PHYSICAL REVIEW D

VOLUME 52, NUMBER 10

15 NOVEMBER 1995

Exotic nonsupersymmetric gauge dynamics from supersymmetric QCD

Ofer Aharony and Jacob Sonnenschein

School of Physics and Astronomy, Beverly and Raymond Sackler Faculty of Exact Sciences,
Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel

Michael E. Peskin
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

Shimon Yankielowicz*
CERN, Geneva, Switzerland
(Received 6 July 1995)

We extend Seiberg’s qualitative picture of the behavior of supersymmetric QCD to nonsupersym-
metric models by adding soft supersymmetry-breaking terms. In this way we recover the standard
vacuum of QCD with Ny flavors and N, colors when Ny < N.. However, for Ny > N., we find new
exotic states—new vacua with spontaneously broken baryon number for Ny = N., and a vacuum
state with unbroken chiral symmetry for Ny > N.. These exotic vacua contain massless composite
fermions and, in some cases, dynamically generated gauge bosons. In particular Seiberg’s electric-
magnetic duality seems to persist also in the presence of (small) soft supersymmetry breaking. We
argue that certain, specially tailored, lattice simulations may be able to detect the novel phenomena.
Most of the exotic behavior does not survive the decoupling limit of large SUSY-breaking parameters.
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I. INTRODUCTION

When we ask how a gauge theory behaves at strong
coupling, we want first of all to understand how the chi-
ral symmetry of this theory is realized. In the familiar
strong interactions, we know from experiment that the
approximate chiral SU(3) x SU(3) symmetry is sponta-
neously broken to a vector SU(3) symmetry. This chiral
symmetry breaking allows the quarks to obtain dynam-
ical masses and so justifies the quark model of hadrons.
For a long time, physicists have wondered whether this
same qualitative behavior should be found in any asymp-
totically free gauge theory. In a Yang-Mills theory in
which the chiral symmetries are not spontaneously bro-
ken, these unbroken symmetries can protect composite
fermions from obtaining masses [1], leading to a com-
pletely new dynamical picture.

In the early 1980s, this same question, which had not
been resolved in the case of ordinary Yang-Mills theory,
was studied in the supersymmetric extension of Yang-
Mills theory. In stages, the qualitative behavior was
worked out for supersymmetric pure Yang-Mills theory
[2] and for supersymmetric (SUSY) Yang-Mills theory
with a small number of quark flavors [3-5]. Recently,
Seiberg has returned to this question and, in a remark-
able set of papers [6,7], has given a coherent picture of the
qualitative behavior of supersymmetric QCD (SQCD) for
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all numbers of flavors. Seiberg has emphasized that his
solution includes dynamical features that are quite ex-
otic, including vacuum states with baryon number viola-
tion and massless composite fermions, and he has spec-
ulated that these features can potentially also appear in
nonsupersymmetric models.

In this paper, we will investigate the extension of
Seiberg’s vacuum states to nonsupersymmetric models.
To do this, we will study how these vacua are perturbed
by the addition of soft supersymmetry-breaking terms
to the Lagrangian. This method is quantitative only
when the soft supersymmetry-breaking masses are much
smaller than the strong-coupling scale A of the Yang-
Mills theory. Despite this limitation, we will show that
many of the exotic features found by Seiberg, notably
chiral symmetry realizations and duality, do survive in
softly broken nonsupersymmetric theories. We will sug-
gest the way in which the supersymmetric limit connects
to ordinary Yang-Mills theories of quarks alone.

Soft breaking of supersymmetric Yang-Mills theory
was studied previously, with a very different motivation,
by Masiero et al. [8,9]. We will follow some of the route
uncovered in their papers, but the recent improved un-
derstanding of supersymmetric Yang-Mills theory will al-
low us to obtain a more complete picture.

In addition to the intrinsic interest of exploring non-
supersymmetric extensions of Seiberg’s mechanism, this
investigation has a broader significance. Today, the most
important tool for investigating strong-coupling gauge
theories is numerical simulation on the lattice. Up to
now, lattice gauge theory simulations have found evi-
dence only for the conventional pattern of chiral symme-
try breaking. However, it is by no means clear that the
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current simulations have exhausted the possibilities to
be discovered. Seiberg’s work suggests that lattice gauge
theorists should look harder, and in theories with colored
fundamental scalars as well as fermions. If supersym-
metry were essential to Seiberg’s vacuum states, these
states would be very difficult to reproduce in simulations,
since, in general, there is no known method of ensuring
supersymmetry on the lattice.! Thus, lattice gauge the-
orists could reasonably expect success in demonstrating
the presence of massless composite fermions and other ex-
otic features only if these phenomena exist in nonsuper-
symmetric models. Our analysis provides evidence that
they do, and it suggests the particular nonsupersymmet-
ric models which are the most promising for finding them.

In this paper, we consider SU(NN,.) Yang-Mills theories
coupled to Ny flavors of quarks and squarks. In Sec. II,
we define our notation and set up a general strategy for
analyzing these models. In Sec. III, we consider the case
Ny < N,.. For this case, we show that soft breaking of
supersymmetry leads to the conventional pattern of chi-
ral symmetry breaking, SU(IN¢) x SU(Ny), spontaneously
broken to the diagonal SU(N¢). In Sec. IV, we consider
the case Ny = N,. In this case, we find that this conven-
tional vacuum state still exists, but that a new vacuum
state also appears, with massless composite fermions and
spontaneously broken baryon number.

In Sec. V,.we consider the case Ny = (N.+1). In this
case, we find that, for small soft supersymmetry-breaking
terms, the chiral symmetry remains unbroken. The vac-
uum state of this theory contains massless composite
fermions with quark and squark constituents; these re-
main massless even when the squarks have nonzero mass,
illustrating a possibility for composite states first dis-
cussed by Preskill and Weinberg [11, 12]. In Sec. VI,
we discuss the case Ny > (N, + 2). Here the physics of
chiral symmetry breaking is quite similar to that found
in the previous situation. Seiberg has argued that the
supersymmetric limit of these models also possesses a
dynamically generated gauge symmetry which, in some
circumstances, is weakly coupled. This gauge symmetry
is often lost in the nonsupersymmetric case, but we will
give some specific models in which it survives. In par-
ticular, it seems that the electric-magnetic duality which
Seiberg claimed for this region persists in the presence of
(small) soft supersymmetry breaking.

Most of our discussion will be carried out for the case
N. > 3. The case N, = 2 has a number of special compli-
cations. However, since this is the case of most interest
to people with computers of finite capacity, we discuss
this case specifically in Sec. VII. Lattice simulations of
gauge theories with scalar fields have a practical diffi-
culty that it may not be possible to reach the continuum
limit, due to the presence of a first-order phase transi-
tion as a function of the scalar field mass parameter. In
Sec. VIII, we discuss how this problem can arise from per-
turbation of the supersymmetric Lagrangian, and how it

!See, however, [10], where certain N = 2 supersymmetric
lattice theories have been considered.
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can be avoided. A more detailed analysis of the practical
lattice simulation of supersymmetric gauge theories can
be found in recent papers of Montvay [13].

In all, these models open a wide variety of new phe-
nomena in nonsupersymmetric models, raising many pos-
sibilities for theoretical and numerical investigation and
for model building. They confirm Seiberg’s intuition
that, while supersymmetry is useful for investigating the
variety of behaviors possible in strongly coupled gauge
theories, it is not a necessary condition for their realiza-
tion.

II. NOTATION AND STRATEGY

In this paper, we will be concerned with SU(N,) Yang-
Mills theories coupled to Ny flavors of quarks. We will be
perturbing about the supersymmetric limit of these the-
ories. In this limit, these theories contain fundamental
scalar (squark) fields and a fermion (gluino) in the ad-
joint representation of the gauge group, in addition to the
standard content of Yang-Mills theories with fermions.

A. Fields and symmetries

The quarks and squarks can be grouped into chiral
superfields in the N, and N, representations of SU(NV,).
We will refer to these superfields as

Be QF, (1)
where 2 = 1,..., Ny is a flavor index and a = 1,..., N,
is a color index. When we wish to refer to the individual
components of the superfield, we will denote the scalars
by @, Q and the fermions by v¥q, 1/16. The Hermitian

conjugate superfields will be denoted QT,QJF. Note that
while ¢ is a left-handed quark, ¥ is a left-handed an-

tiquark; the right-handed quarks are components of QT.
We will reserve the notation g, g to denote Seiberg’s dual
quark superfields, which will appear in Sec. VI. We will
denote the gluino as A%, a matrix in the adjoint repre-
sentation of SU(IV,).

When N, = 2, the representations N, and N, become
equivalent, and this introduces a number of complica-
tions. From this introduction through Sec. VI, we will
restrict ourselves to N. > 3. In Sec. VII, we will discuss
the generalization of our results to N, = 2.

In classical SQCD theory the quark superfields have no
interactions beyond their couplings to the gauge super-
multiplet. In particular, we will assume that they have
zero mass. This implies that the supersymmetric theory
has a global symmetry

SU(Nf)L X SU(Nf)R X U(].)B X U(].)R, (2)

where SU(IVf) acts on the Q°, SU(Ns)g acts on the
Q;, and U(1)p denotes baryon number. We will refer
to the vectorial flavor group, the diagonal subgroup of
the two SU(N¢)’s, as SU(IN¢)y. The additional factor
U(1) g denotes the anomaly-free combination of the axial
U(1) symmetry acting on the quarks and the canonical
R symmetry which acts on all fermion fields. Under this
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anomaly-free symmetry, the squarks, quarks, and gluinos
have the charges
— Ngy— N,

N.
QQ:

s ’(,bQ,’(/JQ‘i —Ff, )\: 1. (3)

A superpotential W should have R charge 2.

B. Effective Lagrangians

The qualitative behavior of supersymmetric Yang-
Mills theory is made most clear by writing an effective
Lagrangian in terms of gauge-invariant chiral superfields.
As Seiberg especially has emphasized [6], this Lagrangian
is strongly constrained by the condition that its super-
potential must be a holomorphic function of these fields.
For small values of Ny, the only possible gauge-invariant
chiral field built from the quark fields is the meson field

Tij = Qi Q] (4)
Beginning at Ny = N,, there are also chiral superfields
with the quantum numbers of baryons. Let

N, = (Ns — No). (5)
Then there is a baryon chiral superfield in the N.-index
antisymmetric tensor representation of SU(N¢)r,

. — g@1taNg. . i1 ... QINe
Biy.iy =€ ©€jyringiniy, Qo an. (6)

and, similarly, an antibaryon chiral superfield B e
built from N, powers of the field Q.

