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Abstract
In recent years, transverse beam splitting by crossing a

stable resonance has become the operational means to per-
form MultiTurn Extraction (MTE) from the CERN PS to the
SPS. This method delivers the high-intensity proton beams
for fixed-target physics at the SPS. More recently, further
novel manipulations have been studied, with the goal of de-
vising new techniques to manipulate transverse beam prop-
erties. AC magnetic elements can allow beam splitting to
be performed in one of the transverse degrees of freedom.
Crossing 2D nonlinear resonances can be used to control the
sharing of the transverse emittances. Furthermore, cooling
the transverse emittance of an annular beam can be achieved
through an AC dipole. These techniques will be presented
and discussed in detail, considering future lines of research.

INTRODUCTION
Nonlinear effects introduce new phenomena in beam phys-

ics. In recent years, they have been used extensively to
design novel beam manipulations in which the transverse
beam distribution is modified in a controlled way for differ-
ent purposes. This is the case for the beam splitting that is at
the heart of the CERN Multiturn Extraction (MTE) [1–4].

The possibility of a controlled manipulation of the phase
space by means of an adiabatic change of a parameter opened
the road-map to new applications in accelerator and plasma
physics [1, 5–9]. In particular, the adiabatic transport per-
formed by means of nonlinear resonance trapping allows
manipulation of a charged particle distribution, as to minim-
ize the particle losses during the beam extraction process in
a circular accelerator. Furthermore, the control of the beam
emittance can be obtained by a similar approach [4, 10, 11].
The experimental procedures [4, 10, 11] require a very pre-
cise control of the efficiency of the adiabatic trapping into
resonances [12–14], as well as of the phase-space change
during the adiabatic transport, when a parametric modula-
tion is introduced by means of an external perturbation. All
these processes can be represented by multi-dimensional
Hamiltonian systems or symplectic maps [15].

The adiabatic theory for Hamiltonian systems is a key
breakthrough towards an understanding of the effects of
slow parametric modulation on the dynamics. The concept
of adiabatic invariant allows the long-term evolution of the
system to be predicted and the fundamental properties of the
action variables to be highlighted upon averaging over the
fast variables [16, 17]. The theory has been well developed
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for systems with one degree of freedom [12, 18–21], but the
extension of some analytical results to multi-dimensional
systems or to symplectic maps [22] has to cope with the
issues generated by the ubiquitous presence of resonances in
phase space [23, 24]. For these reasons, such an extension
is still an open problem.

The combination of nonlinear effects that do not preserve
the linear Courant-Snyder invariant, and adiabatic variation
of the system parameters that allow crossing separatrices,
opens new regimes that can be used to propose novel beam
manipulations, in which essential beam parameters, such as
the emittances can be changed in a controlled way.

In this paper, three novel beam manipulations are re-
viewed, namely beam splitting by means of AC ele-
ments [25], sharing of transverse emittances by crossing
a nonlinear 2D resonance [26], and cooling of an annular
beam distribution [27, 28].

ADIABATIC THEORY OF SEPARATRIX
CROSSING

Phenomena occurring when a Hamiltonian system is
slowly modulated have been widely studied in the frame-
work of adiabatic theory [18, 19]. As the modulation of the
Hamiltonian changes the shape of the separatrices in phase
space, the trajectories can cross separatrices and enter into
different stable regions associated with nonlinear resonances.
The separatrix crossing can be described in a probabilistic
way due to the sensitive dependence on initial conditions,
and the crossing probabilities can be computed in the adia-
batic limit, like the change of adiabatic invariant due to the
crossing [18, 19].

