
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN/PS 89-65 (CO)
15.12. 1989

SOFTWARE DEVELOPMENT ANO MAINTENANCE:
AN APPROACH FOR A LARGE ACCELERATOR CONTROL SYSTEM

L. Casalegno, l. orsini, c.h. sigaro

Paper presented
Accelerator

at the International Conference
and Large Experimental Physics

on

Control Systems
Vancouver, British Columbia, Canada

October 30 - November 3, 1989

Geneva, Switzerland

SOFTWARE DEVELOPMENT AND MAINTENANCE:

AN APPROACH FOR A LARGE ACCELERATOR CONTROL SYSTEM

L. Casalegno, l. orsini, c.h. sicard
PS Division, CERN, CH - 1211 Geneva 23, Switzerland

Software maintenance costs are presently a large amount of the total

life cycle cost of a software system. In case of large systems not only the

costs of eliminating bugs, of fixing analysis and design errors, of

introducing updates have to be taken into account, but also the coherence

of the system as a whole while its parts are evolving mostly independently.

The necessity of devising and supplying tools for helping maintenance and

programmers in housekeeping and updating has been strongly felt in the case

of the LEP preinjector control system. A set of utilities has been

implemented to create a safe interface between programmers and files

containing the control software. Through this interface consistent naming

schemes, common compiling and object building procedures can be enforced so

that development and maintenance stuff have not to bother about the details

of executable code generation.

Procedures have been built to verify consistency, generate maintenance

diagnostics and automatically update object and executable files taking

into account multiple releases and versions. The tools and the techniques

reported in the paper are of general usage in the Unix environment and have

already been adopted for other projects.

1. Introduction

The CERN PS accelerator complex consists of several proton accelerators,

two antiproton accumulators, two linacs, various transfer lines and the LEP

preinjector. All these machines are controlled from a central room through

2
a network of around 25 minicomputers and 100 microprocessors interfaced to

the process hardware through CAMAC. This network includes front end process

computers (FECs) which control subsystems of the accelerators (1). The LEP

preinjector is controlled by 2 FECs to which about 20 microcomputers are

connected. The minicomputers are linked through the network to the

computers driving the consoles of the main control room.

Each microcomputer (called SMACC) contains a MC68000 microprocessor, is

located in a CAMAC crate and controls the hardware modules situated in the

same crate. The software procedures written to execute the actions

requested by the application programmes on the hardware devices have been

called Control Modules. Control Modules as described in (2) are basically

object oriented pieces of code composed of (i) a frame that performs the

selection mechanism, data access and parameter checking, (ii) methods and,

(iii) data specific to the Control Module. Control Module is the name of a

general superclass including as subclasses Composite Variable Modules

(CVMs) for beam variable control, Equipment Modules (EMs) for remote

operations on equipment and Interface Modules (IMs) for remote hardware

modules access (3) .

The frame of the Control Module is invariant whereas methods and data

have to be supplied by the Control Module developer. A sizable amount of

different computers are involved in the process of software generation and

execution for the LEP preinjector control, as depicted in Fig. 1, due

mainly to compatibility requirements with the existing PS control system:

IBM supports the Oracle DBMS, Vaxes running Ultrix are used for cross

development, Norks Data minicomputers act as front end computers and

concentrators, MC68000 based SMACCs supervise the equipment control. This

configuration has required the creation of a development environment

separated from the execution environment. The development environment

supplies compilation, debug, test and maintenance facilities, whereas the

execution or target environment guarantees the compatibility with the

existing system and supplies real-time facilities.

During the development of the LEP preinɔeetor control system we were

faced with 4 kinds of problems with regard to Control Module development,

upgrading and maintenance

1) Create an homogeneous development environment from the point of

view of the developer,

2) maintain simultaneously different versions of the same frame to

allow in parallel regular maintenance and new developments,

3) keep track of the files constituting each executable code in the

microprocessors to easily rebuild the code in case of upgrading or

bug fixing,

4) maintain simultaneously (i) a test application frame to be used on

the development machine and (ii) the frame to be used in all

target SMACC processors.

This paper describes the solutions adopted to cope with these

requirements.

2. The Development Environment

The Unix operating system has been adopted as development environment

after the decision of implementing the LPI control system using the C

language. Generally speaking, the application programmers should be mainly

concerned with their problem at hand rather than with the specificity of

the development operating system and its utilities. On the other hand the

complex development environment such as the one used for the LEP

preinjector required a large amount of Unix facilities and a certain number

of dedicated procedures built with standard "bricks" of Unix (4].

This situation involves a certain mnemonic effort and is prone to

errors, particularly for the occasional user. Besides, no file naming

scheme can be enforced by using plain Unix commands. A consistent naming

scheme is very important for automated maintenance.

