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Abstract: The decreasing uncertainties in theoretical predictions and experimental

measurements of several hadronic observables related to weak processes, which in many

cases are now smaller than O(1%), require theoretical calculations to include subleading

corrections that were neglected so far. Precise determinations of leptonic and semi-leptonic

decay rates, including QED and strong isospin-breaking effects, can play a central role in

solving the current tensions in the first-row unitarity of the CKM matrix. In this work we

present the first RBC/UKQCD lattice calculation of the isospin-breaking corrections to the

ratio of leptonic decay rates of kaons and pions into muons and neutrinos. The calculation

is performed with Nf = 2 + 1 dynamical quarks close to the physical point and domain

wall fermions in the Möbius formulation are employed. Long-distance QED interactions

are included according to the QEDL prescription and the crucial role of finite-volume

electromagnetic corrections in the determination of leptonic decay rates, which produce a

large systematic uncertainty, is extensively discussed. Finally, we study the different sources

of uncertainty on |Vus|/|Vud| and observe that, if finite-volume systematics can be reduced,

the error from isospin-breaking corrections is potentially sub-dominant in the final precision

of the ratio of the CKM matrix elements.
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B zMöbius to Möbius correction 47

C Free domain wall fermion propagators 48

C.1 Feynman rules for free propagator . . . . . . . . . . . . . . . . . . . . . . . 49

C.2 Pole mass of the free propagator . . . . . . . . . . . . . . . . . . . . . . . . 50

C.3 Projectors on definite spinor structure . . . . . . . . . . . . . . . . . . . . . 52

D Correlation functions for the Ω baryon 54

E Determining best fits with a genetic algorithm 57

– 1 –



1 Introduction

Flavour physics offers a unique opportunity in the search for new physics at the precision

frontier of the Standard Model (SM). Discrepancies between SM predictions and experi-

mental observations of processes where yet undiscovered particles or fields may play a tiny

but measurable role can in fact be signals of new physics beyond the SM. In the hadronic

sector, the study of processes mediated by the weak force gives access to the elements of the

Cabibbo-Kobayashi-Maskawa (CKM) matrix describing quark-flavour mixing. The accurate

determination of the CKM matrix elements Vud and Vus is of crucial importance to test the

first-row unitarity |Vud|2 + |Vus|2 + |Vub|2 = 1 imposed by the SM and to probe emerging

tensions that are approaching the 3σ confidence level [1–3]. A complete understanding of

SM processes like the leptonic and semi-leptonic decay modes of pseudoscalar mesons or

nuclear beta decays which underpin these constraints is therefore necessary to test CKM

unitarity and eventually put bounds on the new physics energy scale and couplings.

In particular, in this work we are concerned with the precision determination of the ratio

|Vus|/|Vud| obtained by combining the experimental leptonic decay rates of the pion (πµ2) and

kaon (Kµ2) into a muon and a neutrino with hadronic matrix elements which parameterize

the SM prediction. Given the non-perturbative dynamics of strong interactions at low

energies, these theoretical determinations can be obtained in a reliable and systematically

improvable way from first principles lattice field theory computations. Lattice QCD has

now entered the precision era and is able to provide many hadronic quantities with percent

precision, e.g. the ratio of kaon and pion leptonic decay constants fK/fπ and the kaon semi-

leptonic decay (K`3) vector form factor f+(0), which play a central role in the determination

of the CKM quantities |Vus|/|Vud| and |Vus|, respectively [2]. To date, most lattice QCD

computations in flavour physics neglect isospin-breaking (IB) effects, namely the inclusion

of electromagnetism and the difference of the up and down quark masses, which are required

to go beyond percent level precision. These contributions have been historically included

using effective field theories such as chiral perturbation theory (χPT) [4–6], where, however,

it can be difficult to systematically assess uncertainties emerging from effective expansions.

The RM123+Southampton (RM123S) collaboration pioneered the first lattice calculations

beyond the QCD isospin limit [7, 8], although with an extrapolation of the result from

unphysical quark masses. In this work we provide a first determination of the IB effects in

fK/fπ using ab initio computations of lattice QCD and QED using a regularization with

good chiral properties directly at physical quark masses, and examine its impact on the

determination of |Vus|/|Vud|.
When electromagnetism is included, leptonic decay amplitudes can no longer be

factorised into QCD and non-QCD contributions, as the lepton can interact with the

pseudoscalar meson. Additionally, this new interaction generates infrared (IR) divergences

which only cancel when summing diagrams containing virtual and real photon corrections [9].

Thus, the decay rate can be properly written including these effects as

Γ(P± → `±ν[γ]) = lim
ΛIR→0

[Γ0(ΛIR) + Γ1(ΛIR)] , (1.1)
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where we indicate the contribution to the decay rate with virtual photon corrections as Γ0

(virtual decay rate), and that with one real photon in the final state as Γ1 (real decay rate),

and where ΛIR is an arbitrary IR energy cutoff (e.g. a photon mass). A practical strategy

for non-perturbative computations was put forward by the RM123S group in ref. [10] (and

applied in successive calculations [7, 8]), which consists in defining the inclusive rate as the

sum of two contributions which are separately IR safe, namely

Γ(P± → `±ν[γ]) = lim
ΛIR→0

[
Γ0(ΛIR)− Γuni

0 (ΛIR)
]

+ lim
Λ′IR→0

[
Γuni

0 (Λ′IR) + Γ1(Λ′IR)
]
, (1.2)

where we note that different IR regulators can be used in both terms, as will be the case

in practice. The quantity Γuni
0 (ΛIR) corresponds to the universal (structure-independent)

IR-divergent part of the virtual decay rate, which can be computed perturbatively assuming

the decaying meson to be a point-like particle. This term also exactly cancels the divergence

in Γ1(Λ′IR), when evaluated with Λ′IR as an IR regulator.

In principle, both virtual and real decay rates should be computed non-perturbatively

since photons with sufficiently high energy can resolve the internal structure of the decaying

meson. While there is no choice for virtual corrections, as all photon modes contribute to

the rate, one can impose a cut on the real photon energy, ωcut
γ , such that its sensitivity to

the structure of the meson is suppressed. In this case Γ1(ΛIR) can be computed analytically

in perturbation theory in the point-like approximation, namely Γpt
1 (ωcut

γ ,ΛIR). As predicted

by χPT [6] and confirmed by lattice calculations [10, 11], structure-dependent contributions

are negligible for the decay channels studied in this work, namely the decay of pions or kaons

into muons and neutrinos, and therefore at our level of precision we can reliably consider

Γ1(ΛIR) ' Γpt
1 (ωmax

γ ,ΛIR), where ωmax
γ is the maximum photon energy kinematically allowed.

We will focus on the non-perturbative calculation of the virtual decay rate Γ0 and will use

the finite spatial extent of the lattice, L, along with a suitable prescription for QED in a

finite volume called QEDL, as an IR regulator [12]. The real decay rate will be evaluated in

the well-motivated point-like approximation and directly in infinite volume, regularizing

the IR divergence with a photon mass Λ′IR = mγ in eq. (1.2). Thus, we follow the approach

outlined in refs. [8, 10].

Going beyond the isospin-symmetric limit, the leading corrections to the pseudoscalar

decay rates from the electromagnetic fine structure constant αem ≈ 1/137 and from the

renormalized (e.g. in MS at 2 GeV) up-down quark mass difference (mR
d −mR

u )/ΛQCD ∼ 1%

are both of the order of 1%, which we denote universally by O(ε) = O[αem, (m
R
d−mR

u )/ΛQCD].

The correction to the ratio of kaon and pion decay rates is then parameterized by δRKπ,

which can be expressed through the relation [1]

Γ(K+ → µ+νµ[γ])

Γ(π+ → µ+νµ[γ])
=
|Vus|2

|Vud|2
mπ

mK

(m2
K −m2

µ)

(m2
π −m2

µ)

f2
K

f2
π

(1 + δRKπ) + O(ε2) , (1.3)

where O(ε2) is understood as a second-order correction in (αem, (m
R
d −mR

u )/ΛQCD). The

specific choice defining the isospin-symmetric theory, implicit in the definition of fK/fπ,

will be the subject of section 2, where we discuss the consistency with other choices in the

literature and the advantage of simulating with close-to-physical quark masses. With that
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in mind, we anticipate our final result for the leading IB corrections to f2
K/f

2
π as

δRKπ = −0.0086 (3)stat.(
+11
−4 )fit(5)disc.(5)quench.(39)vol. , (1.4)

where the first error is statistical, while the others are systematic uncertainties and will be

discussed in section 6. We note that our result is compatible with the only other lattice

determination by the RM123S collaboration [8] and with χPT [13]

δRRM123S
Kπ = −0.0126 (14), (1.5)

δRχPT
Kπ = −0.0112 (21). (1.6)

All these numbers are dependent on a choice of scheme to define the separation of isospin-

breaking effects. However, as we will discuss later in this paper, one can provide quanti-

tative evidence that the prescriptions used in the results above are close enough so that

the prescription-dependence lies well below the quoted uncertainties. In addition to our

numerical result, one of the main findings of this work is a refined investigation of the large

power-law finite-size corrections which are induced by the QEDL treatment of electromag-

netism in a finite volume, and are reflected in a large systematic error in our result. As

the leading structure-dependent finite-size effects are now known to be negligible [14], the

dominant point-like corrections which are investigated in section 3 exhibit unexpectedly

large higher-order corrections. In that section, the connection between the Euclidean

correlation functions and the hadronic matrix elements of interest is outlined. The details

of the lattice implementation using domain wall fermions and the gauge ensemble generated

by the RBC/UKQCD collaboration may be found in section 4, while the analysis of the

numerical data including the estimation of the systematic effects is detailed in section 5.

The discussion of the result and the implications for the extraction of |Vus|/|Vud| are found

in section 6, before the conclusion.

2 Isospin-breaking corrections

Leptonic decays of pions and kaons are low-energy processes that can be studied in an

effective Fermi theory where the W -boson is integrated out, and the process is mediated

by a local four-fermion interaction. At first order in the Fermi constant GF , we can then

assume that low-energy observables can be predicted to a high degree of precision within a

theory of QCD+QED. We will refer to this as the full or physical theory in the rest of the

paper. In the full theory, quantities like the meson decay constant fP entering eq. (1.3) are

ambiguous as they are defined in the unphysical iso-symmetric limit of QCD (iso-QCD)

where mu = md and αem = 0. Such unphysical definitions are related to the fact that QCD

and QCD+QED interactions generate different ultraviolet (UV) divergences and hence

require different renormalization procedures to fix the bare parameters of the respective

actions. In order to give a meaning to (iso-)QCD observables within the full QCD+QED

theory, additional renormalization conditions are then required.

The discussion in this section is divided in two: first, we will discuss how to non-

perturbatively renormalize the full theory on the lattice and make well-defined physical
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predictions in the continuum limit. Then, we will define QCD and its iso-symmetric

limit, which is employed in our numerical lattice calculation and fixes the definition of

IB corrections. However, the discussion here is general and not restricted to lattice QCD

calculations. In fact, the definitions of the QCD+QED, QCD and iso-QCD theory discussed

in the rest of the section hold for any other non-perturbative approach (like e.g. effective

field theories).

2.1 Renormalizing the full theory

In the full QCD+QED theory with Nf flavours of quarks, once a UV regulator is introduced

(in our case the lattice spacing a), the action depends only on the bare quark masses in

lattice units m̂ = (m̂1, . . . , m̂Nf
) and the bare strong and electromagnetic couplings, g and

e, respectively. In this theory every physical observable can be predicted once the bare

parameters of the action are defined and the regulator is removed. Note that, since we

are only working at first order O(ε) in the IB effects, we can neglect the running of the

electromagnetic coupling and safely fix it to its Thomson limit, eφ = (4παφem)1/2 with αφem =

1/137.035999084 (21) [15], without the need to impose a specific renormalization condition.

Moreover, when working at first order in αem and when a lepton is also included in the theory,

its mass m` can be renormalized perturbatively in the usual way by imposing that its on-shell

value coincides with the experimental one, i.e. mφ
` = mPDG

` = 105.6583755 (23) MeV [1].

The superscript φ is used to denote quantities evaluated in the physical (QCD+QED)

theory.

At a fixed value of the bare strong coupling g, we define the bare lattice quark masses in

the full theory m̂φ by identifying Nf + 1 dimensionful quantities, which we assume without

loss of generality1 to have mass dimension 1, namely Mφ
1 , . . . ,M

φ
Nf
,Λφ, and requiring the

following ratios to take on the correct values when e is also at its physical value eφ,[
M̂j

Λ̂

]2

(g, eφ, m̂φ) =

(
Mφ
j

Λφ

)2

, for j = 1, · · · , Nf . (2.1)

Here, the M̂j and Λ̂ denote the same quantities evaluated in lattice units at the physical

point (g, eφ, m̂φ). For later use, we define this point as σφ = (g, eφ, m̂φ). Note that the

procedure for fixing m̂φ must be performed at every value of the coupling g, so in this sense

we can think of the bare quark masses as a function of this coupling, m̂φ(g). Moreover, the

lattice quantities appearing on the left-hand side of eq. (2.1) are considered to be evaluated

in the infinite volume limit. In practice, in the full QCD+QED theory, electromagnetic

interactions can generate sizeable power-like finite-volume effects and should be removed,

as discussed in section 3.3. Once the bare quark masses m̂φ are determined, we can predict

any other quantity X̂φ in lattice units and in the full theory as a function of g, namely

X̂φ(g) = X̂(g, eφ, m̂φ(g)) . (2.2)

1In practice one only requires Nf + 1 quantities that can be used to form Nf independent dimensionless

ratios.
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From this, we can give a physical value to a as a function of g using a suitable dimensionful

external input. For concreteness, we envision using Λφ

a(g) =
Λ̂φ(g)

Λφ
. (2.3)

With this definition, one can predict dimensionful quantities as

Xφ(g) = a(g)−[X]X̂φ(g) , (2.4)

where [X] is the mass dimension of X. As a consequence of asymptotic freedom, the limit

g → 0 implies a(g)→ 0, and for renormalized quantities the equation above has a g → 0

limit which is cutoff independent. At non-zero g and a there is a family of choices that

have the same continuum limit. For a given discretization of the QCD+QED action, this

family is defined by (i) the set of Nf ratios that we use to define m̂(g), and (ii) the physical

quantity Λφ that we use to set the scale.

In this calculation we employ three flavours of quarks, so we require four hadronic

observables to fix the bare quark masses m = (mu,md,ms) and the scale, which we choose

to be M = (M1,M2,M3) = (mπ+ ,mK+ ,mK0) and Λ = mΩ− . The physical values of such

hadronic masses are taken as their experimental measurements, reported in the PDG [1],

i.e. Mφ = (mPDG

π+ ,mPDG

K+ ,m
PDG

K0 ) = (139.57039 (18), 493.677 (16), 497.611 (13)) MeV and

Λφ = mPDG

Ω− = 1672.45 (29) MeV.

2.2 Defining QCD and its isospin-symmetric limit

The calculation of IB corrections requires the definition of an isospin-symmetric limit of

QCD. If we write the parameters of the bare QCD+QED Lagrangian as σ = (g, e, m̂),

then the point σφ = (g, eφ, m̂φ) identifies the full theory defined above in section 2.1.

Points where e = 0 correspond instead to the bare parameters for a QCD Lagrangian,

that we denote as σQCD = (gQCD, 0, m̂QCD), where the vector m̂QCD = (m̂QCD
u , m̂QCD

d , m̂QCD
s )

contains the QCD bare quark masses, with m̂QCD
u 6= m̂QCD

d . Therefore, we see that defining

QCD within the full QCD+QED theory consists of choosing one point by imposing an

additional renormalization condition. The same holds for iso-QCD theories, all belonging

to the set identified by σ(0) = (g(0), 0, m̂(0)), with m̂(0) = (m̂(0)

ud, m̂
(0)

ud, m̂
(0)
s ), i.e. with δm = 0.

Here we denoted the average light quark mass as mud = (mu + md)/2 and the up-down

quark mass difference as δm = mu −md. Again, the definition of a given iso-QCD theory

requires imposing specific renormalization conditions. The possibility of choosing different

renormalization prescriptions for the definition of QCD and iso-QCD translates into a

scheme dependence in any observable computed in such theories.

Since there are many possible valid choices such that the IB corrections are small,

there is no single generally accepted scheme and lattice collaborations have used in the past

different prescriptions to define the iso-QCD theory [2]. Although no significant differences

have been observed so far in the use of different schemes [2], when aiming at sub-percent

precision calculations the ambiguities related to the different renormalization prescriptions

adopted might become relevant when comparing results for (scheme-dependent) iso-QCD

observables or IB effects. We therefore advocate that lattice collaborations be as clear and
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transparent as possible in defining the scheme used to define iso-QCD in their calculations,

and eventually agree on a common reference scheme.

In this work we adopt a scheme very similar to that introduced by the BMW Col-

laboration in refs. [16–18], which relies on the use of the neutral mesonic observables

MBMW = (Mud, ∆M, MKχ), where

M2
ud =

1

2

(
M2

uu +M2
dd

)
, ∆M2 = M2

uu−M2
dd , M2

Kχ =
1

2

(
m2
K+ +m2

K0 −m2
π+

)
, (2.5)

and M2
qq denotes the squared mass of the connected q̄q neutral pseudoscalar mesons. One

can show that the leading-order partially-quenched chiral corrections to such quantities are

given by [16, 19]

M2
ud = 2BmQCD,R

ud + · · · , ∆M2 = 2BδmQCD,R + · · · , M2
Kχ = 2BmQCD,R

s + · · · , (2.6)

where B is the QCD chiral condensate, the superscript R denotes the QCD-renormalized

quark masses in a given scheme (e.g. MS at 2 GeV) and the ellipses are next-to-leading

order SU(3) chiral corrections [19]. An important feature of this choice of variables is the

systematic absence of O(αem) corrections at leading order. Therefore, these specific meson

masses are expected to be dominated by the part proportional to the quark masses, allowing

comparisons with quark-mass schemes like the Gasser-Rusetsky-Scimemi (GRS) one [20]

without the need of using short-distance schemes (e.g. the MS scheme) to renormalize the

quark masses.

In this scheme we assume that the bare strong coupling of any unphysical theory

identified by the vector σ? is kept equal to that of the full theory, i.e. σ? = (g, e?,m?).

The bare quark masses of QCD and iso-QCD are then obtained by imposing the following

renormalization conditions, respectively[
M̂BMW

m̂Ω

]2

(g, 0, m̂QCD) =

([
M̂ud

m̂Ω

]2

(g, eφ, m̂φ) ,

[
∆M̂

m̂Ω

]2

(g, eφ, m̂φ) ,

[
M̂Kχ

m̂Ω

]2

(g, eφ, m̂φ)

)
, (2.7)

[
M̂BMW

m̂Ω

]2

(g, 0, m̂(0)) =

([
M̂ud

m̂Ω

]2

(g, eφ, m̂φ) , 0 ,

[
M̂Kχ

m̂Ω

]2

(g, eφ, m̂φ)

)
. (2.8)

The above conditions can be extended beyond Nf = 3 flavours by choosing ratios of hadron

masses with a dependence on the heavier quarks. The lattice spacings for the two theories

can be evaluated by imposing the additional conditions

aQCD(g) =
m̂Ω(g, 0, m̂QCD)

mPDG

Ω−
and a(0)(g) =

m̂Ω(g, 0, m̂(0))

mPDG

Ω−
. (2.9)

In principle, one could also impose the simpler condition aQCD(g) = a(0)(g). Since the UV

divergences of the two theories do not depend on quark masses, the difference between the

two approaches would result in cut-off effects that eventually vanish in the continuum limit.

