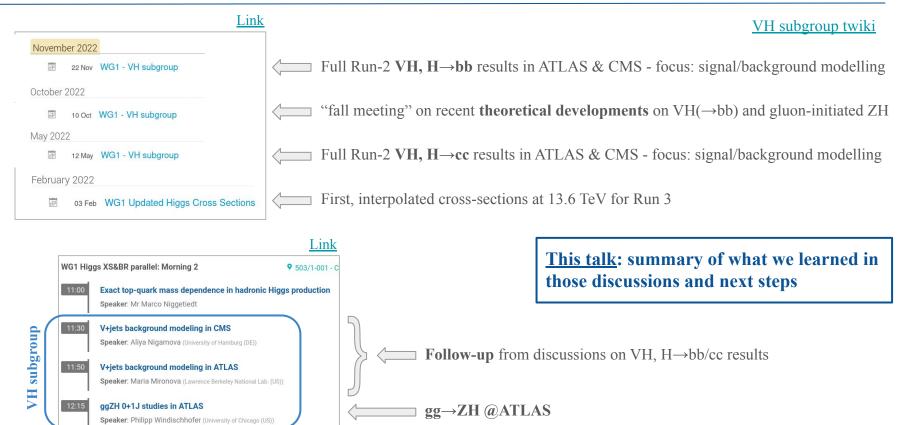
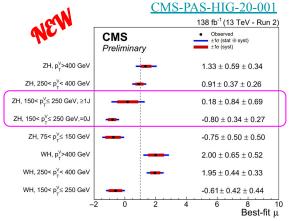
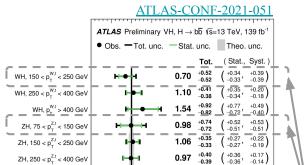
Update of the LHC Higgs WG 1 VH subgroup: experimental & theory status


H. Arnold (Nikhef), A. Calandri (ETH Zürich), G. Ferrera (Milan U.), C. Williams (Buffalo U.) on behalf of the LHC Higgs WG 1 VH subgroup

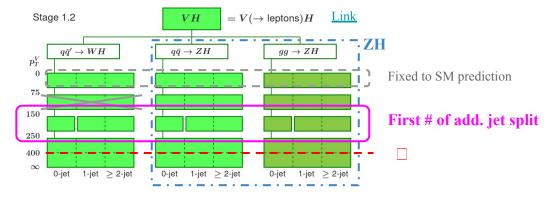
The 19th Workshop of the LHC Higgs Working Group

November 29, 2022


Overview of VH subgroup activities in 2022



Run-2 VH(\rightarrow bb) STXS results - state-of-the-art

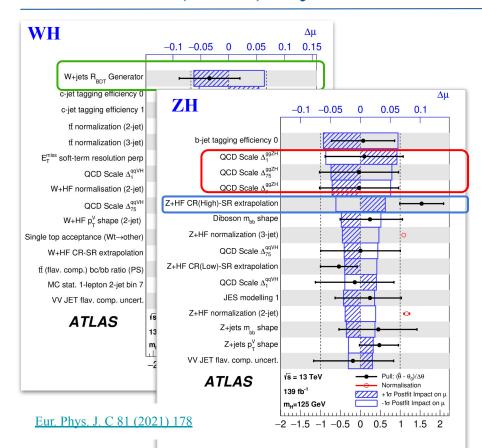


 $\sigma \times B$ normalised to SM

VH, H→bb allows the most granular STXS measurement in VH

- 4 (3) STXS ZH (WH) measurements in pTV
- First ZH STXS measurement in # of add. jet for 150 GeV < pTV < 250 GeV by CMS
- \geq 1 s.d. exp. sensitivity in each category

With increasing data samples, signal and background modelling becomes more challenging and more important


Signals are extracted in profile-likelihood fits with systematic uncertainties as nuisance parameters

