
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN/PS 89-67 (CO) 
15 .12.1989

PROCESS EQUIPMENT DATA ORGANISATION IN CERN PS CONTROLS

L. Casalegno, j. cuperus and c.h. sicard

Paper presented at the International Conference on 
Accelerator and Large Experimental Physics 

Control Systems 
Vancouver, British Columbia, Canada 

October 30 - November 3, 1989

Geneva, Switzerland



PROCESS EQUIPMENT DATA ORGANISATION IN CERN PS CONTROLS

L. CasaLegno, J. Cuperus and C.H.Sicard
PS Division, CERN, CH 1211 Geneva 23, Switzerland

The CERN PS Control system has a widely distributed architecture, mainly 
for fast response in a real-time environment. The organisation of the data 
for equipment access must be compatible with this architecture and give 
efficient program access to the data. Moreover, it must also offer 
managerial features such as data integrity, easy backup and restore, 
adaptibility to changes in data structure, initialisation, data-entry 
facilities and automatic documentation. This paper shows how one can 
take advantage of a commercial database management system with its 
associated tools, adding to it some object-oriented programming concepts 
to meet the objectives of a manageable distributed data organisation 
having good run-time performance features and using a reasonable manpower 
investment.

1. Introduction
The controls for the PS accelerator complex have from the beginning 

accessed the accelerator equipment through a unique call interface 
("Equipment Module") and data format (by classes of equipment, one data 
record per piece of equipment of the same class) (1). The action to be 
executed is indicated by a ’property" which causes a set of statements, the 
"property-code’, to be executed.

The original system, installed in 1980, was designed with performance in 



2

mind. It provided the programmer with a code template, which he filled with 
a data-record description and a property-code, which accessed the data 
directly (via record pointers). An additional facility was a small off-line 
database containing the list of equipment names and their hardware device 
mapping.

Experience with this system showed that, although programming was rather 
simple once the template was well known, several maintenance problems 
o c c u r e d :

the absence of data protection, together with the use of languages 
offering little static checking, caused operational data corruption 
problems which were very difficult to clean up.

operational data, stored in computer memory/disk segments, had to be 
preserved, but its initialisation and restoring after cold-starts or 
segment corruption was not an integral part of the system, and was often 
overlooked by the original programmer. Specific programs had to be written 
for each module, to be called manually in case of problems.

software module maintenance on templates "customised" by programmers was 
found difficult.

documentation was hand-written, thus often provided late and incomplete 
to users.

2. Design objectives for an improved system
The prime objective is to minimise system maintenance, as changes in the 

equipment lists and functionality are typical of evolving accelerators such 
as the PS complex.

Documentation is to be automated as much as possible, in particular for 
obtaining up-to-date lists of equipment, with their main characteristics.

Operational data protection is to be improved against side effects 



3

of property-codes or real-time tasks.
The source-code template is replaced by a kernel, hidden from the 

programme r.

- A large amount of the data used in Equipment Modules, such as scaling 
factors, ranges, hardware adresses, was provided beforehand by the 
equipment specialists. These data do not need frequent updates but are 
needed in the documentation which should be taken from a unique source.
- For easy implementation of generalised functions such as data browsing 
or Saving/restoring, the structural information (record description for 
each module) is to be loaded with the on-line data.
- All generalised functions must be guaranteed to work for all modules, 
with easy upgrades for new features.

The more decentralised architecture of the control system and the 
increased local processing power results in the need for an extended call 
interface, providing integer and string types in addition to the normal 
floating-point type (the first for performance reasons, and the second 
mainly for customised messages).

3. Implementation Constraints
The Control Modules (generic name for Equipment Modules in this new 

generation) are loaded into embedded microprocessors, which offer no disk 
storage nor remote file access. In case of hardware failure, all 
operational data must be restored by down-loading the latest settings.

For an easier upgrade to another architecture, all access to Control 
Module functions is done via remote procedure calls (direct access to 
microprocessor memory, although much more efficient, is thus ruled out).