Using the gauge supermultiplet, it is possible to build
another chiral superfield

S = —tr[WoW,] = tr[A-A] + - . (7)

The superfield S has R charge 2 and is neutral under
the other global symmetries. In studies of the qualita-
tive behavior of supersymmetric Yang-Mills theory, the
component fields of S always acquire mass; these fields
are associated with the massive hadrons of the pure glue
sector of the theory. However, the dependence of the su-
perpotential on S is still fixed by symmetry arguments
[2,3], and S can be inserted or removed in an unambigu-
ous way by Legendre transformations [15]. Though most
of our results can be derived without introducing S into
the Lagrangian, it will be useful at some points in our
analysis to write effective Lagrangians that depend on S
as well as T'.

C. Soft supersymmetry breaking

In addition to the superpotential, we will need to know
the Kahler potential which determines the kinetic energy
terms of the fields T, B, and B. A simple hypothesis,
introduced in the work of Masiero and Veneziano [8, 9],
is that the Kahler potentials of the gauge-invariant fields
are canonical:

K[T,B,B] = Artr[T'T] + A (B'B+B'B).  (8)
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Our main results will rely on weaker assumptions about
the Kahler potential, in particular, that it is nonsingular
on the space of supersymmetric vacuum states. How-
ever, we will support our general remarks by explicit cal-
culations using this simple model. We expect (8) to be
the correct form of the K&hler potential near the origin
of moduli space, in the cases for which the mesons and
baryons give an effective infrared description of the the-
ory.

We will also need to specify the terms by which we
break supersymmetry. In this paper, we will break su-
persymmetry by adding mass terms for the squark fields
and for the gaugino,

ac=-md(|Q* +[Q°) + (myS +He),  (9)

where, in (9), Q, Q, and S are the scalar component fields
of the superfields. The scalar mass term is the unique
soft supersymmetry-breaking term which does not break
any of the global symmetries (2) of the original model.
The gaugino mass term breaks only the U(1) g symmetry,
and thus breaks the global symmetry of the supersym-
metric model down to that of ordinary Yang-Mills the-
ory with Ny massless flavors. Any other choice for the
soft supersymmetry-breaking terms would induce further
global symmetry breaking. Because S is a complex field,
any sign or phase inserted in front of the gluino mass
term could be compensated by a phase rotation of S [or,
more generally, by a U(1)g transformation]. We have
chosen the phase of this term so that the potential en-
ergy of the broken theory will be minimized when S is
real and positive.

Actually, it is not clear whether the “correct” theory of
broken supersymmetry should or should not contain the
gluino mass term. If this term is included, and then m2
and mgy are taken to infinity, the theory reverts to the
standard Yang-Mills theory with Ny flavors. If this term
is omitted, and then m2 is taken to infinity, the theory
becomes a Yang-Mills theory coupled to Ny flavors in
the fundamental representation and one extra flavor in
the adjoint representation. Both of these are theories
whose strong-coupling behavior might be of interest. We
will refer to the softly broken theories without and with
the mgy term as the R and R theories, respectively.

Since we will be working in the language of the low-
energy effective Lagrangian, we must ask how the super-
symmetry breaking term (9) shows up in this Lagrangian.
To work this out, rewrite (9) in the superfield form

AL= / d*0Mq(Q'eV Q + 6%-‘”6)
+/d20MgS+ H.c., (10)

where Mg is a vector superfield whose D component
equals (—m%) and M, is a chiral superfield whose F' com-
ponent equals mgy. It is straightforward to see that these
superfields are gauge invariant and neutral under all of
the global symmetries.

The effective Lagrangian description of AL for Ny <
N, + 1 is then given by writing the most general La-
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grangian built from 7, B, B and a fixed number of fac-
tors of Mg and M. The supersymmetry-breaking terms
have an ambiguity related to that of the Kahler potential,
because many possible invariant structures can be built
from T, B, and B. In our explicit calculations, we will
assume that the coefficient of Mg is quadratic in these
fields; again, this assumption is precise near the origin of
moduli space. Then the first-order soft supersymmetry-
breaking terms in the effective Lagrangian are

AL = / d*6(Br Motx[T1T] + BpMq{B'B + B'B}

+ I, M(T, B, B) + H.c.) + / &26M, (S) + H.c.,

(11)

where M(T,B,B) is a function of the effective La-
grangian superfields which is neutral under the global
symmetries. The quantity (S) in (11) should be a combi-
nation of the effective Lagrangian chiral superfields which
has the quantum numbers of S. In general, this con-
dition restricts that function to be proportional to the
expectation value of S as determined from the effective
Lagrangian of Refs. [2, 3] which includes S as a basic
field. In some of our examples, the symmetry of the vac-
uum will prohibit S from obtaining a vacuum expecta-
tion value; then the only effect of My will be from the D
term in (11). The appearance of this unknown D term,
however, will prevent us from making any quantitative
predictions after adding the gluino mass.

The squark mass terms in (11) are not the most gen-
eral terms that can be written down. As in the Kéahler
potential (8), higher-order terms in the fields, suppressed
by powers of A, may appear. However, we expect (11)
to be approximately true near the origin of moduli space
T = B = B = 0. Thus, whenever the vacuum which we
analyze will be near the origin of moduli space (as will be
the case for Ny > N+ 1), we expect (8) and (11) to give
a good quantitative description of the theory. In other
cases, notably for Ny < N. where some expectation val-
ues are expected to be of order A or higher, higher-order
terms cannot be neglected. We expect that the qualita-
tive behavior which we will find when using these simple
terms will remain valid also in the exact theory. However,
we will not be able to trust the quantitative results.

We will assume throughout this paper that the coef-
ficients Bg and B are positive. Their ratio Bg/Br
will be important to our later analysis; however, this ra-
tio cannot be determined from the effective Lagrangian
viewpoint. At best, we can argue naively that the coef-
ficient of the mass term of a composite field should be
roughly proportional to the sum of the coefficients of the
mass terms of the constituents. This would give the re-
lation

B B~ %BT ,
which the reader might take as qualitative guidance.

To avoid the proliferation of factors A?, where A is the
nonperturbative scale of the strong interaction theory,
we will generally choose units in which A = 1. Then mé

(12)
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and m, will be small dimensionless numbers. We empha-
size again that our method makes quantitative sense only
for theories with weakly broken supersymmetry, that is,
only when m2 and m, are much less than A, and will
not apply directly to models in which the squarks and
gluinos are completely decoupled. However, in many of
our examples, the qualitative behavior we find in the re-
gion mé < A will suggest a smooth continuation to the
decoupling limit m2Q > A. In each case that we study, we
will offer at least a plausible conjecture, for both the R
and R cases, of the connection between these two limits.

It is important for our analysis that the behavior of the
theory be nonsingular when adding the squark and gluino
masses, i.e., that no new nonperturbative effects occur.
In general it is not possible to prove this in nonsupersym-
metric theories, but a proof of this is possible in softly
broken supersymmetric theories, when the soft breaking
can be viewed as spontaneous breaking of supersymme-
try. For SQCD this was done by Evans et al. [14], who
showed how the squark and gluino mass terms may be
obtained by spontaneous supersymmetry breaking in a
theory which includes some additional chiral superfields.
When obtaining the soft breaking terms in this way, from
a supersymmetric theory in which we have control over
the superpotential, we can show that the form of the
SUSY-breaking operators is indeed as in Eq. (11). In
fact, in [14], the squark mass is derived from the Kahler
term in the original SUSY theory, so that our lack of con-
trol of this term in (11) is related to our lack of control
over the Kahler term (8), and the two are expected to
behave in a similar fashion.

IIL. N; < N.

We begin with the simplest situation Ny < N.. In
this case, there are no baryon operators; thus, in the su-
persymmetric limit, the only massless particles are those
created by the meson operator T'. In this section, we will
work out the vacuum and massless spectrum which result
when this theory is perturbed by the soft supersymmetry-
breaking terms (9).

In this case, the effective theory of the supersymmetric
limit is described by the AfHleck-Dine-Seiberg superpo-
tential:

2 _ 2 (Nc*Nf)
/d oW (T) = /d O ot TN

where we have set A = 1 as described at the end of Sec. II.
To begin, choose the canonical Kdhler potential (8). We
will comment on other choices of the Kahler potential
below.2 Using (8), we find the potential energy

1
V(T) = Az|det T|2/(Ne=Ny)

(13)

(71T,

(14)

?In the limit of large T', to which we will be driven when
mé is very small, the gauge theory is weakly coupled and the
Kahler potential of T takes the semiclassical form K[T] =
tr{(71T)*/?]. This choice leads to the same qualitative con-
clusions that we will derive from the canonical form for K|[T'].
We thank N. Seiberg for this comment.
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Now add the soft supersymmetry-breaking term (9).
Again, we will begin with a simpler situation, choosing
the R case where my = 0. The addition to the potential
is

AV = Brmdtr[T'T]. (15)

To find the vacuum state, we must minimize V + AV.

A. Location of the vacuum state

If we use the freedom of SU(Ny) x SU(Ny) to diago-
nalize T', this potential can be written in terms of the
complex eigenvalues t; of T, as

1 1 1
_ 2 12
V(T) = BTmQthzl + Az TG/ VD Z THER

(16)
The minimization equation is
0= BTméti
1 1 1 1

A 17

Ag D?/(Ne—Ny) |:t;!‘|ti|2 + (N. — Nf)t;‘T > (17)
where _

1

Multiplying through by t}, we find an equation of the
form

0= la'T"anItil2 - F(Iti[27DaT)a (19)

where, for fixed D and T, the function F' decreases mono-
tonically as the first term increases monotonically from
0 to infinity. This equation has a unique solution for
t;; thus, all of the t; are equal at the minimum of the
potential, up to phases removable by global symmetry
transformations.