(Modelling) systematic uncertainties start to become dominant

ZH, p_x^{Z,t} > 400 GeV

Run-2 VH(\rightarrow bb): systematic uncertainties

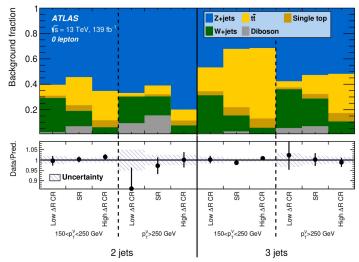
Theory/modelling uncertainties have a strong impact on the VH signal extraction, especially

- VH signal uncertainties
- V(W/Z)+heavy-flavour jets modelling (+ limited simulated sample sizes)

	VH CN	MS-PAS-HIG-20-001		
		Δμ	Ĺ	
	Background (theory)	+0.067 -0.064		
\prod	Signal (theory)	+0.082 -0.060		
T	MC stats.	+0.092 -0.093	Π	Dominated by
	Sim. modelling	+0.070 -0.066		V+jets
	b tagging	+0.059 -0.041		3
	Jet energy resolution	+0.045 -0.057		
	Luminosity	+0.041 - 0.034		
	Jet energy scale	+0.029 -0.036		
	LeptonID	+0.016 -0.002		
	Trigger(MET)	+0.001 -0.001		

Run-2 VH(\rightarrow bb): V+jets modelling

V(W/Z)+heavy-flavour jets main, irreducible background


Modelling strategy:

- Initial estimates from **simulations**
- Determine **normalisations** of V+hf-jets components in final fit from data with the help of dedicated **control regions**
 - o low/high dR(bb) or m(bb) regions
- Assign **uncertainties** on the estimates from simulation

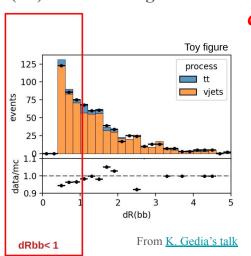
General strategy very *similar* in ATLAS/CMS, details *quite different*

⇒ currently comparisons are not straightforward

Eur. Phys. J. C 81 (2021) 178

V+jets modelling: simulated samples

ATLAS

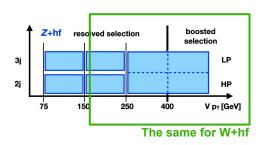

- Sherpa 2.2.1 5FS (0-2 jet @NLO, 3-4 jet @LO)
- XSec: reweighted to NNLO in QCD
- Outlook:
 - Nom.: Sherpa 2.2.11 5FS (0-2 jet @NLO, 3-5 jet @LO) (& 4FS V+bb) incl. NLO EWK corr.
 - Alt.: MadGraph5_aMC@NLO at NLO w\ FxFx merging

CMS

- **2016:** MadGraph5_aMC@NLO **at LO** w\ MLM matching + *reweighting* to NLO in dEta(bb) (from simulation)
- **2017**/ MadGraph5_aMC@NLO **at NLO** w\ FxFx merging **2018** + *reweighting* of dR(bb) using control-region data
- XSec: reweighted to NNLO in QCD & NLO EWK in pTV

⇒ Can we agree on at least one common sample for better comparability in the future? Prepare document a la `ttbar+hf modelling for ttH` [PUB note]?

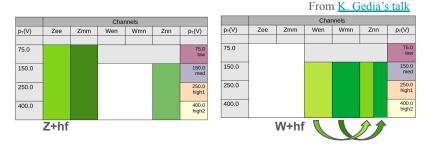
dR(bb) mismodelling & correction



- Mismodelling jet-flavour agnostic → correction from V+light-jet control region
 - o per lepton channel and reco pTV bin
- Associated systematic unc.