Let us consider a Hamiltonian H(𝑝, 𝑞, 𝜆 = 𝜖 𝑡) , 𝜖 ≪ 1,
where the parameter 𝜆 is slowly modulated and whose phase
space is sketched in Fig. 1. An initial condition in Region III
has a probability to be trapped into Region I or II of phase
space given by [18]

ℓ2(λ)ℓ1(λ)
C

I IIIII

Figure 1: A generic phase-space portrait divided into three
regions (I, II, III) by separatrices ℓ1 (𝜆) and ℓ2 (𝜆).
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PIII→I =
ΘI

ΘI + ΘII
PIII→II = 1 − PIII→I , (1)

where

Θ𝑖 =
d𝐴𝑖

d𝜆

����
�̃�

=

∮
𝜕𝐴𝑖

d𝑡
𝜕H
𝜕𝜆

����
�̃�

𝑖 = I, II , (2)

with 𝐴𝑖 the area of region 𝑖, 𝜕𝐴𝑖 the boundary of region 𝑖,
and �̃� the value of 𝜆 when the separatrix is crossed. In case
PIII→𝑖 < 0, then PIII→𝑖 = 0, whereas when PIII→𝑖 > 1 then
PIII→𝑖 = 1.

When a separatrix is crossed, the adiabatic invariant 𝐽
changes according to the area difference between the two
regions at the crossing time, and just after the crossing into
a region of area 𝐴, 𝐽 = 𝐴/(2𝜋). This occurs only if the
modulation is perfectly adiabatic, i.e. 𝜖 ≪ 1, but a correction
to the value of the new action can be found following [19].

The adiabatic trapping into resonances has been studied
in various works [18, 29] to show the possibility of transport
in phase space when some system’s parameters are slowly
modulated. This phenomenon suggests possible applications
in different fields and, in particular, in accelerator physics
where MTE has been proposed [1] and successfully made
into an operational beam manipulation at the CERN PS [2, 4].
In this case, an extension of the results of adiabatic theory to
quasi-integrable area-preserving maps has been considered,
and the probability to be captured in a resonance can be
computed analogously to those in Eq. (1) [15], when the
Poincaré–Birkhoff theorem [30] can be applied to prove the
existence of stable islands in phase space. The properties of
such resonance islands for polynomial Hénon-like maps [31]
have been studied in [32] and the possibility of performing an
adiabatic trapping into a resonance by modulating the linear
frequency at the elliptic fixed point has been studied [15].

BEAM SPLITTING USING AC ELEMENTS
The Model

A new approach can be devised to perform beam splitting
by considering a Hénon-like symplectic map of the form

Mℓ,𝑚 :
(
𝑞𝑛+1
𝑝𝑛+1

)
= 𝑅(𝜔0)×

×
(

𝑞𝑛

𝑝𝑛 −
∑

𝑗>2 𝑘 𝑗𝑞
𝑗−1
𝑛 − 𝑞ℓ−1𝜀m cos𝜔 𝑛

)
,

(3)

where 𝑅(𝜔0) is a rotation matrix of an angle 𝜔0, 𝑛 is the
iteration number, ℓ ∈ N, and the dynamics is perturbed by
a modulated kick of amplitude 𝜀m whose frequency 𝜔 is
close to a resonance condition 𝜔 = 𝑚𝜔0 + 𝛿 , 𝛿 ≪ 1. When
ℓ = 1, the fixed point at the origin of the unperturbed system
becomes an elliptic periodic orbit of period 2𝜋/𝜔, and the
linear frequencies depend on the perturbation strength, so
that they are adiabatically modulated. This is not the case
when ℓ ≥ 2, which is also interesting for applications.

The Birkhoff Normal Form theory allows a relationship
between the map of Eq. (3) and the Hamiltonian [32]

Hℓ,𝑚 (𝑝, 𝑞, 𝑡) = 𝜔0
𝑞2 + 𝑝2

2
+
∑︁
𝑗>2

�̂� 𝑗

𝑞 𝑗

𝑗
+ 𝜀h

𝑞ℓ

ℓ
cos𝜔 𝑡 (4)

to be established. Note that in [25] the adiabatic theory for
the Hamiltonian (4) is used to analyze the results obtained
with the map (3) and found in excellent agreement. This
observation is essential as it demonstrates that a splitting
protocol can be designed based on adiabatic theory for the
Hamiltonian (4) and it will be valid, with minor adaptations,
also for the map (3).