Equipment instances are defined statically (from definitions in the 
central database), and no auto-configuration is done at the front-end



4

levels .
The ORACLE relational database management system, running on a central 

IBM computer, was chosen for off line data storage. Data entry is 
exclusively by means of the ORACLE tool SQL*Forms.

The generation of the operational modules and their installation on the 
target processors must be as automatic as possible; data consistency and 
completeness must be checked.

4. Resulting implementation
Data and code are separated as much as possible. To attain this, a 

complete module consists of 3 parts:
Frame: a kernel code identical for all module classes. The frame is 

data driven.
Data: which give specificity to the frame. We distinguish class

data, which define the module class (properties, column names 
etc...), and instance data which define values for individual 
members of the class (e.g. hardware addresses or maximum 
values for each piece of equipment.

Procos: (property-codes) subroutines which execute specific actions. 
These subroutines are normally short.

The method chosen for accessing data is to replace record pointers by a 
small set of data-access routines, which are the only interface for 
application programmer code. These routines must still allow fast real-time 
response typical of the PS (i.e, updating up to 40 set-points every 1.2 
second, in a time window of about 10ms).
Performance aspects: Control Modules can be called for an array of 
equipment of the same class. For fast access, the Proco calls the data 
access routines also in array mode. This is satisfactory for simple actions 



5

such as loading data into the equipment on a pulse-to-pulse basis. For more 
complex operations, the frame calls the Proco in a loop, once for each 
piece of equipment. We thus have two kinds of Procos: Array-Procos which 
handle an array of equipment and have a fixed calling sequence and 
Loop-Procos which handle one piece of equipment at a time and are called, 
by the Frame, with a user-defined record containing the variables used by 
this Proco. Array-Procos are faster but Loop-Procos are simpler to write 
and allow more complex operations. Relative performance of these two 
methods has been measured, showing the usefulness of the array method.
Data Initialization: the control system data is divided into Equipment Data 
(Read-Only) and Operational Data (Read-Write) : the first are entered 
through the Oracle Database and cannot be modified on-line. With a 
sufficiently user-friendly interface, the equipment specialist himself can 
enter the data for control system use, thus shortening transmission 
delays and reducing transcription errors. The operational data are not 
initialized in Oracle, and need backup and archiving tools.
Module development: to simplify the writing of new Modules, and to 
guarantee that all Modules implement the basic functionalities, an 
inheritance mechanism has been included in the implementation around 
Oracle (2). In short, each module belongs to a Class, which itself can 
derive from a Superclass, thus forming a tree. The root of the tree is 
the Control Module Class, including all basic functionalities. Below, one 
can find a sub-class called PPM-Modules, which offer the features of 
cycle-dependent data (Figure 1).
Operational data backup is handled as follows: as soon as a console 
finishes working on a set of process variables, a full backup of 
operational data is done for all relevant local processors, onto a
Front-end computer disk file (one per processor). This file can be used in 



6

case of » cold-start of a processor. Structural changes (adding equipment 
or fields in records) are taken into account when restoring operational 
data .
Archiving : when a particular operation (e g. antiproton transfer over a 
beam line) works well, we can store the set of all relevant equipment 
parameters in a named file. When a similar operation is required at a later 
date, we can load the archived data into the equipment. In the meantime, 
the cycle structure may have been altered and some pieces of equipment may 
have been added, removed or altered. To keep the archived data useful, the 
full context (structure of all cycles, working set contents) must be 
saved together with the data, and the operator must be warned of any 
changes when the archive is reloaded. In the future we hope to have 
ORACLE on-line in a secure way so that we can use this database instead of 
files .
Oracle implementation (3): a class is defined with an SQL*form called GMNEW 
and permits the following definitions: general data such as module name, 
author, superclass, etc...; class variable names and types; instance 
variable names and types; property names and the Procos called; the data 
record definition for Loop-Procos. Once the class is defined, a second 
form, called GMFILL, permits values for the read-only instance variables to 
be entered (Figure 2). When all data are filled in, the program MODULGEN 
generates the data structure for the module in the form of C source code, 
which is then merged with the frame and procos. A second program, M0DULD0C, 
provides the documentation.