Run-2 VH(\rightarrow bb): V+jets floating normalisations

ATLAS


- Individual normalisations per region determined from data where possible (pTV, # of jets)
- **Coherent between channels:** 0/2L (Z) and 0/1L (W)

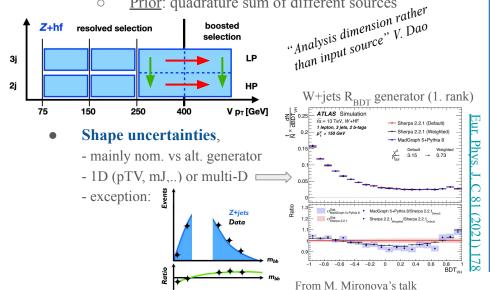
ATLAS-CONF-2021-051

Process and category	Normalisation factor
$W + \text{hf 2-jet}, 150 \text{GeV} < p_{\text{T}}^{V} < 250 \text{GeV}$	1.11 ± 0.12
$W + \text{hf 3-jet}, 150 \text{GeV} < p_{\text{T}}^{V} < 250 \text{GeV}$	1.16 ± 0.10
W +hf $p_{\mathrm{T}}^{V} > 250\mathrm{GeV}$	1.10 ± 0.10
Z +hf 2-jet, 75 GeV $< p_{\rm T}^{V} < 150 {\rm GeV}$	1.28 ± 0.08
$Z + \text{hf 3-jet}, 75 \text{ GeV} < p_{\text{T}}^{V} < 150 \text{GeV}$	1.17 ± 0.05
$Z + \text{hf 2-jet}, 150 \text{ GeV} < p_{\text{T}}^{V} < 250 \text{ GeV}$	1.19 ± 0.07
Z +hf 3-jet, 150 GeV $< p_{\rm T}^{V} < 250{\rm GeV}$	1.11 ± 0.05
Z +hf $p_{\mathrm{T}}^{V} > 250\mathrm{GeV}$	1.07 ± 0.05

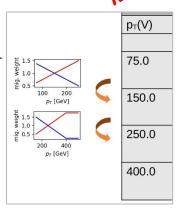
10-20% differences between Sherpa prediction and data

CMS

- Individual normalisations per lepton flavour and year
 - \circ Z: 0L, 2L ee- and 2L $\mu\mu$ -channels
 - W: 1L *e* and 1L μ -channels
 - Avg. applied to 0L channel
 - The different data taking years
- Correlated across pTV and # of jets categories


 \Rightarrow Can we harmonise the strategies?

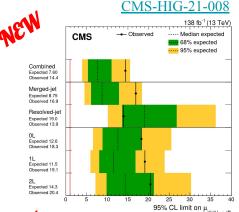
V+jets modelling: systematic uncertainties


ATLAS

- **Sources:** PDF and renormalisation/factorisation scale variations, **alternative generator** (MG5 aMC@NLO at LO+Pythia8)
- **Acceptance / extrapolation unc.** between analysis regions with common norms.: **pTV**, # of jets, $CR \rightarrow SR$, $1/2L \rightarrow 0L$ for W/Z+jets, flavour composition,...
 - <u>Prior</u>: quadrature sum of different sources

CMS

- **Sources:** PDF; renorm./fact. scale variations
 - ⇒ Correlated *normalisation* + *shape* effects across all analysis regions
- Add. acceptance unc. across some **pTV** categories
 - Flat, ad hoc prior unc. –
- Add. shape uncs. from
 - dEta(bb) reweighting
 - dR(bb) correction



From K. Gedia's talk

 \Rightarrow Can we harmonise?

Intermezzo: Run-2 VH(\rightarrow cc)

Strongest limit on VH, H→cc production to date

- Result dominated by merged-jet category
- Result statistically limited

V+jets modelling approach/issues/... similar to VH(bb) (in resolved regime)

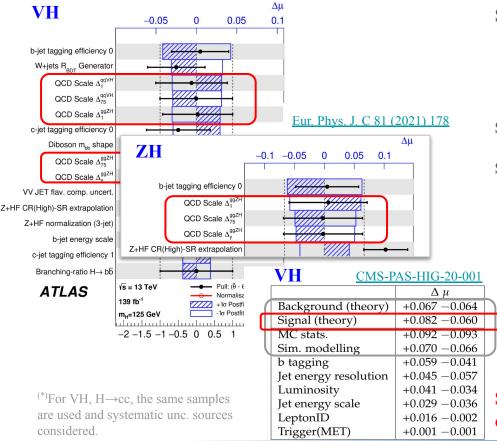
More difficult because of diverse flavour composition

