _h +BAS_ 1 %A,
z 1 + hx ''s ?x 1 + hx 3as °
The equations of motion are then
x" + == x' - h(1 + hx) = §¥ [(1 + hx)B, - z'B_]
s s
2
£ (1 +nhx) +2nx' +h'x=2Y(z2'B - x'B] (55)
s P s
2
" S ;- &8%Y¥ ' -
z" + é z B - [x Bs (1 + hx)Bx]

in agreement with Egs. (23).

4.2 Expansion of the Hamiltonian to third order

To apply perturbation theory, one has to divide the
Hamiltonian into two parts

H=zH +V, (56)

where Ho is the part of the Hamiltonian for which the equations of
motion can be solved. To do this for the Hamiltonian (43) one nor-
mally expands the square root. We expand in powers of the

deviations from a reference orbit x, p zZ, p 5§ defined by a

x’ z’
reference particle with momentum P, - In (33), 8 is defined as

12



P - P,

P,

The Hamiltonian (43) may then be written as

(p. - eA)? (p_ - en_ )’
H, = -p (1 + hx) -e—As+(1+5) 1 - —= — - = =— .
po p°(1+8) p°(1+5)

(57)

The square root may be expanded from Egs. (31) as

_ 1 _1 2 1 3
l +a =1+ 5 a g @ + ig ¢ + 0(4) .
The Hamiltonian to third order is then
(p, - er ) (p, - er)’
H‘ = -po(l + hx) e As + 1 + 686 - f X - f z . (58)
Po 2p2(1 + &)  2pi(1 + &)
Hamilton's equations now give
- 3H, P, - eA,
X' = — = (1 + hx) ————
3P, D, (1 +5)
3H4 p, - eAz
z' = — = (1 + hx)
ep, p, (1 + &)
3H (p, - eA )’ (p, - er )’
0 2po(1 + 5) 2p°(1 + &)

dA p. - eA_ 2A p. - eA aAZ]

o IP*  p,1+8) % p(145)
(59)
p'=-—:H‘ = (1 + hx) & :As+px—eAx 2:x+pz—eAz :Az
z z o [°*  p,(1+8) p, (1 + &) °%
1 oH, 1 (P, - eAx)2 (p, - eAz)2
Ty " v (B hx) L+ *
s 1 2p°(l + &) 2p°(1 + &)
d(-H ) oH
1 - -2 -0
L ds 3t °
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Since the Hamiltonian is expanded to third order, the equations of
motion are correct to second order.

Solving for P, and P, in Egs. (59), we have

p,(1 + 8)
T T hx x' + eAx]

D-' o)
0]
ol
]
L}
o}
0
—

S ) . o xahex  1rhxe
- 71 + hx 1 + hx 1+56 p, "x
(60)
1 +86)
a a [P ,
Epz-as[um Z*e"z]
_ po(l + 5) o - (h'x + hx')z"' . 1 + hxe_A'
T~ "1 + hx 1 + hx 1 +8 p, "z] °

Putting this equal to p; and pé in (59), by using Egs. (49) and
only keeping second-order terms, we find

x" - x'(h'x + hx')

h(1 + hx)[l - % x'? -

(N

z‘z] + (1 - & + 82)(1 + hx) e
P,

aAs an [aAz an]
——— - — ' —— -
b4 hAs + (1 + hx) 3% + z (61)

z" - z2z'(h'x + hx')

A 3A 3A 3A
(1 -5 + 8°) %— [(l + hx) 5 _ Z + x' (——5 - ——E)] ,
0

where we have used Egs. (31). By using Egs. (54) we finally have

)2

x" - h'xx' - % (x - z'z) - h(l + hx)

(1 -8 + 8%) %‘ [(1 + 2hx + h’x’)Bz - (1 + hx)z'B_]
° (62)
z" - z'(h'x + hx'")

2, e \ _ 2.2
(1 - 86 + &%) E— [(1 + hx)x Bs (1 + 2hx + h'x )Bx]

0

14



This differs slightly from Egs. (32), but by again taking into
account that h is given by Bz = —hpo/q, and that the reference
curve was assumed to lie in a horizontal plane so that Bx is zero,
it is seen that the difference is only in higher-order terms.