However, in this work, the quantities we aim to compute are dimensionless, and therefore

we will not need, in practice, to make dimensions explicit in the (iso-)QCD theory.
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2.3 Computing isospin-breaking effects on the lattice

Once the bare parameters of both the full theory and iso-QCD have been determined

through the renormalization procedure described above, one can define the expansion of a

QCD+QED observable X̂(σφ) around the iso-QCD point σ(0) as

X̂(σφ) = X̂(σ(0)) + δX̂(σ(0)) + O(ε2) , (2.10)

where the quantity δX̂(σ(0)) encodes the leading order IB corrections of O(ε) relative to

the specific iso-QCD point σ(0). Suppose now that the lattice setup used for the calculation

has been tuned to some iso-QCD point σ = (g, 0, m̂), close to the physical point σφ. In

practice this point is generally the result of a simulation-parameter tuning procedure and

might differ from the iso-QCD point defined in the previous section, i.e. σ 6= σ(0). However,

we assume that this simulation point is sufficiently close to σφ, σ(0), and σQCD that the

value of X̂ at any of those points can be described accurately enough by a linear correction

to the simulation point. This is a fairly strong assumption that would not be valid in a

number of lattice calculations, particularly when working at non-physical quark masses

where non-linear corrections are expected to be sizeable. However, as we will demonstrate

in section 5.2, this applies to the close-to-physical point simulations used in this work. More

explicitly, under this linearity assumption the physical value of X̂ can be written as

X̂(σφ) = X̂(σ) + αφem

∂X̂

∂αem
(σ) +

Nf∑
q=1

(m̂φ
q − m̂q)

∂X̂

∂m̂q
(σ) + O(ε̄2) , (2.11)

where the O(ε̄2) represent any second order corrections in m̂φ
q − m̂q and αem, which we

consider to be of similar size to higher-order isospin-breaking corrections O(ε2) that are

taken to be negligible and are discarded throughout this work. This expanded power-

counting is necessary as some isospin-symmetric parameters like ms and mud might be

slightly mistuned at the simulation point. If we consider X̂ to be the ratio of hadron masses

in eq. (2.1), by using lattice data for X̂(σ) and its derivatives, and applying the linear

equation above, we can solve the resulting system to obtain the lattice bare quark masses

for the physical point m̂φ.

A similar equation is obtained by linearizing the first term on the right-hand side

of eq. (2.10),

X̂(σ(0)) = X̂(σ) +

Nf∑
q=1

(m̂(0)
q − m̂q)

∂X̂

∂m̂q
(σ) + O(ε̄2) , (2.12)

and can be solved for m̂(0) applying the renormalization conditions in eq. (2.8). Combin-

ing eqs. (2.11) and (2.12), the isospin-breaking correction in eq. (2.10) can be identified

as

δX̂(σ(0)) = αφem

∂X̂

∂αem
(σ) +

Nf∑
q=1

(m̂φ
q − m̂(0)

q )
∂X̂

∂m̂q
(σ) . (2.13)

The QCD masses and X̂(σQCD) can be determined using analogous linear expansions.
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We can then define a separation of δX̂(σ(0)) into a contribution due to the strong

isospin breaking (SIB) and another due to electromagnetic interactions, namely

δX̂SIB(σ(0)) = X̂(σQCD)− X̂(σ(0)) =

Nf∑
q=1

(m̂QCD
q − m̂(0)

q )
∂X̂

∂m̂q
(σ) , (2.14)

δX̂γ(σ(0)) = X̂(σφ)− X̂(σQCD) = αφem

∂X̂

∂αem
(σ) +

Nf∑
q=1

(m̂φ
q − m̂QCD

q )
∂X̂

∂m̂q
(σ) , (2.15)

such that

X̂(σφ) = X̂(σ(0)) + δX̂SIB(σ(0)) + δX̂γ(σ(0)) + O(ε2) . (2.16)

From the above discussion it is clear that in order to determine IB corrections one

needs to evaluate numerically the linear coefficients of the expansion of a given observable

in terms of αem and quark mass shifts. The QED effects have been computed in the past

by different collaborations following two approaches. On the one hand, one can include

QED gauge links in the fermion operator to be inverted and produce QCD+QED quark

propagators to construct hadronic correlation functions, as introduced first in ref. [21], and

used in a wide range of lattice calculations [2]. On the other hand, it is possible to obtain

the same corrections by perturbatively expanding the path integral for X̂ with respect to

αem, with the result of evaluating diagrams with electromagnetic current insertions, as

originally proposed by the RM123 collaboration in refs. [22, 23]. In the following, the latter

method will be adopted to determine the IB corrections to hadron masses and to the ratio

of the leptonic decay rates of kaons and pions into muons. The implementation of the

method will be discussed in section 4.

2.4 Scheme ambiguities

The isospin decomposition in eq. (2.16), as discussed in section 2.2, depends on the

prescriptions in eqs. (2.7) and (2.8), although the physical observable, X̂(σφ), is not.

Varying these prescriptions will lead to different bare masses m̂QCD
q and m̂(0)

q , which generate

the scheme-dependence of δX̂SIB and δX̂γ through eqs. (2.14) and (2.15). In principle this

ambiguity is an O(ε) effect on m̂QCD
q and m̂(0)

q , and therefore the ambiguity on the iso-

symmetric component X̂(σ(0)) can potentially be as large as the isospin-breaking corrections

δX̂(σ(0)) themselves. It is therefore important to identify classes of schemes which are

phenomenologically relevant with a minimal level of ambiguity.

For instance, the GRS scheme [20] assumes that the renormalized quark masses and the

renormalized strong coupling constant, in a given scheme and at a chosen renormalization

scale, are kept constant for any value of αem. This scheme itself depends then on a choice of

renormalization procedure for these quantities. The GRS scheme is generally the prescription

used in phenomenological calculations, such as chiral perturbation theory predictions for

weak decay rates including the ones discussed in this paper [4–6]. It is therefore attractive

for lattice calculations to use prescriptions which produce predictions close to the GRS

scheme. Defining precisely such a class of schemes is a rich technical topic which is relevant

for precision physics, and will be the topic of a future publication based on the lattice
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data presented in this paper. The BMW variables chosen here are designed to be hadronic

quantities providing an isospin decomposition close to the GRS scheme, and in section 5.2

we will explicitly check that by comparing with existing results from ref. [8].

3 Matrix elements from Euclidean correlation functions

As discussed in section 1, the inclusion of IB corrections in the calculation of decay rates is

complicated by the appearance of IR divergences, generated by O(αem) QED corrections

to the decay amplitude. In this calculation we adopt the RM123S method of eq. (1.2)

to regularize IR divergences. We choose two separate regulators for the two terms. In

particular, we compute the virtual decay rate on the lattice using the finite volume with

the QEDL prescription as an IR regulator, while the real decay width is evaluated in

perturbation theory using a photon mass, namely

Γ(P± → `±ν[γ]) = lim
L→∞

[
Γ0(L)− Γuni

0 (L)
]

+ lim
mγ→0

[
Γuni

0 (mγ) + Γ1(ωmax
γ ,mγ)

]
. (3.1)

The first bracketed term removes the universal (structure-independent) logarithmic IR

divergence and finite volume effects (FVE) up to O(1/L) [24, 25]. Recently, the O(1/L2)

corrections to Γ0(L) have been calculated in QEDL, including structure-dependent contri-

butions, in ref. [14]. Thus, we can extend eq. (3.1) to

Γ(P+ → µ+νµ[γ]) = lim
L→∞

[
Γ0(L)− Γ

(2)
0 (L)

]
+ lim
mγ→0

[
Γuni

0 (mγ) + Γ1(ωmax
γ ,mγ)

]
, (3.2)

where Γ
(2)
0 (L) contains the finite-volume effects up to O(1/L2) and will be discussed in

detail in section 3.3. Here, we only note that the residual finite-volume effects in the

quantity Γ0(L)− Γ
(2)
0 (L) now begin at O(1/L3). The second bracketed term in eq. (3.2)

has been instead calculated analytically in ref. [10] and is reported below in section 3.4.

For convenience, we distinguish the two contributions, the one computed on the lattice

with a finite volume and the one evaluated in perturbation theory with a massive photon,

respectively as

Γlatt
P (L) ≡

[
Γ0(L)− Γ

(2)
0 (L)

]
and Γpert

P (mγ) ≡
[
Γuni

0 (mγ) + Γ1(ωmax
γ ,mγ)

]
. (3.3)

We can expand these expressions at leading order in the IB corrections

Γlatt
P (L) = Γtree

P

[
1 + δRlatt

P (L)− δR(2)
P (L)

]
+ O(ε2) , (3.4)

Γpert
P (mγ) = Γtree

P δRpert
P (ωmax

γ ,mγ) + O(ε2) , (3.5)

having defined

Γ0(L) = Γtree
P

[
1 + δRlatt

P (L)
]

+ O(ε2) and Γ
(2)
0 (L) = Γtree

P

[
1 + δR

(2)
P (L)

]
+ O(ε2) . (3.6)

It follows that, writing the leptonic decay rate as

Γ(P+ → µ+νµ[γ]) = Γtree
P

(
1 + δRP

)
+ O(ε2) (3.7)
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P+

`+

ν`

q1

q2

Figure 1: Feynman diagram of the tree-level contribution to the weak decay of a positive

pseudoscalar meson P+ ∈ {π+,K+} into a lepton-neutrino pair. The double-square vertex

represents the effective weak Hamiltonian eq. (3.9).

its leading IB correction is given by

δRP = lim
L→∞

[
δRlatt

P (L)− δR(2)
P (L)

]
+ lim
mγ→0

δRpert
P (ωmax

γ ,mγ) . (3.8)

The outline of the rest of the section is as follows. In section 3.1 we give our definition

of Γtree
P and derive the corresponding correction δRlatt

P (L) at finite volume in terms of

IB corrections to matrix elements and meson masses. Then, in section 3.2 we describe

how to obtain such corrections starting from Euclidean lattice correlation functions. The

subtraction of QEDL finite-volume effects δR
(2)
P (L) and the calculation of the real photon

emission in perturbation theory are then discussed in sections 3.3 and 3.4, respectively.

3.1 Virtual corrections to the leptonic decay rate

We focus here on the determination of the matrix element associated to the virtual decay of

a positive pseudoscalar meson, P+ → `+ν`, without including real photons in the final state.

As this is an IR divergent quantity, we assume that an IR regulator is in place throughout

the section. For concreteness, we regulate IR divergences on a finite volume of size L

adopting the QEDL prescription [12] to remove the spatial zero modes of the lattice photon

propagator (see section 3.3). At the lowest order in QED and QCD, pseudoscalar mesons

decay into a lepton-neutrino pair via the exchange of a W -boson between the constituent

quarks of the meson and the leptons. Since for both pions and kaons the process P+ → `+ν`
has a momentum transfer much smaller than the W -boson mass mW , we can study it in an

effective theory with a local four-fermion interaction described by the effective Hamiltonian

HW =
GF√

2
V ∗q1q2

OW (3.9)

where GF is the Fermi constant and V ∗q1q2
the relevant CKM matrix element. The four-

fermion operator mediating the process is

OW ≡ JρH J
ρ
L =

(
q̄2 γ

ρ(1− γ5) q1

) (
ν̄` γ

ρ(1− γ5)`
)
, (3.10)

with q1 being a u-type quark and q2 a d-type quark and JρH and JρL denoting the weak

(V − A) hadronic and leptonic currents, respectively. The Feynman diagram associated

with this tree-level term is represented by figure 1.

When including QED at O(αem), the UV corrections to matrix elements of the local

operator OW differ from those of the Standard Model and a matching between the two
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theories is therefore needed. This is usually performed in the so-called W -regularization [26,

27], and we refer to refs. [8, 10] for detailed discussions on the argument. After the inclusion

of QCD and QED at O(αem) and assuming that chiral symmetry is preserved, the effective

Hamiltonian reads2

HW =
GF√

2
V ∗q1q2

(
Z0 +

αem

4π
δZ
)
OW . (3.11)

Here Z0 is the non-perturbative QCD renormalization constant of the operator OW . The

quantity δZ encodes instead the short-distance matching between the effective theory in

the W -regularization and the Standard Model, as well as the electromagnetic corrections to

the matching of the four-fermion operator OW renormalized non-perturbatively in a given

scheme to the W -regularization one. If OW is a lattice operator and the regularization

used for the fermionic action introduces an explicit chiral symmetry breaking, then the

operator OW undergoes an additive renormalization due to the mixing with other lattice

operators with different chirality and the mixing pattern would be more complicated than

that in eq. (3.11) (see e.g. refs. [8, 10]). In the lattice calculation presented in this work,

however, chiral fermions are employed and therefore in the following we will consider the

operator OW renormalizing multiplicatively as in eq. (3.11), with Z0 = ZV = ZA. Moreover,

if a mass-independent scheme is adopted to renormalize the four-fermion operator, then the

quantities Z0 and δZ will be the same regardless of the masses of the particles involved in the

process. As a consequence, the contribution of the electromagnetic corrections proportional

to δZ will cancel in the calculation of our quantity of interest, δRKπ = δRK − δRπ,

entering eq. (1.3).

In the full theory the (IR regulated) virtual decay rate can be written as

Γ0(L) = K |MP |2 , (3.12)

where K is a factor containing the electro-weak coupling, the CKM matrix elements

and the integration over the two-body phase space, while |MP |2 =
∑

r,s |Mrs
P |2 is the

magnitude squared of the QCD+QED virtual amplitude summed over the lepton and

neutrino polarisations r and s. In the rest frame of the decaying meson P (pP = 0) the

on-shell lepton and neutrino (Euclidean) momenta, p` = (iω`,p`) and pν = (iων ,pν), are

such that p` + pν = 0 and the decay rate can be written in terms of

K =
G2
F

16π
|Vq1q2 |

2 1

2mP

(
1−

m2
`

m2
P

)
, (3.13)

and the renormalized QCD+QED matrix element

Mrs
P (p`) = Z ĎMrs

P (p`) = Z 〈`+, r,p`; ν`, s,pν |OW |P+,0〉φ . (3.14)

Here ĎMrs
P (p`) is the bare matrix element computed in the full QCD+QED theory, as

indicated by the superscript φ, while the factor Z = Z0 + α
4π δZ denotes the renormalization

2When including electromagnetic corrections at O(αem), the Fermi constant GF has to be defined

accordingly. This is conventionally obtained from the muon lifetime including one-loop electromagnetic

corrections and reads GF = 1.16634 × 10−5 GeV−2 [28, 29].
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constant of the weak operator OW entering the effective Hamiltonian of eq. (3.11). Note

thatMrs
P (p`) =Mrs

P (|p`|) is a rotationally symmetric function of the lepton momentum p`.

Energy conservation (mP = ω` + ων) has also been employed to rewrite

|p`| = ων =
mP

2

(
1−

m2
`

m2
P

)
and ω` =

mP

2

(
1 +

m2
`

m2
P

)
. (3.15)

We may expand now the QCD+QED squared matrix element |MP (p`)|2 in eq. (3.12)

around the iso-symmetric QCD point keeping the lepton momentum to its physical value as

|MP (p`)|2 = |M(0)

P (p`)|2 + δ|MP (p`)|2 + O(ε2) . (3.16)

In iso-QCD the matrix element factorizes into a hadronic and leptonic part, namely

|M(0)

P (p`)|2 = Z2
0 | 〈`+, r,p`; ν`, s,pν |OW |P,0〉

(0) |2

= Z2
0 |A

(0)

P |
2 |L(p`)|2 , (3.17)

where

Z0A(0)

P ≡ −Z0 〈0|J0
H |P,0〉

(0)
= Z0 〈0|q̄2 γ

0γ5 q1|P,0〉
(0)

= im(0)

P fP (3.18)

is the iso-QCD renormalized axial matrix element expressed in terms of the mass m(0)

P of

the meson state |P,0〉(0) and the decay constant fP , while

Lrs(p`) = 〈`+, r,p`; ν`, s,pν |J0
L|0〉

(0)
= ūrν(pν) γ0(1− γ5) vs` (p`) (3.19)

is the tree-level leptonic tensor with vr` (p`) = 〈`+, r,p`|`|0〉(0)
and ūrν(pν) = 〈ν`, s,pν |ν̄`|0〉(0)

the free Dirac spinors. We have considered here only the ρ = 0 component of OW (eq. (3.10))

since this is the only one contributing to the axial matrix element in the meson rest frame.