. 41		,	VH(H → cc)
AA	Eur. Phys. J.	C 82 (2022)	717
4.5	, , , , , , , , , , , , , , , , , , ,		1111
3	ATLAS	···· Expected	3
₹ , 4	√s = 13 TeV, 139 fb ⁻¹	Observed	3
- In(L (Ke/K _b / L (Ke/K _b) 3.5	VH, H → bb̄/cc̄	$ \kappa_{c} y_{c} = \kappa_{b} y_{b} $	-
<u>=</u>	E		1
' 3	3		1//
0.5	.		1//1
2.5	PF		<i> </i>
2	95% CL		
	<u> </u>		// 1
1.5	5 -		/// =
	. 1\		// 1
	'E \\\	/	// 3
0.5	68% CL 🚶	/	/ 1
0.0	1		
(وتنساسيسيار	and the second of the second	LL X
	′–8 –6 –4 –2	2 0 2	4 6 κ_c
			N _C

Combination with VH, H→bb analysis

⇒ experimental confirmation that Higgs-charm coupling is weaker than Higgs-bottom coupling

• Statistical and systematic unc. of similar sizes


Value at which Higgs coupling to b- and c-quarks is equal (m_b/m_c)

Uncertainty source	$\Delta u / (\Delta u)_{}$
Statistical	85%
Background normalizations	37%
Experimental	48%
Sizes of the simulated samples	37%
c jet identification efficiencies	23%
Jet energy scale and resolution	15%
Simulation modeling	11%
Integrated luminosity	6%
Lepton identification efficiencies	4%
Theory	22%
Backgrounds	17%
Signal	15%

Source of uncertainty		$\mu_{VH(c\bar{c})}$	$\mu_{VW(cq)}$	$\mu_{VZ(c\bar{c})}$	
Total Statistical		15.3 10.0	0.24	0.48	
Systematic		11.5	0.11	0.32	
		11.3	0.21	0.50	
Statistical uncertainties					
Signal normalisation		7.8	0.05	0.23	
Other normalisations		5.1	0.09	0.22	
Theoretical and modelling	ng uncertainties				
$VH(\rightarrow c\bar{c})$		2.1	< 0.01	0.01	
Z + jets		7.0	0.05	0.17	
Top quark	Daminan41	3.9	0.13	0.09	
W+jets	Dominant!	3.0	0.05	0.11	
Diboson		1.0	0.09	0.12	
$VH(\rightarrow b\bar{b})$		0.8	< 0.01	0.01	
Multi-jet		1.0	0.03	0.02	
Simulation samples size	9	4.2	0.09	0.13	
Experimental uncertainties					
Jets		2.8	0.06	0.13	
Leptons		0.5	0.01	0.01	
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.2	0.01	0.01	
Pile-up and luminosity		0.3	0.01	0.01	
	c-jets	1.6	0.05	0.16	
E1	b-jets	1.1	0.01	0.03	
Flavour tagging	light-jets	0.4	0.01	0.06	
	τ-jets	0.3	0.01	0.04	
T-4 0	ΔR correction	3.3	0.03	0.10	
Truth-flavour tagging	Residual non-closure	1.7	0.03	0.10	

Run-2 VH $(\rightarrow bb)^{(*)}$: signal modelling

Signal samples

- qq → VH: Powheg v2 + MiNLO + Pythia8 (NLO)
 + NLO EWK corr. as function of pTV (HAWK)
- $gg \rightarrow ZH$: Powheg v2 + Pythia8 (LO)

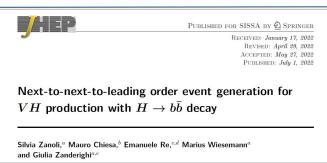
STXS uncertainty scheme following ATL-PHYS-PUB-2018-035

