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We bootstrap the symbol of the maximal-helicity-violating four-particle form factor for the chiral
part of the stress-tensor supermultiplet in planar N = 4 super-Yang-Mills theory at two loops.
When minimally normalized, this symbol involves only 34 letters and obeys the extended Steinmann
relations in all partially-overlapping three-particle momentum channels. In addition, the remainder
function for this form factor exhibits an antipodal self-duality: It is invariant under the combined
operation of the antipodal map defined on multiple polylogarithms—which reverses the order of the
symbol letters—and a simple kinematic map. This self-duality holds on a four-dimensional parity-
preserving kinematic hypersurface. It implies the antipodal duality recently noticed between the
three-particle form factor and the six-particle amplitude in this theory.

Introduction

Symmetries play a central role in modern formulations
of fundamental physics, where they reflect simple facts
about the world such as conservation laws and how dif-
ferent types of particles interact. However, sometimes
new symmetries emerge in our theories whose physical
implications are not immediately clear. These discoveries
often lead to the development of more powerful mathe-
matical techniques for making predictions, and have the
potential to guide us to new physical principles.

The planar limit of N = 4 super-Yang-Mills (SYM)
theory has proven to be an especially rewarding place
to look for (and exploit) novel symmetries in particle
physics. Most famously, scattering amplitudes and form
factors in this theory are dual to Wilson loops with
lightlike edges [1–13] and as such respect a dual con-
formal symmetry [1, 14–17]. These quantities also ex-
hibit interesting number-theoretic symmetries [18], as
well as intriguing connections to cluster algebras, trop-
ical fans, and positive geometries [19–43]. While most
of these special properties do not directly generalize to
non-supersymmetric theories, their study has still led to
significant improvements in our understanding of more
general classes of amplitudes, form factors, and Feynman
integrals (see for instance [36, 44–50]).

Much of this recent progress has been fueled by the
in-depth study of amplitudes that evaluate to multiple
polylogarithms (MPLs) [51–56], which are endowed with
a Hopf algebra structure [57–62]. In particular, one part
of the Hopf algebra of MPLs—the symbol map—greatly
simplifies the study of what sequences of discontinuities
appear in polylogarithmic functions. This fact has been
leveraged to bootstrap certain amplitudes and form fac-
tors in planar N = 4 SYM theory to extremely high loop
orders [27, 45, 63–74].

In an unexpected recent development, these bootstrap
results have revealed a mysterious new duality between
the maximally-helicity-violating (MHV) six-particle am-
plitude in parity-preserving kinematics, and the MHV
three-particle form factor that involves a single inser-
tion of the chiral stress tensor multiplet, which in-
cludes the Bogomol’nyi-Prasad-Sommerfield (BPS) op-
erator tr(ϕ2) [75]. Namely, these two quantities are re-
lated to each other by a map that appears in the Hopf
algebra structure of MPLs: the antipode map. At the
level of the symbol, the antipode map simply reverses
the order of discontinuities in MPLs. Thus, this duality
can be loosely understood as the observation that the
three-particle form factor and the MHV six-particle am-
plitude (in parity-preserving kinematics) encode exactly
the same sequences of discontinuities, but in the opposite
order—after a suitable map between the kinematic vari-
ables that describe the two processes. At the moment, no
physical argument is known for why this duality should
hold, but it has been checked explicitly through at least
seven loops [74–76]. Interestingly, two-loop MHV ampli-
tudes have also been shown to exhibit a different type of
antipodal symmetry in parity-even kinematics, which is
conjectured to hold to all particle multiplicity [77].
In this paper, we describe a more general antipodal du-

ality, which applies to four-particle form factors. Namely,
the four-particle form factor is self-dual under the action
of the antipode in a four-dimensional subspace of its kine-
matics. In fact, as we will show below, this new duality
implies the duality between the three-particle form factor
and the six-particle amplitude. The reason is that these
quantities appear in the double and triple collinear limits
of the four-particle form factor.
In order to substantiate this claim, we first boot-