Using the completeness relations for spinors in Euclidean space∑
r,r′

vr
′
` (p`)v̄

r
` (p`) = −i/p` −m` ,

∑
s,s′

usν(pν)ūs
′
ν (pν) = −i/pν , (3.20)

one gets

|L(p`)|2 =
∑
r,s

|Lrs(p`)|2 = 8|p`|(ω` − |p`|) = 4m2
`

(
1−

m2
`

m2
P

)
(3.21)

and hence

|M(0)

P (p`)|2 = Z2
0 |A

(0)

P |
2 |L(p`)|2 = 4m2

`

(
1−

m2
`

m2
P

)2

m(0) 2
P f2

P . (3.22)

Following the convention of the PDG [1], we define the “tree-level” decay rate as

Γtree
P = K |Mtree

P |2 = K
(
mP

m(0)

P

)2

|M(0)

P |
2 =

G2
F

8π
|Vq1q2 |

2m2
`

(
1−

m2
`

m2
P

)2

mP f
2
P , (3.23)

i.e. with all masses defined in the full theory and only the decay constant fP defined in

iso-QCD. Combining the above eqs. (3.14), (3.16) and (3.23) with eq. (3.4) we obtain

δRlatt
P =

δ|MP (p`)|2

|M(0)

P (p`)|2
− 2

δmP

m(0)

P

= 2

(
δAP
A(0)

P

− δmP

m(0)

P

+
δZ
Z0

)
, (3.24)
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where we have defined the leading IB corrections to the meson mass δmP ,

mP = m(0)

P + δmP + O(ε2) , (3.25)

and those to the bare matrix element as

δAP
A(0)

P

≡ Re

{
−
∑

r,s δ
ĎMrs
P (p`)

[
Lrs(p`)

]†
A(0)

P |L(p`)|2

}
. (3.26)

As discussed above, the quantity δZ/Z0 does not depend on the masses of the decaying

meson and hence our target quantity δRlatt
Kπ is given by

δRlatt
Kπ = 2

(
δAK
A(0)

K

− δmK

m(0)

K

)
− 2

(
δAπ
A(0)
π
− δmπ

m(0)
π

)
. (3.27)

We can distinguish three kinds of corrections to the matrix element, that we denote as

δAP = δAf
P + δAnf

P + δA`P . (3.28)

The first term contains corrections involving only the quarks and these are proportional to

either the quark fractional charges or to the bare quark mass splittings. These are obtained

from the corrections to the bare matrix element[
δ ĎMrs

P (p`)
]f

=

[
1

2

∑
q,q′

eqeq′
∂2

∂eq∂eq′
+
∑

q

(m̂φ
q − m̂(0)

q )
∂

∂m̂q

]
ĎMrs
P (p`)

∣∣∣∣
σ(0)

(3.29)

= −Lrs(p`)
[

1

2

∑
q,q′

eqeq′
∂2

∂eq∂eq′
+
∑

q

(m̂φ
q − m̂(0)

q )
∂

∂m̂q

]
AφP

∣∣∣∣
σ(0)

,

with eq1 = +2/3|e| and eq2 = −1/3|e|, and AφP the axial matrix element evaluated in the

full theory. σ(0) indicates that the quantities are evaluated in the target iso-QCD theory,

σ(0) = (g, 0, m̂(0)) as discussed in section 2.2. Since in this case the decay amplitude factorizes

into a hadronic and a leptonic part, we refer to these contributions as “factorizable”. The

relevant diagrams contributing to these corrections are depicted in figures 2(a)–2(e) and

3(a)–3(e). The second term in eq. (3.28) corresponds instead to the “non-factorizable”

corrections to the matrix element where a photon is exchanged between a quark and the

charged lepton (e` = −|e|). These are given by

[
δ ĎMrs

P (p`)
]nf

=

[
1

2
e`
∑

q

eq
∂2

∂eq∂e`

]
ĎMrs
P (p`)

∣∣∣∣
σ(0)

, (3.30)

and the corresponding diagrams are shown in figures 2(f)–2(g) and 3(f). Finally, the third

term in eq. (3.28) consists in the O(e2
` ) contribution of the lepton self-energy in figure 2(h),

which is proportional to A(0)

P with a factor that can be computed analytically in perturbation

theory,

[
δ ĎMrs

P (p`)
]`

=

[
1

2
e2
`

∂2

∂e2
`

]
ĎMrs
P (p`)

∣∣∣∣
σ(0)

= −A(0)

P

[
1

2
e2
`

∂2

∂e2
`

]
Lrsφ (p`)

∣∣∣∣
σ(0)

, (3.31)
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with Lrsφ (p`) = 〈`+, r,p`; ν`, s,pν |J0
L|0〉

φ
. This perturbative correction, however, cancels in

the difference [Γ0(L)− Γ
(2)
0 (L)] in eq. (3.2) and therefore can be neglected in practice in

the calculation. Of course, the lepton self-energy must be included in Γpert
P (mγ).

Due to the numerical difficulty of evaluating the quark disconnected diagrams in figure 3

on the lattice, in this work we employ the electro-quenched approximation. This consists in

treating the sea quarks as if they were electrically neutral and hence, in practice, neglecting

the diagrams in figure 3. The deviations from this approximation are expected to be small,

and we assign an associated systematic uncertainty in our final prediction. We are currently

working on overcoming this approximation and the progress of our preliminary study has

been reported in ref. [30].

3.2 Extracting matrix elements from Euclidean correlation functions

The IB corrections to meson masses, δmP , and to the decay amplitude, δAP , which are

needed to compute δRlatt
P in eq. (3.24), can be obtained from the study of the large time

behaviour of suitably defined Euclidean correlation functions. Here the correlation functions

are studied in the continuum and in a volume with infinite temporal extent. The subtraction

of the effects due to the finite spatial extent of the lattice, L, are discussed later in section 3.3,

while finite-time corrections to these quantities will be addressed in section 4.3, together

with the details on the lattice implementation of the correlation functions.

Tree-level correlation function: We start by defining the tree-level correlation function

for the decay P+ → `+ν`, with the aim of extracting the tree-level matrix element A(0)

P

defined in eq. (3.18). As discussed in section 3.1, in the absence of QED the matrix element

for the operator OW is factorisable into a hadronic and a leptonic part. As a consequence,

we can extract the hadronic matrix element A(0)

P from a pure QCD two-point correlation

P+

`+

ν`

q1

q2

(a)

P+

`+

ν`

q1

q2

(b)

P+

`+

ν`

q1

q2

(c)

P+

`+

ν`

q1

q2

(d)

P+

`+

ν`

q1

q2

(e)

P+

`+

ν`

q1

q2

(f)

P+

`+

ν`

q1

q2

(g)

P+

`+

ν`

q1

q2

(h)

Figure 2: Quark-connected Feynman diagrams contributing to the leading IB corrections

to the weak decay. The wiggly lines correspond to photons, and the diamond-shaped vertices

are scalar insertions.
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P+

`+

ν`

q1

q2

(a)

P+

`+

ν`

q1

q2

(b)

P+

`+

ν`

q1

q2

(c)

P+

`+

ν`

q1

q2

(d)

P+

`+

ν`

q1

q2

(e)

P+

`+

ν`

q1

q2

(f)

Figure 3: Quark-disconnected Feynman diagrams contributing to the leading IB corrections

to the weak decay.

function without the need of including leptons in the calculation. Let φ†P (x) = q̄1(x)γ5q2(x)

be the interpolating operator for the pseudoscalar meson P+ and define the Euclidean

correlation functions

CPA(t) ≡
∫

d3x 〈0|T
[
A0(t,x)φ†P (0)

]
|0〉 , CPP(t) ≡

∫
d3x 〈0|T

[
φP (t,x)φ†P (0)

]
|0〉 , (3.32)

with A0(x) = q̄2(x)γ0γ5q1(x) the temporal component of the hadronic axial current and

the meson being projected on zero spatial momentum. For simplicity, we use translational

invariance to create the meson at the origin. In practice, lattice correlators have been

computed for several positions xP = (tP ,xP ) and then shifted and averaged over all the

volume to improve the statistical precision (see section 4.3). Note that these are generic

correlation functions evaluated at a given point σ. Fixing t > 0, the correlation functions

in eq. (3.32) have the following spectral decomposition

CPA(t) =
AP ZP
2mP

e−mP t + . . . , CPP(t) =
|ZP |2

2mP
e−mP t + . . . , (3.33)

where ZP = 〈P,0|φ†(0)|0〉 and the ellipses stand for contributions of heavier states that

decay exponentially faster than the leading terms. The combined study of the two correlation

functions evaluated in iso-QCD allows one to extract the meson mass m(0)

P and the matrix

elements Z(0)

P and A(0)

P .

Factorizable correlators: When IB corrections only involve the constituent quarks of

the decaying meson, the matrix element is still factorizable into a hadronic and a leptonic

part. Also in this case we can make use of the correlation functions in eq. (3.32). Defining

the leading factorizable corrections to the correlators as

δC f
PA(t) =

[
1

2

∑
q,q′

eqeq′
∂2

∂eq∂eq′
+
∑

q

(m̂φ
q − m̂(0)

q )
∂

∂m̂q

]
CPA(t)

∣∣∣∣
σ(0)

(3.34)
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and analogously for δC f
PP(t), one gets the following decomposition for their ratios with the

corresponding tree-level correlators

Rf
PA(t) ≡

δC f
PA(t)

C(0)

PA(t)
=
δAf

P

A(0)

P

+
δZP

Z(0)

P

− δmP

m(0)

P

(1 +m(0)

P t) + . . . , (3.35)

Rf
PP(t) =

δC f
PP(t)

C(0)

PP(t)
= 2

δZP

Z(0)

P

− δmP

m(0)

P

(1 +m(0)

P t) + . . . , (3.36)

from a Taylor expansion of the spectral decomposition of the form eq. (3.33). The slope in

t of the above ratios corresponds to the mass shift δmP , and by combining the constant

coefficients we can obtain the correction δAf
P /A

(0)

P .

Non-factorizable correlators: In order to obtain the non-factorizable IB corrections

to the decay amplitude, we start defining the following QCD+QED correlation function

CP`(t, t`) =

∫
d3x d3x` d3xν e−ipν ·xν−ip`·x` 〈0|T

[
ν(t`,xν)¯̀(t`,x`)OW (0)φ†P (−t,−x)

]
|0〉 , (3.37)

where for simplicity we have set the temporal coordinate of the neutrino and the lepton

to be equal. Also in this case we have used translational invariance to insert the weak

Hamiltonian at the origin. Fixing t > 0 and t` > 0 we have that in iso-QCD the above

correlator becomes

C(0)

P` (t, t`) = −〈0| JρH(0) φ†P (−t,pP = 0) |0〉 × Sν(t`,pν |0) γρ(1− γ5)S`(0|t`,p`) , (3.38)

with

Sν(t`,pν |0) =

∫
d3xν e−ipν ·xνSν(t`,xν |0) =

e−ωνt`

2ων

∑
s

usν(pν)ūν(pν) , (3.39)

S`(0|t`,p`) =

∫
d3x` e−ip`·x`S`(0|t`,x`) = − e−ω`t`

2ω`

∑
r

vr` (p`)v̄
r
` (p`) . (3.40)

Using eq. (3.33) we get the following spectral decomposition in iso-QCD

C(0)

P` (t, t`) = −
∑
r,s

e−m
(0)
P te−ω`t`e−ωνt`

8m(0)

P ω`ων
Z(0)

P urν(pν)
{
A(0)

P L
rs(p`)

}
v̄s` (p`) + . . . , (3.41)

with Lrs(p`) defined in eq. (3.19). Note that C(0)

P` (t, t`) is a matrix in Dirac space and that

tracing with γ0
L = γ0(1− γ5) gives

Tr
[
γ0
LC

(0)

P` (t, t`)
]

= −e−m
(0)
P te−ω`t`e−ωνt`

8m(0)

P ω`ων
Z(0)

P A
(0)

P |L(p`)|2 + . . . . (3.42)

We now define the non-factorizable correlator as

δCnf
P`(t, t`) =

∫
d4x d4y 〈0|T

[
JρH(0)V µ(x)φ†P (−t,pP = 0)

]
|0〉 ×∆µν(x− y)

× Sν(t`,pν |0) γρ(1− γ5)S`(0|y) γν S`(y|t`,p`) , (3.43)
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where V µ(x) =
∑Nf

q=1 V
µ

q (x) is the Euclidean quark electromagnetic current and ∆µν(x− y)

the photon propagator. Here we have used V ν
` (y) = ¯̀(y)γν`(y) for the leptonic electro-

magnetic current. The correlator in eq. (3.43) is obtained by applying the derivatives

of eq. (3.30) to the QCD+QED correlator CP`(t, t`). The asymptotic behaviour of the

non-factorizable correlator is

δCnf
P`(t, t`) =

∑
r,s

e−m
(0)
P te−ω`t`e−ωνt`

8m(0)

P ω`ων
Z(0)

P urν(p`)
[
δ ĎMrs

P (p`)
]nf

v̄s` (p`) + . . . . (3.44)

Tracing the correlator with γ0
L and making use of eq. (3.26) we can obtain the desired

non-factorizable correction to the decay amplitude as

Rnf
P` = Re

[
Tr
[
γ0
L δC

nf
P`(t, t`)

]
Tr
[
γ0
LC

(0)

P` (t, t`)
] ] =

δAnf
P

A(0)

P

+ . . . . (3.45)

3.3 Subtraction of finite-volume effects

In the calculation presented in this work we adopt the QEDL prescription, first introduced

in ref. [12]. As discussed in a number of publications [12, 31–33], charged states are not

well-defined in a naive implementation of finite-volume QED (in which periodic boundary

conditions are applied to the photon fields). The QEDL approach solves this by discarding

the zero spatial-momentum mode of the photon on each energy slice. The resulting

momentum-space photon propagator in Feynman gauge then takes the simple form

∆µν
L (k0,k) = δµν

1− δk,0
k2

0 + k2
. (3.46)

This prescription solves the issue of zero-mode singularities in a periodic volume, at the cost

of violating locality in space at finite volume. Nevertheless, this theory has a well-defined

and local limit if the infinite-volume extrapolation is performed before the continuum

limit. Additionally, QEDL has been the dominant prescription so far in high-precision

lattice QCD+QED calculations, including radiative corrections to leptonic decays [7, 8] and

isospin-breaking corrections to the muon anomalous magnetic moment [18, 34]. Alternative

strategies exist which preserve locality, such as introducing a photon mass [35] or using

non-periodic boundary conditions [36]. However, these approaches affect other fundamental

symmetries (gauge invariance and charge conservation, respectively) and their finite-volume

behaviour for processes such as weak decays is currently not as well studied as in the case

of QEDL.

As it is described in detail in ref. [14], the Feynman rules of QEDL can be used to

predict the L dependence of any lattice quantity by representing the latter in terms of

QCD vertex functions at fixed order in QED. In particular, this allows one to analytically

predict the power-like volume dependence, order by order in 1/L, for the virtual-photon

contribution to the leptonic decay rate targeted in this work. This strategy is already

implicit in eq. (3.2), where the subtracted quantity in the first term, denoted by Γ
(2)
0 (L), is

defined as the analytic QEDL prediction through O(1/L2).
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An extension of Γ
(2)
0 (L) to n orders in 1/L can be written as

Γ
(n)
0 (L) = Γtree

0

[
1 + δR

(n)
P (L)

]
, (3.47)

where

δR
(n)
P (L) = 2

αem

4π

(
ỸP (L) +

n∑
i=0

YP, i
Li

)
, (3.48)

isolates the O(αem) contribution of direct interest to us. The first term in parentheses,

ỸP (L), combines the infinite-volume universal (point-like) contributions to the decay rate

with those that are logarithmic in L.3 The functional form is given by [14, 24]

ỸP (L) = −5

4
+ 2 log

(
m`

mW

)
+ 2 log

(
m`L

2π

)
+

2 log r`
|v`|

[
log

mPL

2π
+ log

m`L

2π
− 1

]
, (3.49)

with v` = p`/ω` defining the 3-velocity of the lepton and r` = m`/mP the lepton-

pseudoscalar mass ratio.

Equation (3.49) depends only on the masses of particles and is, in this sense, universal or

structure-independent. In fact, one can show that the same is true for YP, 0 and YP, 1, while

for YP, n>1 structure dependence enters through contributions from, e.g., form factors and

their derivatives. For this reason, the point-like approximation can be used to calculate YP, 0
and YP, 1 and the full machinery introduced in ref. [14] is first required for the determination

of YP, 2 and higher-order coefficients.

A summary of the knowledge to-date on these coefficients is given by the following:

YP, 0 =
c3 − 2 (c3(v`)−B1(v`))

2π
+ 2 (1− log 2) ,

YP, 1 = −
(1 + r2

` )
2c2 − 4 r2

` c2(v`)

mP (1− r4
` )

, (3.50)

YP, 2 = −
FPA
fP

4π
[
(1 + r2

` )
2 − 4 r2

` c1(v`)
]

mP (1− r4
` )

+
8π
[
(1 + r2

` )c1 − 2 c1(v`)
]

m2
P (1− r4

` )
,

YP, 3 =
32π2c0 (2 + r2

` )

m3
P (1 + r2

` )
3

+ Y sd
P, 3 ,

where cj and cj(v`) are known finite-volume coefficients, and B1(v`) is a known special

function. These quantities are all defined in ref. [14].

In YP, 2, the structure-dependent ratio FPA /fP appears where FPA is the on-shell zero-

momentum axial form factor describing radiative leptonic decays and fP is the iso-QCD

pseudoscalar decay constant. A key message is that, while the full result including structure

dependence is known for YP, 2, the same is not true for YP, 3, for which the structure-

dependent piece, denoted Y sd
P, 3, has yet to be determined. As a result, the finite-volume

3In the notation of ref. [14] this quantity can be defined introducing a photon mass λ as

ỸP (L) = lim
λ→0

[
Y uni
P, IV(λ) + YP, log log

Lλ

2π

]
.
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subtractions available currently include δR
(2)
P (L) and δR

(3),pt
P (L), where Y sd

P, 3 is set to zero

in the latter. In this work we use δR
(2)
P (L) to determine our central value and take the

absolute difference |δR(3),pt
P (L)− δR(2)

P (L)| to estimate a systematic uncertainty associated

with neglected finite-volume effects.

Finally, we also need to consider finite-size effects from QED corrections to the meson

mass mP . For the finite-volume state with zero spatial momentum, these are given

by [14, 25, 31–33]

∆m2
P (L) = e2m2

P

{
c2

4π2mPL
+

c1

2π(mPL)2
+

m2
P 〈r2

P 〉
3(mPL)3

+
C

(mPL)3
+ O

[
1

(mPL)4

]}
, (3.51)

where 〈r2
P 〉 is the squared electromagnetic charge radius known from experiments, dispersion

theory and lattice simulations [1, 2], and C is an unknown contribution, arising from the

branch-cut in the Compton amplitude evaluated with zero spatial momentum for both the

photon and the pseudoscalar. Because C > 0 [14], subtracting the charge-radius dependent

piece is guaranteed to reduce the O(1/L3) finite-volume effects, though it does not fully

remove the 1/L3 scaling. In this work we use the predicted volume dependence through

O(1/L2) to estimate the infinite-volume pseudoscalar mass. As with the decay rate, we

take the difference between the 1/L2 and partial 1/L3 results as a systematic uncertainty.

3.4 Inclusion of real photon emission

Lastly, we need to include the contributions from a real photon emission, namely the

quantity δRpert
P (ωmax

γ ) in eq. (3.8). To this end, we adopt the formulation discussed in detail

in ref. [10]. Most notably, if the photon energy threshold, ωcut
γ , is small enough, one may

treat the initial hadron as a point-like particle and compute the inner bremsstrahlung term

analytically. However, since structure-dependent contributions are negligible for the decays

studied in this work, we can set ωcut
γ to the maximum value allowed for the photon energy,

namely ωmax
γ = mP (1− r2

` )/2. We report here the result obtained in ref. [10],

δRpert
P (ωmax

γ ) = lim
mγ→0

δRpert
P (ωmax

γ ,mγ)

=
αem

4π

[
3 log

(
m2
P

m2
W

)
− 8 log(1− r2

` )−
3 r4

`

(1− r2
` )

2
log r2

` − 8
1 + r2

`

1− r2
`

Li2(1− r2
` )

+
13− 19 r2

`

2(1− r2
` )

+
6− 14 r2

` − 4(1 + r2
` ) log(1− r2

` )

1− r2
`

log r2
`

]
. (3.52)

4 Lattice methodology

In this Section we discuss the lattice implementation of the correlation functions relevant

for the calculation of IB corrections to the leptonic decay rate and give the details of our

lattice setup.

4.1 Lattice QCD+QED path integrals

As anticipated in section 2, IB corrections are computed in this work using the RM123

perturbative method [22], which consists in expanding the path integral for a given physical
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observable around the iso-QCD point. In practice, since our lattice setup has been tuned

to an iso-symmetric point different from the target one described in section 2, we follow a

two-step procedure to get our perturbative corrections. This consists in expanding both the

full QCD+QED and the iso-QCD path integral around the simulation point, and get the

desired correction as the difference of the two.