Sources:

Eur. Phys. J. C 81 (2021) 178

	Signal
Cross-section (scale)	0.7%~(qq),25%~(gg)
$H \to b\bar{b}$ branching fraction	1.7%
Scale variations in STXS bins	$3.0\% - 3.9\% \ (qq \rightarrow WH), 6.7\% - 12\% \ (qq \rightarrow ZH), 37\% - 100\% \ (gq \rightarrow ZH)$
PS/UE variations in STXS bins	$1\%-5\%$ for $qq \to VH$, $5\%-20\%$ for $gg \to ZH$
PDF+ $\alpha_{\rm S}$ variations in STXS bins	$1.8\% - 2.2\% \; (qq o WH), \; 1.4\% - 1.7\% \; (qq o ZH), \; 2.9\% - 3.3\% \; (gg o ZH)$
m_{bb} from scale variations	M+S $(qq \rightarrow VH, gg \rightarrow ZH)$
m_{bb} from PS/UE variations	M+S
m_{bb} from PDF+ $\alpha_{\rm S}$ variations	M+S
p_{T}^{V} from NLO EW correction	M+S

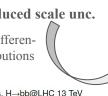
ATLAS only


- Pythia8 tune unc.
- Alternative parton shower (Herwig7)

Significant impact of (gg \rightarrow ZH) signal acceptance unc. on VH (ZH) measurement

H Arnold

Recent theory development: qq→VH



Cross-section predictions

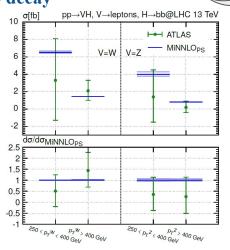
- Inclusive XSec in good agreement with the NNLO predictions from vh@nnlo
- Relative to MiNLO':
 - 5-6% upward corrections
 - Significantly reduced scale unc.

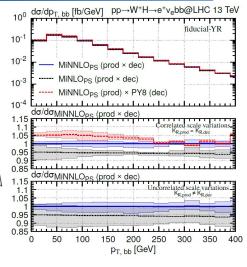
Also in differential distributions

NNLO+PS accuracy for VH production and H→bb decay

• For qq→WH achieved for the first time!

Approach:

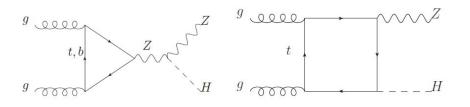

- MiNNLO_{PS} in production
- NNLOPS in decay
- Shower (Pythia8) consistently matched


MiNNLO_{PS} evaluates NNLO corrections on-the-fly

NNLOPS = MiNLO' + fully differential reweighting to NNLO

⇒ MiNNLO_{PS} avoids computationally intense reweighting

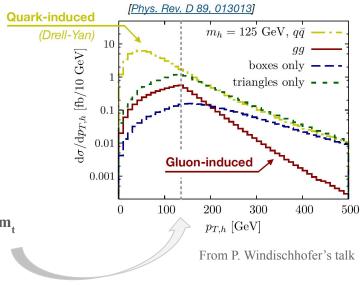
NNLOPS predictions valid ⇒ validation


some accidental cancellations in the scale variations

Good agreement with data

⇒ Test in ATLAS and CMS

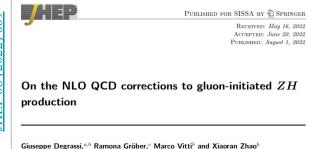
Why is $gg \rightarrow ZH$ important?