Thus, we may set t; = t for all 2. This gives the ex-
pression

1 Ny

— 2 2

(20)

It is easy to see that this expression is minimized for

N. SR EC
|tl =t, = 2 . (21)
(NC - Nf) BTATmQ

The potential V(t) is shown for the case Ny = 2, N, = 3
in Fig. 1.

The minimum of the potential can be brought by global
symmetry transformations into the form

(T) =t.1, (22)

where 1 is the unit matrix. This expectation value spon-
taneously breaks (2) to SU(Ny)y x U(1)pB.
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FIG. 1. The potential V(t) for softly broken supersym-
metric Yang-Mills theory with N, = 3, Ny = 2.

B. Spectrum of the R model

It is straightforward to work out the spectrum of the
model by expanding about the minimum of V. Consider
first the bosons of the model. A general Ny x Ny complex
matrix T can be parametrized in terms of real-valued
component fields as

T =t etvHita)/V2Nsy g | (23)
where
V=evid | U = eitar | (24)

and the A’ are SU(Vf) matrices, normalized to tr[A\‘\7] =
36%. In this parametrization, | det T is a function of tv
only, and the various real-valued components all have
kinetic energy terms of the form

L= 21: %AT(a‘,t,)2 4+l (25)

The fields t4; and t4 drop out of the potential com-
pletely. This is natural, because they are the Goldstone
bosons of the spontaneously broken SU(NNy) and U(1)g
symmetries. The fields ty;, which form an adjoint rep-
resentation of the unbroken SU(Ny) flavor group, obtain
the mass

2N, — N 2 ,1,2Nn, — )
2 < f C/(Nc N,f)
= () 2 (= 26
myi= (N —w, ) az (&) ’ (26)
and the singlet field ty obtains the mass

ch - NCN_f + Nf2 2 ,1,2N./(N.—Ny)
m%, = ( (Nc—Nf)z )A—%‘(E) . (27)

The fermion masses can be read directly from the su-
perpotential (13). Expanding this formula about the
minimum according to

T=t*1+0(¢T—1—+¢nA")+---, (28)

V2N;

we find mass terms for the flavor-singlet and -adjoint
fermions:
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m :Jc__i(l)(ZNc—Nf)/mc—Nf)
v (NC—Nf) AT t ’
1 1\ (2Nc—Ny)/(Ne—Ny)
e = o\ . 29
s 1411(t*) (29)

No fermions remain massless.

C. R Model

Now we introduce the more general supersymmetry-
breaking term with mgy nonzero. Though it is possible
to discuss this term from the beginning with sz and
mg treated on the same footing, it is simpler, and one
obtains qualitatively the same results, if we treat mgy as
a perturbation on the R model just described.

The superpotential term involving mg requires (S).
Quite generally, we can obtain the expectation value of
S from the superpotential of a supersymmetric effective
Lagrangian by using the formula

7]

(9) = gy W -

(30)

This equation can be derived by starting from the ef-
fective Lagrangian which includes S explicitly [2, 3], or
directly from considerations of anomalies [15].
Restoring A to (13) and applying (30), we find for the
supersymmetry-breaking potential
Mg
(det T)1/(Ne=Ny)

This potential depends on the phase of det T, and thus
it induces a mass for the field t4 in (23). We find
Ny @(i)mm—mv(m—m)
(Ne — Ng)2 Ap 'ty )
The appearance of this mass term is expected: The gluino
mass term explicitly breaks the U(1)r global symmetry
and so should give mass to the corresponding Goldstone
boson.

It is not difficult to work out the general formulas for
the other particle masses to first order in sz and myg.
However, there are no surprises. The vacuum remains
unique up to global symmetry transformations, and all of
the particles except the SU(/N¢) Goldstone bosons remain
massive.

We can now discuss the extension of our results to
more general forms for the Kahler potential. Because
the spectrum we have found is the generic spectrum for
the symmetry-breaking pattern we have observed, suf-
ficiently small perturbations of the K&ahler potential do
not affect the qualitative physics. It is possible to choose
Kahler potentials which decrease sufficiently strongly as
the t; increase that the potential has more than one min-
imum. In this situation, it is formally possible to have
a minimum of V' in which the eigenvalues of T take dis-
tinct values. In such a case, the vectorial flavor SU(Ny)
symmetry is also partially broken. We do not consider
this scenario likely, but we cannot rule it out. Neverthe-
less, we will disregard this possibility in the rest of our
discussion.

—mgS = — (31)

my = (32)
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D. Decoupling of superpartners

In the arguments just concluded, we have calculated
the symmetry-breaking pattern and the spectrum of su-
persymmetric Yang Mills theory perturbed to first or-
der in soft supersymmetry-breaking terms. It is inter-
esting that our results for the global symmetry and the
massless particles reproduce the standard expectations
for chiral symmetry breaking in Ny-flavor QCD. The fi-
nal symmetry-breaking pattern leaves a global symmetry
SU(Nys)v x U(1)p, and the only massless particles are
the Goldstone bosons corresponding to this symmetry
breaking. In QCD, this expectation is not particularly
well supported for large values of Ny, but it is known to
hold in the case which has been studied experimentally,
N, =3, Ny = 2, and in the limit N, — oo, N fixed [16].

Thus, we feel confident in conjecturing that the results
we have obtained, at first order in supersymmetry break-
ing, are smoothly connected to the limit mz,mg — 00,
in which the superpartners decouple and the system re-
verts to an ordinary Yang-Mills theory with fermions. It
is reasonable that this smooth extrapolation should ap-
ply quite generally for Ny < N.. We will need to explore
case by case whether a similar extrapolation can hold for
larger numbers of flavors.

There are two features of this extrapolation which de-
serve further comment. First, in QCD, chiral symmetry
breaking is characterized by a nonzero vacuum expecta-
tion value of the quark-antiquark bilinear, ¢é?¢@j in our
present notation. In the language of the supersymmetric
effective Lagrangian, this operator is a part of the F' term
of the superfield T¢;. The expectation value of this term
may easily be found to be proportional to

N¢
ZNc-Ng

mg . (33)
Thus, the F' term of T does obtain an expectation value
in the vacuum state that we have found. This expec-
tation value naturally becomes a nonzero expectation
value for the quark bilinear in the decoupling limit. As
mgq increases, the quark bilinear becomes larger while
the squark bilinear becomes smaller, in exact accordance
with our expectations.

When m2Q is small, the vacuum we have identified oc-
curs at a very large value of (T'). When (T) is large,
the behavior of supersymmetric Yang-Mills theory can
be described classically, as the spontaneous breaking of
the SU(N,) gauge symmetry by squark field vacuum ex-
pectation values. In other words, the gauge symmetry is
realized in the Higgs phase. However, since the matter
fields belong to the fundamental representation, there is
no invariant distinction between the Higgs and confine-
ment phases of this model, and so there is no impediment
to the Higgs phase at small mé being smoothly connected

Ne
N.-Nj

t.

~

to a confinement phase at large m2Q

IV. N; = N,

In the case Ny < N., we have found a very natural
connection between the physics of the theory with weak
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supersymmetry breaking and the physics of the theory
after the supersymmetric partners have been decoupled.
For larger numbers of flavors, however, this connection
will become increasingly tenuous.

We next consider the case Ny = N.. Here the low-
energy effective Lagrangian of the supersymmetric limit
contains both meson and baryon superfields. In this spe-
cial situation, the baryon fields B, B are flavor singlets,
and both the meson fields T%; and the baryon fields have
zero R charge. Seiberg has argued [6] that this model
has a manifold of supersymmetric ground states, in which
the meson and baryon fields satisfy the relation (in units
where A = 1)

detT —BB=1. (34)

Many forms for the superpotential are consistent with
this relation. The S-dependent superpotential, for ex-
ample, has the form

W = Sln(detT — BB). (35)

Note that this superpotential leads to conditions for a
supersymmetric vacuum state which imply not only (34)
but also the constraint (S) = 0, so that the U(1)g sym-
metry is not spontaneously broken.

A. Location of the vacuum states

The presence of a manifold of degenerate vacuum
states not related by a global symmetry is necessarily
accidental unless it is a a consequence of supersymme-
try. Thus, any such degeneracy should be broken as soon
as supersymmetry-breaking terms are added to the La-
grangian. At first order, this is the main effect of the
soft supersymmetry-breaking perturbation. To analyze
this effect, we should restrict our attention to the values
of T, B, and B obeying the constraint (34), for which
the vacuum energy vanishes in the supersymmetric limit,
and study the behavior of the supersymmetry-breaking
potential over this space.

For simplicity, we begin with the R models, for which
mg = 0. Then the soft supersymmetry-breaking terms
(11) lead to the potential

AV = Brmbtr[T'T] + Bgmb(B'B+B'B).  (36)

Using SU(N;)xSU(Ny), we can diagonalize T to complex
eigenvalues t;. Parametrize the baryon fields as

— 1
B=zb, B=—--b, (37)
x
with  and b complex. Then b obeys the constraint

[[t:+¥=1 (38)

The variable z appears in the potential only through the
baryon mass term

AV = ...+ Bpm} ([a:|2+ [%[2) 6%, (39)
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and this is minimized at |x| = 1 for any b. Thus, we may
set |z| = 1.
The problem becomes that of minimizing

AV = Brmd 3" |til* + 2Bpm} b (40)

subject to the constraint (38). There are three types of
stationary points of this potential:
(1) If b = 0, AV is stationary when [¢;| are all equal:

lti=1, [[tsi=1, b=0. (41)

(2) If T = 0, AV is stationary:

T=0, b==+1. (42)

(3) If neither T nor b vanish, there can be an addi-
tional stationary point with |t;|(Ns~2) = (Br/Bg) for all
¢. This point is always unstable with respect to the other
vacuuin states.

The shape of the potential AV, for three choices of
(Br/BgB), is shown in Fig. 2. Notice that the vacuum
at b = 0 is the absolute minimum for sufficiently large
values of (Bg/Br), but that the vacuum at T = 0 is
always a local minimum.