strap the symbol of the four-particle form factor at two
loops. We do this by identifying the letters that appear
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in the Feynman integrals contributing to this form fac-
tor [48, 78–80]. We then construct the space of inte-
grable symbols for these letters. Amazingly, the form
factor is uniquely identified in this space by just the
first-entry condition, invariance under a standard set of
discrete symmetries, and the strict (leading-power) dou-
ble collinear limits. (This rigidity is reminiscent of the
seven-particle amplitude, whose three-loop MHV sym-
bol could be bootstrapped with only mild collinear in-
formation [81].) Three other limits—triple-collinear lim-
its, the recently-computed limit of light-like operator mo-
menta [82], and the near-collinear limit—serve as cross-
checks on our result.

Multiple normalizations are needed to expose the dif-
ferent properties of this four-particle form factor. In
one normalization, the symbol of the form factor obeys
the extended Steinmann relations (defined below) in all
partially-overlapping three-particle momentum channels.
In another normalization, this form factor is antipodally
self-dual. We describe these normalizations, as well as
the self-duality map, in more detail below. We pro-
vide the symbol in both normalizations in ancillary files,
which also describe its various discrete symmetries and
kinematic limits.

The Bootstrap

We begin our bootstrap by removing the infrared diver-
gences and the MHV tree-level prefactor from the four-
particle MHV form factor [83] FMHV

4 ,

FMHV
4 = Fmin

4 × F4 , (1)

where

Fmin
4 = FMHV, tree

4 × exp

[
−g2

ϵ2

4∑
i=1

(
µ2

−si,i+1

)ϵ]
. (2)

Here, the ’t Hooft coupling is g2 = Ncg
2
YM/(16π2). We

have omitted contributions proportional to transcenden-
tal constants, because they vanish at the level of the sym-
bol at which we are working. Our main objective is to
calculate F4, which depends on eight dimensionless ra-
tios:

ui =
(pi + pi+1)

2

q2
, vi =

(pi + pi+1 + pi+2)
2

q2
, (3)

where i = 1, 2, 3, 4 and q =
∑4

i=1 pi is the (generically off-
shell) momentum of the operator insertion. All indices
should be understood to be mod 4. Due to momentum
conservation and the masslessness of the four particles,
p2i = 0, these variables satisfy three constraints:

−u1 + u3 + v4 + v1 = 1 , (4)

−u2 + u4 + v1 + v2 = 1 , (5)

−u3 + u1 + v2 + v3 = 1 . (6)

Correspondingly, the four-particle form factor depends
on five independent variables.
When expanded perturbatively in the coupling,

F4 = 1 +

∞∑
L=1

g2LF
(L)
4 , (7)

the L-loop contribution F
(L)
4 is expected to be express-

ible as a linear combination of MPLs of weight 2L with
rational coefficients. The symbol of an MPL can be de-
fined iteratively by its total differential [58]:

dG =
∑
x∈L

Gx d lnx ⇒ S(G) =
∑
x∈L

S(Gx )⊗ x , (8)

where Gx are MPLs of one lower weight. The d ln ar-
guments x are referred to as symbol letters, while the
total multiplicative span of the letters appearing in an
MPL is referred to as its symbol alphabet, L. For more
background on MPLs and the symbol map, see for in-
stance [84].

The symbol of the one-loop form factor is [7]

S
(
F

(1)
4

)
= 2 v1 ⊗ (1− v1) +

u1

u2u4
⊗ u1

+
u1

v4v1
⊗ u1 − v4v1

u1
+ cyclic, (9)

where the cyclic transformation maps ui → ui+1 and
vi → vi+1. We recall that the two-loop remainder func-
tion is related to the form factor itself by

R
(2)
4 = F

(2)
4 − 1

2

[
F

(1)
4

]2
, (10)

and R
(2)
4 has smooth behavior in factorization limits [9,

63, 65].

