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Abstract. We compute the rate with which super-Hubble cosmological fluctuations are deco-
hered during inflation, by their gravitational interactions with unobserved shorter-wavelength
scalar and tensor modes. We do so using Open Effective Field Theory methods, that remain
under control at the late times of observational interest, contrary to perturbative calculations.
Our result is minimal in the sense that it only incorporates the self-interactions predicted by
General Relativity in single-clock models (additional interaction channels should only speed
up decoherence). We find that decoherence is both suppressed by the first slow-roll param-
eter and by the energy density during inflation in Planckian units, but that it is enhanced
by the volume comprised within the scale of interest, in Hubble units. This implies that, for
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the scales probed in the Cosmic Microwave Background, decoherence is effective as soon as
inflation proceeds above ∼ 5 × 109 GeV. Alternatively, if inflation proceeds at GUT scale
decoherence is incomplete only for the scales crossing out the Hubble radius in the last ∼ 13
e-folds of inflation. We also compute how short-wavelength scalar modes decohere primordial
tensor perturbations, finding a faster rate unsuppressed by slow-roll parameters. Identifying
the parametric dependence of decoherence, and the rate at which it proceeds, helps suggest
ways to look for quantum effects.
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1 Introduction

One of the most remarkable consequences of cosmology’s recent conversion into a precision
observational science has been the detection of large-scale correlations in the way that matter
and radiation are distributed across the observable universe [1, 2]. These correlations point
to a pattern of nearly scale-invariant primordial fluctuations inherited from the much-earlier
universe about which otherwise little is known.

Even more remarkably these primordial fluctuations share the spectral properties ex-
pected of quantum fluctuations, if these were stretched across the sky in the remote past by
some sort of accelerated universal expansion [3–8]. A natural question in any such a picture
is how initial quantum fluctuations become the classical fluctuations that are known to de-
scribe the later observations so well [9–17]. Part of this question concerns precisely what is
meant by ‘classical’ in this context (e.g. tree-level vs. loop-level; WKB-squeezed vs. generic
quantum states; decoherence and so on).

In this paper our interest is the evolution of a quantum field’s reduced density matrix,
〈ϕ1 | ̺ | ϕ2〉, in the field basis, where ̺ = Trenv ρ is obtained by tracing out certain ‘unob-
served’ degrees of freedom (in the language of open systems what is called the ‘environment’).
Classicalization will mean decoherence, in the sense that ̺ evolves from a pure to a mixed
state; in particular one whose off-diagonal elements rapidly fall to zero in the field basis.
Once ̺ becomes diagonal in this way it is indistinguishable from a non-quantum statistical
ensemble of classical field configurations with probability distribution P [ϕ] = 〈ϕ | ̺ | ϕ〉.

Although it has long been recognized that existing cosmological measurements are
largely insensitive to any off-diagonal components 〈ϕ1 | ̺ | ϕ2〉 [11, 12], proposals are now
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being made to circumvent this to seek observational evidence for a quantum origin for pri-
mordial fluctuations [18–21]. The efficiency of any primordial decoherence is likely relevant
to such searches, and in particular rapid decoherence can make it unlikely that quantum
effects survive to the present day to be seen [22].

An obstacle must be surmounted and a choice must be made in order to describe such
primordial quantum-to-classical transitions. Decoherence requires an environment: not all
degrees of freedom should be measured. So the choice is to identify the environmental modes
whose removal decoheres the fluctuations we can see. Since super-Hubble modes play a
special role by freezing in early-universe effects, smaller wavelength sub-Hubble modes are
natural candidates for a decohering environment. We therefore study how rapidly super-
Hubble metric fluctuations are decohered by shorter-wavelength metric perturbations, using
only the mutual gravitational self-interactions predicted by General Relativity.

The obstacle to be surmounted is more technical: the time interval between fluctuation
generation and detection can be extremely large, and effects that were initially small can have
enough time to become large during the long wait in between. This can cause a breakdown
of perturbative methods; what are often called ‘secular growth’ effects in cosmology [23–25].
Similar late-time breakdown of perturbative methods are ubiquitous elsewhere in physics
because no matter how small a perturbing interaction Hint ≪ H0 is, it is always true that
e−i(H0+Hint)t is not well-approximated by e−iH0t(1 − iHintt + · · · ) at sufficiently late times.
The good news is: because these problems are ubiquitous, tools for circumventing them and
making reliable late-time predictions are also very well-developed [26]. All that is required
is to adapt these tools to cosmology [27].