@LO: one loop diagrams - NNLO correction to $qq \rightarrow ZH$

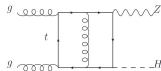
- ⇒ loop suppression vs large gluon luminosity
- ⇒ contributes ~6% to the total cross section; significant around pTH ~ m.
 - Only LO included in MC (see before)

 ⇒ large scale variations: ~25%
 - NLO corrections expected to be large


(*)Together with

Recent theory developments: $gg \rightarrow ZH$ (1)

PLB 829 (2022) 137087 "small-mass expansion"



Full NLO results(*) - different strategies of merging existing approaches to address NLO virtual corrections,

in particular, two-loop boxes with multiple scales $(m_t, m_H, m_Z,...)$ \Leftarrow cannot be computed analytically with current loop techniques

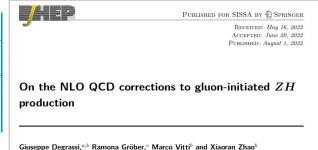
"pT expansion" - expansion of small transverse momentum of final state particles (first applied to $gg \to HH$)

"Numerical evaluation" using sector decomposition

+ real emissions: RECOLA2 / MadGraph5 Analytic approximation:

"high-energy (and large m_t) expansion"
supplemented with Padé approximants

+ real emissions: GoSam + in-house C++ code


(*)Together with

Recent theory developments: $gg \rightarrow ZH$ (2)

PLB 829 (2022) 137087 "small-mass expansion"

JHEP 08 (2022) 009

AEP	Published for SISSA by 🙋 Springer
	Received: April 29, 2022
1	Accepted: June 22, 2022
ZH product	Published: August 3, 2022
ZH product	ion in gluon fusion at NLO in QCD

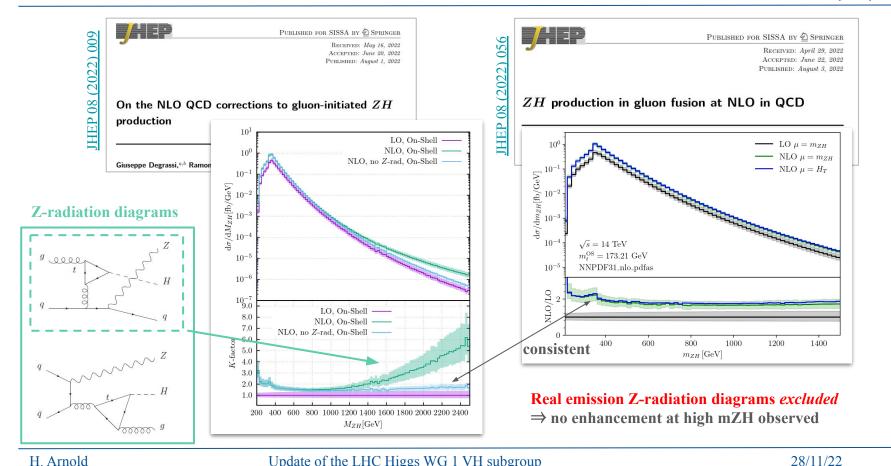
Inclusive cross section results

	Top-mass scheme	LO [fb]	$\sigma_{LO}/\sigma_{LO}^{OS}$	NLO [fb]	$\sigma_{NLO}/\sigma_{NLO}^{OS}$	$K = \sigma_{NLO}/\sigma_{LO}$
۲	On-Shell	$64.01^{+27.2\%}_{-20.3\%}$	_	$118.6^{+16.7\%}_{-14.1\%}$	_	1.85
_	$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/4$	$59.40^{+27.1\%}_{-20.2\%}$	0.928	$113.3^{+17.4\%}_{-14.5\%}$	0.955	1.91
	$\overline{\mathrm{MS}}, \mu_t = m_t^{\overline{\mathrm{MS}}}(m_t^{\overline{\mathrm{MS}}})$	$57.95^{+26.9\%}_{-20.1\%}$	0.905	$111.7^{+17.7\%}_{-14.6\%}$	0.942	1.93
	$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/2$	$54.22^{+26.8\%}_{-20.0\%}$	0.847	$107.9^{+18.4\%}_{-15.0\%}$	0.910	1.99
	$\overline{\mathrm{MS}}, \mu_t = M_{ZH}$	$49.23^{+26.6\%}_{-19.9\%}$	0.769	$103.3^{+19.6\%}_{-15.6\%}$	0.871	2.10