Splitting with AC Elements
To study the possibility of beam splitting by means of

AC elements, the third-order resonance is selected, but the
concepts used can be generalized to any resonance order.

When the system parameters are adiabatically modulated,
the trapping of the orbits into the stable islands and the adia-
batic transport are possible [18]. To optimize the trapping
probability, we propose a protocol divided into two steps. In
the first one, the perturbation frequency 𝜔 is kept constant
at a value 𝜔i < 𝑚 𝜔0, near the 𝑚th-order resonance, while
the exciter is slowly switched on, increasing its strength 𝜀h
from 0 to the final value 𝜀h,f. In the second stage, the exciter
strength is kept fixed at 𝜀h,f, and the frequency is modulated
from 𝜔i to 𝜔f. Both modulations are performed by means of
a linear variation in 𝑁 time steps. It is essential to mention
that, unlike MTE where 𝜔0 varies as to cross a resonance,
with AC elements the resonance is created between 𝜔0 and
𝜔, and this is an essential advantage in case the value of 𝜔0
is imposed by, e.g. space charge considerations.

An example of the behavior described above is shown
in Fig. 2, where the evolution of a set of initial conditions,
uniformly distributed on a disk of radius 𝑅, under the dy-
namics generated by H1,3, using the protocol for trapping
and transport described above, is shown. The plots show the
evolution of an ensemble of initial conditions under the same
dynamics generated by H1,3 and the colors are used to indic-
ate which region the initial conditions are trapped into. The
trapping and transport phenomena are clearly visible, thus
indicating that the proposed protocol works efficiently. It is
worth stressing that no initial condition moves towards very
large amplitudes and that there are no particles in between
islands, which means that multi-turn extraction would be
free of losses also for this type of splitting.

EMITTANCE SHARING BY CROSSING 2D
NONLINEAR RESONANCES

We remark that this idea was inspired by [33], where
the analysis of the crossing of a 2D nonlinear resonance
was carried out with the goal of quantifying the emittance
growth due to a fast resonance crossing. This process is
sometimes unavoidable in many high-power accelerators,
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Figure 2: Evolution of an ensemble of particles in phase space with the colors used to identify in which region each initial
condition has been trapped into (core, black, and islands, orange) for the Hamiltonian model (4) with ℓ = 1, 𝑚 = 3 at the
beginning of the process (left column), at the end of the 𝜀h variation (mid column) and at the end of the frequency variation
(right column). Parameters: 𝑘3 = 1, 𝜔0/(2𝜋) = 0.17133, 𝜔i = 2.995𝜔0, 𝜔f = 2.983𝜔0, 𝜀h,f = 0.28.

such as isochronous cyclotrons, non-scaling fixed field al-
ternating gradients, and other low-energy accelerators.

The Model
Using the action-angle variables and averaging proced-

ures, transverse motion in a circular accelerator close to
a (𝑚, 𝑛) resonance (with 𝑚, 𝑛 ∈ N) is described by the
Hamiltonian

H(𝜙𝑥 , 𝐽𝑥 , 𝜙𝑦 , 𝐽𝑦) = 𝜔𝑥𝐽𝑥 + 𝜔𝑦𝐽𝑦 + 𝛼𝑥𝑥𝐽
2
𝑥 + 𝛼𝑦𝑦𝐽

2
𝑦+

+ 2𝛼𝑥𝑦𝐽𝑥𝐽𝑦 + 𝐺𝐽
𝑚/2
𝑥 𝐽

𝑛/2
𝑦 cos

(
𝑚𝜙𝑥 − 𝑛𝜙𝑦

)
,

(5)

the resonance condition being 𝑚𝜔𝑥 − 𝑛𝜔𝑦 ≈ 0, and 𝛼𝑥𝑥 ,
𝛼𝑥𝑦 , 𝛼𝑦𝑦 are the amplitude-detuning parameters.

