
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN/PS/ 90-007 (CO)
15 March 1990

Project: NAPS
Domain: DATABASE
Category: PAPER
Status: FINAL

OBJECT ORIENTED PROGRAMMING HITH A RELATIONAL
DATABASE

Jan Cuperus, Wolfgang Heinze, Claude-Henri Sicard

Abstract

The particle accelerators of the CERN proton synchrotron complex consist of
thousands of pieces of very diverse equipment which must be controlled in a
uniform way via software interface modules residing in some 50 micro­
computers. These modules belong to classes which are described in ORACLE
tables and updated through a form. A full heritage mechanism is implemented. A
second form permits instanciation of members of the class and attribution of
values to the instance variables. At any time, the data tables for a given
processor can be generated. These tables, together with a fixed frame and a
library of methods, form complete modules for accessing the equipment.
Documentation of a class and its instanciations can be generated on request.

To be presented at the 8th ORACLE Users Conference, Madrid, April 199.0.

Geneva, Switzerland

1

OBJECT ORIENTED PROGRAMMING NITH A RELATIONAL DATABASE

Jan Cupérus, Wolfgang Heinze, Claude-Henri Sicard
CERN, European Organisation for Nuclear Research

1211 Genève 23, Switzerland

Summary

The particle accelerators of the CERN proton synchrotron complex
consist of thousands of pieces of very diverse equipment which must be
controlled in a uniform way via software interface modules residing in
some 50 micro-computers. These modules belong to classes which are
described in ORACLE tables and updated through a form. A full heritage
mechanism is implemented. A second form permits instanciation of members
of the class and attribution of values to the instance variables. At any
time, the data tables for a given processor can be generated. These
tables, together with a fixed frame and a library of methods, form
complete modules for accessing the equipment. Documentation of a class
and its instanciations can be generated on request.

Introduction

The CERN proton synchrotron complex consists of ten interconnected
particle accelerators built over a period of some 30 years. It contains
very diverse equipment which somehow must be controlled so that the
accelerators can work together. To make this possible, there are several
software and hardware layers. Control data go down to the equipment and
information about the accelerator goes up to the operator:

Accelerator Operators

Application Programs

General Module

Hardware Control Interface

Accelerator Equipment

Fig.1: Software and hardware layers for accelerator control.

Application programs (AP) can autonomously control parts of the
accelerator and display or log information but usually they present a
high level interactive interface to the operator.

2

The hardware control interface is bus-oriented (VME, CAMAC etc ...)
and translates computer words into contacts and levels which control the
equipment and the other way round for status and measurement
information.

In order to hide the irrelevant details of the equipment interface
from the application programs, the General Module (GM) is built between
the two. We started writing equipment interface modules 12 years ago by
editing frames with a text processor and initialising variables from a
file. This worked but it was difficult to modify the module afterwards
and there was no proper documentation of the finished module. A few
years ago we decided to build the modules with the help of a relational
database. The remainder of this paper will be about the GM and how it is
constructed from information in the database.

Equipment Classes

Power supplies for magnets, timing-pulse generators, vacuum pumps,
and beam position detectors are obviously quite different devices and we
would not expect them to react in the same way. On the other hand, power
supplies of various types and manufacturers may present differences
which are quite irrelevant to their task of setting a voltage or a
current. Devices which we want to look similar from the higher levels
are grouped in a CLASS. Common features shared by several classes are
expressed in a SUPERCLASS and included in the class through an heritage
mechanism. Starting from the general GM class, we can construct a whole
hierarchy of classes:

Fig.2 : An example of a class hierarchy

We have some 5000 pieces of equipment, grouped in about 100 classes.
Some classes, such as POWER and TIMING have hundreds of members while
some very specialised measurement aparatus are unique in their class.

Calling Sequence for the GM

The calling sequence is object oriented but, for the moment,
implemented in normal C language:

ERRNO = GM(CLASS, MEMBER, SELECTOR, SVALUE)

MEMBER is a number identifying the piece of equipment in the class,

3

SELECTOR is a symbol identifying the action to be taken and SVALUE is a
pointer to a data structure which corresponds to the selector. SVALUE is
written to the GM when the selector is a command (e.g. WRCV for
write-control-value) and read from the GM when the selector is a request
for information (e.g. STAQ for status-acquisition). ERRNO is 0 when the
communication with the GM and the hardware control interface (usually
over the computer network) was OK and returns an error number when not.
It does not indicate whether the equipment is working correctly: for
this you must read the status or check the equipment settings.