In order to bootstrap F
(2)
4 or R

(2)
4 , we first assemble

the alphabet of symbol letters that can appear in the
four-particle form factor. Since the Feynman integrals
that contribute to this form factor are all known [48, 78,
79], this can be done easily.1 Altogether, the relevant
Feynman integrals depend on 113 independent letters.
Five different square roots appear in this alphabet, one
of which involves the dihedrally-invariant argument

tr5 = 4iϵαβγδp
α
1 p

β
2p

γ
3p

δ
4 , (11)

and four of which are organized into pairs of two-orbits
under the action of the dihedral group.2 The dihedral

1 While the nonplanar double pentagon Feynman integrals that
contribute to this form factor have not yet been published [79],
they do not give rise to letters beyond those that appear in the
planar pentabox and nonplanar hexabox topologies [80].

2 In the notation of [48], these four additional roots correspond
to two orientations of ∆3 and two orientations of Σ5. Further
orientations of these roots do not appear because they correspond
to different planar orderings.
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group D4 is generated by the order-four cyclic transfor-
mation and a flip transformation, for example u1 ↔ u4,
u2 ↔ u3, v1 ↔ v3. Spacetime parity acts by flipping the
sign in front of tr5, while leaving the sign in front of the
other square roots intact.

We next construct the space of integrable weight-four
symbols that draws upon this alphabet. We are only
interested in symbols that have the correct branch cuts
(satisfy the first-entry condition [85]), which in this con-
text states that only the 8 letters {ui, vi} can occur in the
first entry. We also impose invariance under the dihedral
symmetry group D4. There are 522 independent symbols
si satisfying these conditions, which we use to formulate
our initial ansatz for the symbol of the remainder func-

tion R
(2)
4 :

S
(
R

(2)
4

)
=

522∑
i=1

cisi , (12)

where the ci are undetermined rational coefficients.
To fix the values of the coefficients in (12), we first re-

quire that our ansatz is even under all elements of the al-
gebraic Galois group, which flip the signs in front of each
of the 5 square roots separately. (Note that the square-
root signs are arbitrary conventions, on which the ampli-
tude cannot depend. Note also that one of the elements
is parity.) This imposes 148 independent conditions on
the coefficients in our ansatz. Next, we require that our

ansatz for R
(2)
4 reduces to the three-particle form-factor

remainder R
(2)
3 [65] when two of the external particles

become collinear. In this limit, the 113-letter alphabet
involves 25 spurious letters, in addition to the 6 letters
describing the three-particle form factor F3. Matching
our ansatz onto the correct expression completely fixes
the remaining 374 coefficients, and thus uniquely deter-
mines the symbol of R

(2)
4 , or equivalently of F

(2)
4 . The

sparse systems of linear equations that encode these con-
straints can be solved efficiently over finite fields using
the SpaSM software library [86]. The numbers of free
parameters at each stage in the calculation are collected
in Table I.

Although we started with an initial ansatz of over one

hundred letters, our result for the symbol of F
(2)
4 only

involves 34 letters (notably, all five square roots still
appear). As expected, it also obeys the Steinmann re-
lations [87, 88], which forbid sequential discontinuities
in partially-overlapping momentum channels; in the case
of massless scattering amplitudes, these relations apply
when both channels contain at least three particles [70].
However, while the Steinmann relations only put con-
straints on the first two entries of the symbol, many am-
plitudes have been found to obey an extended set of Stein-
mann relations, in which the same constraints hold for all
adjacent entries in the symbol [18, 72, 89, 90]. In pro-
cesses involving one massive and four massless external
legs, the (extended) Steinmann relations forbid the letter

Constraints Parameters

first entry, integrability, D4 invariance 522

Galois symmetry 374

strict double collinear limit → R
(2)
3 0

strict triple collinear limit → R̂
(2)
6 0

light-like limit 0

FFOPE 0

TABLE I. Number of free parameters that remain after im-
posing each constraint in the bootstrap procedure, starting
with the 113-letter alphabet. The limits are taken at leading
power, except for the FFOPE.

vi from appearing next to vj in the symbol when j ̸= i.
Notably, the two-loop master integrals that contribute

to F
(2)
4 only obey the Steinmann relations—not the ex-

tended Steinmann relations—between vi and vi+2 [48].
However, the extended Steinmann relations are obeyed
in all channels by F

(2)
4 . Similarly, higher-point ampli-

tudes in this theory obey all extended Steinmann rela-
tions when normalized minimally (although amplitudes
do not respect dual conformal invariance in this normal-
ization) [28, 72].

