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ABSTRACT

A new simulation program has been made for linacs, applicable to heavy ion 
machines with independent long cavities (including the possibility of entering in the same 
bunch, ions of different charge state). This program applies also to superconducting 
multiceli cavities for electrons and, with the inclusion of space charge, will apply to 
proton linacs. Apart from the introduction of a matrix formalism, it follows the same 
approach as proposed in 1965 by one of the authors and used in standard codes like 
PARMILA and MAPRO. Its range of validity, however, has been extended to long 
accelerating elements where, instead of second order corrections, as suggested in 1986, 
other simpler averaging methods are used. In addition, for the transverse motion, the 
introduction of reduced canonical variables simplified the expressions and increased the 
accuracy. The precision over one accelerating element has been shown to be appreciably 
better than 1% with the help of a complementary step by step integration routine of 
Hamiltonian form, always accessible in the code.
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¿büiatt New Treatment for Transverse Motion

A new simulation program has been made for linacs, applicable to heavy 
ion machines with independent long cavities (including the possibility of 
entering in the same bunch, ions of different charge state). This program 
applies also to superconducting multiceli cavities for electrons and, with 
the inclusion of space charge, will apply to proton linacs. Apart from the 
introduction of a matrix formalism, it follows the same approach as pro
posed in 1965 by one of the authors and used in standard codes like 
PARMILA and MAPRO. Its range of validity, however, has been extended 
to long accelerating elements where, instead of second order corrections, as 
suggested in 1986(1] , other simpler averaging methods are used. In addi
tion, for the transverse motion, the introduction of reduced canonical vari
ables simplified the expressions and increased the accuracy. The precision 
over one accelerating element has been shown to be appreciably better than 
1 % with the help of a complementary step by step integration routine of 
Hamiltonian form, always accessible in the code.

Introduction

The derivation of beam dynamics equations commonly used now was 
presented in 1966[2][3] . It applies to symmetrical accelerating gaps and 
has been used for the design of Alvarez-type accelerators.

The field distribution in each gap, known usually from computation, is 
supposed to be expressed around its centre of symmetry in the form of a 
Fourier integral. Assuming straight trajectory and constant velocity and 
introducing a thin lens formalism, the changes in energy W, phase φ, 
radius r and slope r,, when crossing the median plane, are given by 
expressions where the field distribution only appears through the so-called 
transit lime coefficient T(k) with kɪɪ (angular frequency over longi
tudinal velocity) and its derivatives with respect to k. Energy, phase, radius 
and slope must however be the actual values at this median plane and they 
have to be computed through a second set of equations via iterations using 
the so-called S coefficients, which are to be treated with some care due to 
analytical discontinuities in the derivations [4]. Second order terms, taking 
into account the change in velocity across the gap, were roughly computed 
to obtain their order of magnitude, but were not used.

In 1986 the method was extended for the treatment of long and compli
cated independent structures (helix type) with no exact symmetry, to be 
used with various ions of quite different velocities [1]. The structures arc 
now characterized by their axial field distribution, given in the form of a 
set of Fourier coefficients, which can be used to compute the usual transit 
time coefficients. The treatment was modified using the input plane with a 
thin lens formalism (avoiding the difficulty mentioned concerning the S 
coefficients and avoiding the use of a median plane, no longer significant 
in the absence of symmetry). In order to increase the accuracy for long 
structures, second order terms were accurately computed in the form of a 
double scries of transit lime coefficients. Such second order terms, though 
complicated, gave very satisfactory results for the Iongimdinal motion 
(W,φ ). For the transverse motion the method lacked precision, for a reason 
not understood at that time, and was therefore discarded.

In 1988 an atiempt was made to use such a formalism for electron 
machines of the superconducting type with 5 cell cavities and accelerating 
gradients up to 10 MeV/m . For relativistic particles (more than 2 to 5 
McV injection energy), the formalism gave correct results for the longi
tudinal motion. Results for the transverse motion proved to be wrong, 
necessitating the development of a new formalism.
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One drawback of the above method in the transverse motion is that the 
variables r and r* are not canonically conjugate. After having computed a 
change in transverse momentum across an accelerating gap, the corre
sponding change in r, has to include an additional term due to the change 
in longitudinal velocity. The emittance in rr, is not constant: it has to be 
multiplied by βγ to become "normalized" and invariant

In the field of electrostatic electron optics Colle (5] makes use of a 
"reduced radius" R defined by the so-called Pitch transformation as :

* = '√β7 (1)

With such a variable, the equation :

∕n0cd(r'βγ) = -ψΛ<-^- + βc-^-5-)d/ (2)

becomes in the paraxial approximation, using Maxwell's equation :

<72d2R 

dz2
1 <7 5£:

(√-l)l∙5 2m0c3 δi (√-l)2 4(m0c2)2
E2 R = O (3)

The first of the two terms within brackets in equation (3) is in fact equal 
to the one generally used in the equation for r. The second term is nothing 
else than the electrostatic lens expression as given by Cotte and is of 
second order in field. It is always larger than any second order correction 
to the first term (see previous section) and in some cases it is even larger 
than the first term as such (see fig I and 2).

