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Introduction

To achieve a better understanding of transverse collective effects observed in the Fermilab accelerators (Booster and MR), we propose in this paper two methods to measure the value of the transverse impedance.
These methods are not new (ɪ), the aim of the paper is to briefly recall the theory, provide some handy formulae, suggest experimental procedures and give some numerical examples.
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I ) Z1 MEASUREMENTS WITH UNBUNCHED BEAMS
1. A Reminder of the Basic TheoryThe beam-impedance interaction generates a complex shift ∆ωp of the betatron frequency ωp=(n÷Q)ωo given by Q ɜ)

A“ß = j 4π Qγ E0∕e ' Z^“ß + d“ß)
where: n = integer = 0, ±1, ±2,...Q = horizontal or vertical tune βc ω0 = angular revolution frequency = ~β = relativistic factorc = speed of lightR = machine radiusI = total beam currentγ = relativistic factorEo = rest energyZ1 = complex transverse impedance (in Ω / m)The imaginary part of Z1 : Im (Zι(ω)) yields a real frequency shift.The real part of Zj_: Re (Zj,(ω)) yields an imaginary frequency shift, resulting in an exponential growth of the solution e^ωβt (instability) if Re (Zj_(co))<0 or a damping (stability) if Re (Zj_)>O.As an example, Fig. 1 shows the mode spectrum for a machine with Q _ 4.25, together with the plot of the real part of the resistive wall impedanceRe (Zlrw) ɪsign(æ)ɪ^-^
when: R = machine radiusb = equivalent chamber radius p = vacuum chamber resistivity ɛŋ = free space permissivity
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Fig. 1: Transverse mode spectrum and real 
part of resistive wall impedanceAs already mentioned, only the lines "sampling" regions where (ReZ1) < 0 are potentially unstable. In our example, only the modes n=-5, -6, -7,...z i.e., the modes corresponding to I n I > Q and n < 0also named "slow-waves" are unstable.Remarks:a) In reality the spectrum of Fig. 1, when measured with a spectrum analyser shows upas shown on Fig. 2 (power spectrum)

Fig. 2: Mode power spectrum as measured with a spectrum analyser 
(with frequency spread the lines are widened)

b) The n=-5 mode is the most dangerous as it samples the largest value of (Re Z1) .c) For a narrow band resonator at ωr, only the modes where (n+Q) ωo ≡ æɪ will be excited.
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2. Landau DampingThe spectral lines (betatron sidebands) at CDβ have a width given by

where: ξ
dpδ<θβ = δ [(n+Q) ω0 ] = ( Q ξ- n η ) -ɪ ω0dQ/Q= chromaticity = dp/p

η dω∕ω= frequency slip factor = - jp/p = ʧ ^ ∣
yt = γ at transitiondp/p - relative momentum spread (FWHM)If the rise time τr [where l∕τr = - Im (dωβ)] of the instability is1 ∆ωβor in other words if the coherent frequency shift Im (dωβ) is smaller than the incoherent frequency spread Δ[(n+Q)ωθ] then the instability is Landau damped.In the approximation where no octupoles effects are present, the incoherent frequency spread is equal to zero (or very small) forQξ ηξ Qωπξthat is for ωfl = Qω^ (ɪ + 1) ≡ —a~ = ωβ 0 η η ithere will be no Landau damping and the mode closest to ωξ will be easily unstable. This effect can be useful to probe the transverse impedance over a large range of frequencies. The advantages of using a debunched beam is that the unstable modes emerge only at frequencies where Re (Zi) < 0. Using bunched beams, aliasing effects can produce ambiguities in the frequency location of the impedance.The frequency Q)ξ can be varied by changing the chromaticity value. This allows to probe regions of frequencies where Re (Zi) < 0.By measuring the instability rise time ɪr the value of Re (Zi) can be evaluated as

Re (Z1(ωβ)) 4πQγEo∕ecl τr
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3. Experimental Procedure3.1. Set the beam intensity to an average value.3.2. Debunch the beam by reducing the RF voltage to 0 and if possible successively on each cavity to minimise beam loading effects.3.3. Switch off octupoles, if any.3.4. Set the chromaticity to a given value.3.5. Check on the spectrum analyzer (connected to a wide band transverse pick-up) if any instability appears at ω = ωξ.... or elsewhere.If instabilities appear elsewhere reduce the beam intensity.3.6. If an instability appears close to (Dξ , measure the rise time by tuning the spectrumanalyser, in receiver mode, to the unstable mode. (N.B. : the rise time can easily be measured as the time interval between two points separated by 20 log e ≡ 9 db in amplitude).3.7. Repeat from 3.4. with another value of chromaticity.