Special Kinematic Limits

We can check our results in a number of different kine-
matic limits. First we consider the light-like limit, where
the operator momentum q2 → 0. In this limit, the 34

letters that appear in the symbol of R
(2)
4 reduce to 13

independent multiplicative combinations. Nine of these
combinations match the light-like letters reported in [82],
while four are spurious and must drop out of R4. We have
confirmed that our R

(2)
4 symbol correctly reproduces the

symbol of the light-like form factor remainder reported
in [82].
Although our bootstrap procedure made use of infor-

mation about the strict, or leading power, collinear limit,
we can still make nontrivial predictions for the subleading
powers in the expansion of F

(2)
4 around this limit. Such

terms are predicted by the recently-developed Form Fac-
tor Operator Product Expansion (FFOPE) [91–93]. To
carry out this cross-check, we rewrite our kinematic vari-
ables in terms of the OPE variables T , T2, S, S2, and
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f2 [91, 94]:

u1 =
T 2T 2

2

(T 2 + 1) (S2 + T 2 + T 2
2 + 1)

,

u2 =

[
1+T 2+

S2[S2T2(1+f2
2 )+f2(1+S2

2+T 2+T 2
2 )]

f2S2
2

]−1

,

u3 =
S2

(T 2 + 1) (S2 + T 2 + T 2
2 + 1)

, (13)

u4 =
S2T 2

S2
2

u2 ,

v1 =
T 2
2 + 1

S2 + T 2 + T 2
2 + 1

,

while v2, v3, and v4 are fixed by the relations (4)–(6).
The near-collinear limit in these variables corresponds to
an expansion around small values of T2, which we have
computed by expanding our symbol to O(T 2T 2

2 ). We
checked this expansion against the predictions made by
the FFOPE (using the procedure explained in [92]) for
the T 2T2 ln(T ), T

2T2 ln(T2), T
2T2, and T 2T 2

2 ln(T2) con-
tributions.3 Each of these checks was carried out as a
series in S and S2 and to all available powers of f2.
Finally, it can be seen from the OPE [91–106], as well

as from arguments based on dual conformal invariance
and factorization [9], that the four-particle form factor
remainder R4 must reduce to the six-particle MHV am-
plitude’s remainder R̂6 as T → 0 in the parametriza-
tion introduced in (13). In both cases, the limit can be
interpreted as a triple-collinear limit; in the six-particle
case, the limit covers all of the dual-conformally invariant
phase space, allowing the triple-collinear splitting am-
plitude’s finite part to be identified with R̂6. We have
checked that this limit is indeed obeyed.

Antipodal Self-Duality

As discussed in the last section, the four-particle form
factor possesses kinematic limits in which it reduces to
the three-particle form factor and to the six-particle am-
plitude. These two quantities were recently discovered
to be antipodally dual [75], making it tempting to in-
vestigate whether the four-particle form factor could be
dual to itself in parity-preserving kinematics, where tr5
vanishes. In the OPE variables, this hypersurface simply
corresponds to setting f2 = 1. In the ui and vi variables,

3 We note that the contributions at O(T 0) simply reproduce the

OPE expansion of R̂6, while the contributions at O(T 0
2 ) repro-

duce the OPE expansion of R3.

it requires setting the Gram determinant

u2
2

[
u2
1 − 2u1(1 + u3) + (1− u3)

2
]
+

[
u1v2 − v1(v2 − u3)

]2
− 2u2

[
u2
1v2 + u1

(
u3(2− v1 − v2)− v2(1 + v1)