In this paper we follow up on earlier work adapting to gravity well-developed tools from
the quantum theory of open systems,1 whose use to explore late-time evolution we call Open
Effective Field Theory (Open EFT) [17, 27, 34–41]. These tools show how the evolution
equation for the reduced density matrix in the interaction picture can be brought into an
approximate (schematic) form

∂t̺ = −i
[
Hint , ̺

]
+ L2 (̺) + O

(
H3

int

)
terms , (1.1)

where Hint denotes the terms in the interaction Hamiltonian that couple the environment
to the measured degrees of freedom and Hint denotes its average over the environment. L2

contains all terms second order in Hint and in many circumstances has a Lindblad form [42,
43], which is derived below in some detail. Lindblad equations can have solutions that re-sum
late-time behaviour even if the evolution equation itself is only computed perturbatively. Any
terms not written explicitly are at least cubic in Hint.

We here apply these tools to compute the decoherence of super-Hubble scalar fluctua-
tions of the metric in the simplest single-clock near-de Sitter (inflationary) cosmologies that
are the best-explored explanations of primordial fluctuations [44]. An important observation
is that the linear term in Hint never contributes to decoherence because it simply represents
Liouville evolution (which can never take pure states to mixed states). All decoherence ef-
fects necessarily first arise at second order in Hint, and this plays an important role when
identifying the dominant interactions.

We work within the standard joint slow-roll and semi-classical expansions that track
powers of small slow-roll parameters, εi, and powers of the small loop-counting parameter

1Refs. [28–31] explore the use of Open EFT techniques for the much simpler case where late-time predictions
are only sought for an Unruh-DeWitt qubit detector [32, 33], rather than for the entire φ field, for which very
explicit calculations can be performed.
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GH2 = H2/(8πM2
p) where G is Newton’s constant, H is the inflationary Hubble scale and

Mp is the reduced Planck mass.2 For super-Hubble modes of co-moving momentum k these
are supplemented by an additional expansion in powers of k/(aH) where k = |k|.

General relativity predicts that in such an expansion fluctuations of the metric self-
interact. Of these only the cubic interactions — whose detailed form is worked out for near-
de Sitter geometries in ref. [47] (summarized for convenience in appendix A) — contribute
at leading order when considering how interactions with shorter wavelength modes decohere
the long-wavelength super-Hubble modes relevant for primordial fluctuations.

There is a simple reason why only cubic interactions dominate. As argued above,
decoherence first arises at second order in Hint and consequently does so at order 1/M2

p .
Although quartic interactions can also contribute to fluctuation evolution at order 1/M2

p

they do so in (1.1) only through terms linear in Hint, and so cannot cause decoherence.
Quick inspection of the interactions listed in ref. [47] (and appendix A) shows that all but
two of these are additionally suppressed for super-Hubble modes, either by additional factors
of slow-roll parameters or by additional powers of k/(aH).

For super-Hubble scalar metric fluctuations the two relevant interactions involve either
v ∂iv ∂iv or v ∂kvij ∂kvij (where v denotes the Mukhanov-Sasaki scalar perturbation and vij is
the tensor perturbation) and both contribute with equal strength. These respectively describe
decoherence generated by short-wavelength scalar and tensor fluctuations. In passing we also
compute how the interaction vij ∂iv ∂jv allows short-wavelength scalar modes to decohere
super-Hubble tensor modes, finding them to be less suppressed by slow-roll parameters. We
do not compute the similar-sized contribution of short-wavelength tensor modes towards the
decoherence of long-wavelength tensors.

To determine the effect of the dominant cubic interactions we compute the evolution
equation for the reduced density matrix describing the quantum state of the subset of modes
visible to late-time observers like ourselves. We show why this evolution is very quickly
well-approximated by a Lindblad equation describing Markovian evolution for super-Hubble
modes during inflation. We then integrate this equation to identify the late-time evolution
of ̺ where perturbation theory naively breaks down. We use this to compute a mode’s
decoherence over time and show that it is already very rapid despite the feeble gravitational
strength of the interaction. Inclusion of other interactions is likely only to speed up the
decoherence process.

As has been remarked elsewhere [17, 48] the squeezing of modes during inflation [49]
explains in a simple way why the density matrix diagonalizes in a basis of field eigenstates;
making these the system’s natural ‘pointer’ basis. It is the surviving diagonal elements P [ϕ] =
〈ϕ | ̺ | ϕ〉 at which stochastic [50–54] and de Sitter EFT [55–57] methods ultimately aim.