The most important remark to be made however, is that the form of eq 
(3) implies, according to Liouvil⅛'s theorem, that the c∏uttancc in RR , is 
an invariant as it has no R' term.

Fιg.l. Evolution of energy, R, r, and R, for the acceleration of Pb2i* 
through 3 gaps of a Quasi-Alvarez period. The phase of the particle con
sidered is at -20 deg from the crest One observes the difference between 
R' and r,. While r, is of a complicated form, the R' curve clearly shows the 
effect of the first term of eq 3, which is the prominent one here.



Fig.2. Same as fig 1 but for a 5 cell electron structure with an input energy 
of 1.5 MeV (6.5 MeV at the output). The phase is close to the crest In eq 
3 it is now the second term which is the largest; R' has a stepwise evolu
tion, essentially converging.

New Computer Codes

With eq (3) for the transverse motion, a new 'suite' of codes to replace 
PARMILA and similar type codes has been developed. Such codes are 
now applicable io a great variety of linacs from ion machines ( Quasi
Alvarez Stucture or independent long cavities ) to electron machines of the 
CEBAF type (5 superconducting cells). Integration of the equations of 
longitudinal and transverse motions over long structures where β may 
change by 5% (or more for shorter structures) and γ by a factor of up to 3 
or 4 requires, in order to get accurate results with the standard formalism, 
either additional higher order corrections or the use of some averaging pro
cedure. This last method has been chosen. For instance, the k ≡ — of the 
transit time factor is computed via iterations with a beta which corresponds 
to the velocity defined by input and output phases in the accelerating 
element In eq (3) the γ terms are taken as an average over the element, 
assuming a linear γ variation with z. Phase and radius are also corrected. 
Detailed derivations will be given in another paper in preparation.

A Complemaitary step by step integration routine of Hamiltonian form 
allows a check of the direct expressions as well for transverse as for longi
tudinal motions. Such expressions have been found to be satisfactory for 
several accelerating structures (see figs 3l 4, 5, 6 and 7). Nevertheless, 
calculations with this step by step integration routine take almost IOO times 
longer than the analytical procedure.

Fιg3. Comparison of the accurate step by step integration with the d.^ 
expressions used in the new codes, shown here for the acceleration of 
Pba ♦ through a Quasi-Alvarcz cell at around 024 MeV/nucleon (50 MeV 
kinetic energy). One can see the axial electric field distribution of the cell 
and the residual error in acceleration for phases in the range of -90 deg to 
+90 deg (at 200 MHz) around peak acceleration (here 3.4 MeV). The 
other two graphs show the evolution of the matrix coefficients T (T21 in 
mrd/mm, T12 in arbitrary units), used for the calculation of the reduced 
variables in the thin lens formalism (the circles correspond to the direct 
expressions, the crosses to the step by step integration).

Fig.4. Same as Cg 3, but for Ge*** through a βλ helix for a β corre
sponding to optimal acceleration (close to 10 MeV, frequency 135 MHz).



Fig.5. Same as fig 4, but at the edge of the velocity pass band (only U 
MeV peak acceleration). The shape of the helix is shown rather than the 
field distribution.

Fig.7. Same as fig 6, but for electrons injected at 2.5 MeV. Rather than 
the field distribution, the phase jump is shown (the phase variation across 
the cavity is around IOOO deg). The circles correspond to the direct 
expressions, the crosses to the step by step integration; the maximum dif
ference between these two is of the order of a few tens of a degree. The 
errors found at higher injection energies are even smaller.

Fig.6. Same as fig 3, but for electrons injected at 1.5 MeV into a 5 cell 
cavity (frequency 1500 MHz, 5 McV peak acceleration).

Conclusion

These codes, initially developed for the computation of a heavy ion 
booster at Saclay, and also installed and partially developed at CERN, now 
also include the possibilty of computing recirculating electron machines 
with the effect of synchrotron radiation in bending magnets [6]. At CERN, 
they form an integral part of a suite of programs for the design of a Quasi
Alvarez lead linac [7]. For present applications, space charge has not yet 
been included, but the logic used in the programs allows for such an addi
tion. An extension for the simulation of an RFQ could also be foreseen.
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