Structure of the GM

The GM consists of 4 parts:

(1) A frame which is an identical piece of code for all the classes. It
checks the calling arguments and implements the selector mechanism.

(2) A data table, specific for the class, which contains the variables
used by the class. Variables can be class-variables, which are defined
once for the whole class, and instance-variables which have a different
value for each member of the class.

(3) A selector table with records containing the calling sequence for
the method which implements the action requested by the selector.

(4) A method library which contains 'standard' methods, used by many
classes and some methods which are specific to one or a few classes.
Re-use of methods is frequent because they can be parametricized.

The data table and the selector tables are derived from ORACLE tables.

Variable definition and the inheritance mechanism

The class and instance variables are defined in table VARDEF :

VARDEF= (CLASS +
VARNAME +
CI +
Varaccess +
VARTYPE +
vardescrip

* name of the class *
* name of the variable *
* C or I, for Class- or Instance-variable *
* RO or RW for read-only or read-write *
* R,I,R(12),I(5),S(16): real,int,string (array) *
* short description of function of variable *)

Table VARDEF lists only the variables defined for a particular class but
says nothing about inherited variables. Table GMCLASSES :

gmclasses= (class + superclass + ... }
gives the immediate superclass of the class but this superclass can have
a superclass of its own, and so on. The superclass hierarchy of the
class can be obtained with a tree-oriented search. The complete set of
variables for a given class (denoted by variable :XCLASS) is then
obtained with :

4

SELECT
FROM
WHERE

CLASS,VARNAME,CI,VARACCESS,VARTYPE,VARDESCRIP
VARDEF, COUNT
(CLASS, COUNT) IN (

SELECT CLASS, LEVEL -.
from Gmclasses (1)
CONNECT BY PRIOR SUPERCLASS = CLASS
START WITH CLASS = : XCLASS) AND

(VARNAME, COUNT) IN (
SELECT V.VARNAME, MIN(COUNT)
FROM VARDEF V, COUNT, GMCLASSES G
WHERE G.CLASSNAME = V.CLASSNAME AND

(2)

(V.CLASSNAME, COUNT) IN (
SELECT CLASS, LEVEL -∣
FROM GMCLASSES (1)
CONNECT BY PRIOR SUPERCLASS = CLASS
START WITH CLASS = : XCLASS)

GROUP BY V.VARNAME) AND
NOT VARTYPE = ,X, ;

Table COUNT = (COUNT) contains the integers from 1 to 10;
(1) selects the set of the class and superclasses of the class;
(2) selects the name and lowest level in the superclass hierarchy for

each variable defined in one of the classes of the set;

Finally, we select the attributes for these variables which are not
suppressed by having VARTYPE = 'X, in the lowest definition. This whole
construct allows us to inherit variables but also to add, change or
suppress variable definitions in the lower level classes.

The expressive power of SQL for solving such kinds of problems
seems to be a bit wanting and an auxiliary table COUNT was used to get
around the limitations. Also, the execution speed of logically
equivalent formulations can vary wildly but the variant used here proved
to be quite fast.

Note that we have only defined the variables but we have not given
them values. Depending on VARACCESS, variables can be (1) Read-only: in
fact constants containing the fixed data of the equipment such as
addresses and scaling factors and (2) Read-write: operational values
such as the voltage of a power supply. The RO data are contained in an
ORACLE table INSTVAL and downloaded into the GM data table when the
module is generated. The RW data are set by the operators or loaded from
archive files to bring the machine in a well defined state. In the
future, we intend to replace these archive files by ORACLE tables. RW
data can also contain results of acquisitions from the equipment, such
as status, measured voltage, or results of beam measurements.

The selector definition table

The SELECTOR is a pointer in a table which tells the GM which METHOD to
use and with what arguments in order to get the desired action. Each
class can inherit selectors from its superclasses and define its own.
The selectors are defined in ORACLE table SELECTORDEF :

5

Selectordef= {class +
selector +
RW +
METHOD +
PARLIST +
Seldescrip

* name of the class *
* name of the selector *
* RO, WO, RW for read/write action on SVALUE *
* the name of the procedure to be called *
* method arguments, separated by commas *
* short description of selector action * }

The arguments are literals or names of defined variables. The SVALUE
argument is always implicitly transmitted to the method. The attributes
of all selectors for a class, including the inherited ones, are obtained
with a SQL statement similar to the one for variables in previous
section.