Our result for the amplitude of decoherence is given by eq. (4.17) and arises suppressed
by the gravitational loop-counting parameter (H/Mp)2 and by the first slow-roll parame-
ter [58–60], ε1 = −Ḣ/H2, leading to an amplitude controlled by3

ε1H2

8πM2
p

∼ ε2
1 Pζ . 10−4 × 10−10 (1.2)

where Pζ(k) ≃ H2/(8π2ε1M2
p) ∼ 10−10 is the observed size of scalar perturbations and

ε1 . 10−2 is bounded above by the non-observance of primordial tensor perturbations [61].
2We follow the power-counting estimates of refs. [45, 46] for these two expansion parameters and use

fundamental units throughout (for which ~ = c = 1).
3The same arguments imply tensor modes decohere with an amplitude H2/M2

p (i.e. unsuppressed by ε1).
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But this small amplitude is abundantly compensated by an exponential growth since (4.17)
grows during inflation proportional to (aH/k)3 ∝ e3Ht.

For ρ
1/4
inf & 5 × 109 GeV, or equivalently a tensor to scalar ratio r & 6.5 × 10−28, this

predicts classicalization of CMB scales is long completed before inflation ends. Alternatively,
if r ∼ 10−3 (and so the discovery of primordial tensor fluctuations is within reach) then
decoherence becomes important for modes that spend more than around ∼ 13 e-folds outside
the Hubble scale during inflation. All of these estimates assume no additional decoherence
occurs (or disappears) after inflation ends, or occurs during inflation due to other interactions
with short-wavelength modes, or due to interactions with other environmental degrees of
freedom.

Our presentation is structured as follows. Section 2 starts by setting up the Open EFT
relevant to the scalar fluctuations of the metric using only the standard building blocks of
single-clock inflation. We focus on the implications of the dominant cubic self-interactions,
taken from amongst the cubic interaction terms outlined in ref. [47]. We focus initially on
interactions involving only scalar modes (returning to include tensors in section 3) setting
up the system and environmental degrees of freedom in terms of the super-Hubble and sub-
Hubble modes of the Mukhanov-Sasaki field v.

Section 3 derives the relevant late-time evolution equation for super-Hubble modes,
showing that it has the form of a Lindblad equation for each mode k of the field. This is
done by first passing through the intermediate step of deriving a Nakajima-Zwanzig mas-
ter equation and then carefully identifying the regime in which it becomes approximately
Markovian. The environmental correlation functions appearing in this Lindblad evolution
are evaluated explicitly and it is shown how the ultraviolet (UV) divergences encountered
when doing so can be re-normalized. We also provide here a preliminary discussion of the
issues of the gauge-dependence of our formalism.

Section 4 then applies these results to compute some implications for observable modes
from the removal of their shorter wavelength counterparts. Two observables computed are
(i) very small corrections that are predicted for the power spectrum and (ii) the late-time
decoherence that is implied for super-Hubble modes by the tracing out of these unobserved
short-wavelength degrees of freedom.

We conclude in section 5 with a brief discussion of the open ends that our calculation
does not resolve and possible next steps. Included in this discussion is a calculation of how
short-wavelength scalar modes decohere super-Hubble tensor modes during inflation. This
suffices to confirm the dependence on small parameters predicted by power-counting argu-
ments but leaves open the contribution of short-wavelength tensor modes to the decoherence
of primordial tensor fluctuations.

2 Open system of super-Hubble metric modes

This section sets up the open-system framework for describing the self-interactions of metric
fluctuations in a near-de Sitter geometry. The system of interest is as found in many of the
simplest single-clock inflationary models, with the metric gµν coupled to a real scalar field ϕ
through

S =

∫
d4x

√−g

[
M2

p

2
R − 1

2
gµν ∂µϕ ∂νϕ − V (ϕ)

]
(2.1)

where M−2
p = 8πG, R is the Ricci scalar and V (ϕ) is the potential energy of the inflaton ϕ.

Our focus is on the late-time evolution of fluctuations about a homogeneous near de Sitter
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geometry given by ϕ = φ(t) and the metric

ds2 = −dt2 + a2(t) dx2 = a2(η)
(
−dη2 + dx2

)
(2.2)

with scale factor
a ≃ eHt ≃ − 1

Hη
. (2.3)

Here H is the usual Hubble scale, H = ȧ/a, computed4 using cosmic time t (to which
conformal time η is related by a dη = dt).