)
+ v1(1− u3)(v2 − u3)

]
(14)

to zero. Note that none of the other four square roots
rationalize on this tr5 = 0 surface.
Surprisingly, we find that an antipodal self-duality

does in fact hold on this parity-preserving hypersurface:

R4|tr5=0 = S (R4|tr5=0) |ui,vi→g(ui),g(vi) (15)

where S(F ) denotes the polylogarithmic antipode of F ,
which acts at the level of the symbol as [107, 108]

S(x1⊗x2⊗· · ·⊗xm) = (−1)m xm⊗· · ·⊗x2⊗x1 , (16)

and the kinematic map is defined by

g(u1) = u1

√
u2u4

(u2 − v1v2)(u4 − v3v4)
, (17)

g(v1) = (1− v1)

√
u1u2

(u1 − v4v1)(u2 − v1v2)
, (18)

plus cyclic images. In the OPE variables, this mapping
takes an even simpler form:

g(T ) =

√
T2

S2
, g(S) =

√
1

T2S2
,

g(T2) =
T

S
, g(S2) =

1

TS
,

(19)

and it is clear that g2 = 1. Notably, this map reduces
to the duality map described in [75] upon identifying T2

and S2 with the OPE parameters that describe the six-
particle, which were denoted T̂ and Ŝ in [75]. This identi-
fication naturally arises in the triple-collinear limit of R4,
where the form factor reduces to the six-particle remain-
der R̂6, which is mapped to the double collinear limit
of R4 by (19). However, the self-duality of R4 in (15)
holds more generally in the full four-dimensional space
of parity-preserving kinematics.4 Figure 1 depicts the
relation between the antipodal self-duality of the four-
particle form factor and the previously-observed antipo-
dal duality between form factors and amplitudes.
While antipodal self-duality (15) holds for the remain-

der function R4, there is an obstruction to it holding for
F4. Namely, the one-loop form factor F

(1)
4 contains final

entries that are not in the set {g(ui), g(vi)}, i = 1, 2, 3, 4,
dictated by antipodal self-duality. From the symbol (9)

4 Note from eqs. (17) and (18) that the light-like limit ui, vi → ∞
maps to finite ui, vi under the kinematic map g, which implies
that the light-like form factor does not exhibit the antipodal self-
duality we have found for q2 ̸= 0.
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FIG. 1. The four-particle form factor is antipodally self-dual
in parity-preserving kinematics. This duality maps the double
and triple collinear limits of the form factor to each other.
Because the four-particle form factor reduces to the three-
particle form factor and the six-particle amplitude in these
limits, the self-duality of the four-particle form factor implies
the duality observed in [75].

of F
(1)
4 , it is easy to see that the final entry sitting be-

hind the first entry v1 is just g(v1)
2. However, the final

entry sitting behind u1 is (u1−v4v1)/(u4u2), and its log-
arithm is not a linear combination of {ln g(ui), ln g(vi)}.
Furthermore, it does not seem possible to repair this ob-
struction by any simple adjustment of the normalization
F

(1)
4 that is consistent with both the first-entry condition

and the Steinmann relations.

Principle of Maximal Transcendentality

The two-loop three-particle form factor is known
to satisfy the principle of maximal transcendentality
(PMT) [109–112], meaning that the N = 4 SYM result
for tr(ϕ2) matches the maximally-transcendental part of
the Higgs-to-three-gluon amplitude in pure Yang-Mills
theory (or QCD) in the leading large-top-mass limit (op-
erator tr(F 2)) [62, 65, 113–117], for all gluon helicity
configurations. The PMT has recently been extended
(in a different way) to the four-gluon form factor of
tr(F 3) [117]. Here we ask: can the PMT for tr(ϕ2) be
extended to any Higgs-to-four-gluon helicity amplitudes?
At one loop, the PMT already fails for the color-ordered
helicity configurations (−−−+) and (−+−+), and their
parity conjugates [118, 119], but it works for (−−++)
and (−−−−) and their parity conjugates [120, 121].