The canonical transformation (see [16, p. 410])

𝐽𝑥 = 𝑚𝐽1 𝜙1 = 𝑚𝜙𝑥 − 𝑛𝜙𝑦 (6)
𝐽𝑦 = 𝐽2 − 𝑛𝐽1 𝜙2 = 𝜙𝑦 (7)

transforms the Hamiltonian into

H(𝜙1, 𝐽1) = 𝛿𝐽1 + 𝛼11𝐽
2
1 + 𝛼12𝐽1𝐽2 + 𝐺 (𝑚𝐽1)

𝑚
2 ×

× (𝐽2 − 𝑛𝐽1)
𝑛
2 cos 𝜙1 +

(
𝜔𝑦𝐽2 + 𝛼22𝐽

2
2

) (8)

where 𝛿 = 𝑚𝜔𝑥 − 𝑛𝜔𝑦 is the resonance-distance parameter
and 𝛼11, 𝛼12, 𝛼22 are functions of 𝛼𝑥𝑥 , 𝛼𝑥𝑦 , 𝛼𝑦𝑦 . Note that
the Hamiltonian (8) does not depend on 𝜙2, hence 𝐽2 is a
constant of motion and the last term in (8) can be neglected.
Furthermore, 𝐽2, which is a constant parameter, induces a
shift of the resonance condition, which will not be met when
𝛿 = 0, but rather when 𝛿 + 𝛼12𝐽2 = 0.

The phase-space topology of the Hamiltonian (8) depends
on 𝑚, 𝑛, but some elements are common. The condition
𝐽𝑦 > 0 constrains the motion to 𝐽1 < 𝐽2/𝑛, the allowed disk.
When unstable fixed points lie on the border of this disk, it
is possible to draw a separatrix that joins them, the coupling
arc.

Emittance Sharing
Let us consider a process where a particle evolves under

the Hamiltonian (5), while either 𝜔𝑥 or 𝜔𝑦 is changed with

time to cross the (𝑚, 𝑛) resonance. This means varying 𝛿

from a situation where 𝛿 + 𝛼12𝐽2 ≫ 0 to one where 𝛿 +
𝛼12𝐽2 ≪ 0. The variation of 𝛿 changes the position of a
separatrix that then sweeps the allowed disk inside which
particles are constrained to move.

A particle starts evolving, far from resonance, with an
initial action 𝐽1,i = 𝐽𝑥,i/𝑚. Its orbit, being far from the
resonance, will be close to a circle of area 2𝜋𝐽1. This area,
being the adiabatic invariant, is conserved when 𝛿 is slowly
varied. As 𝛿 is decreased, the separatrix reduces the region
in which the particle is moving, dividing the allowed disk
in two (the two regions will be equal on resonance). When
the area of the initial region is equal to 2𝜋𝐽1, according
to separatrix crossing theory [18], the particle crosses the
coupling arc entering the other region of the allowed disk,
with an action corresponding to 2𝜋 times the area of the
arrival region at the jump time.

Since the allowed disk has an area 2𝜋𝐽2/𝑛, the resulting
action will be

𝐽1,f =
𝐽2
𝑛

− 𝐽1,i (9)

and, going back to the 𝑥 and 𝑦 actions

𝐽𝑥,f = 𝑚𝐽1,f = 𝑚

(
𝐽𝑦,i + 𝑛𝐽𝑥,i/𝑚

𝑛
−

𝐽𝑥,i

𝑚

)
=
𝑚

𝑛
𝐽𝑦,i (10)

and
𝐽𝑦,f =

𝑛

𝑚
𝐽𝑥,i . (11)

As 𝛿 continues to decrease, the area where the particle or-
bits increases. At the end of the resonance crossing process,
far from resonance, the particle will orbit on a circle around
the origin at the new action.

As the 𝑥 and 𝑦 emittances are the averages of 𝐽𝑥 and 𝐽𝑦 ,
at the end of the process an emittance sharing between the
two directions occurs, keeping the product 𝐽𝑥𝐽𝑦 constant.
An example for the 𝑚 = 1, 𝑛 = 2 case is given in Fig. 3.