Let 〈Ô〉σφ be the expectation value of an observable Ô calculated (in lattice units) in

terms of the discretized Euclidean path integral in the full QCD+QED theory with bare

parameters σφ = (g, eφ, m̂φ),

〈Ô〉σφ =
1

Zφ

∫
D[U ]D[A]D[ψ, ψ̄] Ô[ψ, ψ̄, U,A;σφ] e−SF [ψ,ψ̄,U,A;σφ] e−Sγ [A] e

− 1
g2
SG[U ]

, (4.1)

with SF [ψ, ψ̄, U,A;σφ] being the fermionic action, and Sγ [A] and SG[U ] the QEDL and QCD

gauge actions, respectively. Zφ denotes instead the QCD+QED partition function. Here we

keep the discussion general and allow the observable Ô to depend on the electromagnetic

coupling eφ. Let 〈Ô〉σ(0) be the corresponding expectation values calculated in the target

iso-QCD theory, σ(0) = (g, 0, m̂(0)),

〈Ô〉σ(0) =
1

Z(0)

∫
D[U ]D[ψ, ψ̄] Ô[ψ, ψ̄, U ] e−SF [ψ,ψ̄,U ;σ(0)] e

− 1
g2
SG[U ]

, (4.2)

and 〈Ô〉σ that evaluated at the simulation point σ = (g, 0, m̂), which is obtained from the

previous equation by substituting σ(0) → σ.

The expansion of 〈Ô〉σφ around the simulation point σ is then given by

〈Ô〉σφ = 〈Ô〉σ + 〈δÔ〉σ − 〈Ô δSF 〉σ +
1

2
〈Ô (δSF )2〉σ + O(ε̄2) . (4.3)

The correction 〈δÔ〉σ in eq. (4.3) only appears if the observable O itself depends on the

electromagnetic coupling eφ, which is not the case for the correlation functions studied in

this work. The quantity δSF is instead the IB correction to the lattice fermionic action, i.e.

δSF =
∑
x

∑
f

[
(m̂φ

f − m̂f) Ŝf(x) + i ef V̂
µ

c,f(x)Âµ(x)− 1

2
e2

f T̂
µ
f (x)Â2

µ(x)
]

+ O(ε̄2) . (4.4)

Here Sf(x) = ψ̄f(x)ψf(x) is the scalar density, while V µ
c,f(x) and Tµf (x) are the electromagnetic

conserved current and the seagull (or tadpole) current, respectively, which depend on the

lattice regularization adopted (see e.g. refs. [22, 37]). The hats denote that all quantities

are expressed in lattice units. In this work, however, we employ a definition of the fermion-

photon coupling similar to the continuum one, where we use the renormalized local vector

current, V µ
f (x) = ZV ψ̄f(x)γµψf(x), instead of the electromagnetic conserved one and do

not include the tadpole current4. This results in

δSF =
∑
x

∑
f

[
(m̂φ

f − m̂f) Ŝf(x) + i ef V̂
µ

f (x)Âµ(x)
]

+ O(ε̄2) , (4.5)

4Note that for leptons ZV = 1 and hence V µ` (x) = ¯̀(x)γµ`(x).
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and the two approaches are expected to differ just by cut-off effects. The comparison of the

two approaches has been thoroughly investigated, and we report on that in appendix A.

Since the simulation point and the iso-QCD point only differ by the choice of the quark

masses, the expansion of the iso-QCD path integral around the simulation point is given by

〈Ô〉σ(0) = 〈Ô〉σ +
∑

f

(m̂(0)

f − m̂f) 〈Ô Ŝf〉σ + O(ε̄2) . (4.6)

From eqs. (4.3) and (4.6) it is then clear that IB corrections are obtained by computing

correlation functions at the simulation point with the insertion of the operators Sf(x) and

V µ
f (x). We repeat that throughout this paper we work in the electro-quenched approximation.

In practice, the bare parameters of the sea quark are kept fixed to their simulated values,

which amounts to neglecting all quark-line disconnected diagrams.

In the perturbative approach adopted in this work the U(1) gauge fields Aµ(x) are

generated as stochastic fields sampled according to the QEDL gauge action in Feynman

gauge [23, 37]

Sγ [A] =
1

V

∑
k:k 6=0

k̄2
∑
µ

|Ãµ(k)|2 with k̄µ =
2

a
sin

(
akµ

2

)
, (4.7)

with Ãµ(k) being the photon field in momentum space, so that the expectation value

〈Aµ(x)Aν(y)〉γ reproduces the photon propagator ∆µν(x− y).

4.2 Lattice setup

For this calculation, we generate correlators for a (L/a)3 × (T/a) = 483 × 96 lattice using

Möbius Domain Wall Fermions (DWF) [38] with close-to-physical masses. The Domain wall

height and the length of the fifth dimension are aM5 = 1.8 and Ls/a = 24, respectively. See

ref. [39] for more details. The QCD gauge configurations are generated by the RBC/UKQCD

collaboration using the Iwasaki gauge action [40] with bare coupling β = 2.13. The sea

quark masses are m̂sea
ud = 0.00078 for the light quarks and m̂sea

s = 0.0362 for the strange

quark. We work in a unitary setup where we choose the valence light-quark masses to

have the same value as the sea, m̂ud = m̂sea
ud and similarly for the valence strange quarks,

m̂s = m̂sea
s . In this setup, that we refer to as our simulation point σ, the lattice spacing

has been determined without QED to be 1/a = 1.7295 (38) GeV and the simulated pion

mass of this ensemble is mπ = 139.15 (36) MeV, corresponding to mπL = 3.863 (6).

To reduce the computational cost of inverting the Dirac operator for near-physical light

quarks, we employ zMöbius fermions, which are a rational approximation of the Möbius

formalism (see ref. [41] and references therein), together with the deflation eigenvectors

generated by the RBC/UKQCD collaboration for this 483 × 96 ensemble. Light-quark

propagators can then be obtained with a smaller value of Ls, thereby reducing the simulation

cost. This rational approximation of the Möbius DWF action must be corrected for, and

we defer this discussion to appendix B.
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4.3 Implementation of the hadronic correlators

We now turn to discuss the lattice implementation of the correlation functions introduced

in section 3.2, where the relations with the corresponding matrix elements were obtained

in the continuum and infinite-volume limit. As explained in section 4.1, IB corrections

to the expectation value of a given observable can be obtained in the iso-QCD simulated

theory by inserting additional operators in the correlation function [22]. As we discuss

in the following this is obtained, in practice, by iteratively inverting the Dirac operator

using suitable sources to get the appropriate sequential propagators. All the correlation

functions used in this calculation are generated using a set of 60 statistically independent

QCD configurations and are then resampled with the bootstrap method. The QED gauge

fields Aµ are generated using one stochastic source on each QCD gauge configuration. In

this way the averages over QED and QCD gauge configurations are simultaneous. The

inversions of the Dirac operator and the quark field contractions have been performed using

the Grid/Hadrons software framework [42–44].

In this calculation we study the decay of the meson P+ in its rest frame, pP = 0.

To create the meson we use gauge-fixed wall sources. This corresponds to defining a

zero-momentum interpolating operator of the form

φ†P (t) ≡ φ†P (t,pP = 0) = a6
∑
x1,x2

q̄1(t,x1)γ5q2(t,x2) , (4.8)

and evaluating expectation values of this operator fixed to Coulomb gauge. Any gauge-fixed

expectation value involving φ†P (t) can be re-expressed as a gauge invariant correlator with

an alternative operator that includes a Wilson line between the quark fields. Crucially, the

gauge-invariant equivalent is local in time so that we can perform spectral decompositions

using the standard Hilbert space of lattice QCD with pseudoscalar quantum numbers.5

Note that using such definition of the meson interpolating operator, the dimensions of

the correlators are different from those described in section 3.2 because of the additional

integration over the spatial coordinates of the quark fields.

Tree-level correlation function: The tree-level correlation functions in eq. (3.32) are

implemented at the simulation point in terms of quark propagators as

CPA(t) = a3
∑
x

〈
Tr
[
Sq2(t,x|0)† γ0 Sq1(t,x|0)

]〉
, (4.9)

CPP(t) = a6
∑
x1,x2

〈
Tr
[
Sq2(t,x2|0)† Sq1(t,x1|0)

]〉
, (4.10)

where we have used γ5-hermiticity, Sq(t2,x2|t1,x1) = γ5Sq(t1,x1|t2,x2)†γ5, and defined the

quark propagator with one end projected on zero momentum as

Sq(t1,x1|t2) ≡ Sq(t1,x1|t2,p = 0) = a3
∑
x2

Sq(t1,x1|t2,x2) , (4.11)

5The same would not be true for gauge fixings that affect temporal gauge links. The idea of equivalence

between gauge-invariant and gauge-fixed formulations is discussed in the context of QED in a seminal paper

by Dirac [45] and more recently in ref. [46].

– 23 –



while the symbol 〈 · 〉 denotes the average over the gauge configurations. Note that here we

have generated the pseudoscalar meson at tP = 0 for simplicity. In the lattice calculation

we have instead evaluated the correlation functions on each gauge configuration inserting

the source at every timeslice tP /a = {1, . . . , T/a = 96} and then shifted and averaged over

the source positions to improve the statistical uncertainty.

By considering the asymptotic form for the pseudoscalar correlator in eq. (3.33) on a

torus with period T in the temporal direction and periodic boundary conditions we obtain

CPA(t) =
AP ZP
2mP

{
e−mP t − e−mP (T−t)} , (4.12)

L3CPP(t) =
|ZP |2

2mP

{
e−mP t + e−mP (T−t)} , (4.13)

having neglected exponentially suppressed contributions of excited states.

Factorizable correlators: Let us define the sequential propagators obtained by inserting

the correction to the fermionic action δSF (see eq. (4.5)) along the quark line as

S(1)
q (x|y) = eq S

A
q (x|y) + (m̂φ

q − m̂q)SSq (x|y) , (4.14)

where

SAq (x|y) = i a4ZV
∑
z

Sq(x|z)γµAµ(z)Sq(z|y) and SSq (x|y) = a3
∑
z

Sq(x|z)Sq(z|y) . (4.15)

We can analogously define the sequential quark propagator with a double insertion of δSF ,

which generates the quark self-energy, as

S(2)
q (x|y) = e2

q S
self
q (x|y) + O(ε̄2) (4.16)

with

Sself
q (x|y) = −a8Z2

V

∑
z,w

Sq(x|z)γµAµ(z)Sq(z|w)γνAν(w)Sq(w|y) . (4.17)

Note that the propagators S
(1)
q (x|y) and S

(2)
q (x|y) are both γ5-hermitian.

The factorizable correlators δC f
PA(t) and δC f

PP(t) can then be evaluated in terms of

such sequential propagators. We define

δC f
PA(t) = 4παem δC

em
PA(t) +

∑
q

(m̂φ
q − m̂(0)

q ) δCS,qPA (t) (4.18)

=
∑

q

e2
q δC

self,q
PA (t) + eq1eq2 δC

exch
PA (t) +

∑
q

(m̂φ
q − m̂(0)

q ) δCS,qPA (t) ,
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and analogously δC f
PP(t), where

δCself,q1

PA (t) = a3
∑
x

〈
Tr
[
Sq2(t,x|0)†γ0Sself

q1
(t,x|0)

]〉
,

δCself,q2

PA (t) = a3
∑
x

〈
Tr
[
Sself

q2
(t,x|0)†γ0Sq1(t,x|0)

]〉
,

δCexch
PA (t) = a3

∑
x

〈
Tr
[
SAq2

(t,x|0)†γ0SAq1
(t,x|0)

]〉
, (4.19)

δCS,q1

PA (t) = a3
∑
x

〈
Tr
[
Sq2(t,x|0)†γ0SSq1

(t,x|0)
]〉
,

δCS,q2

PA (t) = a3
∑
x

〈
Tr
[
SSq2

(t,x|0)†γ0Sq1(t,x|0)
]〉
,

and

δCself,q1

PP (t) = a6
∑
x1,x2

〈
Tr
[
Sq2(t,x2|0)†Sself

q1
(t,x1|0)

]〉
,

δCself,q2

PP (t) = a6
∑
x1,x2

〈
Tr
[
Sself

q2
(t,x2|0)†Sq1(t,x1|0)

]〉
,

δCexch
PP (t) = a6

∑
x1,x2

〈
Tr
[
SAq2

(t,x2|0)†SAq1
(t,x1|0)

]〉
, (4.20)

δCS,q1

PP (t) = a6
∑
x1,x2

〈
Tr
[
Sq2(t,x2|0)†SSq1

(t,x1|0)
]〉
,

δCS,q2

PP (t) = a6
∑
x1,x2

〈
Tr
[
SSq2

(t,x2|0)†Sq1(t,x1|0)
]〉
,

having used again γ5-hermiticity together with eq. (4.11). Note that the symmetries of the

correlators ensure that δCself,u
PP = δCself,d

PP and δCself,u
PA = δCself,d

PA , as well as δCS,uPP = δCS,dPP

and δCS,uPA = δCS,dPA when mu = md = mud. The five correlators in eq. (4.19) correspond to

the hadronic part of the Feynman diagrams shown in figures 2(a)-(e), respectively.

For the factorizable correlators, correcting the asymptotic behaviour in eqs. (3.35)

and (3.36) for finite-time T effects with (anti-)periodic boundary conditions and neglecting

the contribution of excited states results in

Rf
PA(t) =

δAf
P

AP
+
δZP
ZP
− δmP

mP
fPA(t, T ) , (4.21)

Rf
PP(t) = 2

δZP
ZP
− δmP

mP
fPP(t, T ) , (4.22)

with

fPA(t, T ) = 1 +mP

{
T
2 − (t− T

2 ) coth
[
mP (t− T

2 )
]}
, (4.23)

fPP(t, T ) = 1 +mP

{
T
2 − (t− T

2 ) tanh
[
mP (t− T

2 )
]}
, (4.24)

and fPA(t, T ) = fPP(t, T ) ≈ 1 +mP t for t� T/2.

In the following we will make use of the notation Rx
PA(t) (and analogously for Rx

PP(t))

with x = {self,q ; exch ; S,q}. This has to be interpreted as the contributions to Rf
PA(t) com-

ing from the corresponding corrections to the correlator δC f
PA(t) in eq. (4.18). Equivalently,
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we can decompose the correction to the meson mass up to O(ε2) as follows

δmP = 4παem δm
em
P +

∑
q

(m̂φ
q − m̂(0)

q ) δmS,qP (4.25)

=
∑

q

e2
q δm

self,q
P + eq1eq2 δm

exch
P +

∑
q

(m̂φ
q − m̂(0)

q ) δmS,qP .

For the mesons studied in this work we have q = {u,d} for δmπ+ , q = {u, s} for δmK+ ,

q = {d, s} for δmK0 , q = {u,u} for δMuu and q = {d,d} for δMdd .

Non-factorizable correlators: The non-factorizable correlator introduced in eq. (3.43)

can also be evaluated on the lattice by using the sequential propagators described above.

Defining

δCnf
P`(t, t`) = eq1e` δC

nf,q1

P` (t, t`) + eq2e` δC
nf,q2

P` (t, t`), (4.26)

and using eq. (4.11) one has

δCnf,q1

P` (t, t`) =
〈
Tr
[
Sq2(0|−t)† γρL S

A
q1

(0|−t)
]
× Sν(t`,pν |0) γρL S

A
` (0|t`,p`)

〉
, (4.27)

δCnf,q2

P` (t, t`) =
〈
Tr
[
SAq2

(0|−t)† γρL Sq1(0|−t)
]
× Sν(t`,pν |0) γρL S

A
` (0|t`,p`)

〉
, (4.28)

which correspond to the Feynman diagrams in figures 2(f) and 2(g), respectively. Here

we have defined the (sequential) propagator of an anti-lepton with the insertion of an

electromagnetic current and projected on definite external momentum as

SA` (0|t`,p`) = i a7
∑
z,x`

S`(0|z)γµAµ(z)S`(z|t`,x`) e−ip`·x` . (4.29)

The tree-level correlator of eq. (3.38) evaluated at the simulated iso-symmetric point takes

the form

CP`(t, t`) =
〈
Tr
[
Sq2(0|−t)† γρL Sq1(0|−t)

]〉
× Sν(t`,pν |0) γρL S`(0|t`,p`) . (4.30)

Also in this case translational invariance has been used to simplify the notation such that

the weak current is inserted in the origin. However, lattice correlators have been computed

by inserting the weak current on all possible timeslices tH/a = {1, . . . , T/a = 96} and at

all positions xH , and then averaged over the volume. The lepton propagator has been

computed for 8 different lepton source-sink separations t`/a = {12, 16, . . . , 40} and its

momentum is chosen in such a way that energy and momentum are conserved in the process.

Some comments concerning lattice lepton propagators are in order. First, we note that

when evaluated on a torus, the lepton propagator S`(0|t`,p`) takes the form (neglecting

possible contact terms)

S`(0|t`,p`) = −
∑
r

[
e−ω`t`

2Ω`
vr` (p`)v̄

r
` (p`)+

e−ω`(T−t`)

2Ω`
ur`(−p`)ū

r
`(−p`)

]
1

1 + e−ω`T
. (4.31)

The backward signal has a different Dirac structure compared to the forward one and

(2Ω`)
−1 appears in the residue at the pole, with lima→0 Ω` = ω`. Such a backward term
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would contribute to the traces in eq. (3.45). However, this contribution is not related to the

matrix element Mrs
P (p`) of our interest and therefore it has to be subtracted. To this end

it is possible to define a projector Pv`(p`) only onto the forward-propagating part, namely

S`(0|t`,p`) · Pv`(p`) = −e−ω`t`

2Ω`

∑
r

vr` (p`)v̄
r
` (p`)

1

1 + e−ω`T
. (4.32)

The definition and derivation of the projector Pv`(p`) is discussed in appendix C.3. Note

that the same feature would appear also in the lattice neutrino propagator. However, being

electrically neutral, the neutrino does not couple to the photon and, in addition, the term

e−ωνt`/(2ων) in its time-momentum representation (see eq. (3.39)) cancels in the ratio

of eq. (3.45). Therefore we can amputate the neutrino propagator and substitute it with

the (continuum) completeness relation [
∑

s u
s
ν(pν)ūν(pν)]cont = −i/pν .

The lattice correlators employed in the numerical calculation are then defined as

δC̃nf,q1

P` (t, t`) = −i
〈
Tr
[
Sq2(0|−t)† γρL S

A
q1

(0|−t)
]
× /pν γ

ρ
L S

A
` (0|t`,p`) · Pv`(p`)

〉
,

δC̃nf,q2

P` (t, t`) = −i
〈
Tr
[
SAq2

(0|−t)† γρL Sq1(0|−t)
]
× /pν γ

ρ
L S

A
` (0|t`,p`) · Pv`(p`)

〉
, (4.33)

C̃P`(t, t`) = −i
〈
Tr
[
Sq2(0|−t)† γρL Sq1(0|−t)

]〉
× /pν γ

ρ
LS`(0|t`,p`) · Pv`(p`) .