Thus it has been decided to hide the Unix shell command level from the

programmer and to build a menu driven facility including all the actions

required to develop and test control modules and to build microcomputer

images, i.e. the executable code to be loaded into the microprocessors. The

menu is reported in Figure 2. Options are present for editing files,

transferring from the IBM and compiling data tables, creating executable

code, starting debug and test sessions, loading test sequences, displaying

or printing manuals, choosing the frame version one wants to use in

building microprocessor core images. For source code maintenance the source

code control system sces (1) (5) has been adopted. Source files can be

edited directly from the Unix source code control system repository SCCS.

Test case sequences for covering all the code specific to a Control

Module can be designed and maintained with the code itself so that if later

modifications are executed the test sequences can be run in order to verify

the absence of side effects. An on-line help facility is available to give

information about each of the menu options.

For all the options in the menu the user has to supply at most a file

name and all the syntax of the shell level commands is hidden. Besides, the

menu acts as a filter and invalid answers are rejected. The occasional user

makes no effort in having to remember complex commands and a coherent

naming scheme for object code files, makefiles, debug files, has been

easily established. The naming scheme allows to maintain the whole control

system software through automated procedures of verification of the

existence in each directory of the required files and of their generation

5
date .

3. Maintaining the frame

The LEP preinjector control is composed of several instances of Control

Modules written in different time and by different people. Even if the goal

is to obtain a stable situation in which all the Control Modules loaded

into the microprocessors contain the same version of the frame code,

sometimes it happens that different versions coexist due to enhancements

applied to new applications. Homogeneity is re-established normally during

shutdowns by retrofitting last versions on old applications. Thus more than

one version of the frame target code has to be available during normal

operation.

In order to keep just one source of the code and to avoid including into

the code itself conditional compilation statements, a maintenance

environment has been set up. Figure 3 reports the user interface of the

maintenance environment. The maintenance environment is based on the source

code management system sccs(l) and a baselining facility written ad hoc.

The source code management system sccs(l) has the ability to keep an

indefinite number of versions of the same file and to retrieve any version

the user asks for. The baselining facility is able to record the versions

of each source file the frame is constituted of at a certain moment of

time. The collection of all the source files and their version number at a

certain time is called a baseline. By means of the information contained in

a baseline, any frame version can be restored at any moment by generating a

makefile containing for each source file the required version number. Any

baseline can be listed or printed; a list of all existing baselines can be

obtained too. Baselines can be deleted when no target microprocessor use it

any more. A baseline can be also edited when a bug has been detected and it

risks to affect the behaviour of all the frame versions present in the

target microprocessors. The version of the file in which the bug has been

found can be updated.

The version number of a file as generated by sccs(l) is composed of a

release number and the number of the version in the release. When a file is

updated the source code management system updates automatically the version

in the release. When the number of modifications is large enough to require

a drastic change to reference new versions, a change of release number can

be executed. The release number of all the source files is changed and the

version number in the release is set to 1. The baseline numbering scheme

roughly follows the release numbering scheme.

It is also possible to build frame versions from the most recent version

of all the files present in the source code management system repository

SCCS both for target and development environment. A help facility is

present also in this case to give details of each option in the menu. The

scope of the maintenance environment is the directory in which it is

loaded. Any directory can have this maintenance environment for maintaining

different versions of the same software product provided the scesili

facility is used. As a matter of fact, the environment has already been

used for maintaining code other than the frame of the control modules.

sces (1) forbids the access right to the files being edited on a user name

basis. Unfortunately, our access rights to software code are based on a

"per project* user name. Thus all programmers working on the frame code use

the same user name and no file access control could be set up.

4. Building Makefiles for Target Microprocessors

The Oracle data base contains all the information needed to create the

data structures and the list of method names associated with the properties

of each Control Module [2, 6]. It has been decided to add to this

operational data some maintenance information, too. Each method name

declared in the data base has associated to it the full name of the file

«
containing the corresponding code. Moreover, a special record in the data

base is allocated to keep the names and locations of all files containing

applications (normally real-time tasks or diagnostic tasks) to be included

into a given microprocessor image.

Building a makefile [3] to generate an image for a microprocessor is not

an easy task if one starts from scratch. Many files must always be present

even if they are not directly referenced by the application at hand, the

frame of the control module and its ancillary files have to be always

loaded. Moreover maintaining these makefiles when changing release of

general purpose files or frame related files can become very difficult. A

method to generate makefiles from a common stub and information contained

in the Oracle data base has been developed. The makefiles are built by

means of two stubs.