The Methods

METHODS do most of the actual work. They are listed in table METHODS :

METHODS= {METHOD + * the name of the method *
Svaltype + * the type of SVALUE *
AUTHOR + * the name of the author of the method code *
lastupdate + * when method was last updated *
Metdescrip + * short description of function of the method *
source + * file name for the source code *
LIBRARY * name of the library file with object code * }

Associated dummy arguments are defined in table METHODPARAMS :

METHODPARAMS= (METHOD + * the name of the method *
SEQNO + * the sequence number of the argument *
PARNAME + * the name of the dummy argument *
ACCESS + * RO, WO, RW for read/write access *
PARDESCRIP * short description of argument function * }

For the moment, the source code for the methods is on separate
files. A logical development would be to include the source code text in
the database which is now possible with the available text handling
database extensions.

Defining the class with GMNEW

GMNEW is a form for creating or modifying a class. There are
several blocks for specifying general information, class variables,
instance variables, selector branching with actual arguments, methods
with dummy arguments. Fig. 3 shows one of the blocks.

6

I
Name : R03AQN Class/Loop/Array: L RZLJ: R Valtype: R
Short Deacription: Read CCU fron hardware or AQ_________________________
Created: 31-JUl-89 By: HEINZE___________________
Updated: 31-JUL-89 By: HEIMZE___________________
Source fi Ie : /USERB/PSCO/POWER/PROCOS. C_______________________________________
Libraryfile: √USERB∕PSCO∕PQWER∕PROCOS. CUF_____________________________________

N RlJ Parname Partype
_ RQ CAMNA1, I________
_ 2_ RQ AQ_______ I________

3 RO CNHT I
_ 4 RQ IRM_____ I________
_ 5_ RQ GRE_____ I________6 RO SCALI___ R

Char Mode: Replace Page 6 Count: 8

Fig.3 : method definition block and associated argument
declaration block in master-slave relationship.

Filling in the data with GMFILL

With GMNEW, the class is defined but there are as yet no members.
Members are created by filling à table EQUIPMENT :

EQUIPMENT= {CLASS + * the name of the class *
MEMBER + * member identification number in the class *
EQNAME + * member name *
COMPNAME + * the computer where the GM will run *
EQDESCRIP + * short description of the member *
... * other information about the member * }

When the members and the variables are defined, we can attribute values
to the RO variables with form GMFILL. The first block of this form asks
for the CLASS, the first and last member you want to update, and your
initials. Pushing NEXT-BLOCK will now cause any missing RO variables to
be created in table INSTVAL :

INSTVAl= { CLASS + MEMBER + VARNAME + VALUE + INITIALS + LASTUPDATE }

SQLtFORMS does not allow you to do this creation in a straightforward
way, so we update a dummy table and implement the creation in a
PRE-UPDATE trigger.

You have now the choice of updating all variables for a selected
member or a selected variable for the range of members, whichever is
more practical. Value is entered as a character string. Arrays are
entered as numbers, separated by commas. Fig.4 shows two pages of the
form.

7

Varname Vartype

ɪ____
Description

Contains Canac reference subaddress
I CftMHl I________ Contains Canac station number

CNNT ɪ________ Sags if channel connected (1) or not (0)
HWMX ɪ____ Maxinun value in bits (e.g. 4095)________
TRM ɪ____ Treatnent code for value and actuation
DEL R________ Contains delag fron standbg to on
ILIM β________ Inner CCU Linits in Rnpere________________
MH R________ Mininun value in ftnpere___________________
MX R Maxinun value in flnpere
SCftLl R Scaling factor (ft/bit) for control
SCAL2__ R____ Scaling factor (A/bit) for acquisition

Char Mode: Replace Page 4 Count: *11

S ≡ ≡ ɪ = ɪ = = = = «« INSTANCE VALUES FOR VARIABLE CftMHl___ OF TYPE I________-----

Mbno Eqname Value **** Use key NEXT-BLOCK for next variable **|

I 8001 UL. SHflOl_________ 2
8003 UL. SHC02_________ 2_________________
8004 UL.SHDE02________ 2
8005 UL.SHUU03________ 3________________
8006 UL.DHG031________ 3
8007 UL- DU6031________ 3
8008 UL.DHG032 3
8009 UL.DUG032________ 4
8010 UL.SHFll_________ 4
8011 UL. QSfil212_______ 4
8012 UL. QLfll2_________ 4
8013 UL.QSfll312 5
8014 UL. QLfll3_________ 5________________
8015 UL.QLfll4_________ 5________________
8016 UL.QSA1412 5________________
8017 UL.QLB1514 6

Char Mode: Replace Page 5 Count: 16

Fig.4: Two blocks of form GMFILL. The upper one allows you to select
a RO instance variable and the next block allows you to fill
in the values for this variable for a range of equipment.