At two loops and leading-color, we cannot say much
about (−−++) currently, because our starting point (12)
was dihedrally invariant, and the (−−++) form factor
(divided by the tree) need not be invariant, although
its leading-transcendental part happens to be at one
loop. That leaves (−−−−), which is dihedrally invari-

ant. The leading transcendental, weight-four, parts of
its double collinear limits match those in planar N = 4
SYM, thanks to the PMT holding for the Higgs-to-three-
gluon amplitude and for the g → gg splitting ampli-
tude [122]. We found earlier that there is a unique weight-
four, dihedrally- and parity-invariant function with spec-

ified double-collinear limits. Thus R
(2)
4 should also pro-

vide the parity-even part of the two-loop remainder

for A
(2)
4 (ϕ, 1−, 2−, 3−, 4−), where ϕ = H + iA, with

H the Higgs boson and A a pseudoscalar coupling to
tr(FF̃ ) [115]. We also find a unique weight-four parity-
odd dihedrally invariant function that vanishes in both
the double and triple collinear limits. We leave to fu-
ture work the tantalizing questions of whether the coef-
ficient of this parity-odd function vanishes, as suggested
by the PMT, and more generally, how much of the two-
loop Higgs-to-four-gluon amplitude in QCD can be boot-
strapped.

Discussion and Conclusions

In this letter, we have bootstrapped the two-loop four-
particle MHV form factor of the chiral part of the stress-
tensor supermultiplet in planar N = 4 SYM theory, and
have found that it possesses an antipodal self-duality in
parity-preserving kinematics. While we can only check
this duality at two loops, the previously-identified antipo-
dal duality between R3 and R̂6 that it implies has been
checked through seven loops (and even eight loops [76]),
which strongly indicates that the self-duality of R4 will
hold to all loop orders.
The two-loop four-particle form factor is a highly con-

strained quantity. It is determined uniquely by its in-
variance under Galois and dihedral symmetries, as well
as its double-collinear limit. Our result passes a wealth
of cross-checks, including the comparison of the near-
collinear limit to the FFOPE, triple collinear limits, and
the light-like limit. The stringent constraints also raise
the question of whether the form factor can be boot-
strapped to higher loop orders. The main uncertainty is
whether new letters appear at three loops, beyond the
113 letters that appear in the two-loop integrals con-
tributing to this quantity. While great strides have been
made recently towards better characterizing the analytic
structure of Feynman integrals from first principles (see
for instance [123–132]), this question remains hard to
address without a direct computation. The answer is
that no new letters, beyond the 113, are required to
successfully bootstrap the three-loop four-particle MHV
form factor; the result is provided in the ancillary file
three loop symbol.txt.
It is natural to wonder if further antipodal

(self-)dualities hold between form factors and amplitudes
at higher particle multiplicity. Notably, as one increases



6

the number of scattering particles, form factors contain
an increasingly rich pattern of form factors and ampli-
tudes in their (multi-)collinear limits, giving rise to many
intriguing possibilities. In a similar vein, it would be
interesting to calculate the two-loop next-to-MHV form
form factor for the chiral part of the stress-tensor super-
multiplet, and to search for further antipodal dualities
that involve this quantity.

More generally, it is critical to understand better the
physical reason for the antipodal dualities observed in
form factors. Our work already suggests that the role
of the six-point amplitude may be a red herring, that
it only participates because it is also the triple-collinear
limit of the four-particle form factor. The simplicity of
the map (19) in OPE variables suggests that the reason
for the duality might be related to the flux-tube exci-
tations describing the OPE limit. In this context, it is
worth noting that there is a fixed surface for (19), which
contains the limit T, T2 → 0 where small numbers of flux-
tube excitations dominate. This fact may make it possi-
ble to examine how the duality acts on single flux-tube
excitations. That action could be a clue in unraveling the
physical origin, and thereby predicting in advance where
else antipodal duality will emerge.
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