The method of effective Lagrangians cannot tell us
which of the two vacuum states at b = 0 and T = 0
is the preferred one. This depends on the ratio Bg/Br,
which is a phenomenological input to the effective La-
grangian analysis. We will see below that the vacuum
at T = 0 is locally stable if Bg > Br and is globally
stable if Bg > (Ny/2)Br. In (12), we attempted to es-
timate the ratio of Bg and Br. Our naive estimate puts
the theory just at the boundary at which the two vac-
uum states have equal energy. Probably, this question
can only be decided by computer simulations. We note,
however, that if the vacuum structure of this theory were
being studied in a lattice simulation, one could bias the
simulation in favor of one vacuum or the other by adding
an explicit Bg or By term to the Lagrangian. In the

FIG. 2. The potential AV for softly broken supersymmet-
ric Yang-Mills theory with N. = 3, Ny = 3. The potential is
shown on the subspace T' = t - 1, as a function ¢t. The three
curves correspond to (Bp/Br) = 1,1, 3, from bottom to top.
The dotted line shows the location of the stationary point (3)
referred to in the text.
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discussion to follow, we will treat each locally stable vac-
uum state as if it could be separately realized in a such
a computer experiment.

Up to now, we have ignored the possible effects of the
U(1)gp-violating supersymmetry breaking term propor-
tional to my. However, these effects cannot change the
qualitative picture when m, is small. We showed earlier
that the superpotential (35) implies that, in the mani-
fold of supersymmetric vacuum states about which we
are perturbing, (S) = 0. Thus, the superpotential term
proportional to M, does not contribute to the vacuum
energy. More generally, since My, T, B, and B are all in-
variant under U(1) g, while a superpotential has R charge
2, this term does not contribute to the superpotential to
any order in mg. There are possible Kahler potential
terms involving My. (The simplest one will be discussed
in a moment.) However, near the vacuum with b = 0,
these will be polynomials in B and B of order at least 2,
and near the vacuum with 7' = 0 they will be polynomials
in T of order at least 2. Thus, these terms will not affect
the presence of stationary points of the vacuum energy
at these positions in the field space. These terms may
alter the details of the mass spectrum computed below,
but they will not alter the qualitative physical picture of
vacuum stability which follows from this calculation.

B. Spectrum at b =0

We will now work out the spectrum of particle masses
at the two candidate vacuum states that we have identi-
fied. The boson masses can be found by expanding the
potential (36) about the two vacuum states, with fields
subject to the constraint (34). At this level, the fermionic
partners of these fields remain massless. Fermion masses
will be induced when we include effects of first order in
mg.

To expand about the vacuum at b = 0, parameterize
T as in (23), with t, = 1, and parametrize

B=b+c, B=—(b—c). (43)

The complex fields b and ¢ have kinetic energy terms
proportional to the factor (24p), which must be divided
out in computing masses. The fields ¢ty and t4 in (23)
are removed by the constraint. To leading order, (34)
implies

ty +itg = — N?—-(bz—cz)
v f

to quadratic order in baryon fields. Now we simply ex-
pand AV and read off the spectrum of masses. We find,
respectively for the masses of ty;, the real part of b and
the imaginary part of ¢, and the imaginary part of b and
the real part of c:

(44)

2
2
2 _
m< E(BB — BT)mQ,
2
m% = ——(Bg + Br)m}, . (45)
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Notice that, just at Bg = Br, when the unstable sta-
tionary point (3) interposes itself between the b = 0
and T = 0 vacuum states, the b = 0 vacuum becomes
locally stable with respect to baryon-number-violating
fields. Since the energies of the b = 0 and T' = 0 vacua
are (NfBTsz) and (2BBm2Q), respectively, the vacuum
at T' = 0 remains the global minimum of the potential as
long as

N

as we claimed at the end of the previous section.

The expectation value of T in this vacuum sponta-
neously breaks SU(N;) xSU(Ny) to SU(Ny)y. The fields
t i, which are the Goldstone bosons corresponding to this
symmetry breaking, remain at zero mass. Since U(1)gr
is not spontaneously broken, we expect no singlet Gold-
stone boson in the spectrum, and, indeed, none appears.

Since (34) is a superfield constraint, it also removes
one fermion from the theory, specifically, the fermionic
partner of tr[T]. The other fermionic components of T,
B, and B remain at zero mass at this level of the anal-
ysis. This is natural, because the mass terms for these
fields violate U(1)g by 2 units. Thus, these mass terms
can only be induced when the R-charge-breaking term
proportional to mgy is added. We have noted above that
this term cannot induce a superpotential. However, it
can induce a D-term contribution of the form indicated
in (11). There are many possibilities for such a term; a
set of simple examples is given by

AL = / d*0M,(CrdetT + CgBB) + Hec., (47)

where Cr and Cp are some constants. If one begins from
the effective Lagrangian including S, with the canonical
superpotential and Kéahler terms,

L= /d4es*s+/d29(51n(detT—B§)+MgS)+H.c.,

(48)

and integrates out S, one finds

AL = / d*0Myln(det T — BB) + H.c., (49)
which gives qualitatively similar results. In the following
discussion, we will work with (47).

To obtain baryon masses from (47), expand the super-

fields about the vacuum state T'= 1, b = 0 according to
(28) and
B=0-¢y5, B=0-¢g5. (50)

We find, for the flavor adjoint and baryonic fermions, the
masses

1Cr
Myi = §A_ng’
myB = ﬁmg . (51)

No zero-mass fermions remain.
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C. Spectrum at T =0

Using the same techniques, we can work out the spec-
trum of masses in the vacuum at T' = 0. For the scalars,
parametrize B and B by

B=(1+b+c), B=—-(1+b—¢). (52)

The constraint (34) allows us to eliminate b:

1 1,
b= 2detT+2c . (53)
The contribution from T is higher order than quadratic
and so does not affect the mass spectrum. Inserting (52)
and (53) back into AV and expanding to quadratic order,
we find the following masses for the components of T' and
the real part of c:

2 Br 2 2 Bgp 2

mp = ATmQ , Migp = ABmQ . (54)
The imaginary part of ¢ remains at zero mass, which is
expected, because this field is the Goldstone boson of
spontaneously broken baryon number symmetry U(1)p.
The constraint (34) removes one linear combination
of the fermionic components of the baryon fields. Oth-
erwise, no fermion masses appear until we add the R-
symmetry-breaking terms involving mg,. Then the term

(47) gives mass to the remaining baryonic fermion,

myp = —— My ,

o (55)

but it leaves the fermionic components of T' massless.

D. Toward the decoupling limit

In the vacuum state at b = 0, when we include a
nonzero gluino mass mgy, we find again the standard
symmetry-breaking pattern expected in QCD. The global
group SU(Ny) xSU(Ny) xU(1) g is broken spontaneously
to SU(Ny)v x U(1)p, leaving no massless particles ex-
cept for the required Goldstone bosons. It is reason-
able to expect that here, as in the cases considered in
Sec. III, there is a smooth transition from the situation
of weak supersymmetry breaking to the decoupling limit
m2, mg — co. The symmetry-breaking term (47) also in-
duces a nonzero F' term for the SU(NN¢)y singlet part of
T. This term should go naturally, in the decoupling limit,
into the chiral symmetry-breaking expectation value of
the quark-antiquark bilinear.

However, all of the other vacuum states that we have
identified are unusual and unexpected. All of them con-
tain massless composite fermions. The vacua at T = 0
have restored chiral symmetry and spontaneously broken
baryon number. Could these vacuum states survive to
large values of the supersymmetry-breaking parameters?

To answer this question, we must first understand why
these vacua contain massless fermions. In general, in a
strongly coupled gauge theory, chiral symmetries with
nonzero anomalies generate sum rules over the spectrum
of zero mass particles. These sum rules can be satu-
rated either by Goldstone bosons, if one of the symme-
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tries is spontaneously broken, or by massless compos-
ite fermions, if the symmetries remain exact. In the
latter case, the anomalies computed from the compos-
ite fermions must match the anomalies of the original
fermions; this is the 't Hooft anomaly matching condi-
tion [1,17].

The three unusual vacua discussed in this section, the
b = 0 vacuum of the R model and the T = 0 vacua of
the R and R models, all have unbroken anomalous chi-
ral symmetries. In all cases, the fermionic content of
the supersymmetric model is known to provide a solu-
tion to the 't Hooft anomaly conditions associated with
these symmetries [6, 18]. In fact, one might say that the
fermions are protected from obtaining masses by the 't
Hooft anomaly conditions, because providing masses for
a subset of the multiplet of fermions would leave over
a set of fermions which violates the 't Hooft conditions
and is therefore inconsistent, unless the chiral symmetry
is broken.

An interesting illustration of this argument is found
by comparing the spectra of massless fermions in the
two vacuum states at T = 0 in the R and R models.
In the R model, we have massless fermions in the fol-
lowing representations of the unbroken symmetry group
SU(Nys) x SU(N¢) x U(1)g:

(Nf’Nf7_1)+(171a_1) P (56)
corresponding to the fermions in 7" and a linear com-
bination of the fermions in B and B. Both multiplets
are necessary to satisfy the anomaly conditions involving
U(1)gr. When U(1)g is broken explicitly by mg,, these
conditions no longer need to be satisfied, and so the bary-
onic fermions can obtain mass. According to (55), they
do.

Because the massless composite fermions in these vac-
uum states exist in order to satisfy the ’t Hooft anomaly
conditions, the qualitative properties of these vacuum
states are quite rigid. We should recall that the T = 0
vacuum and the b = 0 vacuum, for Br < Bp, are locally
stable minima of the energy for sufficiently small m%z;

thus, there is a finite range of mf—e for which the pattern
of symmetry breaking remains unchanged. Given this
pattern of symmetry breaking, the multiplet of compos-
ite fermions cannot obtain mass. Even if the composite
fermions contain as constituents bosons Q or Q which ob-
tain mass from the mg? term, the composites are bound
rigidly to remain at zero mass. This idea, that composites
of massive constituents may be forced to remain massless
in order to satisfy the 't Hooft condition, was formulated
by Preskill and Weinberg [11].

Even if a vacuum with unbroken chiral symmetry is
globally unstable to tunneling processes, the 't Hooft ar-
gument applies as long as it is locally stable. Thus, a
vacuum with unbroken chiral symmetry can only disap-
pear, as mz,mg — 00, through a second-order phase
transition.