It is worth stressing that the picture described here holds
in all cases with no hyperbolic fixed points inside the al-
lowed disk. Otherwise, the situation becomes much more
involved, as separatrices, linked with the hyperbolic fixed
points, appear, partitioning the phase space into more re-
gions. A different analysis is required in that case [26].
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Figure 3: Example of the emittance evolution during the
resonance-crossing process for the 𝑚 = 1, 𝑛 = 2 case.

COOLING OF AN ANNULAR BEAM
The Model

The generic Hamiltonian (4) can be recast by using the
unperturbed (𝜀 = 0) action-angle coordinates (𝜙, 𝐽) in the
form

H(𝜙, 𝐽) = 𝜔0 𝐽 +
Ω2
2
𝐽2 + 𝜀

√
2𝐽 cos 𝜙 cos𝜔𝑡 , (12)

where we introduce the detuning term Ω2 = 𝑂 (𝑘2
3).

Several transformations can then be applied [27, 28],
which include moving to a rotating-frame reference, using
the angle 𝛾 = 𝜙 − 𝜔𝑡, and averaging the perturbation term
over the fast variable 𝜔𝑡, to obtain the Hamiltonian of the
slow dynamics that, after re-scaling of the action, reads

H(𝛾, 𝐽) = 4𝐽2 − 2𝜆 𝐽 + 𝜇
√

2𝐽 cos 𝛾 , (13)

where the parameters 𝜆, 𝜇 are defined as

𝜆 =
4
Ω2

(𝜔 − 𝜔0), 𝜇 =
4𝜀
Ω2

, (14)

and can be changed upon acting on 𝜀 and 𝜔. The Hamilto-
nian (13) is well-known [18, 29] and can be written

H(𝑋,𝑌 ) = (𝑋2 + 𝑌2)2 − 𝜆(𝑋2 + 𝑌2) + 𝜇𝑋 , (15)

upon using the co-ordinates 𝑋 =
√

2𝐽 cos 𝛾, 𝑌 =
√

2𝐽 sin 𝛾.
Its phase space can be analyzed and the existence and po-

sition of the fixed points can be determined analytically [27,
28]. The separatrix divides the phase space in three regions,
as shown in Fig. 4, whose areas 𝐴𝑖 are computed analytic-
ally [27, 28], which is essential for designing cooling proto-
cols.

Cooling Protocols
The idea at the heart of the cooling protocol is based on a

careful control of the time variation of the size of the phase-
space regions 𝐺1 and 𝐺2 so to trap particles in an annular
beam distribution and then reduce the value of their action

G1G2

G3 = G1 ∪G2

−0.5 −0.25 0 0.25 0.5

X

−0.5

−0.25

0

0.25

0.5

Y

Figure 4: Phase-space portrait of the Hamiltonian (15) with
𝜆 = 0.1, 𝜇 = 0.01. The red line represents the separatrix.

at the end of the trapping and transport processes. This can
be carried out by using the theory outlined in the previous
section, and the details can be found in [27, 28].

At first, an initial condition from an annular-shape distribu-
tion evolves in the outer region with an initial action 𝐽0, and
𝜆 and 𝜇 are slowly varied. At time 𝑡∗, 𝜆 = 𝜆∗, 𝜇 = 𝜇∗, and
𝐴3 = 2𝜋𝐽0, and according to adiabatic separatrix-crossing

theory [16, 18], having defined 𝜉 =
d𝐴𝑖/d𝑡
d𝐴3/d𝑡

then

𝑃𝑖 = 𝜉 if 𝜉 ∈ ]0, 1[, 𝑃𝑖 = 0 if 𝜉 < 0, 𝑃𝑖 = 1 if 𝜉 > 1 ,
(16)

and the orbit is trapped in the region 𝐺𝑖 (𝑖 = 1, 2) with
probability 𝑃𝑖 , and an action value after trapping of 𝐴𝑖/2𝜋.
Given a distribution of initial conditions with action 𝐽 ∈
[𝐽0 − Δ, 𝐽0 + Δ], the expected value of their final action
after trapping, if Δ is sufficiently small, is ⟨𝐽⟩f = (𝐴1𝑃1 +
𝐴2𝑃2)/2𝜋 ≤ 𝐽0, which means that the separatrix-crossing
process reduces the emittance of the annular distribution.