$$\mu_{\rm R} = \mu_{\rm F} = M_{
m ZH}/2$$

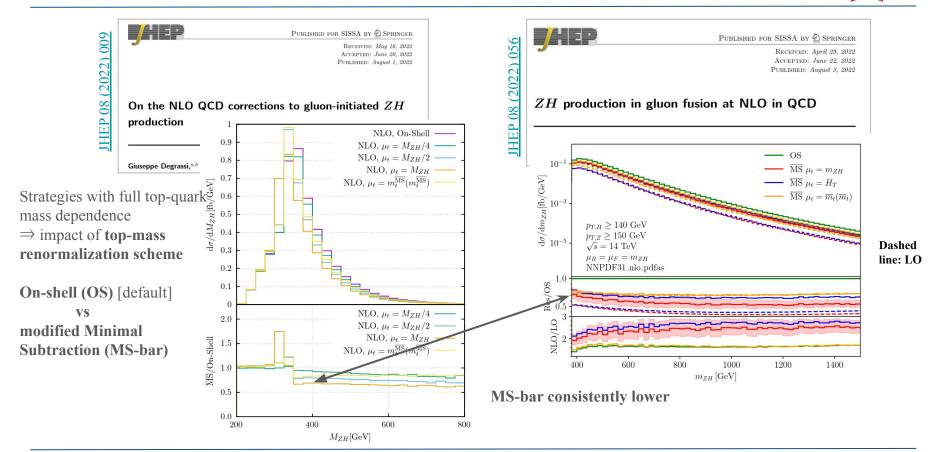
- NLO corrections: ~ x2 LO contribution
- Scale unc. significantly reduced: ~-30-40%

\sqrt{s}	LO [fb]	NLO [fb]
13 TeV	$52.42^{+25.5\%}_{-19.3\%}$	$103.8(3)_{-13.9\%}^{+16.4\%}$
$13.6\mathrm{TeV}$	$58.06^{+25.1\%}_{-19.0\%}$	$114.7(3)_{-13.7\%}^{+16.2\%}$
$14\mathrm{TeV}$	$61.96^{+24.9\%}_{-18.9\%}$	$122.2(3)_{-13.6\%}^{+16.1\%}$

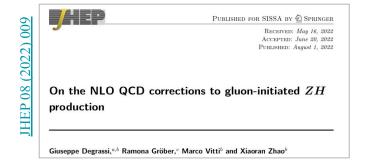

$$\mu_{\rm R} = \mu_{\rm F} = M_{\rm ZH}$$

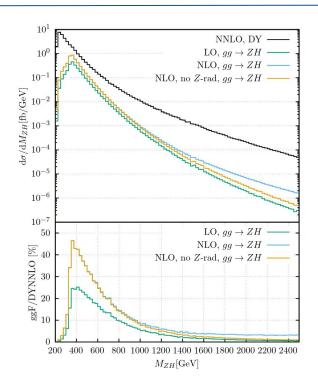
XSec currently used by ATLAS&CMS are close (NLO corrections obtained in the $m_t \rightarrow \infty$ limit + soft-gluon effects at NLL)

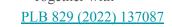
Recent theory developments: $gg \rightarrow ZH$ (3)



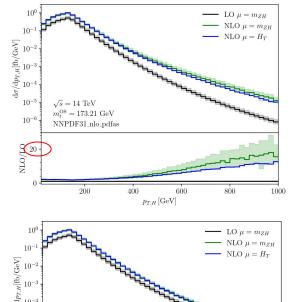
"small-mass expansion"

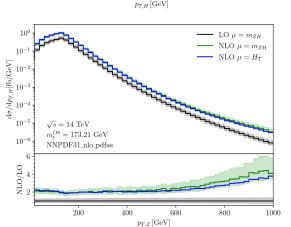



Recent theory developments: $gg \rightarrow ZH$ (4)