With this introduction, we can speculate on the evolu-
tion of these vacuum states as m2, and mg are increased
from zero. Consider first the b = 0 vacuum of the R
model. As m% is taken to infinity, the squarks decou-
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ple, and the model becomes a purely fermionic Yang-
Mills theory with Ny quark flavors plus one fermion fla-
vor in the adjoint representation of the gauge group. For
small values of the supersymmetry-breaking mass sz,
this vacuum contains massless fermions corresponding to
the fermionic components of the superfields T, B, and
B. We might think of these as being built out of scalars,
with one squark replaced by a quark to give the compos-
ite spin % But it is also possible to build objects with
the same quantum numbers purely out of fermions, by
replacing

Qi — Aa¢iQa ) 6] - Aa’/’@,j )

where « is a two-component spinor index and the gauge
indices are implicit. Notice that this combination has the
same quantum numbers as the squark, including zero R
charge. Then, for example, the fermion created by T*;
could be constructed as

Yra'; = VouXVog; -

With this replacement, the composite fermions are built
only out of constituents which remain massless as the
squarks are decoupled. Thus, it is a priori reasonable
that the b = 0 vacuum of the R model could go smoothly
into a vacuum of the purely fermionic Yang-Mills the-
ory described above. This vacuum would have broken
SU(Ng) x SU(Ny) but unbroken chiral U(1)g, zero val-
ues for the vacuum expectation values of quark-antiquark
bilinears, massless composite fermions in the adjoint rep-
resentation of flavor SU(Ny)y, and massless baryons. We
will refer to this scenario as “option 1.” It will have
analogues in the models to be discussed later; however,
these analogous phases will be less well motivated. It
is easy to see that the replacement (57) can formally be
used to build composite fermions with only fermionic con-
stituents in any model with unbroken R symmetry.

The other possibility for this model is that, after the
squarks decouple, the gluino fields pair condense, in a
second-order phase transition at some value of m2, and
the nonzero value of the condensate (A - A) spontaneously
breaks U(1)g. In this case, the physics would revert to
the usual symmetry-breaking pattern of QCD, and the
composite fermions would become massive. The gluino
condensate would make itself felt only by providing an
extra SU(Ny)-singlet Goldstone boson. We will refer to
this scenario as “option 2.”

One way to understand the physical distinction be-
tween options 1 and 2 is to consider a question raised
some time ago but never answered in a satisfactory way:
If a fermion in a large color representation is added
to QCD, does its pair condensation to chiral symmetry
breaking occur at the usual QCD scale or at much shorter
distances [19, 20]? If gluinos pair condense at very short
distances, before normal quarks feel the full forces of the
strong interactions, then option 2 would be favored. If
gluinos feel strong interactions at more or less the same
scale as quarks, option 1 is a reasonable possibility. An
extreme model in which gluinos condense and decouple
at a very high scale, as suggested in the papers just cited,
appears unlikely as a result of our analysis, because we

(57)

(58)
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know that option 1 is actually realized when squarks are
added back to the model.

Consider next the vacuum state at 7" = 0, first in the
R case. In this model, the massless composite fermions
belong to the (N, Ny) representation of an unbroken fla-
vor group SU(Ny) x SU(Ny). There are no constraints
from the U(1)r symmetry, which is explicitly broken,
or from baryon number, which is spontaneously broken.
With this freedom, can we build these fermionic com-
posites out of fields that survive in the decoupling limit
mé, mg — 0o? For IV, even, it is impossible, because the
only constituents available are the quarks 1,biQ, 1/151-, and
gauge-invariant states must contain an even number of
these. For N, odd, however, it is possible to build com-
posites with the correct quantum numbers, as follows:

; od i Bk —¢
Yra'; = €Yk, €ik--e¥VGp " VOsd » (59)

where E@ is the right-handed fermion field in (Q)*.
The (N. — 1) right-handed fermion fields must be con-
tracted into a Lorentz scalar combination. For the case
Ny = N = 3, eight of the nine fermions in (59) have the
quantum numbers of the baryon octet in QCD.

However, in this case, there are two compelling argu-
ments that the spectrum which we find cannot survive
to the decoupling limit. In the limit mé — o0, even
without introducing mg, we have a vectorlike gauge the-
ory of fermions. For such theories, the QCD inequali-
ties of Weingarten [21] and Vafa and Witten [22] apply.
In the Appendix, we use Weingarten’s method to prove
that, in the decoupling limit, flavor-nonsinglet composite
fermions must be heavier than the pions, which are mas-
sive in the T = 0 vacuum. Alternatively, we can apply
the theorem of Vafa and Witten in the decoupling limit
to show that vectorlike global symmetries, in particular,
baryon number, cannot be spontaneously broken.

By either argument, the 7' = 0 vacuum state must
disappear in a second-order phase transition at a finite
value of mé. Most likely, this vacuum becomes locally
unstable with respect to a decrease in the expectation
value of b, driving the theory back to the more familiar
vacuum at b = 0.

Finally, we may consider the 7' = 0 vacuum in the R
models. The arguments that we have just presented for
the T' = 0 vacuum in the B models apply equally well to
the R case. Again, we must have a second-order transi-
tion, probably with an instability to the b = 0 vacuum.
There are then two possible end points, depending on
which option is chosen for the b = 0 vacuum. If the op-
tion 1 for the b = 0 vacuum is correct, it is not necessary
that U(1)r be spontaneously broken in this transition.

V. N; = (N. + 1)

So far we have considered separately models with Ny <
N, and models with Ny = N,. The cases where the
number of flavors exceeds the number of colors fall into
two classes, those of Ny = N, + 1 and those of Ny >
N_ + 1. These two classes of theories have qualitatively
similar physics, in both cases much simpler than that of
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Ng = N..

In the case of Ny = N.+1, like in the case of Ny = N,
the low-energy effective Lagrangian in the supersymmet-
ric limit is expressed in terms of the baryon, antibaryon,
and meson superfields. However, now these superfields
are not R neutral, and the baryons are not flavor sin-
glets. Rather, they transform in the representations of
the global symmetry (2),

B: (Ffﬁ)l,l_%’, B: (1,Nf)_1’1_7v1;,

T: (Ns,Ny)o, 2 (60)

*Ny
where the second subscript is the R charge of the scalar
component of the superfield. In the supersymmetric the-
ory the low-energy effective theory is described (at least
near the origin of moduli space) by the Kahler potential
given by (8) and by the following superpotential [6]:
W = B,TiB — detT. (61)
The supersymmetric vacuum is, thus, described by a
moduli space characterized by
B;Ti= 0, T{B" = 0,
1

. i JusendNg Py
N1 i € T

Ti¥ - B;, B’ =0.

c (62)

As was argued in [6], these equations correctly describe
the moduli space of vacuum states in the full quantum
theory. At the origin of the moduli space, (T) = (B) =
(B) = 0, where the full global symmetry (2) remains
unbroken, there is a further consistency check for the
low-energy behavior. The fermionic components of the
low-energy superfields (60) match the global anomalies
of the underlying theory.

A. Vacuum

When we break supersymmetry by squark and gluino
masses, we add to the effective Lagrangian the mass
terms for T, B, and B indicated in (11). Since we are
adding terms to the potential which are positive and van-
ish at the origin of moduli space, it is obvious that the
origin becomes the only vacuum state of the theory. All
of the scalar particles in the effective theory obtain mass
terms proportional to Bym2, or BBsz.

Though all of the scalars obtain mass, all of the
fermions remain massless. The superpotential (61) is a
least cubic in fields, and so any mass term derived from
this superpotential vanishes at the origin. Similarly, in
the B case, the M, term in (11) requires a function of T,
B, and B which is neutral with respect to the global
group; the only such functions quadratic in fields are
tr[T*T], B'B, and FTE, and these do not give fermion
masses when integrated with M. In fact, it is required
that no fermions should obtain mass, since the full mul-
tiplet of fermions in T, B, and B is needed to satisfy
the ’t Hooft anomaly conditions for the remaining global
symmetry group SU(Ny) x SU(Ny5) x U(1)B.
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B. Toward the decoupling limit

The analysis of the previous section indicates that in
a finite region of small mg and mg,, the ground state
of the theory is a smooth continuation of the origin of
the moduli space of supersymmetric vacuum states. In
this region of soft supersymmetry-breaking parameters,
chiral symmetry is unbroken, and the full complement
of fermions is kept massless by the requirement that the
’t Hooft anomaly conditions be satisfied. In the R case,
since both gluinos and squarks are massive, at least some
of the massless composite fermions must have massive
constituents. As in our earlier examples, these particles
are protected from receiving mass by the ’t Hooft condi-
tions.

In neither the B nor the R case, however, can this spec-
trum of particles be correct in the decoupling limit. In
that limit, the Weingarten inequality proved in the Ap-
pendix prohibits a composite fermion which is nonsinglet
in flavor from remaining massless while the pion is mas-
sive. In both cases, then, the phase we have found at
small mg must disappear at a second-order phase tran-
sition when mg reaches a critical value. In the I case,
the theory has no option but to revert to the conven-
tional pattern of symmetry breaking in which the chiral
symmetry group is broken to SU(Ny)y x U(1)p and all
fermions become massive.

For the R case, however, there are still two options,
corresponding to options 1 and 2 described in Sec. IV D.
Option 2 is the scenario just described for the R case,
with symmetry breaking to SU(Ny)v x U(1)p and one
extra Goldstone boson. Option 1 is the breakdown of the
chiral symmetry group only to SU(N; )y xU(1) g xU(1)r.
In order to satisfy the 't Hooft anomaly conditions asso-
ciated with the U(1)g, all of the fermionic components
of T, B, and B must remain massless. As in the case
considered in Sec. IV D, we can build all of the required
massless fermions out of quarks and gluinos by using the
replacement (57). In this case, as opposed to that of
Sec. IV D, the partial symmetry breaking required in op-
tion 1 is not particularly well motivated. However, we
have not been able to rule it out as a possibility. We
should also note that, even if this case is realized in the
more conventional option 2, the case Ny = N, could be
realized in option 1. There is no theorem that, when one
quark becomes very heavy, fermions not containing that
quark cannot become massless.