2.1 Curvature perturbation and self-interactions

To this end we expand the scalar field about its homogeneous background, ϕ(t, x) = φ(t) +
δϕ(t, x), and employ the ADM decomposition to describe small metric fluctuations about
metric by foliating the space-time into a family of space-like hyper-surfaces,

ds2 = −N2dt2 + hij
(
dxi + N idt

)(
dxj + N jdt

)
. (2.4)

After picking a gauge to fix time and spatial reparametrizations, standard arguments reveal
that the scalar fluctuations described by the action (2.1) end up being described by a single
physical scalar degree of freedom plus tensor fluctuations. More specifically, we follow ref. [47]
and write the metric fluctuation to second order as

hij = a2e2ζ ĥij with ĥij = δij + γij +
1

2
δklγikγlj + · · · , (2.5)

where det ĥij = 1 and δij∂iγjk = δijγij = 0. Two convenient gauge choices are then ob-
tained by either setting δϕ = 0 (co-moving gauge) or setting ζ = 0 (spatially-flat gauge).
Dependence on the slow-roll parameters is easier to follow when δϕ is the scalar variable
(since its expected amplitude does not involve the slow-roll parameters) but super-Hubble
time-evolution is clearer using the variable ζ (because ζ as defined in (2.5) becomes time-
independent to all orders in fluctuations in the limit k → 0). This is why hereafter we work
in the co-moving gauge. We here temporarily drop the tensor fluctuation,5 γij , and focus
exclusively on scalar perturbations, since these are the ones that have arguably been ob-
served through cosmological measurements, but circle back to reconsider tensor fluctuations
in section 3.4.

The leading (quadratic) part of the action governing fluctuations comes from expand-
ing (2.1) in powers of ζ and has the form (see for example refs. [47, 62, 63] — with some
details also given in appendix A)

(2)S =

∫
dt d3x

φ̇2

2H2

[
a3ζ̇2 − a(∂ζ)2

]
, (2.6)

where we recall that φ(t) denotes the background value of the inflaton and (∂ζ)2 = δij∂iζ ∂jζ.
The kinetic term can be made canonical by re-expressing in terms of the Mukhanov-Sasaki
variable [3, 62], given by

v(η, x) = aMp

√
2ε1 ζ(η, x) , (2.7)

4We denote derivatives with respect to t with overdots and derivatives with respect to η using primes.
5The variable vij used above is equivalent to γij , just normalized differently — see (A.17).
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where

ε1 = − Ḣ

H2
(2.8)

is the first slow-roll parameter — related to the field velocity through φ̇2 = 2H2M2
pε1 —

which is small if the background geometry is near de Sitter. In terms of v the quadratic part
of the action given in eq. (2.6) takes the canonical form [63]

(2)S =
1

2

∫
dη d3x

[
(
v′)2 − δij∂iv ∂jv +

(
a
√

ε1
)′′

a
√

ε1
v2

]
. (2.9)

Interactions arise at cubic and higher orders in the fluctuations, with Sint = (3)S +
(4)S+· · · where (n)S involves n powers of the fluctuation fields. Amongst the self-interactions
involving just ζ obtained in this way is

(3)S ⊃
∫

dt d3x
φ̇4a

4H4M2
p

(∂ζ)2 ζ (2.10)

where the symbol “⊃” emphasizes that there are other cubic interactions in (3)S that are not
explicitly written (for a full list of the cubic scalar interactions see eq. (3.9) of ref. [47], or
eq. (A.15) in appendix A).

As argued in the introduction, quartic and higher interactions beyond those cubic in v
need not be considered when computing decoherence of super-Hubble modes because they
can contribute only sub-dominantly in 1/Mp. The variable v is convenient when counting
factors of 1/Mp in this way because its lowest-order correlations functions are independent
of Mp. In terms of v the cubic interaction (2.10) becomes

(3)S ⊃
∫

dη d3x

√
ε1

2
√

2 Mp a

(
δij∂iv∂jv

)
v , (2.11)

revealing it also to be order
√

ε1 in slow-roll. What is important for our later purposes is
that all of the other cubic interactions listed in ref. [47] are either higher-order in slow-roll
parameters or trade two spatial derivatives for two time derivatives.6 The freezing of ζ on
super-Hubble scales implies ζ̇/ζ ∝ k2/(aH)2 for k ≪ aH and so implies time derivatives
contribute only sub-dominantly in powers of k/(aH) for super-Hubble modes.