As we have seen, one normally has to expand the Hamiltonian we
used. This is no problem and may, at least in principle, be ex-
tended to any order. However, at least from an aesthetic point of
view, it would be nice to use a formalism where one only has to
find expansions for the vector potential and not the Hamiltonian
itself. That would mean that one does not have to approximate the
dynamical part of the system, only the driving sources. Of course,
one still has the problem of finding solutions to the equations of
motion, which is normally done by applying some sort of pertur-
bation theory which then gives approximate solutions.

5. MANIFESTLY COVARIANT HAMILTONIAN FORMALISM
5.1 A covariant Hamiltonian

In the case of a particle in an external electromagnetic field
it is possible to define a covariant Hamiltonian wvalid in any
coordinate system by [8]

_ 1 _ T N | o u 2 n
H = Zn G (pu un)(p gA”) = ZnC [pup 2qpuA + q AuA ], (63)

where

L
AT = (5, A)

pu = mouu + un (64)
dx" ax" =
u = -~ VYa ° y(c,v) .

Hamilton's equations are in a Cartesian system

dax" oH 1 1! 1]
= = (p” - gA™)
drx apu m,c
(65)
dEu 3H q \ v u
at - " 3x " mec (P - aA) dA .
u ()
Since
an’ _ ax’ a aM (66)
dt =~ dt v ’
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and solving in (65) for pu

1
pu = m cC %%— + qAu ’ (67)

gives in the second egquation of (65)

v
dx _ g g# dx

dzxu )
dr = m c v dt

dat?

= 4 (a%a - b
== (37A, -2 A (68)

where we have used the definition of the electromagnetic field
tensor [8]. This may be compared with Eg. (11).

5.2 Hamiltonian for the curvilinear system

The metric tensor is in this case given by (19). The normal
components of the vector potential Ax, AS, AZ, in the curvilinear
system (see subsection 4.1) are related to the contravariant and
covariant components by

1 2 As 3 ] [+
A=Ay A STTRxc AM=h, . A =g
(69)
A = -A_ , A = -(1 + hx)A_ , A =-A_ , A =2
1 X 2 S 3 4 0 C

If we then use x, s, z instead of 1, 2, 3 to label the covariant
components of the conjugate momenta, we find with (6) and (63) that

2
2 p
_ 1 E _ [ _ 2 _|_"s _ 2
H = fﬁ: [[E a c} (Py + aBy) [1 ¥ hx | qu] (p, + @A) }

(70)

We assume that there is no electric field, & = O, and that the
vector potentials are time independent:

aA_ 3A_ @A
5t -3t -3¢t -0~ (71)

The Hamiltonian is then time independent and simplified to

2

H = 1 ’ -« + QA )2 - [__EE__ + gA ] - + gA )? (72)
2mo Py ARy 1l + hx Ahg P, z -

ONID‘]
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Hamilton's equations give

- .4t _ 3 _ E _
€a T C3E T m c = Ye
1de _ _123H _,
c dt c ot
dx oH 1
= = =—— = - — (p_ + gA )
dt apx m, X X
by am _ g (p+qA)an+( Py qA][aAs_ hp_ ]
dt dAx m, b 4 X’ 3x 1 + hx s/ {3x q(1+hx)2
BAZ
+ (p, + QqA)) 3%
ds _3H _ _1 _1 (ps A]
dt 3pg m 1+ hx {1+ hx lg
] (73)
dps__gg=g_ o +qA)an+( P +qAMaAS- hs' ]
drt 3s m X x’ 3s 1l + hx s/\3s q(1+hx)2
BAZ
+ (p, + QA ) 3s
dz oH 1
= 50— =-3 (p, + @A)
dt apz m, z
dp 3A P 3A
—~z _ _ 3 _g_ x [ s )__s
dt 2z m, [(px * qAx) 3z " T nx ¥ 9B 3z
3Az
+ (pz + qu) 3z | °
L
From the first equation one has
d _dt d da _ ds @ _ a_
F "G aE - YFE - YaEa Y ST (74)
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Using this in (73) one obtains