VI. Ny > (N: +2)

No solution of the 't Hooft anomaly matching condi-
tions for SQCD involving gauge-invariant bound states
is known for Ny > (N, + 1). However, Seiberg has sug-
gested a compelling solution to these constraints in terms
of new gauge degrees of freedom which are dual to the
original quarks and gluons [7]. In this picture, the the-
ory is equivalent in the infrared to an SQCD theory with
gauge group SU(Ny — N.), Ny dual quark flavors, and
additional singlet fields T*; identified with the mesons of
the original theory. The original SQCD theory is infrared
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free for Ny > 3N, so that in that case the low-energy
description of the theory is in terms of the original quarks
and gluons. For Ny < %NC, the dual “magnetic” theory
is infrared free, and then the low-energy description of
the theory should be in terms of the dual quarks, gluons,
and the singlet meson fields. In the intermediate range
%NC < Ny < 3N, both theories are asymptotically free.
Seiberg suggested that, in this region, the theory has a
nontrivial infrared fixed point, and the theory has dual
descriptions in the infrared as interacting gauge theories
with superconformal global symmetry. While the origin
of this dynamically generated gauge symmetry is still un-
clear, there is ample evidence that Seiberg’s description
of the SQCD theory is correct, and we will assume it
throughout this section.

If we break supersymmetry by giving masses to some of
the fields of SQCD, the leading term of the 3 function will
change for distances greater than the scale of the masses.
The long-distance gauge theories will be asymptotically
free in a larger range of Ny, for Ny < ch after adding
squark masses, and for Ny < %—Nc after adding squark
and gluino masses. Beyond the point where the theory is
asymptotically free, we expect the effects of adding soft
SUSY-breaking mass terms to be trivial. The massless
particles are expected to be infrared free, and there is no
reason for the chiral symmetry to break. We will con-
centrate our analysis, then, on the cases of Ny relatively
close to the boundary (V. + 2), where the original gauge
theory becomes strongly coupled and the dual descrip-
tion is appropriate in the infrared. In the next subsection
we will analyze the effect of adding soft SUSY-breaking
mass terms on the dual description of the theory. In the
second subsection we will discuss in what range of Ny we
expect this dual description to be relevant, and speculate
on the infrared behavior of the theory for different values
of N f-

A. Spectrum and vacuum of the dual theory

Seiberg’s dual description of SQCD has an SU(NC) lo-
cal gauge symmetry, where N, = (Ny — N,) as in (5).
The elementary fields in the dual theory are an SU(N,)
supergauge multiplet, Ny flavors of dual quarks ¢¢ and
antiquarks g2 in the fundamental and antifundamental
representations of SU(NC), respectively, and meson fields
T*;. The quark fields are in the ({4, 1) representation
of the SU(Ny) x SU(Ny) flavor group, the antiquark fields
are in the (1, Ny) representation, and the meson fields are
in the (INz, {N7) representation. It is useful to think that
the dual quarks are obtained by dissociating a baryon
(6) into N, components, and that the new gauge fields
parametrize a constraint which gives these baryons as its
solutions. Seiberg also requires a superpotential

W =T'q}q., (63)

so that the scalar potential, including the F and D terms,
is
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1 rvartni b
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g2 . .
+5[(gNirta - @) ), (64)
where g is the SU(NC) gauge coupling, and 74 are the
SU(Ns—N.) generators. Ar and A, are the coefficients of
the corresponding (canonical) kinetic terms. This scalar
potential has a moduli space of vacua, which includes the
point (T") = (g) = (g) = 0 at which the chiral symmetry
is unbroken [7].

Now add squark masses to the theory. Their effect
should be seen in the effective Lagrangian, and we can
represent it by applying the logic of Sec. II C to the
dual theory. That is, we should add to the effective La-
grangian of the dual theory the term

AV = Brmbtr(T'T) + Bymd(lql® + [g1?), (65)

at least near the origin of moduli space. After we add
this perturbation, the only minimum of the potential is
at (T) = (¢) = (g) = 0. Thus, adding a squark mass
leaves the theory in the phase in which the chiral sym-
metry is unbroken. All scalars get masses (originating
only from AV, since the original scalar potential is quar-
tic in the fields), while all fermions remain massless. As
in the original supersymmetric theory, this complement
of massless fermions has just the right quantum numbers
to satisfy the ‘t Hooft anomaly conditions for completely
unbroken chiral symmetry. Thus, our picture of the ef-
fect of soft supersymmetry breaking in this case is just
the same as in the case Ny = (N, + 1) considered in the
previous section, except that the baryons of that case are
replaced here by their constituent dual quarks.

The glueball operator tr(W?2) is identified (up to a
sign) between the original and the dual theory [23]. Thus,
to leading order in mg, a gluino mass in the original the-
ory is just equal to a gluino mass in the dual theory.
Adding this term breaks the U(1)g symmetry, but the
SU(Nys) x SU(Ny) global symmetry still remains and pro-
tects the dual quarks from getting a mass. Thus, we find
the same spectrum in the R and R cases, except that in
the latter case the dual gluino, which can be an asymp-
totic particle, becomes massive.

B. Toward the decoupling limit

Let us discuss now the infrared description of the the-
ory. We consider first the case of small mg (and small
mg, in the B case). We have already remarked that, for
Ny > 1N, (Ny > §N. in the R case), the theory be-
comes free in the infrared and is well described in terms
of the original variables—gluons and quarks (and gluinos
in the R case). This statement applies equally w«i‘:ll to
the dual version of the theory. Thus, for Ny > 1—21NC, or
Ny < %Nc, the dual theory is free in the infrared. For
the R theory, the corresponding criterion is Ny < ch.
In this range of Ny, the spectrum of the theory contains
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massless dual quarks interacting weakly through a dual
gauge field which becomes asymptotically weak at large
distances. Unfortunately, this range of Ny is rather nar-
row; the first example requires an SU(8) gauge group and
ten flavors, even in the R case.

However, it is likely that Seiberg’s duality would still
hold in the intermediate range of Ny: %Nc < Ng < L;—Nc
in the R case and ch < Ng < %Nc in the K case. As in
the supersymmetric case, we can prove the existence of
an infrared fixed point for values of Ny very close to the
boundary of this region by using the fact that the sec-
ond coefficient of the QCD B function is positive when
the first coeflicient vanishes [24]. Thus, some part of this
intermediate range is controlled by a nonsupersymmetric
infrared fixed point. At least when the fixed point cou-
pling is sufficiently small, the chiral symmetries of the
theory remain unbroken and the spectrum still contains
massless quarks or dual quarks. If at some value of Ny,
the massless fermions are no longer asymptotic states,
and then also the solution to the ’t Hooft anomaly con-
ditions is lost and the theory reverts to a scenario with
broken chiral symmetry.

The discussion of the decoupling limit for these theo-
ries is very similar to that for the Ny = (V. + 1) the-
ory. If the full chiral symmetry group remains unbroken
for small values of mg, the fermions in the supermul-
tiplet T still cannot remain massless in the decoupling
limit where we have the QCD inequality, precisely as
discussed in Sec. V B. Thus, those values of Ny which
have massless fermions for small values of mg must have
a second-order phase transition as mg is increased. It
is not clear how the theory behaves on the other side
of this phase transition. In the B case obviously only a
SU(N¢)v x U(1l)p symmetry remains, with no massless
fermions. However, in the R case, we can use the dual
fermions in T, q, and g to solve the 't Hooft anomaly
equations associated with U(1)g. Thus, in this case, we
have available both option 1, in which the chiral group
is broken to SU(N¢)y x U(1)p x U(1)g and all fermions
remain massless, and option 2, in which the chiral group
is broken to SU(Ns)y x U(1)p and all fermions obtain
mass.

VII. N. =2

For N. = 2 there is no distinction between massless
quarks and antiquarks, so that the global symmetry in
the supersymmetric limit is SU(2Ny) x U(1)g instead
of SU(Ny) x SU(Nys) x U(1)p x U(1)g: This changes
some of the details in the discussions above, but does
not change the qualitative picture. The meson is now
given by T9 = Q'Q7, in the antisymmetric represen-
tation of SU(2Ny), and the superpotential generally in-
volves Pf(T') instead of det(T). There are no baryon op-
erators in this case; rather, the baryons of the previous
examples are absorbed into the extended meson multi-
plet. In the usual QCD theory with two colors, the global
symmetry breaks from SU(2Ny) to Sp(2Ny) [we denote
by Sp(2N¢) the Sp group whose fundamental represen-
tation is of size 2/Ny]. We shall now discuss the picture
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after soft SUSY breaking for each relevant value of Ny.

For Ny = 1, the behavior is similar to the other cases
Ny < N.. The effective Lagrangian has a superpotential
of the form W = 1/Pf(T). There is just one vacuum,
in which T2 obtains an expectation value, breaking the
flavor symmetry from SU(2) x U(1)g to Sp(2) [which is
isomorphic to SU(2)]. The meson T'? is the Goldstone
boson for the breaking of the U(1)g symmetry in the R
case; this particle obtains a mass when we add a gluino
mass. A smooth transition is expected to the decoupling
limit, as for N, > 2.

For Ny = 2, the moduli space of supersymmetric vac-
uum states is constrained by the equation Pf(T) = 1 [6].
As in Sec. IV, the potential from the soft supersymmetry-
breaking terms can be considered on the space satisfying
this constraint. Then, up to global symmetry transfor-
mations, there is just one stable vacuum, for which

o2

T = ( A ;’2) . (66)
This breaks the SU(4) flavor symmetry to Sp(4). In the
R case, the U(1) g symmetry is left intact. The fermionic
fluctuations around the vacuum (66), which transform as
6, under SU(4) x U(1) g, decompose under Sp(4) x U(1)r
as (5 + 1);. For small values of the SUSY-breaking pa-
rameters, the fermions in 5; remain massless and satisfy
the 't Hooft anomaly matching conditions for the unbro-
ken symmetry group Sp(4) x U(1)g [6]. In the R case,
there are two options for the decoupling limit, as in the
b = 0 vacuum of Sec. IV. In option 1, this spectrum
continues smoothly to the decoupling limit. In option
2, the U(1) g symmetry is spontaneously broken and the
fermions in the 5; obtain mass. In the R case, as in
the discussion of Sec. IV, the vacuum state obtained for
small supersymmetry breaking has no massless fermions
and can smoothly become the standard QCD vacuum as

mg — o0.
For Ny = 3, the effective description of the SQCD
theory has a superpotential of the form W = —Pf(T)

[6]. In the supersymmetric case there is a moduli space
of vacua, but adding the squark masses leaves only the
vacuum at T = 0, as for N. > 2. At this vacuum the
chiral symmetry is unbroken. All of the fermions, which
are in the 15_; 3 representation of the global symmetry,
remain massless, and this multiplet satisfies the 't Hooft
anomaly matching constraints [6]. As in Sec. V, in the
decoupling limit we expect a second-order phase transi-
tion, breaking the global symmetry from SU(6) x U(1)g
to Sp(6) x U(1)gr or to Sp(6).