The momentum conjugate to v is p = δS/δv′ = v′, and the Hamiltonian is

H(η) = H0(η) + Hint(η) (2.12)

with free part

H0 :=
1

2

∫
d3x

[
p2 + δij∂iv ∂jv −

(
a

√
ε1
)′′

a
√

ε1
v2

]
. (2.13)

The interaction corresponding to (2.11) is

Hint ⊃ −
√

ε1

2
√

2 Mpa

∫
d3x δijv ∂iv ∂jv + · · · . (2.14)

6The neglect of time derivatives relative to spatial derivatives acting on environmental modes is only
justified when the environmental modes are also super-Hubble and need not be a good approximation for
modes with k/a ∼ H. Our calculations shed some light on the validity of this approximation, though the
issue remains a partially open problem. See section 4 for further discussion.
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This form of the interaction Hamiltonian is obtained in the co-moving gauge. Although
gauge-independent observables are difficult to construct at cubic and higher order in cosmo-
logical perturbation theory, in ref. [47] it was checked that a calculation performed in the
spatially-flat gauge gives the same result for the bispectrum. This supports the idea that
physical results obtained from our calculations using this interaction Hamiltonian will be
gauge independent.

Our goal is to describe dynamics perturbatively in Hint and so it is useful first to
diagonalize H0. This is achieved in momentum space,

v(η, x) =

∫
d3k

(2π)3/2
vk(η) eik·x , (2.15)

and writing vk(η) in terms of mode functions uk(η)

vk(η) = uk(η)ck + u∗
−k(η)c†

−k . (2.16)

shows that hermiticity in real space v(η, x) = v†(η, x) implies v−k(η) = v†
k(η) in momentum

space, and these are both equivalent to having particles and antiparticles not being inde-
pendent of one another. A similar expression holds for the conjugate momentum field pk.
Equal-time commutation relations for the operators vk(η) and pk(η)

[
vk(η), pq(η)

]
= iδ(k + q), (2.17)

are equivalent to [ck, c†
q] = δ(k−q), provided the uk(η) are normalized by uku∗′

−k −u∗
ku′

−k = i.
Plugging this decomposition into (2.13) gives, at the classical level,

H(η) :=
1

2

∫
d3k

[
pk(η)p∗

k(η) + ω2(k, η)vk(η)v∗
k(η)

]
. (2.18)

On quantization noncommuting operators are replaced by their symmetrized product — such
as pkp∗

k → 1
2{pk, p†

k} — so that hermiticity is preserved. The time-dependent frequency is

ω2(k, η) := k2 − (a
√

ε1 )′′

a
√

ε1
. (2.19)

In the limit ε1 → 0 this frequency function ω(k, η) takes the well-known de Sitter form

ω2(k, η) ≃ k2 − 2

η2
, (2.20)

and describes adiabatic evolution in the regime k2η2 ≫ 1.
In what follows we quantize using a field basis rather than the particle Fock space built

using the creation and annihilation operators ck and c†
k
. For the free system this is the analog

of treating harmonic oscillators using states 〈x|Ψ〉 and density matrices 〈x|ρ|y〉 described in
the position basis (rather than using occupation-number representations 〈n|Ψ〉 and 〈n|ρ|m〉
built from the raising and lowering operators c and c†). We briefly pause here to clarify an
issue that arises due to the reality condition v−k = v†

k.
Normally the position eigenvalue x for an oscillator is real and so having a complex field

vk for each k sounds like it contains too many coordinates to describe a single oscillator for
each k. For a complex field (for which particles and antiparticles are not identified) this is

– 7 –
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correct: complex coordinates correspond to two sets of real position coordinates and these
correspond to the two types of oscillator — one each for particle and antiparticle — that
exist for each k.

For real fields the condition v−k = v†
k cuts the number of oscillators in half and so leaves

a single oscillator for each k. There are two equivalent ways to frame the field representation
in this case. We can either restrict ourselves to only half of the total available momentum
labels and keep the complex variables vk arbitrary, or we can keep all momentum labels and
use the reality condition to have effectively only a single real field for each k.