: ax _ _ly
x' = g5 = P (P, + @A)
dz lv
L, . A
zZ = &s D - (pz qu)
s
R
S = - pT+nx (T+nx *
dp, 3A_ A 3A,
v = - ' [
px = 35 q |x 3% + hAs + (1 + hx) 3% + z 3%
J ) (75)
s
Py (1 + hx)
dp, [ dA A 3A_
LI = - Ve — '
P, = &s a|x 3z * (1 + hx) 2z T % 3z
L
dp [ A dA A,
' = em— = - L. .od —_— ' v <
Pg = &s qQ |*x 35 ° (1 + hx) 3s h XAo + 2" 33
-p s (1 + hx)h'x
L v *

If one solves for p and p, in the first three equations of

’ p ’
s z
this equal to the 1last three equations using Eq. (48), and

x' psl

(75), takes the derivative with respect to s for Py, P puts

remembers that the vector potential is time independent

an BAx an
[ v __ 2 —_— L ——
Ax =X 3x t3s tZ 3z
oA oA oA
v s s . s
As =X 3x Y3 Y% 3z (76)
oA
A':x'?f_z.-{.&*.z'_z,
ox os 9z ’
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one finds

x" + x' £ - h(1 + hx)
S

(77)

oA oA 3A A
.vg s _ x ,[ z _ x]
- [hA + (1 + hx) 5 3s X 3z ]
4 s; (1 + hx) + 2hx' + h'x
s
_vg o { 1 an ) h A - iA_x] . z'[ 1 aAz ) aAs]
s P 1 + hx 83s 1 + hx ''s 3s 1 + hx 3s 3z

s v g ( x z) 0Ag 2A,
" 1 — = t — = co— — - —
zm vz 52 s P * 3z 3ax + (1 + hx) 3z s :

From (54) follows

x" + x' £ - h(1 + hx) = g [(1 + hx)B, - z'B_]

S S

‘<

s; (1 + hx) + 2hx' + h'x =
s

04

g [z'Bx - x'Bz]

z" + zl

QJM

]
n-l<
o la

[x'Bs - (1 + hx)Bx] .

The second equation of (78) gives

; _ _ 2hx' + h'x v q , R
Tz T+ hx s P [z'B, - x'B_]

1)

and from the metric tensor guv

-

dr = dxx + (1 + hx) ds s + dz z

gives

(78)

(79)

(80)
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v = %€ = sz + (1 + hx)s? + 22 = s Jx'z + (1 + hx)? + z'2 (81)

Y. ]x'z + (1 + hx)? + 2% . (82)

As expected, Eqgs. (78) agree with Egs. (23) obtained from the
tensor equation.

The development of canonical transformations, Poisson
brackets, and the Hamilton-Jacobi theory can also be applied to the
covariant Hamiltonian [8].

If we introduce an eight-dimensional phase space (pu, xu), the
canonical transformations may be defined by the equation

e = (Y ' _d_F_
puu H puu H' + 3t (83)
where u" and u'" are four-velocities. In the particular case, for

instance, where

we have

H' = H + .a_.F_
T
oF
p, = (84)
dxX
D' = dF
1} ax'¥ :

6. CONCLUSIONS
We have shown that the Hamiltonian formalism, in the case when

the curvature is a function of s, leads to the same second-order
equations as those derived by K. Brown.

We have also shown that the exact equations of motion in the
curvilinear system obtained by the Hamiltonian formalism are the
same as those derived from a tensor equation.

Finally we have presented a Hamiltonian formalism where one
does not have to expand the Hamiltonian. It is not a big problem to
20



get equations of motion to second order by the normal formalism.
The other formalism may, however, be preferable for higher-order
calculations. It is also easier to extend from a given order, since
we just have to find the new higher-order terms in the vector
potential.

Of course, there still remain the problems of finding expan-
sions for the vector potential, and of applying some sort of per-
turbation theory to find solutions of the non-linear equations,
which have not been treated here.
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