The spectral decompositions of δC̃nf
P`(t, t`) and C̃P`(t, t`), taking into account also the

backward propagation of the meson on the torus, become6

δC̃nf
P`(t, t`) =

1

L3

∑
r,s

e−ω`t`

4mPΩ`

{
e−mP t + κP` e−mP (T−t)}ZP urν(p`)

[
δ ĎMrs

P (p`)
]nf

v̄s` (p`) , (4.34)

C̃P`(t, t`) =
1

L3

∑
r,s

e−ω`t`

4mPΩ`

{
e−mP t − e−mP (T−t)}ZP urν(p`) {−APLrs(p`)} v̄s` (p`) , (4.35)

where Ω` = Ω`(1 + e−ω`T ) and κP` (which has a residual dependence on t`) parametrizes

the correction to the matrix element due to the interaction of the backward propagating

meson and the lepton. It follows that eq. (3.45) becomes

Rnf
P`(t, t`) = Re

[
Tr
[
γ0
L δC̃

nf
P`(t, t`)

]
Tr
[
γ0
L C̃P`(t, t`)

] ] =
δAnf

P

AP
fP`(t, T ) , (4.36)

where

fP`(t, T ) = 1
2

{
(1 + κP`)− (1− κP`) coth

[
mP (t− T

2 )
]}
≈ 1 for t� T

2 . (4.37)

For the lepton propagator we use the free Shamir DWF action [47] with aM5 = 1.0 and

Ls/a = 8. The Feynman rules for the free DWF propagator have been derived in ref. [48] and

we give details of the relevant Feynman rules in the conventions used in the Grid software

framework [42, 43] in appendix C.1. We have determined the bare input mass for the lepton

6Note that the spectral decomposition for δC̃nf
P`(t, t`) given in eq. (4.34) is valid only for t < T − t`. In

this work we restrict the analysis of non-factorizable correlators in the region t < T/2, where the condition

t < T − t` is satisfied for all values of t` used.
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such that the pole mass of the free propagator corresponds to the physical muon mass

mφ
µ = 105.6583755 MeV [1]. This results in a bare input lepton mass of aminput

` = 0.06107

when using a previous determination of the lattice spacing a−1 = 1.730 GeV [39]. Details

on how to determine the input bare mass for a desired target pole mass of the free Shamir

DWF propagator are given in appendix C.2.

We use twisted boundary conditions [49–52] for the lepton propagator in order to

fix the momentum of the lepton such that energy and momentum are conserved at the

weak Hamiltonian. This is the case when the momentum of the lepton is given by |p`| =
mP
2 (1−(m`/mP )2) for the pseudoscalar meson at rest. For the determination of |p`| we used

the physical mass for the muon m` ≡ mφ
µ and the simulation point masses mP for pion and

kaon as determined previously in ref. [53] on this gauge ensemble. We find a|p`| = 0.017054

for the pion and a|p`| = 0.13783 for the kaon. We distribute the momentum of the lepton

equally in all three spatial directions, such that p` = − |p`|√
3
{1, 1, 1}.

Omega baryon correlators: Before closing the section we give details about the cor-

relators for the Ω− baryon, which is employed in the renormalization conditions imposed

in section 2 to fix the bare parameters of the QCD+QED, QCD and iso-QCD actions. We

define the zero momentum two-point function as

CΩΩ(t) =
a3

2

∑
i

∑
x

〈0|T
[
ψiΩ(t,x) sψiΩ(0)

]
|0〉 , (4.38)

where the operator sψµΩ(x) = ψµΩ
†
(x)γ0 denotes the spin-3/2 interpolating operator for the

Ω− and we have summed over the spatial directions i. One form of baryon interpolator is

given by

ψµΩ(x) = εabc P+ sa(x)
[
sTb (x)Cγµ sc(x)

]
(4.39)

where the s represent the strange quark fields, C is the charge conjugation matrix C = iγ2γ0,

and Roman indices identify color components of the fields. The projector P+ = (1 + γ0)/2

ensures that the interpolating operator ψ̄µΩ generates states with positive parity quantum

number (P = +1) and annihilates states with negative parity quantum number (P = −1).

In order to improve the signal for the correlation function, in this calculation we employ

Gaussian smearing for the strange quark fields s̃(t,x) = a3
∑

y exp[−(x− y)2/(2σ2)]s(t,y)

with a width of σ/a = 9, which requires gauge fixing of the QCD gauge configurations.

One feature of lattice baryon interpolating operators is that, on a torus, they couple to

negative parity states propagating backward in time. As a consequence, assuming ground

state dominance, the correlator has the form

CΩΩ(t) =
(
|ZΩ|2 e−mΩt + | sZΩ|2 e−sωΩ(T−t)

)
P+ (4.40)

where sωΩ is the energy of the state with parity P = −1. The operator-state overlaps

for a state with spin projection s ∈ {±3
2 ,±

1
2} are defined by ZΩ u

µ
s = 〈0|ψµΩ(0) |Ω, s〉 and

sZΩ γ5u
µ
s = 〈0|ψµΩ(0) |sΩ, s〉, where uµs is the positive energy solution to the spin-3/2 Rarita-

Schwinger equation (see e.g. [54] for a recent review), and |Ω, s〉 and |sΩ, s〉 are states with

positive and negative parity respectively. In addition, quarks with anti-periodic boundary
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conditions in time have been assumed. Since baryon correlators are significantly affected by

an exponential signal-to-noise-ratio problem, we restrict our analysis of the correlator to

the time region t� T/2. In this interval we can then neglect the backward propagating

signal and take for t� 0,

C̃ΩΩ(t) =
1

2
Tr
[
CΩΩ(t)] ≈ |ZΩ|2 e−mΩt . (4.41)

In analogy with eq. (4.18), we can define the IB corrections to the correlator as

δC̃ΩΩ(t) = 4παem δC̃
em
ΩΩ(t) + (m̂φ

s − m̂s) δC̃
S,s
ΩΩ(t) (4.42)

= e2
s

[
δC̃self,s

ΩΩ (t) + δC̃exch
ΩΩ (t)

]
+ (m̂φ

s − m̂s) δC̃
S,s
ΩΩ(t) ,

where C̃self,s
ΩΩ (t) and C̃exch

ΩΩ (t) denote the corrections due to the photon exchange between the

constituent-strange quarks and C̃S,sΩΩ(t) the correction given by the insertion of the quark

scalar density on the quark lines. The ratio with the iso-QCD correlator has then the

following asymptotic behaviour

RΩΩ(t) =
δC̃ΩΩ(t)

C̃ΩΩ(t)
= 2

δZΩ

ZΩ
− δmΩ t . (4.43)

Also in this case we can decompose the correction to the Ω− mass as

δmΩ = 4παem δm
em
Ω + (m̂φ

s − m̂s) δm
S,s
Ω . (4.44)

Details on the quark contractions for the Ω− correlator, as well as a discussion on the

derivation of its spectral decomposition can be found in appendix D.

5 Numerical analysis

The virtual IB corrections to the ratio of inclusive decay rates evaluated on the lattice, as

defined in eq. (3.27), is built from the IB corrections to the kaon and pion decay amplitudes

and to their masses. As discussed in the previous section, such quantities can be extracted

from the large-time behaviour of suitably defined Euclidean lattice correlators. In this

section, the strategy for extracting the relevant quantities from lattice correlators using a

global-fit analysis is presented. Due to the various classes of correlators involved in this

calculation, we adopt a data-driven approach to standardize the fitting criteria, which we

explain below.

5.1 Strategy for correlator fits

Extracting physical quantities from lattice correlators using a fit procedure requires that

optimal fit ranges are identified for each correlator. In our work, when multiple lattice

correlators have fit parameters in common, e.g. the meson mass mP , these data are fitted

simultaneously fully taking into account such a constraint including the statistical correlation

between the data. In this way, all parameters can be extracted from 7 independent frequentist

fits.
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In the case of the analysis of factorizable corrections, there are 12 correlators to study

for the kaon, while for the pion the flavour symmetries of the correlation functions reduce

the number of independent ones to 8. These correlators are listed below in eq. (5.4). The

functional forms of the fit ansätze used for the correlators are based on the spectral decom-

positions eqs. (4.12), (4.13), (4.21) and (4.22), where only the ground-state contribution is

included. For both mesons the tree-level correlators depend on two parameters, while all the

factorizable correlators depend on 3 parameters each, namely a constant term containing

the relative corrections to the matrix elements AP and ZP , the correction to the meson

mass and the simulation point mass mP entering the tanh/coth functions in eqs. (4.23)

and (4.24). The exact relation between the fit parameters and the physical quantities of

interest is given in eqs. (5.5)–(5.7). Since all the correlators for a given meson depend on

the same simulation point mass, we combine the fits as described below. For what concerns

the non-factorizable pion and kaon correlators, we decide instead to fit the ratios Rnf
P`(t, t`)

using a constant fit ansatz, i.e. setting fP`(t, t`) = 1 in eq. (4.36). This approximation

corresponds to neglecting the contribution of backward signals and excited states and does

not have a significant effect on the χ2 for the range considered. In this case there is then

only one parameter for each meson. The Ω− correlators, due to the usual rapidly degrading

signal-to-noise ratio in baryon correlators, are also fitted in a region of small t, where we

can safely neglect the contribution of the backward propagating baryon and excited states.

This simplifies the fit ansätze for the tree level correlator C̃ΩΩ, and the ratios Rem
ΩΩ and

RS,sΩΩ to those given in eqs. (4.41) and (4.43), respectively. Both the ansätze have two free

parameters.

In order to select the best fit ranges we choose those with the maximum value for

the Akaike Information Criterion (AIC) [55, 56] similarly to the strategy followed by

refs. [18, 32, 57]

w = exp

[
− 1

2
(χ2 − 2ndof)

]
, (5.1)

where ndof = ndata− npar is the number of degrees of freedom of the fit and the χ2 function

is defined as

χ2 = (C−CM(a))TΣ−1(C−CM(a)) . (5.2)

Here C is a vector containing the data (i.e. the time correlators), CM(a) the corresponding

model as a function of the fit parameters a and Σ the covariance matrix

Σ =
1

nB − 1

nB∑
i=1

(Ci − 〈C〉)(Ci − 〈C〉)T , (5.3)

with nB the number of bootstrap samples. The AIC weight function favours fits that have

minimal χ2 with the largest ndof possible, which penalises fits with a low χ2 per degree of

freedom resulting from over-fitting the data.
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The datasets C used for the 7 analyses can be summarized as follows

1. Cf
K = (CKx, Rself,u

Kx , Rself,s
Kx , Rexch

Kx , RS,uKx , R
S,s
Kx) with x = (K,A) ,

2. Cf
π = (Cπy, Rself,u

πy , Rexch
πy , RS,uπy ) with y = (π,A) , 3. Cnf

K = (Rnf
K`) , (5.4)

4. Cnf
π = (Rnf

π`) , 5. CΩ = (CΩΩ) , 6. Cem
Ω = (Rem

ΩΩ) , 7. CS,sΩ = (RS,sΩΩ) .

The corresponding sets of fit parameters a are

1. af
K = (aK ,a

self,u
K , aself,s

K , aexch
K , aS,uK , aS,sK ) ,

2. af
π = (aπ,a

self,u
π , aexch

π , aS,uπ ) , 3. anf
K = (anf

K`) , (5.5)

4. anf
π = (anf

π`) , 5. aΩ = (aΩΩ) , 6. aem
Ω = (aem

ΩΩ) , 7. aS,sΩ = (aS,sΩΩ) ,

where we have defined

aP = (mP , |ZP |2, APZP ) , ax
P =

(
δmx

P , 2
δZx

P

ZP
,
δAx

P

AP
+
δZx

P

ZP

)
, anf

P` =
δAnf

P

AP
, (5.6)

aΩΩ = (mΩ, |ZΩ|2) , ax
ΩΩ =

(
δmx

Ω, 2
δZx

Ω

ZΩ

)
. (5.7)

In the case of the factorizable correlators, however, the bootstrap covariance is rank-

deficient as the number of original samples ncfg = 60 is smaller than the dimension of the

covariance matrix. Some form of regularisation is then required to make the χ2-problem

well-conditioned. To this end we choose to neglect the covariance between the rows of

Cf
K and Cf

π with and without photon lines. This choice is motivated by the fact that the

correlation matrix is approximately block diagonal, and furthermore, we verified that the

optimum parameters do not change significantly if correlation is also neglected between the

correlation functions with different operator insertions. Finally, to reduce the number of

degrees of freedom further, only a subsequence of correlator data separated by the thinning

parameter ∆t are included in the fit, which are reported for each fit in table 1. The regulated

χ2 thus defined, the best-fit parameters are determined by minimizing the χ2 function for a

given fit range.

The choice of the fit ranges for each correlator is made using two different approaches

depending on the number of possibilities. For non-combined fits, like those on the Ω

correlators, the maximum number of fit ranges spanning the region t ∈ [0, T/2− 1] (with

T/a = 96) is 1128. In the case of non-factorizable diagrams, including also all possible

ranges in the lepton-time variable t`, the maximum number of fit ranges is of O(105). In

this case it is computationally feasible to do fits for all possible fit ranges and to compare

the values of w. However, applying the same strategy to the combined factorizable fits

would be computationally unfeasible, as the maximum number of possible fits is O(1024) or

O(1036) for pion and kaon, respectively. To find good fit range(s) with large AIC we utilize

a genetic algorithm as described in appendix E to perform the optimization. The outcome

of this procedure is a set of fit ranges and their associated AIC weights w from each analysis.

There is, however, a large multiplicity of good fit results. In order to capture the variability
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ncorr npar ndof ∆t/a χ2 p-value

1 8 18 80 2 49.98 1.00

2 12 12 95 2 65.00 0.99

3 5 1 24 2 21.42 0.61

4 3 1 32 2 29.41 0.60

5 1 2 7 1 5.14 0.64

6 1 2 9 1 5.32 0.81

7 1 2 6 1 1.73 0.94

Table 1: Details of the best fits for the 7 analysis performed in this work and presented

in figs. 4 to 8, 19 and 20: number of correlators (ncorr), number of parameters (npar),

number of degrees of freedom (ndof), size of thinning interval (∆t/a), chi-squared (χ2) and

one-sided p-value.

in the resulting good fits, we consider the 5 fits from each analysis that correspond to the

highest AIC. This is an arbitrary and seemingly small number, which however already leads

to a large multiplicity of nfit = 57 = 78125 alternative combinations for the fit parameters.

The propagation of the variations due to these alternatives to the final results is discussed

in section 5.3.

Here we only show the representative best fits of the correlators for each analysis,

i.e. those corresponding to the highest AIC weight. In figure 4 the tree-level pion and

kaon correlators of eqs. (4.12) and (4.13) are shown on a logarithmic scale, their slope

being related to the tree-level meson mass mP . The electromagnetic corrections due to the

exchange of photons between the two constituent quarks and to the u-quark self-energy

are reported in figures 5 and 6, respectively, normalized by the tree-level diagrams. In this

case the slopes of the correlators correspond to the corrections to the meson mass δmexch
P
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(a) pion
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Figure 4: Tree-level correlators CPP(t) and |CPA(t)| for pion (a) and kaon (b). The solid

lines with error band correspond to the best fits of the data.
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Figure 5: Factorizable diagram with a photon exchanged between the two constituent

quarks, Rexch
PP (t) and Rexch

PA (t), for pion (a) and kaon (b). The solid lines with error band

correspond to the best fits of the data.

and δmself,u
P (see eqs. (4.21) and (4.22)). The correction due to the scalar insertion on the

u-quark leg is shown instead in figure 7.

The non-factorizable correlators Rnf
P` defined in eq. (4.36) are reported in figure 8 for

both pions (left) and kaons (right). The expected time behaviour fP`(t, T ) is visible from

the data, with plateaus in the region t� T/2. The dependence on the lepton source-sink

time separation t` is suppressed by the use of the projector on the forward propagating

signal (see appendix C.3 for more details). The constant fits to the data corresponding

to the highest value of the AIC weight are reported in the figures, while the grey points

identify the data which are not included in any of the top 5 best fits selected in our analysis.

The details for the best fits are reported in table 1 for the 7 analysis performed in this work.
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Figure 8: Non-factorizable diagram Rnf
P`(t, t`) for pion (a) and kaon (b), for multiple values

of lepton source-sink separation t`/a. The solid lines correspond to the best fits of the data.

The grey points denote the data that are not included in any of the top 5 best fits.

5.2 Tuning of the bare parameters

From each of the fits performed in the factorizable analyses (1) and (2) outlined in eqs. (5.4)

and (5.5) we obtain an estimate of the masses of the charged pion, the charged and neutral

kaon and the neutral BMW mesons at the simulation iso-QCD point, together with their

leading IB corrections. Analogously, we obtain the mass of the Ω− baryon and its corrections

from the analyses (5), (6) and (7). Imposing the renormalization conditions in section 2,

we can then obtain the relevant mass shifts (m̂φ − m̂(0)), (m̂QCD − m̂(0)) and (m̂φ − m̂QCD)

that allow one to define the IB correction δX̂(σ(0)) to a given observable X̂, as well as

its decomposition into strong isospin-breaking and electromagnetic effects (see eqs. (2.14)

and (2.15)).
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The mass shift (m̂φ − m̂) from the physical to the simulation point is obtained by

imposing eq. (2.1) and simultaneously solving the following system of equations

M2
j

m2
Ω

[
1+2αem

(
δMem

j

Mj
−
δmem

Ω

mΩ

)
+2
∑

q

(
δMS,qj

Mj
−
δmS,qΩ

mΩ

)
(m̂φ

q−m̂q)

]
=

(
M2
j

m2
Ω

)PDG

, (5.8)

where j = 1, 2, 3 and M = {mπ+ ,mK+ ,mK0}. Finite-volume effects are applied to the

meson masses on the right-hand side of eq. (5.8) making use of the formula in eq. (3.51).

Once the vector (m̂φ − m̂) is known, the QCD mass shifts (m̂QCD − m̂) are obtained

from eq. (2.7) using the BMW mesons N = {Mud,∆M,MKχ} and solving the system

N2
j

m2
Ω

[
1 + 2

∑
q

(
δNS,qj

Nj
−
δmS,qΩ

mΩ

)
(m̂QCD

q − m̂q)

]
= (5.9)

N2
j

m2
Ω

[
1 + 2αem

(
δNem

j

Nj
−
δmem

Ω

mΩ

)
+ 2

∑
q

(
δNS,qj

Nj
−
δmS,qΩ

mΩ

)
(m̂φ

q − m̂q)

]
,

with j = 1, 2, 3. Finally, the iso-QCD point is determined solving the system in eq. (2.8) for

(m̂(0) − m̂), namely for j = 1, 2, 3

N2
j

m2
Ω

[
1 + 2

∑
q

(
δNS,qj

Nj
−
δmS,qΩ

mΩ

)
(m̂(0)

q − m̂q)

]
= (5.10)

N2
j

m2
Ω

[
1 + 2αem

(
δNem

j

Nj
−
δmem

Ω

mΩ

)
+ 2

∑
q

(
δNS,qj

Nj
−
δmS,qΩ

mΩ

)
(m̂φ

q − m̂q)

]
(1− δj,2) .