For Ny > 4, SQCD theory has a description in terms
of dual gauge variables. For Ny < 6, the theory is con-
jectured to be described by an infrared fixed point. As
in Sec. VI, we expect the theory near the supersymmet-
ric point to be either at some nontrivial infrared fixed
point with the chiral symmetry unbroken or to be in a
QCD-like phase in which the chiral symmetry breaks to
Sp(2N¢). In these cases, the dual gauge group is always
asymptotically free, and so we do not expect a phase in
which the dual gauge symmetry is weakly coupled. Thus,
the dynamically generated gauge symmetry suggested by
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Seiberg should be difficult to identify in simulations with
the gauge group SU(2).

VIII. PROBLEMS OF APPROXIMATE
SUPERSYMMETRY ON THE LATTICE

Can the phenomena we have discussed in this paper
be seen in lattice gauge theory simulations? Throughout
this paper, we have considered only soft supersymmetry-
breaking perturbations. However, since, in general,
gauge theories on the lattice cannot be made super-
symmetric at the fundamental level, we expect that lat-
tice simulations of these theories will also contain small
dimension-4 perturbations which violate supersymmetry.
Our analysis has been based on the assumption that, if
the phenomena discussed by Seiberg survive perturba-
tions which are relevant in the infrared, they should also
survive small marginal perturbations.

However, there is a serious difficulty with this logic.
Our argument does not apply unless we can reach the
continuum limit. But typically in lattice gauge the-
ory simulations with scalar fields, there is no continuum
limit; instead, one finds a first-order phase transition as
a function of the scalar field mass parameter [25]. This
fact is understood using the mechanism discovered by
Coleman and Weinberg [26]: Renormalization effects in
a gauge theory can induce an unstable potential for a
scalar field coupled to the gauge bosons, leading to a
“fluctuation-induced first-order phase transition.” We
must ask whether there is a possibility of such first-order
phase transitions in approximately supersymmetric mod-
els, and, if so, how they can be avoided.

To analyze this question, consider the renormalization
group equations for an approximately supersymmetric
gauge theory. Viewed as a conventional renormalizable
gauge theory, SQCD has three coupling constants, the
gauge coupling g, the quark-squark-gluino coupling g,
and the four-scalar coupling gp. The scalar potential
has the specific form

2 2
=_art
v=2[oirg-ar4q| (67)
where 74 is an SU(NV,) matrix. If we relax the constraint
of supersymmetry, there are four possible invariants un-
der the symmetries of the problem, including the contin-

uous global symmetries and parity Q + @T. The most
general linear combination of these invariants can be gen-
erated by the renormalization group flow.

We will view the lattice theory as providing a finite cut-
off for the quantum field theory, which does not respect
supersymmetry. In this cutoff field theory we will choose
the bare couplings to obey the supersymmetry relations,
at least approximately. In particular, we will choose the
bare scalar potential to be given by (67). The radiative
corrections will cause a finite renormalization of the cou-
plings, which will violate supersymmetry and generate
other scalar potential terms. We expect the generated
terms to be smaller than the original terms. Our analy-
sis of the renormalization group flow of the theory will,
therefore, be performed near the supersymmetric point.
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In particular we will restrict our analysis to the surface
given by the three couplings g, g, and gp. We assume
that our initial conditions lie near this surface, and we
are interested in the flow of the couplings towards the
infrared. Note that since we we are not interested in
scaling towards the continuum limit, we do not analyze
here the flow of the couplings towards the ultraviolet. It
is not possible to ensure that all couplings tend smoothly
to zero in the ultraviolet without fine adjustment of their
initial values.

In the surface given by g, gx, and gp, the B functions
of the three couplings are given (to leading order in per-
turbation theory) by

1
(a2
Box = —ﬁ{gxgz [3N. + 3C3(N,)]

—g3[3C2(N.) + N¢},

ﬂg:‘ [3Nc_Nf]g3a

1
Bz, = _W{z;gﬁm + 295 [N. — Ny — 2C3(N.)]
+12¢59%C2(Nc) — 8¢5 g3 C2(Ne)} (68)

where C3(N.) = (ch — 1)/2N.. These three functions
all reduce to the standard SQCD g function on the su-
persymmetric subspace; for g2 = g2 = g%, B, = B4, =
Bz, /2g. Note that, for N. ~ Ny and the three couplings
in reasonable ratio, all three couplings are infrared un-
stable. In particular, g2 is renormalized toward larger
positive values.

The potential instability to a first-order phase transi-
tion arises because a new structure in the potential is
induced by the renormalization group flow. To lowest
order, the form of the potential induced is

2
= t
Ve = LN rPIQ+ Q4 P10 . (89)
On the surface g% = 0, the 3 function for g% is

B,a = —@[@i 3%~ ghl. (70)

This equation implies that, if one leaves out the gluinos,
9% becomes negative in the infrared, leading to a
fluctuation-induced first-order phase transition. Accord-
ing to (70), this effect is removed if the lattice simulation
includes gluinos, and if the gluino coupling g, is large
enough. If we choose initial conditions in which g, is
slightly larger than g, Eq. (68) guarantees that this con-
dition will be preserved along the renormalization group
flow. Equation (70) then shows that no instability is gen-
erated in the perturbative region. Hopefully, this pertur-
bative result remains valid as we flow towards the in-
frared.

With this provision to avoid possible first-order phase
transitions, we expect that lattice simulations with an
approximately supersymmetric action can reach the con-
tinuum limit and test our predictions for softly broken
supersymmetric QCD.
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IX. SUMMARY AND CONCLUSIONS

In this paper we investigated softly broken N = 1
supersymmetric QCD. We considered two types of soft
breaking terms, associated with squark masses mg with
or without additional gluino masses mg,. We denoted
these cases by B and R, respectively. In the limit of
mgq, mg — oo the R case should go over to ordinary QCD,
while in the R case, in the limit m¢g — oo, we recover
QCD with an additional massless adjoint fermion. The
two main questions that we addressed are the following:

To what extent do the results which were recently ob-
tained for N = 1 SU(NV,.) SQCD [6, 7], and for other
N =1 supersymmetric gauge theories as well, carry over
to the nonsupersymmetric case? Is supersymmetry an
essential prerequisite for those exotic phenomena?

How does the theory behave in the decoupling limit, in
which we take the soft breaking terms (mg in the R case
and mg, my in the & case) to be very large compared to
the dynamically generated scale A?

Our main results are the following:

(i) All the “exotic” phenomena that characterize the
supersymmetric theory continue to exist for small values
of the soft breaking mass parameters.

It seems that the appearance of the exotic behavior is
not related to supersymmetry, though it probably is re-
lated to the presence of fundamental scalar fields. The-
ories which include scalar fields generally do not possess
a positive definite measure for the gauge fields; this is
the case in particular for supersymmetric gauge theo-
ries as well as for the softly broken supersymmetric theo-
ries. In these cases we cannot apply the QCD inequalities
method, as used in the Appendix, to obtain information
about the theory. We recall that in QCD the inequalities
imply chiral symmetry breaking.

The presence of massless composite fermions in the su-
persymmetric case has a natural explanation in terms of
supersymmetry. For Ny > N., SQCD contains a mani-
fold of degenerate vacuum states. The fluctuations along
the flat directions of the potential are described by effec-
tive scalar fields, and these scalar fields must have super-
symmetric partners, which are massless fermions. Soft
supersymmetry breaking removes the vacuum degener-
acy and the flat directions of the scalar potential. Nev-
ertheless, we saw that, in all cases except for the baryon-
number-conserving vacuum of the I case for Ny = N,
the massless composite fermions of the supersymmetric
limit remain massless after soft supersymmetry breaking.

For the Ny = N, and Ny = N + 1 cases, the mass-
less fermions are gauge-invariant composite states. They
are required to remain massless in order to satisfy the
't Hooft anomaly matching conditions corresponding to
unbroken chiral symmetries in the energetically preferred
vacuum state. This requirement is strong enough to
keep the composite fermions massless even though their
squark constituents obtain mass from soft supersymme-
try breaking.

For Ny > N.+1, Seiberg argued that the N = 1 SQCD
theory admits a dual description in the infrared. This
dual theory contains a dynamically generated gauge sym-
metry which is infrared free for Ny < %Nc and possesses a
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nontrivial infrared fixed point for 3N, > Ny > %Nc. The
dual theory contains massless composite fermions which
belong to nontrivial representations of the dual gauge
symmetry. We have argued that such a dual description
will also exist for the softly broken theories, for some val-
ues of Ny and for small enough mqg and mg,. The dual
gauge theory is infrared free for Ny < LN, in the R case
and for Ny < %Nc in the R case. For %Na < N;g < l—lec
in the R case, and %NG < N; < %NC in the R case, we ex-
pect to find a situation in which the theory is controlled
by a nontrivial infrared fixed point, with weak coupling
for the dual theory at the low-N; boundary and weak
coupling for the original theory at the high-N; bound-
ary. As in the supersymmetric case, the existence of this
fixed point can be proved near the boundary, that is, for
large Ny and N, approximately in the boundary ratios.
It is likely that a single infrared fixed point interpolates
between these two boundary situations.