Class variables have only one value for the whole class. They are
entered in table INSTVAL with the fictive member number 0.

8

Generating the GM tables with MODULGEN

The program MODULGEN asks for the name of the target processor and
then constructs the GM tables for all the classes and members
implemented on that processor. The result is a set of tables in source
code of the C language. A second program then compiles the tables, links
them with the frame object code and the required method libraries and
loads the resulting object on the target processor.

For constructing the tables from the information in the database,
text strings must be converted into values and symbols must be converted
into symbolic values with the help of appropriate symbol tables in the
database. Inconsistencies must be clearly reported so that they can be
easily corrected.

Generating the dispatcher tables

The modules are installed in remote microprocessors while the
application programs run in workstations, and the whole is
interconnected with Ethernet. In each workstation, there must be an
equipment table and a dispatcher which routes calls to the appropriate
computer. A dispatcher call is identical to a direct module call but
there are extra features: it is possible to call a piece of equipment by
name instead of by class + number and it is also possible to call an
array of members (with a corresponding array of values) for the same
class. The dispatcher cuts up the array in array calls to the
appropriate computers and re-assembles the responses. The dispatcher
tables are identical in each workstation and are acquired when the
workstation is initialised or whenever an update is necessary. They are
derived from table EQUIPMENT.

Generating the documentation with MODULDOC

Program MODULDOC asks for the classname and then generates the
documentation in SGML format from information in the database. A header
with general documentation is generated, followed by a plain text
description of the module. At present, the database refers to a file
where the description is kept but this description should be moved to
the database itself. Then follows the description of the class tables
(class and instance variables, selector branching and method
attributes). Here, use is made of the description fields included in
almost every table. After the class description the members are listed
with the values of all RO instance variables.

Special features

Our accelerators work in cycles, lasting one to several seconds. In
a cycle, some accelerators can accelerate electrons, positrons, protons,
antiprotons or heavy ions and this for several possible users. Cycles of
different kinds can follow each other in supercycles and, for each
cycle, thousands of parameters must be set to different values. This is
done by defining variables of type PPM (pulse-to-pulse-modulation)
each variable is in fact an array of 8 variables and a real-time program
reads the tables in the GM between cycles and sets the appropriate
values for that cycle. The operator can independently control each of 8

9

virtual accelerators independently of the others. For this an additional
parameter indicating the virtual machine is included in the calling
sequence.

In this paper, we have used the proper object-oriented terminology.
For historical reasons, this differs in some points from the terminology
we actually use. The form examples given here have been slightly adapted
so as not to confuse the reader.

Object-oriented databases

Future developments of database management systems may go in the
direction of semantic databases which impose integrity rules on top of
the relational model, and object-oriented databases which impose
structures on the data and define exactly what can be done with these
structures. Roughly speaking, in semantic databases, what is not
forbidden is allowed and, in object-oriented databases, what is not
allowed is forbidden. Semantic databases are probably preferable as a
versatile central depository of data, but structures such as described
in this paper would be easier to implement if standardised
object-oriented tools existed on top of the semantic database.

Conclusion

We combined the best features of object oriented design (safety
through encapsulation, conceptual simplicity, uniform interface,
heritage) with those of relational databases (all data accessible, easy
updating, good documentation). The new system has been in use for two
years and we are converting the remaining old style modules to the new
system. Many man-years have been gained this way and the resulting
system is more reliable and better documented.

Acknowledgments

We thank L-Casalegno for writing the code for the first version of
the GM frame and F-Perriollat for constant encouragement and support
during the execution of this project.

BIBLIOGRAPHY

[1] Casalegno et al, Building software modules for driving hardware con­
trolling physical variables: an object-oriented approach, EPS conference
on control systems for experimental physics, Villars-Sur-Ollon, Switzer­
land, September 1987.

[2] J.Cuperus, The database for accelerator control in the CERN PS
Complex, IEEE PARTICLE Accelerator Conference, Washington DC, March
1987.