Using only the best fit from each of the analyses (i.e. the one corresponding to the

highest AIC weight), we obtain the following bare quark masses in lattice units m̂(0)

ud

δm̂(0)

m̂(0)
s

 =

0.00068 (2)

0

0.0353 (4)

 ,

 m̂QCD

ud

δm̂QCD

m̂QCD
s

 =

0.00068 (2)

−0.0010 (4)

0.0353 (4)

 ,

m̂
φ
ud

δm̂φ

m̂φ
s

 =

0.00068 (2)

−0.0010 (4)

0.0352 (4)

 .
(5.11)

The difference between the simulation point and the physical point is given bym̂ud − m̂φ
ud

δm̂− δm̂φ

m̂s − m̂φ
s

 =

0.00010 (2)

0.0010 (4)

0.0010 (4)

 , (5.12)

and an important feature to notice is the similar size between the deviations in m̂ud, m̂s,

and δm̂φ. This justifies the linearity assumption made in section 2.3, where we assumed

that the m̂ud and m̂s corrections to match with the physical point were of the same size as

the isospin-breaking effects.
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Finally, we also obtain the following ratios[
M(0)

m(0)

Ω

]2

=
(
0.006530 (4), 0.08761 (3), 0.08761 (3)

)
, (5.13)[

MQCD

mQCD

Ω

]2

=
(
0.006530 (4), 0.08653 (2), 0.08869 (3)

)
, (5.14)[

Nφ

mφ
Ω

]2

=
(
0.006530 (4), −0.00464 (2), 0.08434 (2)

)
. (5.15)

Assuming m(0)

Ω = mφ
Ω, we can form the ratio in eq. (5.13) using the iso-QCD meson masses

in the GRS scheme quoted in ref. [8],[
M(0)

m(0)

Ω

]2

GRS

=
(
0.00652 (2), 0.08746 (4), 0.08746 (4)

)
. (5.16)

The pion component agrees between the two schemes, the difference in the kaon part is

more significant, but represents only a per-mille relative difference, which as we will see

in section 6 is well covered by our systematic errors.

5.3 Estimation of model uncertainties

As described in section 5.1, given a fit-scan procedure we obtain a set of fit ranges and their

associated AIC weights from each analysis. In this calculation we choose to consider the 5

best fits from each analysis, thus obtaining a total of nfit = 78125 determinations of the

fit parameters for each bootstrap sample. We can then combine the fit parameters, tune

1

10

100

−0.0108 −0.0104 −0.01 −0.0096 −0.0092 −0.0088

×1072

w
to

t

δRlatt
Kπ

Figure 9: Histogram displaying the distribution of δRlatt
Kπ . The blue and green error bands

are the statistical and fit systematic errors, respectively.
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the bare-quark masses and use eq. (3.27) to get nfit estimates of δRlatt
Kπ for each bootstrap.

In order to extract a value from this set, we build a histogram of the nfit values of δRlatt
Kπ

reweighting each entry with the total AIC weight for that choice of analyses, namely

wtot =

7∏
i=1

wi = exp

[
− 1

2

7∑
i=1

(χ2
i − 2ndof,i)

]
. (5.17)

Here the summation applies because the 7 analyses are independent. The relative size

between the nfit different weights informs us which prediction is preferable to the others.

The choice of limiting our study to only the fit ranges associated to the top 5 AIC weights in

each analysis is motivated by the fact that, with this reweighting procedure, the exponential

suppresses the relatively inferior fit results. Given the reweighted histogram built from

the nfit values of δRlatt
Kπ , which is shown in figure 9, we determine the central value for this

quantity as the median of the histogram. Choosing the median instead of the mean makes

the result not subject to drastic variations due to outlier predictions. In figure 9 the median

is indicated in blue together with its statistical error, while the green error bar is the fit

systematics. The statistical error is estimated from the variance of the bootstrap samples of

the medians, while the systematic error is determined from the distribution of δRlatt
Kπ as the

2σ interval around the central value (i.e. the central 95% band). The distribution of δRlatt
Kπ

in figure 9 shows two peaks. They suggest that there are two sets of fit intervals with

statistically distinct fit results but with comparably good AIC weights. However, we note

that both peaks are covered by our systematic error. Alternative strategies were attempted

to stress the stability of our result, including different assumptions about correlation and

different weight functions7, all leading to results within the quoted systematic uncertainty.

The value obtained for δRlatt
Kπ is then

δRlatt
Kπ = −0.0101 (3)stat.(

+11
−4 )fit . (5.18)

6 Results

The finite-volume lattice estimate of δRlatt
Kπ obtained in the previous section can be combined

with the function δR
(n)
P (L) discussed in section 3.3 in order to subtract the logarithmic

divergence and power-like electromagnetic finite-volume effects up to O(1/L2). The pre-

diction of δRKπ is then obtained according to eq. (3.8) by adding the contribution of the

real-photon emission δRpert
Kπ (ωmax

γ ), which is computed in perturbation theory [10] and

reported in eq. (3.52). To evaluate the finite-volume correction, we compute eqs. (3.48)

and (3.50) using the finite-volume coefficients determined in ref. [14] and the simulation

point meson masses and decay constants, together with F πA and FKA from χPT at O(p4)

and O(p6), respectively [11, 58, 59]. For our lattice of size L48 ≡ 48a we get

δR
(2)
Kπ(L48) = δR

(2)
K (L48)− δR(2)

π (L48) = −0.00730 . (6.1)

7We tried the flat distribution, the two-sided p-value, and ad-hoc functions favouring high number of

degrees of freedom with small χ2.
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Evaluating eq. (3.52) for the physical values of the meson masses mπ and mK [1] we obtain

instead

δRpert
Kπ (ωmax

γ ) = δRpert
K (ωmax

γ )− δRpert
π (ωmax

γ ) = −0.00583 . (6.2)

Combining the previous results and including all sources of systematic uncertainties,

which we are going to discuss in the rest of the section, our result for δRKπ obtained at

L = L48 amounts to

δRKπ = −0.0086 (3)stat.(
+11
−4 )fit(5)disc.(5)quench.(39)vol. . (6.3)

The first error is statistical, and it is obtained from the variance of the bootstrap distribution

of δRlatt
Kπ . The second error is the systematic uncertainty associated with our fit strategy and

estimated as the 2σ interval around the median of the distribution of δRlatt
Kπ (see figure 9),

as discussed in section 5.3.

The calculation presented in this work has been performed on a single lattice spacing

and, as a consequence, we are not able to extrapolate δRlatt
Kπ to the continuum limit. Thus, we

quote a systematic uncertainty associated with the residual O(a2) discretization effects. This

is estimated as (aΛ)2 with a−1 = 1730 MeV and Λ = 400 MeV [34]. This gives (aΛ)2 ∼ 5%,

which is applied to the central value of δRlatt
Kπ before the finite-volume subtraction and

results in −0.0086 (5)disc..

Electromagnetic interactions involving sea quarks have been neglected in this work.

Such electro-quenching effects are SU(3) and 1/Nc suppressed for O(αem) contributions

and expected to be of ∼ O(10%) [60] of the QED correction to the rate. Separating δRlatt
Kπ

into its electromagnetic and strong-isospin breaking contributions (δRlatt
Kπ)γ and (δRlatt

Kπ)SIB

(according to the separation scheme outlined in section 2) we take the 10% of the e.m. part

(δRlatt
Kπ)γ as our electro-quenching error. Using the median of the (δRlatt

Kπ)γ distribution,

(δRlatt
Kπ)γ = −0.0047, we get −0.0086 (5)quench..

As discussed above, we use the finite-volume correction including the full 1/L2 scaling

(denoted by δR
(2)
P (L)) in order to determine our central value for the infinite-volume

observable δRP . We then estimate the systematic uncertainty, associated with the truncation

of the finite-volume expansion, by forming the difference between δR
(2)
P (L) and the correction

including the point-like 1/L3 contribution (denoted by δR
(3),pt
P (L)). These quantities are

given explicitly by combining eqs. (3.48)–(3.50) from section 3.3.

Since we are only targeting the difference between pion and kaon decay rates, the

finite-volume correction we actually require is the difference

δR
(n)
Kπ(L) = δR

(n)
K (L)− δR(n)

π (L) . (6.4)

The systematic uncertainty on this is then estimated via

σL ≡ δR(3),pt
Kπ (L)− δR(2)

Kπ(L) , (6.5)

=
αem

2π

32π2

(mπL)3

[
2 + (m`/mπ)2

[1 + (m`/mπ)2]3
− 2 + (m`/mK)2

[1 + (m`/mK)2]3
m3
π

m3
K

]
, (6.6)

where we have given the explicit expression as it will play a crucial role in our error budget.

We stress that σL is positive. As we will see below, both δR
(2)
Kπ(L) and the final observable
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δRKπ are negative. This implies that, if one were to estimate δRKπ using δR
(3),pt
Kπ (L), the

result would be reduced (a negative number with increased magnitude) as compared to the

central value we report using δR
(2)
Kπ(L).

To give numerical results for δR
(n)
Kπ, we require values for the meson masses and decay

constants, the muon and W -boson mass, and also values for the form factors FKA and F πA.

As above, we take FKA and F πA from χPT at O(p6) and O(p4), respectively [11, 58, 59], and

meson masses and decay constants from our simulation. The full set of inputs is then

mπ = 0.1395 GeV , mK = 0.4992 GeV ,

mµ = 0.1057 GeV , mW = 80.38 GeV ,

fπ = 0.1310 GeV , fK = 0.1564 GeV ,

F π, χPT
A = 0.0119 , FK,χPT

A = 0.0340 ,

(6.7)

where results for FA are reported to three digits, all other numbers to four digits and

uncertainties are neglected, since these are completely subdominant in our determination.

Substituting these values into the expressions for δR
(n)
Kπ(L) and evaluating at the lattice

volume used in this calculation, L48, one finds

δR
(1)
Kπ(L48) = −0.00468 , δR

(2)
Kπ(L48) = −0.00730 , δR

(3),pt
Kπ (L48) = −0.00337 .

From these numerical results it is clear that the convergence appears quite poor for the

volume used. In particular the ratio

σL48

δR
(2)
Kπ(L48)

' −0.54 , (6.8)

implies that the finite-volume correction is assigned a 54% systematic error in our method.

As emphasized above, this is due to the fact that we have only incomplete knowledge of

the correction through 1/L3, since the structure-dependent piece has not been calculated.

Propagating this through eq. (3.8), we obtain

δRKπ = −0.0086 (39)vol. . (6.9)

We close this section by presenting additional information on the finite-volume expansion,

making use of the analytic results of ref. [14] as well as data from the previously published

lattice calculation by the RM123S group [8]. This calculation uses a different lattice

discretization and also extrapolates from heavier-than-physical pions. A key advantage

relative to this work, however, is that it includes results at multiple volumes. The data are

displayed in figure 10, separately for δRπ and δRK . The results are for mπ ≈ 320 MeV and

mK ≈ 580 MeV, and four different volumes.

Our aim is to examine this data in light of a key conclusion of ref. [14], namely that the

structure-dependent part of YP, 2 (the 1/L2 coefficient) is numerically negligible. As this was

not known at the time, the approach of ref. [8] was to subtract the point-like 1/L prediction

and to numerically investigate the residual volume dependence. The circular data points
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(a) (b)

Figure 10: The volume-dependence of (a) δRπ and (b) δRK based on data taken from

ref. [8] supplemented with analytic knowledge from ref. [14]. The L dependence is presented

at fixed, heavier-than-physical quark masses corresponding to mπ ≈ 320 MeV and mK ≈ 580

MeV. As indicated in the legend and described in detail in the text, the various points

correspond to different subtractions and the curves to fits of residual L dependence.

in figure 10, labelled in the legend as “1/L subtracted”, show the result of this analysis

and coincide to figure 9 of ref. [8]. As can be seen from the 1/L-subtracted data and the

dashed curves in figure 10, a linear description vs. 1/L2 for the residual volume dependence

is realistic. This results in a numerical prediction for the structure dependence that is much

larger than the analytic result of ref. [14]. Another way to reach this same conclusion is to

examine the residual L dependence in the pointlike 1/L2 subtracted data. The fact that

this shows a clear residual slope was interpreted as the effect of the structure dependence at

1/L2. This can also be seen in figure 10 in the square data points labelled “1/L2 subtracted”

(strictly, here we subtract the full 1/L2 behaviour and ref. [8] the point-like part, but the

distinction is numerically insignificant.)

We argue that the puzzle is resolved by the observation that the data is equally well

described by 1/L3 behaviour. To explore this we first subtract the point-like 1/L3 prediction

and find that the L dependence is reduced. This is shown in figure 10 as the diamonds,

labelled in the legend as “1/L3 pointlike subtracted”. We then perform a fit of the form

a+ b/L3 to the point-like 1/L3-subtracted data. We find this describes the data reasonably

and can be interpreted as an estimate of the residual 1/L3 behaviour, again arising from

structure dependence.8 The three solid curves in figure 10 show the result of the a+ b/L3

fit for each of the three subtraction scenarios. We stress that the curves are related by

analytic terms and that only one fit was performed.

From these considerations, we conclude that the L→∞ limit is challenging for QEDL

and that analytical knowledge of the L dependence can be of great importance in controlling

8Given the discussion above, the reader might note that we are mimicking the approach of ref. [8] but

one order higher in 1/L. To this point we stress one key difference; the point-like 1/Ln contributions are

known to vanish for n > 3.
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the systematic error associated to these extrapolations. We are working on several directions

to address this issues, including an analytic determination of the structure dependence at

1/L3. As is discussed in ref. [14], this will require evaluating a branch-cut contribution

(similar to that appearing for the pseudoscalar mass in eq. (3.51)).

We now turn to the determination of |Vus|/|Vud|. For this purpose, symmetrizing the

fit systematic in eq. (6.3) and summing in quadrature all the errors but the “vol.” one, we

get δRKπ = −0.0086 (13)(39)vol.. Combining this result with the value of the iso-QCD ratio

fK/fπ we can predict |Vus|/|Vud| at leading order in IB corrections as

|Vus|
|Vud|

=

[
Γ(K+ → µ+νµ[γ])

Γ(π+ → µ+νµ[γ])

mK

mπ

(m2
π −m2

µ)

(m2
K −m2

µ)

]1/2 fπ
fK

(
1− 1

2
δRKπ

)
. (6.10)

Averaging9 the Nf = 2 + 1 lattice results reviewed in FLAG [2, 39, 61–67], and using the

PDG average for the ratio of experimental decay widths [1], we obtain

|Vus|/|Vud| = 0.23154 (28)exp. (15)δRP (45)δRP ,vol. (65)fP , (6.11)

where the first error comes from the experimental measurements, the second is our uncer-

tainty on δRKπ excluding the finite-volume systematics quoted separately, and the last

error comes from the average of lattice determinations for fK/fπ. Interestingly, we find

that the error from fK/fπ dominates the uncertainty on |Vus|/|Vud|. The same conclusion

is obtained using the RM123S result. In fact, taking δRRM123S
Kπ = −0.0126 (14) [8] and the

Nf = 2 + 1 + 1 FLAG average, fK/fπ = 1.1966 (18) [2], one obtains (|Vus|/|Vud|)RM123S =

0.23131 (28)exp (17)δRP (35)fP . This is a clear motivation for future new computations of

fK/fπ on the lattice, with the aim of reducing the uncertainty by a factor 2 to 3 to bring

it below the current experimental uncertainties on the decay width ratio. Finally, the

second-largest uncertainty in eq. (6.11) comes from the challenges with finite-volume QED

as discussed above. It is foreseeable that this conservative uncertainty will be drastically

reduced in the near future, which can be done through the addition of multiple volumes

to compute the 1/L3 coefficient or the usage of a different QED formulation with smaller

volume corrections. In conclusion, there are identified ways forward to reduce in the short-

term future the two main systematic errors on |Vus|/|Vud|, and beyond those the precision

reached on δRKπ is sufficient and below the experimental input uncertainties.

7 Conclusions

The study of light-meson leptonic decays is of great relevance for the extraction of the

CKM matrix elements |Vus| and |Vud|, especially in light of current outstanding 3σ tensions

in the first-row unitarity [1, 3]. To either confirm or resolve such tensions, a combined

effort of both theory and experiment is necessary. New experimental measurements and

9FLAG does not quote an average for fK/fπ, but for the isospin-corrected ratio fK+/fπ+ . We produced

the value fK/fπ = 1.1930 (33) following exactly the averaging procedure described in the review. Although

iso-QCD has been tuned in slightly different ways in the calculations entering this average, from the

corresponding values of mπ and mK we expect scheme ambiguities to be below the quoted uncertainty (see

discussion in sections 2.4 and 5.2).
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analyses are possible for some facilities (e.g. at NA62, as suggested by the authors of

ref. [3]) and can help to clarify the situation. On the theoretical side, precise and controlled

calculations of leptonic and semi-leptonic decay rates, including non-perturbative effects

of strong interactions, as well as QED and strong isospin-breaking effects, would allow

stringent tests of the SM.

In this paper we have presented the first physical-quark-mass lattice calculation of the

leading isospin-breaking effects on the ratio of the rates of kaon and pion decays into muons.

This has been performed using chiral domain wall fermions with close-to-physical masses on

a single gauge ensemble, i.e. at a fixed value of the lattice spacing and on a finite volume.

Finite-volume QED interactions have been regulated according to the QEDL prescription

by removing the spatial zero mode of the photon propagator and the electro-quenched

approximation has been employed, thus assigning zero electric charge to the sea quarks.

Including all sources of systematic uncertainty, we obtain

δRKπ = −0.0086 (3)stat.(
+11
−4 )fit(5)disc.(5)quench.(39)vol. . (7.1)

This result is compatible with the lattice result obtained by the RM123S collaboration [8],

as well as with the χPT estimate of ref. [13].

Although our statistical error is very competitive with e.g. the RM123S calculation, the

final precision of our estimate of δRKπ is affected by a large systematic uncertainty. This is

dominated by the error associated with residual finite-volume effects, which amounts to

around 45% of the central value of δRKπ. The origin of such a large uncertainty, as explained

in section 6, is due to the lack of knowledge of structure-dependent effects at O(1/L3), which

are specific to the QEDL prescription. The discussion in section 6 emphasises the crucial

role of finite-volume effects in the extraction of δRKπ and the need for a dedicated study of

the O(1/L3) contributions. Two ways of reducing the finite-volume systematic error will

be explored in future calculations. On the one hand, work is in progress to understand

and determine the 1/L3 finite-volume QEDL contributions. On the other hand, performing

the same calculation on multiple volumes can certainly help to extrapolate to the infinite-

volume limit. Repeating the calculation on gauge ensembles with different lattice spacings

would also allow to reduce the systematic uncertainties associated to discretization effects.