S. Experience with the new data organisation
After initial correction of a few bugs in the kernel code and the 

associated services, no data corruption problem has been reported for any 



7

module implemented in this system.
A survey of the Loop-Procos written show that they have a mean size of 

34 lines of C code, including record description and comments. This is 
conducive to simpler software maintenance.

A number of on-line facilities have been provided in a generalised form 
valid for any type of module, existing or future, such as:

Data browsing by record, both for current or backup data, with 
possible check for differences.
Tracing the connection between any physical variable and the hardware 
devices actually controlling it.
For fast changes in Equipment Data (or when Oracle is unavailable), a 
tool provides on-line updating, submitting in parallel an update 
request for Oracle (manually processed via file logging, for the 
moment).

6. Possible developments
The advent of SQL-NET allows efficient remote access to an ORACLE 

database. The extension to yet another development environment (IBM for 
DBMS) can be avoided by migrating data-entry forms and table generators to 
the Control-System workstations.

References

(1) A.Daneels et al., Standard Software modules for Equipment and Composite
Variable Control, CERN PS/CO Note 84-01.

(2) L.Casalegno et al.,Building software modules for driving hardware 



8

controlling physical variables: an Object-oriented approach, EPS Conf, 
on control systems for experimental physics, Villars-Sur-Ollon, 
Switzerland Sept.28 - Oct.2, 1987.

[3] J.Cuperus, The Database for accelerator control in the Cern PS Complex, 
IEEE Particle Accelerator Conference, Washington DC., March 16-19, 
1987 .



9

Figure Captions

Figure 1 Class hierarchies

Figure 2 Example of data entry form



In
fo

rm
at

io
na

l p
ro

pe
rti

es
 

CM
Ci

as
s 

Da
ta

-a
cc

es
s g

en
er

 ic
 p

ro
pe

rti
es



O U
XX 4->

O

O •
£L xb×∙ ©

ü
S- XX LO *
O •O CD ɔ X-X

QJ O σ TJ •
XX CD ʧ O 0) 3
vH 3 ■O © OD CT
XX • © ɔ υ

4-J XW •H iÜ
TJ O « •H O 4-J
0) ç* 0) © <4- O

4-> XX X-X ü 0) 0) C •
□ S- χ∖ XX 4-)
0) CD OD 0) 0) 0) 4_> ü
ç~ 4-) 4J .Q CL CL -H IÖ

-H -H E E X) O TJ
O J= J= O <E Œ 4-J QJ S-
U -»-> <r O OD O

C C c C ÍÜ 3 *4-
r—I TJ “H H S- -•—4 -H ¼-
QJ OJ 0) S- 4-J 0)
C OD OJ 0) .O 0) 0) O XW O TJ
C 3 3 ɔ OO E 3 23 4-) ç— C O
φ *H •H 4-> 0) •—I r—I O XX □
J= 4-> ÍÜ <Ü -H E <Ü Itf ÍÜ ɪ-f
O O > ≥∙ E > > ^4- <Ü 0) 4-)

C -H •H ü ü C
Vfc- xx E E r—4 (D E E XW OD C 0)
-H 3 ɔ 3 23 ç~ ÍÜ E

=D J- E E © E E -H S-
(0 iÔ -H -H 0) •H -H -H •H 0) 0) (Ö
=D r—I C X C 3 C X ÍÜ .C *H 0)
(Ü (D -H iü ç~ O -H © U 4—J O r

CO Q x τ>- IH _I (D O F— F—

cEHHOfHororcKororH

τ-< (∖J 
t- h × ∑ m -∣-∣
H -» Σ Σ H Σ <r <E -I ∑
HU∣3Z3-∣-∣ZXU(JOCL 
CJ Q ɪ ɪ >-» -i ∑F⅜ω co >- »-

Il 
Il 
Il 
Il 
Il 
Il 
Il 
Il 
Il 
Il 
Il 
Il 
Il

Cxl Il
-H Il
* Il

N Il
Il

0) H
OJO Il
fú II

CL II
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
H 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II