To see how these are related in detail we follow ref. [37] and write the real and imaginary
parts of vk

vk(η) =:
v

(R)
k (η) + i v

(I)
k (η)√

2
, (2.21)

for which v−k = v†
k implies vR

k = vR
−k while vI

k = −vI
−k. vR

k and vI
k evolve separately under

linear evolution and this evolution is identical provided the Hamiltonian is invariant under
reflections in k, which is true in particular if the physics involved is parity invariant or if it
is invariant under arbitrary rotations. We may therefore treat the system as if it involves a
single real field, ṽk = ṽ†

k for all k and then identify
√

2 vR
k = ṽk + ṽ−k and

√
2 i vI

k = ṽk − ṽ−k

respectively as its even and odd parts under reflection. The evolution equation for ṽ, vR and
vI are all identical in the applications below. In what follows our interest is in the matrix
elements of the density matrix ρk for the single oscillator that arises for each k, and for fixed
k we compute their evolution in an eigenbasis of the real field ṽk, since this simplifies the
notation by allowing us to drop the superscripts ‘R’ and ‘I’ on the fields. A similar story
applies also to the momentum which we denote p̃k.

2.2 The system and the environment

We next divide the Hilbert space of states for this system into the ‘system’ (i.e. degrees of
freedom we choose to follow because they appear in observations made at late times) and an
‘environment’ (consisting of all modes that are not observed), see also figure 1. Having made
this split we trace out over the environment modes and follow only state evolution within
the observed sector.

Present-day measurements only sample primordial fluctuations whose co-moving mo-
menta have magnitudes k = |k| that lie within a finite range

kIR < k < kUV (2.22)

where kIR/a0 ∼ 0.05 a0 Mpc−1 and kUV/a0 (with kUV ∼ 2500 kIR) are the smallest and largest
currently observable physical momenta (such as through CMB or large-scale structure ob-
servations) and a0 is the present-day scale factor. Figure 1 shows this schematically (not
to scale).

In what follows we define the observed system (system A) to be those modes whose
co-moving momenta satisfy7 k < kUV while the environment (system B) satisfies k > kUV,

7In practice we define our system to include both observable modes and those with k < kIR whose wave-
lengths are too long to have been observed. Such modes are expected to be absorbable into the definition
of the background geometry, and their inclusion should not affect our later discussion since they do not con-
tribute to the observables (e.g. decoherence) on which we ultimately focus. (See ref. [64] for an open-system
treatment of IR modes.).
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Figure 1. We sketch out the domain of the system and environment modes. The black line denotes
the Hubble radius and the coloured lines stand for the mode wavelengths. The system is comprised
of co-moving scales between kIR and kUV, both of which are outside the Hubble radius at the end of
inflation. The environment is made of all scales such that k > kUV.

and so write the position-space field as

v(η, x) = vA(η, x) ⊗ IB + IA ⊗ vB(η, x) (2.23)

with vA denoting the system and vB representing the environment:

vA(η, x) :=

∫
d3k

(2π)3/2
Θ
(
kUV − k

)
vk(η)eik·x =

∫

k<kUV

d3k

(2π)3/2
vk(η)eik·x , (2.24)

vB(η, x) :=

∫
d3k

(2π)3/2
Θ
(
k − kUV

)
vk(η)eik·x =

∫

k>kUV

d3k

(2π)3/2
vk(η)eik·x (2.25)

where Θ(x) is the Heaviside step function and IA and IB representing the appropriate unit
operators. The free Hamiltonian similarly becomes

H0(η) = HA(η) ⊗ IB + IA ⊗ HB(η) (2.26)

where HA and HB are both given by (2.18) but with the momentum range respectively
restricted to the intervals k < kUV and k > kUV.

Inserting the decomposition (2.23) into the cubic interaction Hamiltonian Hint defined
in eq. (2.14) gives several contributions, of the schematic form v3

A, v2
AvB, vAv2

B and v3
B. Of

these, only the cross terms (v2
AvB and vAv2

B) couple the system to the environment (and so
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contribute, say, to decoherence), and of these momentum conservation suppresses the v2
AvB

interactions because it is impossible to sum two small momenta to get a large one. The largest
interactions also come when derivatives act only on large-momentum (environment) fields.
For these reasons we focus primarily on the contribution that has the form vAδij(∂ivB)(∂jvB)
and so take

Hint(η) ⊃ −
√

ε1

2
√

2 Mpa(η)

∫
d3x vA(η, x) ⊗ δij∂ivB(η, x)∂jvB(η, x) . (2.27)

We therefore seek an open-system description of evolution using the Hamiltonian

H(η) = HA(η) ⊗ IB + IA ⊗ HB(η) + Hint(η) (2.28)

with Hamiltonians given explicitly by eqs. (2.18) and (2.27). We circle back to include mixed
tensor-scalar cubic interactions in section 3.4.