For what concerns electro-quenching, a plan is in place to overcome this approximation

calculating quark-disconnected electromagnetic corrections. The progress of our preliminary

study has been reported in ref. [30].

To conclude, our calculation provides an important step towards future flavour physics

precision tests. The anticipated extensions of the calculation presented in this work, resulting

in smaller systematic uncertainties, will allow for a new theoretical prediction for the ratio

|Vus|/|Vud|. However, as discussed at the end of section 6, a real progress will only be possible

if also the precision of the iso-QCD decay constants fK/fπ is improved. At this point, the

uncertainties coming from theoretical predictions will no longer dominate over those from

experimental inputs in the extraction of |Vus|/|Vud|. We are currently also investigating the

prospects for a non-perturbatve determination of the leading isospin-breaking corrections

to semi-leptonic K → π`ν decays, which are relevant for an independent determination of
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|Vus|. Together, these results will provide novel and stringent precision tests of the CKM

matrix unitarity.
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Appendices

A Comparison of local and conserved electromagnetic currents

A.1 Theory

A certain freedom always exists in the detailed choice of how to discretize local composite

fields in a lattice calculation. In particular, various equally valid discretizations can be

defined that differ in their renormalization and cut-off effects. In this work, we use the

(ultra-)local discretization of the electromagnetic current on the lattice, defined as

V µ
fg(x) = ZVψ̄f (x)γµψg(x) . (A.1)

This is an extension of the current appearing in eq. (4.5), as here we allow the possibility

of an off-diagonal flavour current in order to simplify the discussion of particular quark

contractions in isolation.
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The local current does not exactly satisfy the QED Ward-Takahashi identity. In other

words, the coupling to the photon field breaks QED gauge invariance explicitly for non-zero

lattice spacing. In addition to introducing a finite renormalization of the electromagnetic

current at order αem, the lack of gauge symmetry implies that new singularities may arise

when the position of the current coincides with other local fields. Such short-distance effects

occur, for example, when the vertex is integrated over the space-time volume and as a result

coincides with the axial current as in the first correlation function defined in eq. (4.19). By

contrast, when gauge-invariance is preserved using a discretization of the current which is

exactly conserved, singularities associated with overlapping operators are highly constrained

by the Ward-Takahashi identities.

Nevertheless, by power counting one can show that in our set-up no such extra diver-

gences arise, nor is the automatic O(a) improvement of the chiral fermion discretization

spoiled. To see this, first consider diagram (a) of figure 2. We examine the limit in which

both electromagnetic vertices approach the position of the axial current. To identify this di-

agram in isolation we introduce fictitious valence-quark flavours denoted 1, 2, 3, 4 (discussed

in more detail below) and write

a8 1

x2

[
V µ

12(x)V µ
23(x)Aν34(0)

]
x→a
= δZAA

ν
14(0) + O(a2) . (A.2)

Here the factor x−2 on the left-hand side arises from the short-distance behaviour of the

photon propagator and the a8 arises from the discretized space-time measure. The three

key claims in this equation, all justified in the following paragraphs, are (i) that no power

divergences (positive powers of 1/a) arise, (ii) that the constant order simply defines a

contribution to the renormalization of the axial current, and (iii) that the leading corrections

that vanish as a→ 0 are O(a2) rather than O(a).

We have introduced additional (degenerate) flavours 1, 2, 3, 4 in the paradigm of a

partially quenched theory to isolate the contribution from the diagram of interest. This

flavour structure ensures that only operators with energy dimension greater than or equal

to three can contribute to the right-hand side, since all contributing operators must carry

anti-1 and 4 quantum numbers, and must therefore be built from at least two quarks. The

difference between the lowest dimension of operators contributing (three) and the dimension

on the left-hand side (nine) is therefore six, and this leads to a 1/a6 scaling accompanying

the quark bilinear. This is however cancelled by the power of a8/x2 → a6 on the left-hand

side, implying that no power divergences arise. This demonstrates point (i) above.

Without any additional symmetries, all rotationally covariant quark bilinears could

contribute. However, in our set-up we have an approximate chiral symmetry, broken due

to an exponentially suppressed contribution from the finite extent of the fifth dimension.

Taking this to be negligible, we need only catalogue dimension three operators with the

correct chiral rotation properties, and the {1,4} axial-current is the unique choice with

dimension three. Thus, the effect of breaking gauge invariance results in an additional

renormalization of the axial current at the next-to-leading order in the electromagnetic

coupling. This demonstrates point (ii) above.
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Figure 11: A comparison of the QED correction to the pion mass from the exchange (left)

and the self energy+tadpole (right) diagrams between the local and conserved currents.

Finally, the discrete lattice chiral symmetry [68] forbids mixing with dimension-four

operators with the appropriate definition [69], which might otherwise introduce linear lattice

artefacts in such off-shell correlation functions. This is our third and final point (iii) and

a similar analysis of the remaining diagrams illustrates that the use of the local current

poses no particular difficulties with our chosen discretization. We now turn to a numerical

demonstration that the discrepancy in δRKπ between this current and the conserved vector

current at fixed lattice spacing has a value consistent with our expectations for an O(a2)

effect.

A.2 Numerical check

We perform a numerical test on a smaller 243 × 64 lattice using Shamir-Domain-Wall

fermions [70], with aM5 = 1.8 and Ls/a = 16. We limit the statistics to 10 QCD configura-

tions, with interpolating operator inserted on every other timeslice (32 in total). The pion

mass for this ensemble is mπ ≈ 339.789 MeV.

The difference between the formulation of local and conserved electromagnetic current

is the presence of a tadpole diagram in the latter, which arises from the second derivative

of the Dirac operator with respect to the electric charge. We may extract the contributions

to the QED mass corrections from correlator ratios via

δmx
P = −

Rx
PP(t+ 1)−Rx

PP(t)

fPP(t+ 1, T )− fPP(t, T )
, (A.3)

where x = {self, q1 ; self, q2 ; exch} while the ratios Rx
PP(t) and the function fPP(t, T ) are

defined in eqs. (4.22) and (4.24), respectively. The result for pions is shown in figure 11. For

the exchange diagram where the electromagnetic current is inserted on both propagators,

we notice that the use of the renormalized local current or the conserved current give

very similar results. However, in the case where there are two current insertions on the

same quark propagator, the presence of the tadpole contributes additionally to the mass

correction, as expected. This discrepancy will manifest in the results obtained from the
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combined fits performed on the tree-level and factorizable correlators.

Since, for this numerical check, we are working on a gauge ensemble away from the

physical point we simply define the iso-QCD point to be equal to the simulation one,

i.e. σ(0) = σ, such that m(0)

P = mP . Furthermore, the (fictitious) physical point σφ is

defined imposing the following conditions(
mφ
π+

)2
= m2

π + (mPDG

π+ )2 −
(
mPDG

π0

)2
, (A.4)(

mφ
K+

)2
= m2

K +
1

2

[(
mPDG

K+

)2 − (mPDG

K0

)2]
, (A.5)(

mφ
K0

)2
= m2

K −
1

2

[(
mPDG

K+

)2 − (mPDG

K0

)2]
, (A.6)

i.e. we keep the pion and kaon mass splittings at their experimentally measured values (taken

from PDG [1]). These conditions allow us to obtain the quark mass shifts (m̂φ− m̂) needed

to compute IB corrections. The physical value of αem is tuned instead to its Thomson limit,

as done in section 2.

In table 2 we report the photon corrections to the meson masses, as well as the

factorizable and non-factorizable contributions to the decay amplitude, obtained using

either the conserved electromagnetic current or the renormalized local vector current. We

see that all diagrams except the non-factorizable correction give as expected significantly

different results using the two different approaches. However, when combining these

corrections with those obtained from the insertion of the scalar density,
∑

x(m̂φ
q − m̂q)Ŝq(x)

(see eq. (4.5)), the estimates for a physical observable obtained with the two approaches

become comparable. In fact, this is the case for δRlatt
Kπ ,(

δRlatt
Kπ

)
loc

= −7.04 (20)× 10−3 ,
(
δRlatt

Kπ

)
cons

= −6.91 (20)× 10−3 . (A.7)

We can see that the two results are compatible with each other, the difference (δRlatt
Kπ)loc −

(δRlatt
Kπ)cons being consistent with zero within errors. The slightly larger value (∼ 2%) of

(δRlatt
Kπ)loc can be associated to O(a2) cut-off effects, which as explained in the previous

subsection are expected to contribute.

local conserved

(δm̂2
π+)e.m. 0.005476 (38) 0.009160 (30)

(δM̂2
uu)e.m. 0.000434 (39) 0.005782 (29)

(δm̂2
K+)e.m. 0.008148 (47) 0.012260 (54)

(δm̂2
K0)e.m. 0.0005142 (98) 0.002250 (13)

(δAπ+/Aπ)f 5.388 (49)× 10−2 1.1743 (64)× 10−1

(δAK+/AK)f 2.218 (48)× 10−2 5.265 (57)× 10−2

(δAπ+/Aπ)nf 5.374 (59)× 10−2 5.287 (43)× 10−2

(δAK+/AK)nf 4.493 (41)× 10−2 4.494 (48)× 10−2

Table 2: Comparison of photon corrections to meson masses and to the decay amplitude

computed using local and conserved current.
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B zMöbius to Möbius correction

The zMöbius DWF action [41] is an approximation of the Möbius DWF action [38] and is

used in this work due to faster numerical convergence. The real parameters of the Möbius

DWF action are matched to complex ones in the zMöbius DWF action, using the Remez

algorithm, leading to a reduced Ls dimension. On the ensemble used in this work, an

Ls/a = 24 is used for Möbius and Ls/a = 10 for zMöbius.

A further drastic improvement in the iterations needed for a light-quark inversion

is achieved via deflation: we compute the lowest Nvec = 2000 eigenvectors of the Dirac

operator to obtain a starting guess, reducing computational cost of light-quark inversions

substantially.

For the light-quark inversions using the Möbius action, for which we do not have

eigenvectors available on disk, we employ the Möbius accelerated DWF (MADWF) algo-

rithm [71]. This algorithm constructs a guess for the final solve by transforming the 5D

Domain-Wall Dirac operator D5D
DW via Pauli-Villars solves into a 4D approximation of the

overlap operator D4D
ov . The solution of the D4D

ov inversion is then used to reconstruct an

approximated solution for D5D
DW. Using this solution as a guess for the final solve on D5D

DW

leads to an overall reduction in computational cost. One key insight used in this work

is that the Domain-Wall Dirac operator D5D
DW does not have to be the same in the first

and last step of this algorithm. For our light-quark solves with the Möbius action, we

therefore produced the guess of the MADWF algorithm using a zMöbius Dirac operator,

allowing us to benefit from deflation. We found that the zMöbius MADWF guess was able

to significantly speed up the final Möbius solve. Compared to an undeflated light-quark

Möbius solve, the deflated zMöbius solve has an iteration count reduced by a factor 20 and

the MADWF Möbius solve with a deflated zMöbius MADWF guess is faster by a factor 10.

To correct for the bias introduced by the zMöbius approximation, we perform an

all-mode averaging (AMA) [72] correction step. Within AMA, for each observable O we

compute the estimator 〈Õ〉M using the Möbius action from two source times (tsrc = 0, T/2).

On the same source times, we compute the cheaper estimator 〈Õ〉zM using the zMöbius

action. Finally, we compute another zMöbius estimator 〈O〉zM from all 96 source times

available on the ensemble used in this work. The final bias-corrected estimator is then given

by

〈O〉 = 〈O〉zM + 〈Õ〉M − 〈Õ〉zM . (B.1)

A comparison of the magnitude of bias correction 〈Õ〉M − 〈Õ〉zM to the statistical error

of the estimator 〈O〉zM is shown in figure 12. We find that the correction is negligible on

most observables, with the exception of the non-factorisable correlation functions and the

pion two-point correlation function.
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Figure 12: Comparison of the magnitude of the zMöbius-to-Möbius bias correction (blue

circles) to the statistical error of the zMöbius estimators (orange squares) for the π and K

meson. All plots show the correlations functions, in lattice units, computed using point

sources and wall sinks. In the pion two-point correlation function (top left) the correction

is larger than the noise, while for the kaon two-point function (top right) the correction is

smaller than our statistical precision. In the non-factorisable correlation functions (bottom

plots) signal and correction are of compatible magnitude.

C Free domain wall fermion propagators

In this appendix we discuss the free domain wall fermion propagators, which have been

used for the implementation of the lepton in the non-factorizable correlation functions.

Throughout this section all quantities are expressed in lattice units.

In this work we use the following convention for the five-dimensional Shamir-Domain-

Wall-Fermion-Dirac operator [42, 43]

Ds,t(x, y) = −δs,t
1

2

∑
µ

[
(1− γµ)Uµδy,x+µ + (1 + γµ)U †µδy,x−µ

]
− δs,t(M5 − 1− 4)δx,y

− δt,s+1P−δx,y − δt,s−1P+δx,y +mδx,yδs,Lsδt,1P− +mδx,yδs,1δt,LsP+ (C.1)
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where s, t ∈ {1, Ls} label the slices in the fifth dimension and M5 is the Domain Wall height.

The Domain Wall Fermion action is given by

S[Ψ,Ψ, U ] = −
∑
x,y

Ls∑
s,t=1

Ψs(x)Ds,t(x, y) Ψt(y) . (C.2)

The physical quark fields are given by

q(x) = P−Ψ1(x) + P+ΨLs(x) and q(x) = Ψ1(x)P+ + ΨLs(x)P− , (C.3)

with P± = (1± γ5)/2.

C.1 Feynman rules for free propagator

A derivation of the free Domain-Wall-Fermion propagator in momentum space can be found

in ref. [48]. However, the conventions used for the five dimensional Dirac operator in ref. [48]

differ from the ones given in eq. (C.1) and thus, in the following, we give results for the

convention used in our work. These can be obtained by following the same steps as the

derivation in ref. [48].

The free momentum-space action is given by

D̃st(p) = i
∑
µ

γµ sin pµδst +
(
W (p)δs,t − δs−1,t +mδs,1δt,Ls

)
P+

+
(
W (p)δs,t − δs+1,t +mδLs,1δt,1

)
P− , (C.4)

with

W (p) = 1−M5 + 2
∑
µ

sin2 pµ
2
. (C.5)

The inverse of the operator in eq. (C.4) (i.e. the propagator) can be written as

Ss,t(p) = −
(

i
∑

µ γµ sin pµδsu + (W+
m)su

)
GRu,t P+ −

(
i
∑

µ γµ sin pµδsu + (W−m)su

)
GLu,t P− , (C.6)

where we use the notation

(W+
m)st = −W (p)δst + δs+1,t −mδs,Lsδt,1 , (C.7)

(W−m)st = −W (p)δst + δs−1,t −mδs,1δt,Ls , (C.8)

and define

GRs,t =

(∑
µ

sin2 pµ +W−mW
+
m

)−1

s,t

, GLs,t =

(∑
µ

sin2 pµ +W+
mW

−
m

)−1

s,t

. (C.9)

Following the steps in ref. [48] for the conventions used in this work, the inverses in eq. (C.9)

can be calculated and are given by

GRs,t = G(s, t) +A++eα(s+t) +A+−eα(s−t) +A−+eα(−s+t) +A−−eα(−s−t) , (C.10)

GLs,t = G(s, t) +B++eα(s+t) +B+−eα(s−t) +B−+eα(−s+t) +B−−eα(−s−t) , (C.11)
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where

G(s, t) = A
(

eα(Ls−|s−t|) + e−α(Ls−|s−t|)
)
, (C.12)

with

A =
1

2|W | sinhα
· 1

2 sinh (αLs)
, (C.13)

and α can be defined via

coshα =
1 +W 2 +

∑
µ sin2 pµ

2|W |
. (C.14)

The coefficients A±± and B±± are determined such that the boundary conditions (s = 1, Ls)

in Ds,tSt,u = δs,u are fulfilled

A++ =
A

F

(
e−2αLs − 1

)
e−α

(
e−α − |W |

)
(1−m2) ,

A−− =
A

F

(
1− e2αLs

)
eα (eα − |W |) (1−m2) ,

B++ =
A

F

(
e−2αLs − 1

) (
1− e−α|W |

)
(1−m2) ,

B−− =
A

F

(
1− e2αLs

)
(1− eα|W |) (1−m2) ,

A+− = A−+ = B+− = B−+ =
A

F
2|W | sinh(α)

(
1 + 2m cosh(αLs) +m2

)
,

(C.15)

with

F = eαLs

[
1− |W |eα +m2(|W |e−α − 1)

]
+ e−αLs

[
|W |e−α − 1 +m2(1− |W |eα)

]
− 4|W |m sinh(α) . (C.16)

NB: The five dimensional free propagator in eq. (C.6) can be projected to four dimensions

by

S4D(p) = P−S1,1(p)P+ + P+SLs,Ls(p)P− + P−S1,Ls(p)P− + P+SLs,1(p)P+ . (C.17)

It can be shown that in the infinite Ls limit, the four dimensional propagator is given by

S4D −→
−i
∑

µ γµ sin pµ +m(1−W e−α)

−(1− |W |eα)−m2(|W |e−α − 1)
for Ls →∞ (C.18)

in agreement with the expression given in ref. [73].

C.2 Pole mass of the free propagator

For the calculation of the QED correction from the factorisable diagram, we want to fix

the free lepton propagator to the physical muon mass as its pole mass. In the following

we describe how to determine the correct input-mass parameter m for the free propagator
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to reproduce a desired pole mass. The 4D propagator can be written with a common

denominator A/F (see eqs. (C.13) and (C.16))(
A

F

)−1

= 2|W | sinh(α)2 sinh(αLs)
{

eαLs
[
1− |W |eα +m2(|W |e−α − 1)

]
− 4|W |m sinh(α) + e−αLs

[
|W |e−α − 1 +m2(1− |W |eα)

] }
.

(C.19)

We now have to find mpole where (A/F )−1|p2=−m2
pole

= 0. (A/F )−1 has some trivial zeros,

where sinh(α) = 0, which we are not interested in. We are interested in the case F = 0, i.e.