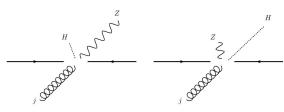
Recent theory developments: $gg \rightarrow ZH$ (5)


gg \rightarrow ZH almost 50% of Drell-Yan qq \rightarrow ZH near 2 m_t



"small-mass expansion"

PUBLISHED FOR SISSA BY ☑ SPRINGER


RECEIVED: April 29, 2022

ACCEPTED: June 22, 2022

PUBLISHED: August 3, 2022

ZH production in gluon fusion at NLO in QCD

Long Chen, a,i Joshua Davies, Gudrun Heinrich, Stephen P. Jones, Matthias Kerner, c,e Go Mishima, J Johannes Schlenk and Matthias Steinhauserh

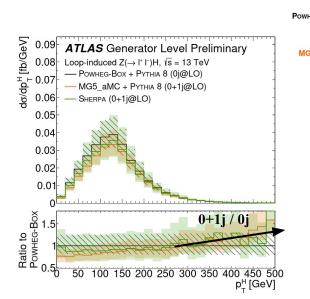
Large enhancement at high pT

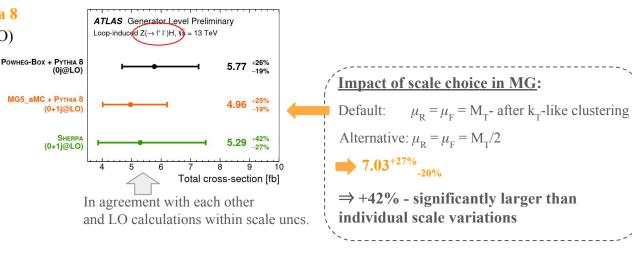

- Higgs recoiling against a hard jet more likely
- Effect reduced by pT cuts $p_{T,H} \ge 140 \text{ GeV}$ $p_{T,Z} \ge 150 \text{ GeV}$

Observed before in JHEP06 (2015) 065 and Les Houches study (arXiv:2003.01700) [0+1j@LO]

PLB 829 (2022) 137087 "small-mass expansion"

JHEP 08 (2022) 009


 \Rightarrow Next step: unified prediction with the same diagrams included and setups used - thanks a lot!


Comparison of two ME+PS predictions of **loop-induced ZH with up to one additional jet (0+1j@LO)**:

- Sherpa
- MadGraph5 aMC@NLO+Pythia 8

to current default Powheg+Pythia8 (0j@LO)

Similar **enhancement at high pTH** as seen by M. Kerner et. al. and Les Houches study

Uncertainty from scale variations significantly larger for Sherpa than MG5 aMC and PP8 (~40% vs ~25%)

- **⇒** Overestimated/underestimated?
- **⇒** Understand scale-choice dependence
- ⇒ Replace PP8 with MG5 aMC (also in CMS?)

H Arnold

Summary

- Several fruitful meetings over the past year related to
 - Signal and background modelling in full-Run 2 VH(→bb/cc) analyses
 - Recent theory developments regarding signal predictions, in particular loop-induced ZH
- (Modelling) systematic uncertainties start to become dominant source of uncertainty in some STXS bins

 ⇒ important to keep improving both on theory and experimental side (e.g. how theory developments used in analyses)
- Better understanding of the (different) modelling approaches in ATLAS and CMS VH(bb/cc) analyses
 - Summary for essential V+jets background modelling yesterday
 - Plan to follow-up further and try to harmonise: agree on at least one common sample, document comparison,...
- NNLO+PS accuracy for ZH/WH production and H \rightarrow bb decay via MiNNLO_{PS} \Rightarrow Follow-up in ATLAS/CMS
- Three independent full NLO gg \rightarrow ZH calculations \Rightarrow next step: unified predictions
- Step towards improved gg →ZH modelling in ATLAS: 0+1j@LO samples
 - o ToDo: understand scale-choice dependence of MadGraph5 aMC@NLO+Pythia8
 - Adopt as new default sample?