To optimize the cooling process, two protocols have been
considered: one consists in trapping all particles in 𝐺1, the
other in trapping all particles in 𝐺2. For both processes,
the trapping phase is followed by the adiabatic transport
obtained by moving the resonance island toward the origin
of the phase space.

The two approaches are presented and discussed in detail
in [28]. Here we report an example of the evolution of the
annular distribution in Fig. 5. The evolution of the distri-
bution, the optimized variation of the parameters 𝜆 and 𝜇,
and the projected distribution of the actions are shown. The
cooling of the initial action distribution is clearly visible,
both in the phase-space plots and in the action projection.
The color code used to identify the action values provides
an indication of a certain level of mixing that occurs during
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the trapping phase. Indeed, at the end of the cooling process,
the ordering of the colors used to identify action values is
only approximately respected and in the outer zone of the
action distribution all colors are represented.

Figure 5: Example of the cooling protocol based on trapping
in 𝐺1, showing the evolution of the beam distribution, its
projection, and the parameters 𝜆, 𝜇.

Finally, in Fig. 6, the performance of the proposed cooling
approach is shown as a function of the special parameter
values 𝜆∗ and 𝜇∗ that characterize the two types of protocols.
The plots report the results of numerical simulations as well
as those of theoretical estimates. The agreement is clearly
visible and the possibility of achieving very high values of
cooling is also evident. The disagreement is due to a lack of
adiabaticity for large 𝜇∗ [28].

CONCLUSIONS AND OUTLOOK
The developments and recent results of novel beam ma-

nipulations based on nonlinear beam dynamics have been
reviewed in this paper. The precursor has been beam split-
ting that is used to perform multiturn extraction in the CERN
PS and it allows controlling the emittance in the horizontal
plane and stretching the beam beyond the length of the ring
circumference.
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Figure 6: Expected and simulated cooling ratio for trapping
in 𝐺1 as a function of 𝜇∗. Initial distribution is an annulus at
𝐽0 = 0.05. The Hamiltonian of Eq. (4) has been used, with
�̂�3 = 1, 𝜔0 = 0.414 × 2𝜋, Ω2 = −0.3196.

The first generalization of this technique consists in per-
forming beam splitting by means of AC elements. The most
natural approach is the use of an AC dipole, but high-order
magnets could also be considered. This approach aims at
providing the same type of manipulation as the standard
beam splitting with, however, a major advantage: the res-
onance condition is created between the ring tune and the
frequency of the AC element. Therefore, even if the tune
would be constrained, e.g. by space charge considerations,
thus preventing to cross a resonance, beam splitting could
still be performed by setting the frequency of the AC ele-
ment to the appropriate resonant value and then changing it
to cross the resonance.

Extending the type of nonlinear manipulation to the cross-
ing of 2D resonances allows entering a new regime, in which
the emittance values in both transverse planes are affected
and not only that in a single plane. This implies that the
redistribution of the values of the transverse emittances is a
feasible option.

Finally, the cooling of an annular beam distribution by
means of an AC dipole has been successfully studied. Two
protocols have been considered, both featuring excellent
properties in terms of cooling performance, as well as in
terms of the range of amplitudes that can be cooled. Note
that the annular beam distribution considered in this study is
an excellent model for the beam halo. Therefore, this could
be the basis for future applications to halo manipulation,
possibly including experimental tests at the LHC.

In the near future, it is planned to pursue these studies
using realistic ring lattices in view of experimental tests of
the proposed nonlinear manipulations.
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