F
∣∣
p2=−m2

pole
≡ Fpole = 0 . (C.20)

In practice, we want to choose a desired pole mass m2
pole (e.g. the muon mass) and determine

the input mass m that corresponds to this pole mass, i.e. we have to solve with respect to

m:

Fpole = eαpoleLs

[
1− |Wpole|eαpole +m2

(
|Wpole|e−αpole − 1

)]
− 4|Wpole|m sinh(αpole)

+ e−αpoleLs

[
|Wpole|e−αpole − 1 +m2

(
1− |Wpole|eαpole

)]
= 0 ,

(C.21)

with

Wpole = 1−M5 + 2
∑
µ

sin2

(
pµpole

2

)
, coshαpole =

1 +W 2
pole +

∑
µ sin2

(
pµpole

)
2|Wpole|

. (C.22)

This is a simple quadratic equation in m and the solutions are easily obtained from

m = −p
2
±
√(p

2

)2
− q , (C.23)

with

p =
−4|Wpole| sinh(αpole)

eαpoleLs(|Wpole|e−αpole − 1) + e−αpoleLs(1− |Wpole|eαpole)
, (C.24)

q =
eαpoleLs(1− |Wpole|eαpole) + e−αpoleLs(|Wpolee

−αpole − 1)

eαpoleLs(|Wpole|e−αpole − 1) + e−αpoleLs(1− |Wpole|eαpole)
. (C.25)

For large Ls one finds

m −→ ±

√
−

1− |Wpole|eαpole

|Wpole|e−αpole − 1
for Ls →∞ . (C.26)

In figure 13 we show the effective mass of a free propagator calculated using our implemen-

tation in Grid from Feynman rules (see appendix C.1) on a 243 × 64 lattice. The plot on

the left corresponds to a Domain Wall height of aM5 = 1.0, while the plot on the right

to aM5 = 1.2, both with length Ls/a = 8 in the fifth dimension. Red points show the

numerical results for the effective mass, the solid green line shows the target pole mass of
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ampole = 0.05, while the dashed blue line is the required input mass determined according

to eqs. (C.23)–(C.25). For large-enough times t the effective mass of the free propagator

plateaus at the desired target value of the pole mass ampole = 0.05. The deviation from the

plateau at small t is due to unphysical poles in the free Domain Wall Fermion propagator

(see, e.g., the discussion in ref. [74]).
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Figure 13: The effective mass of a free propagator calculated from Feynman rules on a

243 × 64 lattice for aM5 = 1.0 (left) and aM5 = 1.2 (right).

C.3 Projectors on definite spinor structure

Euclidean free Dirac spinors satisfy the following on-shell Dirac equations

D(iω,p)u(p) = 0 , D(−iω,−p) v(p) = 0 , (C.27)

where D(p) is the Dirac operator in momentum space and ω is the energy satisfying

the dispersion relation D(iω,p)D(−iω,−p) = 0. The spinors also respect the following

completeness relations∑
r

ur(p)ūr(p) = D(−iω,−p) ,
∑
r

vr(p)v̄r(p) = −D(iω,p) , (C.28)

and orthogonality relations

v̄r(−p) Γ0 u
s(p) = 0 ,

ūr(−p) Γ0 v
s(p) = 0 ,

ūr(p) Γ0 u
s(p) = 2E δrs ,

v̄r(p) Γ0 v
s(p) = 2E δrs ,

ūr(p)us(p) = 2M δrs ,

v̄r(p) vs(p) = −2M δrs ,

(C.29)

where E and M are quantities that in the continuum limit reduce to lim
a→0
E =

√
m2 + |p|2

and lim
a→0
M = m, respectively.

As discussed in section 4.3, the external anti-lepton propagator projected on momentum

p`, when evaluated on the lattice with finite time T and anti-periodic boundary conditions
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takes the following form (neglecting possible contact terms)

S`(0|t`,p`) =

{
e−ω`t`

D(iω`,p`)

2Ω`
− e−ω`(T−t`)

D(−iω`,p`)

2Ω`

}
× 1

1 + e−ω`T
(C.30)

= −
∑
r

{
e−ω`t`

vr(p)v̄r(p)

2Ω`
+ e−ω`(T−t`)

ur(−p)ūr(−p)

2Ω`

}
× 1

1 + e−ω`T
,

where we observe that the backward signal has a different Dirac structure compared to the

forward one. Here Ω` is a quantity that in the continuum limit gives lim
a→0

Ω` =
√
m2
` + |p`|2 .

By using the orthogonality relations above and the fact that

D(−iω,p)−D(iω,p) = 2E Γ0 , (C.31)

we can define two projectors

Pv(p) = {D(−iE,p)−D(iE,p)}−1 [−D(iE,p)]

= {ut(−p)ūt(−p) + vs(p)v̄s(p)}−1 [vr(p)v̄r(p)] ,

Pu(−p) = {D(−iE,p)−D(iE,p)}−1D(−iE,p)

= {ut(−p)ūt(−p) + vs(p)v̄s(p)}−1 [ur(−p)ūr(−p)] ,

(C.32)

such that for the lepton propagator we have

S`(0|t`,p`) · Pv(p`) = −
∑
r

{
e−ω`t`

vr(p`)v̄r(p`)

2Ω`

}
× 1

1 + e−ω`T
,

S`(0|t`,p`) · Pu(−p`) = −
∑
r

{
e−ω`(T−t`)

ur(−p`)ūr(−p`)

2Ω`

}
× 1

1 + e−ω`T
.

(C.33)

In order to construct the projectors Pv(p`) and Pu(−p`) we then compute on the lattice

the free domain-wall lepton propagator S`(t`,−p`|0), projected on definite momentum −p`,

having the following temporal behaviour

S`(t`,−p`|0) =
∑
r

{
e−ω`t`

ur(−p)ūr(−p)

2Ω`
+ e−ω`(T−t`)

vr(p)v̄r(p)

2Ω`

}
× 1

1 + e−ω`T
. (C.34)

Since the definitions of the projectors in eq. (C.32) do not depend on the spinor normalization

2Ω`(1 + e−ω`T ), because it cancels out in the matrix multiplications, they can be easily

obtained from the free lattice lepton propagator just by extracting and combining the

coefficients of the forward and backward exponentials.
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(a) without projection (b) with projection

Figure 15: Comparison of the kaon non-factorizable correlator Rnf
K` obtained without the

use of the projector Pv(p`) (a) and with the backward propagating signal removed (b).

(a) without projection (b) with projection

Figure 14: Comparison of the pion non-factorizable correlator Rnf
π` obtained without the

use of the projector Pv(p`) (a) and with the backward-propagating signal removed (b).

The effect of using the projector Pv(p`) on the non-factorizable correlator Rnf
P` defined

in eq. (4.36) is shown in figures 14 and 15 for the pion and kaon decay, respectively (computed

with zMöbius fermions). We note that the backward signal is drastically suppressed and

the dependence on the lepton source-sink separation t` is barely visible for t� T/2. The

use of these projectors makes then a crucial difference in the extraction of a clear signal

from the lattice data.

D Correlation functions for the Ω baryon

In this appendix we discuss the construction of the Ω− baryon correlation functions used

in this work, as well as their spectral representation. We begin by considering the Wick

contractions for the tree-level iso-QCD correlator given in eq. (4.38), of which there are 6

contributions. These are shown diagrammatically in figure 16, where the points connecting
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two propagators are contractions of a diquark pair in eq. (4.39), and dashed magenta

portions of a propagator indicate contraction with a transposed quark field. The colour

structure of these contractions is not represented in these diagrams.

For the QED corrections to this correlator, we require two insertions of the quark-

photon interaction iZV
∑

x ss /As (see eq. (4.15)) which corresponds to a photon propagator

connecting the quark legs, as well as a quark-disconnected contribution that is omitted in

this work. Taking for example diagram (a) in figure 16, the corresponding QED corrections

are shown in figure 17 where (a), (b) and (c) are the exchange diagrams contributing

to δC̃exch
ΩΩ (t) and (d), (e) and (f) are the self energy diagrams contributing to δC̃self,s

ΩΩ (t)

in eq. (4.42). Similarly, quark-mass corrections are given by the insertion of the scalar

density
∑

x s̄s (see eq. (4.15)). Again taking diagram (a) in figure 16 as an example, the mass

corrections are given by the diagrams in figure 18, as well as a disconnected contribution

that is also omitted.

(a) (b) (c) (d) (e) (f)

Figure 16: All Feynman diagrams corresponding to the tree-level correlation function

C̃ΩΩ(t). Points connecting two propagators are contractions of a diquark pair, and dashed

magenta portions of a propagator indicate contraction with a transposed quark field.

(a) (b) (c) (d) (e) (f)

Figure 17: All (connected) Feynman diagrams contributing to Re.m.
ΩΩ (t) originating from

the tree-level contribution shown in figure 16 (a). Similar diagrams exist for the other

contributions.

(a) (b) (c)

Figure 18: All (connected) Feynman diagrams contributing to RS,sΩΩ(t) originating from

the tree-level contribution shown in figure 16 (a). Similar diagrams exist for the other

contributions.

Once the Ω− correlators have been constructed, their spectral representation must be

evaluated. First note that the interpolator in eq. (4.39) contains a parity projector P+

which causes sψµΩ to create states of positive parity, but also annihilate states of negative
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parity. Therefore, the ground state spectral representation will have the form

CΩΩ(t) =
a3

2

∑
i

∑
s

[
〈0|ψiΩ(0) |Ω, s〉 〈Ω, s| sψiΩ(0) |0〉

2mΩ
e−mΩt (D.1)

−
〈sΩ, s|ψiΩ(0) |0〉 〈0| sψiΩ(0) |sΩ, s〉

2sωΩ
e−sωΩ(T−t)

]
,

where the relative sign change between the forward and backward-propagating components

comes from assuming anti-periodic boundary conditions in time on the quarks, and therefore

also on the baryon fields. We have additionally distinguished the notation of the rest energy

of the negative parity state sωΩ from the positive parity one mΩ due to the fact that, at

the physical point, the negative parity Ω− baryon is not simply a single state in the QCD

Fock space, but is instead a resonance in the ΞK channel and therefore there is a whole

spectrum of finite volume multi-particle states contributing in the backward time direction.

However, this does not complicate our analysis since we are restricted to early times where

the backward propagating contributions are negligible.

The operator-state overlaps have the form

〈0|ψµΩ(0) |Ω, s〉 = ZΩu
µ
s , 〈Ω, s| sψµΩ(0) |0〉 = Z∗Ωsuµs , (D.2)

〈Ω̄, s|ψµΩ(0) |0〉 = sZΩγ5v
µ
s , 〈0| sψµΩ(0) |Ω̄, s〉 = sZ∗Ωsvµs γ5 , (D.3)

where uµs and vµs are the positive and negative energy solutions to the spin-3/2 Rarita-

Schwinger equation respectively (see e.g. [54] for a recent review), and the γ5 is present in

the negative parity matrix elements to obtain the correct transformation properties. Using

Euclidean conventions, the completeness relations for zero momentum spinors with mass m

are given by∑
s

uissujs = 2mP+

(
δij − 1

3
γiγj

)
,

∑
s

vissv
j
s = −2mP−

(
δij − 1

3
γiγj

)
, (D.4)

which result in the form of the correlator given in eq. (4.40). The spectral representation

of the QED and quark mass corrections to this tree-level correlator are simply found by

expanding the two parameters ZΩ and mΩ to first order in the respective isospin breaking

parameter.

Figure 19 shows the log effective mass of the tree-level correlator C̃ΩΩ(t) along with

the fit result of the iso-QCD mass. It should be noted that the fit was performed to the

correlator and not directly to the effective mass. The value obtained for the mass of the

Ω− baryon, m̂Ω = 0.967 (3) for the best fit shown in figure 19, is in agreement with that

obtained in ref. [39] using the same gauge ensemble. Figure 20 shows the ratio of the

QED and ms corrections of the Ω− correlator to the tree-level result, Re.m.
ΩΩ (t) and RS,sΩΩ(t)

respectively. Included is the fit to this ratio using the linear fit model given in eq. (4.43).
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Figure 19: Log effective mass of the tree-level Ω− baryon (in lattice units) in red and the

fit result of the mass parameter in blue.
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Figure 20: Ratios of Ω− baryon QED corrections (a) and quark mass corrections (b) to

the tree-level correlator, Re.m.
ΩΩ (t) and RS,sΩΩ(t) respectively, in red and the fit to the data in

blue.

E Determining best fits with a genetic algorithm

In this appendix, we discuss in detail the setup of the genetic algorithm (GA) used in

the data analysis described in section 5.1 to select best correlator fits. After summarising

the purpose of a GA, we describe the genetic operators used, and we present the GA

hyperparameters used to produce the factorisable analysis fit results in section 5.

GAs form a class of global optimizers which stochastically evolve a set of candidate

solutions toward ones which maximize/minimize a given objective function. The evolution

process is inspired by natural selection in biological systems by proposing new solutions

attempting to combine best features from a previous generation of solutions. Because of

this analogy, the set of candidate solutions is generally referred as the population, and the

state of the population at a given iteration of the algorithm is called a generation. The step

between one generation to the next is done via genetics-inspired operators called crossover

and mutation operators. The crossover operator aims at producing a better solution to the
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optimisation problem by combining two members of the current generation. The mutation

operator make arbitrary random changes to members of the current generation, increasing

the space of solutions explored by the algorithm.

In the context of the factorisable analyses, a population member is a vector τ =

(τ (1), . . . , τ (ncorr)) where each component is a fit interval τ (j) = [t
(j)
min, t

(j)
max] for the j-th cor-

relator, and ncorr is the total number of correlators to fit. The objective function here

is the AIC weight introduced in section 5.1, which we aim at maximising. The space of

all possible fits is finite, although it contains a very large number of elements. However,

this finiteness guarantees that at least one solution to the optimisation problem exists. A

high-level description of the algorithm is as follows:

1. in each generation, begin with an initial population of {τ k} with P0 elements;

2. evolve {τ k} with genetic operators to produce noff new elements (called offspring);

3. compute the AIC for all population members through χ2 minimization as described

in section 5.1;

4. choose among {τ k} the best P0 fit ranges with the largest AIC weights and discard

all other elements;

5. repeat steps 2-4 until a termination condition is satisfied.

Let us now introduce the genetic operators. Consider two candidate fit intervals in

the initial population, τ k and τ k′ . The crossover operator, X, generates a new τ with

fit intervals from either of the parent members based on random numbers 0 ≤ pj ≤ 1 for

1 ≤ j ≤ ncorr That is,

τ k′′ ≡ X
(
τ k, τ k′

)
=
{
X
(
τ

(1)
k , τ

(1)
k′
)
, . . . , X

(
τ

(ncorr)
k , τ

(ncorr)
k′

)}
, (E.1)

where

X
(
τ

(j)
k , τ

(j)
k′
)

=

{
τ

(j)
k if pj < 0.5,

τ
(j)
k′ otherwise.

(E.2)

This is repeated until one obtains a population size of P > P0. The mutation operator, M ,

then mutates the population at a given rate m. That is, for some randomly drawn value of

p (0 ≤ p ≤ 1), one has

M
(
τ k
)

=

{
τP+1, if p < m

τ k otherwise,
(E.3)

with

τP+1 ≡
{
τ

(1)
P+1, . . . ,M

(
τ

(j)
P+1

)
, . . . , τ

(ncorr)
P+1

}
(E.4)

where the index j (1 ≤ j ≤ ncorr), is also randomly drawn. The mutation M
(
τ

(j)
P+1

)
is a fit

interval where either tmin or tmax or both have been modified randomly.

With the operators defined, we can discuss the GA parameters used for this work. To

begin, the free parameters in a GA are: the size of the initial population, P0; the crossover
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rate, which is parametrised in this work by the population size after crossover P ; the

mutation rate m; the weight function to optimize w; the maximum number of generations

Gmax and the termination condition. We studied three GA setups to check the validity of

our fit conclusions. These are summarised in table 3. First, let

w̄N =
1

N

N∑
i=1

wi (E.5)

be the average of the top N weights in each generation. In all three setups, we aim to

maximize the AIC in each GA run, which terminates when the average of the N = 5 top fit,

w̄5, does not improve over 1000 successive generations. If this condition cannot be satisfied,

we impose a cut-off when a GA run exceeds Gmax generations. In practice, however, none

of the runs hit this cut-off limit. To accelerate the GA in its exploration of the τ -space, we

cache all fit results during the process.

Let the label ‘GA X-Y ’ refer to a GA setup with a population size P0 = X which

has been run multiple times until obtaining a total of Y candidates. Across the different

runs are varied the initial condition of the algorithm and the random number sequence

used in the genetic operators. We consider 3 different setups GA 5-2000, GA 25-2000, and

GA 25-5000, summarised in table 3. Additionally, figure 21 compare the AICs of the 2000

outcomes, sorted by their weights in descending order. It is worth commenting on two

features. First, the best AIC fits in both setups are very similar, demonstrating some level

of independence between the optimal solution found and the hyperparameters of the GA.

Beyond that, it is clear that the range of AIC weights is narrower in GA 25-2000 than GA

5-2000 for both pion and kaon. This suggests that a population size of P0 = 25 allows one

to discover more optimal solutions than P0 = 5 for a given target number of candidates.

This is expected as the algorithm will try more candidates at each generation. However,

this also suggests that the P0 = 5 set of runs is not saturating its exploration of the best

AIC fit space. To address this, the GA 25-5000 setup was designed to check that such

saturation was achieved for GA 25-2000. In table 4, we give the average number of distinct

fits explored by each setup for each analysis. As we can see, considerably increasing the

number of GA runs in the P0 = 25 case does not lead to a significant volume of new fits

tried, meaning that the additional runs were to a large extent redundant in terms of optimal

solutions found.

Ultimately, as it is generally the case with GAs in this type of context, it is not possible

to demonstrate with absolute certainty that the GA found the best fits without knowing the

exact solution to the problem. However, we remind the reader that the main aim here is to

establish a representative spread in our final result for δRKπ in order to assign a systematic

error related to the selection of fit ranges. To check the stability of our systematic error

under variations of the GA setup, we take the top 5 fits of both GA 25-2000 and GA 25-5000

setups and generate an AIC-weighted histogram of δRlatt
Kπ for each setup. These are shown

in figure 23, along with their median and the fit systematic errors as defined in section 5.3.

We see that they lead to very similar conclusions in terms of median and systematic spread,

and we consider that as a compelling evidence that the GA is converging on a set of fit
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GA 5-2000 GA 25-2000 GA 25-5000

number of runs 400 80 200

P0 5 25 25

P 20 100 100

m 0.3 0.3 0.3

Gmax 25000 10000 10000

termination cond. n. 1 w̄5 unchanged for 1000 generations

termination cond. n. 2 GA exceeds Gmax

total GA candidates 2000 2000 5000

Table 3: Table of three different GA setups used in this work. All setups maximize the

AIC weight. w̄5 is defined in the text below eq. (E.5).
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Figure 21: Comparison of the 2000 GA candidates between two setups GA 5-2000 and

GA 25-2000, sorted in descending order of AIC weights, for π (left) and K (right) meson

correlator analysis.

Analysis GA 5-2000 GA 25-2000 GA 25-5000

π 4085.915 32854.5375 33767.365

K 4726.1425 34430.625 33975.085

Table 4: The average total number of fits tried per GA setup for each meson correlator

analysis.

candidates which is representative enough to estimate the fit range selection systematic

uncertainty. Finally, the GA 25-5000 setup was used to produce the final result of this work.
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Figure 22: Comparison of the GA candidates between setups GA 25-5000 and GA 25-2000,

sorted in descending order of AIC weights, for the π (left) and K (right) meson correlator

analysis.
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Figure 23: AIC-weighted histogram generated from top 5 fits of each analysis as described

in section 5.3. The median of each histogram and the fit systematics are superimposed on

the histogram.
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