The prospect of finding this kind of infrared duality for
nonsupersymmetric gauge theories is quite exciting. In
the supersymmetric case we have several arguments and
cross-checks which support the presence of the duality.
These include satisfaction of the ’t Hooft anomaly match-
ing conditions, identification of all the gauge-invariant
operators in the chiral ring, identification of all flat di-
rections, and verification of the behavior under mass per-
turbations [7]. So far the evidence for duality in the
softly broken theories relies only on the fact that the
’t Hooft anomaly matching conditions are satisfied, and
on their connection with the SQCD theory. For small
supersymmetry-breaking parameters, the identification
of those gauge-invariant operators which were identified
in SQCD still goes through. However, some operators
which were not identified in SQCD (such as the mesons
made from the dual quarks) apparently should be iden-
tified after soft supersymmetry breaking. It seems that
the low-energy spectrum after soft supersymmetry break-
ing should remain the same as in SQCD, except for the
splitting between the states in a supermultiplet. Hence,
naively, we would expect the operator identification to
work in the same way. Clearly, we would like to have
more support for the nonsupersymmetric duality conjec-
ture. This is not easy in view of the fact that we have
few tools for analyzing the nonperturbative behavior of
the theory in the nonsupersymmetric case.

(ii) In the decoupling limit most of the “exotic” phe-
nomena disappear.

As we move towards the decoupling limit in which we
take mq (and also my in the I case) to be large, it seems
that most of our “exotic” phenomena disappear. Typi-
cally, in these cases we encounter a second-order phase
transition to the chirally broken phase of QCD. This
behavior is dictated by arguments that generalize mass
inequalities of vector like gauge theories [21, 22]. For
Ny < N, and for the baryon-number-conserving vac-
uum in the B case for Ny = N,, the decoupling limit
to QCD is achieved through a smooth transition from a
softly broken vacuum which already exhibits the QCD
chiral symmetry breaking. The corresponding R case in
this last model is ambiguous, as described below. In the
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other cases that we considered, the decoupling limit is
reached by a second-order phase transition at some fi-
nite value of mg in which chiral symmetry is broken.
Investigating this phase transition is another interesting
problem which we leave for future research.

In the R cases, it is possible that some exotic phenom-
ena might survive the decoupling limit. For these theo-
ries, we presented two options for the decoupling limit,
option 2, with a conventional chiral symmetry-breaking
pattern and no massless fermions, and option 1, with the
full chiral symmetry broken to SU(N¢) x U(1)g x U(1)g
and a multiplet of massless fermions necessary to satisfy
the 't Hooft anomaly conditions for the unbroken U(1)g.
The required composite fermions can be constructed from
massless quarks, antiquarks, and gauginos. We have not
found any argument based on QCD inequalities to rule
out this possibility. However, only in the the baryon-
number-conserving vacuum for Ny = N, in the R case
did this symmetry-breaking pattern arise naturally. In
all other cases, this pattern still requires a second-order
phase transition from the vacuum which is preferred at
small mq.

On top of the exotic behavior discussed above, there
are further obvious differences between the infrared do-
main of the supersymmetric gauge theories and their de-
coupling limits. Here are several examples: (1) In the su-
persymmetric case the order parameters associated with
the chiral symmetry breaking are expectation values of
squark bilinear operators, whereas in QCD quark bilin-
ears play this role. (2) Supersymmetric fermionic baryons
are composites of N.—1 squarks and one quarks. (3) Only
totally antisymmetric flavor representations are relevant
for the SQCD baryons. In the cases in which the vacuum
at small mg can go continuously into a vacuum of the
decoupling limit, we have found that the order parameter
is in fact a mixture of the condensates of both bilinears,
and that it shows level-crossing behavior. Close to the
supersymmetric limit, the dominant component is the
squark-squark condensate. As we go to the QCD limit,
this contribution becomes negligible and the quark-quark
condensate takes over. If option 2 for the R case, as de-
scribed above, is realized, there is a related level-crossing
phenomenon, in which squark building blocks of compos-
ite fermions in the supersymmetric limit are replaced in
the decoupling limit by a quark-gluino combination that
has identical quantum numbers.

(iii) The ezxotic behavior of the region close to the su-
persymmetric limit should be detectable in lattice simula-
tions.

Simulations of softly broken SQCD should be easier
to perform than direct simulations of SQCD, since it is
difficult to maintain supersymmetry on the lattice. It
may still be nontrivial to locate the region of the lattice
coupling constants which reflects softly broken SQCD,
because this theory still has specific relations among its
renormalizable couplings. However, we have argued that
this region can be found without unusual fine-tuning.
In particular, we have discussed the issue of possible
first-order phase transitions in lattice gauge theories with
scalars and indicated how to avoid them. With this bar-
rier removed, we expect the lattice simulations to reach
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the continuum limit and reveal the rich structure of the
exotic phenomena described in this paper.

Finally, we list some additional issues which we have
not resolved, and which remain problems for future work.

The major difficulty encountered in passing from the
supersymmetric gauge models to QCD is the identifica-
tion of the SUSY-breaking operators. It is usually not
easy to identify the relevant SUSY-breaking operators in
the low-energy effective potential description. As we ex-
plained in Sec. II, in softly broken supersymmetric the-
ories we do have some control over this problem. Fol-
lowing [14], we can show that our choice of the SUSY-
breaking operators corresponds to those obtained from
a supersymmetric theory which includes some additional
chiral superfields via spontaneous supersymmetry break-
ing. In fact, with this approach one can relate the re-
sulting squark mass term to the K&hler kinetic term in
the underlying original SUSY theory. Thus, our lack of
control over the soft breaking terms is related to our lack
of control over the Kahler term. Clearly this question de-
serves further study. We have also noted that other terms
which may appear in the operator identifications (such
as, e.g., tr[(TTT)"] for n > 1) are typically suppressed
by powers of A. Hence, as long as we are considering
vacua close to the origin, we are justified in retaining
only the lower terms we worked with. In these cases we
have more confidence in our results and can rely even on
their quantitative aspects. This is typically the situation
for Ny > N.. However, when expectation values at the
vacuum we are considering are of order A and higher, our
neglect of the other higher terms is not justified. This is
the case for Ny = N., when the expectation values are of
order A, and for Ny < N, when the vacuum of the theory
runs to infinity in the supersymmetric limit. We believe
that the qualitative features of our results still hold in
these cases, but we certainly cannot trust the quantita-
tive aspects. This is the reason that in the Ny = NN, case
we could not decide which of the two possible vacuum
states is preferred.

In addition, we have assumed throughout this work
that the overall coefficients By and Bpg of the SUSY-
breaking contributions to the effective Lagrangian are
positive. This is not an innocent assumption, since, had
they been negative, we would have found chiral symme-
try breaking instead of several of the exotic features we
encountered in Secs. IV-VIIL. At present, we do not have
a proof of the positivity of these coefficients, though the
picture we have derived assuming this positivity is a co-
herent one.

Another avenue of possible future research is the anal-
ysis of softly broken supersymmetric gauge theories of
other types, in particular, chiral models, which also ad-
mit dual representations. Recently, a number of gener-
alizations of Seiberg’s original proposal have been pre-
sented [27-34]. We expect the behavior of these theories
upon adding soft supersymmetry-breaking terms to be
similar to the behavior we found above for the SU(IV,)
case. Perhaps the study of these theories will open even
wider the unusual possibilities for nonperturbative gauge
dynamics.
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APPENDIX: QCD INEQUALITY

In this appendix we demonstrate an inequality which
is useful in understanding the limit of supersymmetric
QCD in which the squark mass is taken to infinity. This
limit is a vectorlike gauge theory of quarks and the gluino,
with no scalar fields. We will show that, in this limit, a
flavor nonsinglet composite hadron cannot be massless
if the pion is massive. Our argument is a straightfor-
ward generalization of arguments used to analyze QCD
by Weingarten [21].

To prove our claim, we follow Weingarten’s proof that
the baryon is heavier than the pion. Though Wein-
garten’s original argument was given on the lattice (and
therefore was completely rigorous at the price of some
complication), we will apply a continuum version of the
argument. The crucial observation is that, in vector-
like gauge theories, the measure of integration over gauge
fields, which includes the determinants from the integra-
tion over the fermions, is non-negative. This can be seen
simply in the following way: For fermions of mass m,
the fermion determinant is det([p 4 + m) where IP 4 is the
covariant derivative with gauge field A. In vectorlike the-
ories this is always positive, since the eigenvalues of IJ 4
are imaginary, and for every eigenvalue ia with eigenvec-
tor 1, vs%¥1 is an eigenvector with eigenvalue —ia, and
the product of the contributions of both eigenvalues to
the determinant is always positive. In the limit m — 0
one could have zero modes in gauge sectors of nontriv-
ial Pontryagin number. However, these sectors do not
contribute to any correlation function we will consider.

In the analysis of Sec. IV D, we are most concerned
with the possibility of a quark-antiquark-gluino bound
state EZ/\ng;?, and so let us begin by considering this
state. Its propagator from z to y is given by
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where Sy, Sy, and Sy are the quark, antiquark, and
gluino propagators in the presence of fixed background
gauge fields (we do not write the space-time indices ex-
plicitly), and du is the measure of integration over the
gauge fields (including the fermion determinants). Since
the integration measure is positive, this is smaller than
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a,a’

2

/dﬂ D 18y, 17

N

(A2)

x Z 1Sxy apur|?

U J
a,a’,b,b

Next, we use the Holder inequality, which says that, for
any positive measure,

Jautsa| < ([ dulflz)% (f dmgﬁ)%, (A3)

to bound the propagator from above by

/dﬂz 1S%, .12

a,a’

2

/d”‘ Z ‘S'\a,a',a,b' 2

U g
a,a’,b,b

x YISy, .17

a,a’

(A4)

The next stage is to interpret each of the integrals in
(A4) as some correlation function. The first integral is
proportional to the propagator of the pion, ¥*¢; directly.

In general, a propagator falls asymptotically as e~™I=~¥|,
where m is the lowest mass possible in the intermediate
state. For the first integral m is the pion mass. The sec-
ond integral can, at worst, approach a constant asymp-

totically. Thus, the correlation function of E;Xbﬁp;-’ is
bounded above by a constant times exp(—m«|z — y|),
where m,; is the pion mass. Then the mass of the quark-
antiquark-gluino bound state must be greater than m,.
This argument goes through in the same way for any
flavor-nonsinglet bound state, which necessarily contains
at least one quark and one antiquark or at least N,
quarks.

Since the gluino-ball is a flavor singlet, there is no QCD
inequality relating its mass to that of flavor-nonsinglet
bound states. This leaves an ambiguity that we are not
able to resolve. It is this ambiguity that leads to the
presence of option 1 [unbroken U(1)g] in the cases Ny >
N..
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