Remarks : In practice, one can expect to probe three main frequency domains, respectively :I) 0 + 5MHz ∏) 5 ÷ 100 MHz HI) 100 ÷ 500 Mhz approx.In the first, low frequency domain, the resistive wall impedance should dominate. In the second, some transverse higher modes in RF cavities (or other resonators) can eventually be discovered. While in the third interval the vacuum chamber broad band impedance can be measured as2c / ^// ∖Re (zi(æ))ɪɪ- Re(—) D (ŋo ɪɪwhen Z// /n is the broadband longitudinal impedance of the vacuum chamber divided by n = ω∕ωo∙
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II ) Z1 MEASUREMENTS WITH BUNCHED BEAMS

1. A ReiTdnder of the Basic TheoryAs in the previous chapter the real frequency shift Re (∆ωβm) of the betatron frequency ωβm = (n+Q)ωo + mωs for a bunched beam is given by∖1 e c 1Re (∆ωβm) = - 4π Q E∕e4oτ ' (m+l) 'lm (Z±)where: h⅛ ɑz m
is the number of particles in the bunch, is the r.m.s. bunch length in s;is the mode of oscillation = 0, 1, 2,...ωsZi is the synchrotron angular frequency andis the transverse wideband impedance given, for simple roundstructures, by 2c ^// b2ω0 nand Im (Zj.) is assumed constant all over the spectrum of the oscillation mode at least for the lowest mode considered herein (m = 0). Such a simplification is generally valid for long (proton) bunches.Remark: An estimate of the Transverse Mode Coupling instability threshold isgiven by: Re (∆ωβo) ≡ ωs / 2

Fig. 3: Shape of the reactive and resistive part of Z// / n (or equiv. Zj_) versus 
frequency as well as the shape of the relative amplitude of varius 
transv. modes for a bunch above transition in a machine with ξ < 0.
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Measuring the frequency shift of the m = 0 mode as function of h⅛∕στ one can estimate the value of Im (zɪ).

2. Experimental Set-UpAs the expected frequency shifts are rather small (some hundred Hz or less, see for example the numerical example below) one has to adopt FFl techniques to improve the frequency resolution as well as shortening the measurement time. As the m = 0 mode is maximum at ω = ωξ, if ξ ≠ 0 the signal has to be down converted in order to be FFl analysed at low frequency. See Fig. 4.

LocalOscillator
Fig. 4: The signal from a wide band transverse pick-up is first down converted at 

21.4 MHz by using a swept-filter spectrum analyser tuned in receiver mode 
(zero span) to a ωβo ≡ ωξ. A second local oscillator set at f ≡ 21.4 MHz mixes 
the 21.4 IF output of the spectrum analyser down to low-frequency (some 
KHz) at the input of a FFT analyser (locking the local oscillator to the RF 
frequency can avoid the frequency shift due to the β variations, if any).

Beam excitation at tθβ0 as to be provided by powering, for example, a high frequency kicker with a sweeping sinewave synchronised to the measurement.
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Numerical example (Machine : Fermilab Booster):E = 8 GeV R = 75m Q = 6.8 β ≡ 1Nfc = 3.101° p/b 4στ = 10 ns b = 3 cm
this gives: Re(∆ωβo) ≡ 270. IO-6 Z1
guessing a Z// 2c ɪ//n ≡ 200 Ω then Z1= ^2ωθ n ξ ɜθ ^Ω∕ɪn
so Re (∆ωpo ) / 2π ≡ 1 KHzIn order to measure such a frequency shift with a resolution of ~ 10% (100 Hz) one needs a measurement time of -10 ms.

Numerical example No 2 (Machine : Fermilab MR):R = IOOOrn Q = 20 n = IO'2E = 8 GeV Nb = 101° ppb 4 σt = 10 ns b = 3 cmZn/n = 10 Ω
this gives:
if:
so:

Re (∆ωβo ) = 30.10-6 Im (Z1)2 c //z-= ⅜ ? =22 Mn/m
Re (∆ωpo ) / 2π ≡ 83 Hz
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