The first stub is common to all makefiles and contains the name of the

files to be always loaded into the microprocessors with their correct

release and version number and the commands for the linkage and image

generation phase. Moreover a backup repository for SMACC images has been

set up in the FECs to which the microprocessors are connected (6). This

stub provides the commands to send the generated images from the

development machine into the FEC repository. The second stub is dynamically

created through the information in the data base. When a new image is

built, first a procedure extracts from the data base the full names of all

the files containing code specific to the given microprocessor. Then this

stub is linked to the first one and the executable makefile is produced

and executed.

8

5. Maintaining source code for two different targets

The task of maintaining the source code for many different target

systems is more general than the scope of the LEP preinjector project.
f

However, for the sake of completeness of the maintenance issue, some

comments about the method used to cope with this problem are reported. As

far as possible, no conditional compilation was used: having the same code

in both environments guarantees better test conditions. When

incompatibility cases arose, a subset of the C language was chosen so that

the code would run on both machines. Instructions present in the language

that might have given problems when porting the code like "field" [7] were

banned. If one behaves carefully a very portable code can be produced. No

compromises with the speed issue had to be made and no extraordinary

manpower efforts had to be allocated. Plans for moving the present frame to

a VME environment have been already set in place. No sizable problems are

foreseen for this porting.

6. Future developments

The number of SMACCs in the LEP preinjector control system is rather

large and almost no SMACC contains exactly the same core image. Thus many

makefiles have to be created and maintained. A maintenance makefile will

enable to selectively execute the makefiles that will find the target

image out of date. Updating of this overall makefile will be made through

the information contained in the data base.

The possibility to access the Oracle data base from a remote job

through SQL-NET will allow to include data table generation into the

makefiles. The whole PS control system, including the LEP preinjector is

being upgraded by means of the inclusion of a network of workstations. The

availability of these powerful machines will allow to build a more

sophisticated CASE support. An extended investigation will be made in order

to evaluate the possibility to include the present development and

maintenance scheme into the new CASE tools.

7 . Conclusions

A maintenance environment for widely distributed executables produced

from the same source code was set up rather successfully hiding the plain

Unix commands under a layer of menu-driven facilities. The intrinsic

structure of the Unix operating system and C shell command language, with

the availability of a large amount of bricks with which building larger

utilities fitted quite well the design requirements of such an environment.

The menu driven facility for Control Module building can be considered as a

canvas for any application development environment because it basically

contains all the actions necessary to obtain a software product:

(i) write and maintain the data part of the software product,

(ii) create and maintain the code part of the software product,

(ii) debug and test the software product,

(iv] create the executables,

(v] document the software product,

(vi) help the user in navigating through the different option by means of

a context sensitive help facility.

The acceptance of the development environment by the programmers was

quite positive and the general remark is of an enhancement of reliability

and a reduced loss of time for occasional users. sccs(1) and baselining

were found very useful for the follow up of the modifications and the

upgrade of the frame code. Tests of new ideas could be performed safely

without the need of keeping multiple copies of the same file; wrong

10
modifications were easily discarded. The Control Module frame maintenance

environment is now the only method used to update the Control Module frame

code. This experience is a good encouragement to develop this approach of

software workbench which will integrate the new workstation tools.

Acknowledgements

The authors would like to thank Ana Paula Pereira for her helpful

participation in the early phase of this project and for the production of

the backbone of the development environment.

REFERENCES

[1] L. Casalegno et al., Distributed application software architecture

applied to the LEP preinjector controls, presented at the 7th IFAC

workshop on Distributed Control Systems. Mayschoss/Bad Neuenhar, Fed.

Rep. of Germany, September 30 - October 2, 19Θ6.

[2] L-Casalegno et al. , Building software modules for driving hardware

controlling physical variables: an object oriented approach, presented

at the First International Conference on Accelerators and Large

Experimental Physics Control Systems, Vilars sur Ollon, September 28 -

October 2, 1987, CERN/PS 87-81 (CO).

[3] L.Casalegno et al., Control Module Handbook, PS/CO/Note 88-007, 1988

[4] B.W.Kernighan, R.Pike, The UNIX Programming Environment, Prentice-Hall

Software Series,1984

11

[5] Eric Allman, An Introduction to the Source Code Control System,

Project Ingres, University of California at Berkeley.

(6] L.Casalegno et al, Process equipment data organisation in CERN PS

Controls, this conference

[7] B.W.Kernighan, D.Μ.Ritchie, The C programming language, Prentice Hall

Software Series, 1978

12

Figure Captions

Fig. 1 Computer network configuration

Fig. 2 Development environment user interface

Fig. 3 Frame maintenance environment user interface