2.3 State evolution

We seek to predict the evolution of the system’s state ρ(η) given the above choice of Hamil-
tonian, at first working perturbatively. We do so within both Schrödinger picture and inter-
action picture, since each can be more convenient for some kinds of questions.

The Schrödinger-picture density matrix for the full system-plus-environment, ρS(η),
evolves through the standard Liouville equation,

∂ρS

∂η
= −i

[
HS(η), ρS(η)

]
. (2.29)

The interaction picture density matrix is defined relative to this by

ρ(η) = U †
0(η, ηin)ρS(η) U0(η, ηin) , (2.30)

where
U0(η1, η2) := T exp

(
−i

∫ η1

η2

dη H0S(η)

)
, (2.31)

and so satisfies
∂ρ

∂η
= −i

[
Hint(η), ρ(η)

]
. (2.32)

In particular, both pictures agree at the initial time ρ(ηin) = ρS(ηin).
Field operators vS(x) are time-independent in Schrödinger picture, but interaction-

picture fields
v(η, x) := U †

0(η, ηin)vS(x) U0(η, ηin) (2.33)

evolve only via the free part of the Hamiltonian with initial condition v(ηin, x) = vS(x).
Because the free evolution factorizes between system and environment

U0(η1, η2) := U0A(η1, η2) ⊗ U0B(η1, η2) (2.34)

where

U0A(η1, η2) := T exp

(
−i

∫ η1

η2

dη HAS(η)

)
and U0B(η1, η2) := T exp

(
−i

∫ η1

η2

dη HBS(η)

)
,

(2.35)
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the system and environment parts of the fields

vS(x) = vAS(x) ⊗ IB + IA ⊗ vBS(x) (2.36)

evolve independently under free evolution:

vA(η, x) = U †
0A

(η, ηin)vAS(x)U0A(η, ηin) and vB(η, x) = U †
0B

(η, ηin)vBS(x)U0B(η, ηin) .

(2.37)
We evolve the state assuming that the system and environment are uncorrelated at

η = ηin and all modes are prepared in the Bunch-Davies vacuum [65]:

ρ(ηin) = ρS(ηin) = |0〉〈0| = |0A〉〈0A| ⊗ |0B〉〈0B| . (2.38)

Here

|0A〉 :=
⊗

k<kUV

|0k〉 and |0B〉 :=
⊗

k>kUV

|0k〉 with ck(ηin)|0k〉 = 0 for all k , (2.39)

with the mode functions uk(η) appearing in eq. (2.16) given (for massless states) by

uk(η) =
e−ikη

√
2k

(
1 − i

kη

)
. (2.40)

The time evolution for observations restricted to be only in sector A is completely
determined by the evolution of the reduced density matrix, ̺, obtained by tracing out all the
environment degrees of freedom of sector B from the full density matrix.

̺(η) := Tr
B

[
ρ(η)

]
. (2.41)

In the absence of interactions the free evolution of the density matrix factorizes in momentum
space, with separate momenta remaining uncorrelated

̺(η) =
⊗

k<kUV

̺k(η) , (2.42)

at all times. The time-dependence of each factor describes the squeezing of super-Hubble
modes due to their non-adiabatic evolution in the presence of the time-dependent Hamilto-
nian. It is the deviations from this that are of most interest in what follows.

3 Evolution equations

This section contains the core derivation on which our results ultimately depend: we derive
here how the interaction (2.27) alters the late-time evolution of the reduced density matrix
for the observed modes. Because this interaction is linear in the long-wavelength field our
evolution equation remains quadratic in this field even at second order, and so evolution still
proceeds separately for each super-Hubble mode k, greatly simplifying the analysis.

We do so because this proves to be the dominant interaction through which short-
wavelength scalar modes decohere long-wavelength scalar fluctuations. Simplified evolution
emerges for super-Hubble modes at late times and its domain of validity is studied in some
detail because within it predictions can be made at unusually late times. Finally, these
arguments are repeated for gravitational interactions coupling scalar and tensor metric modes
to determine ones through which these modes dominantly decohere one another.
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3.1 Nakajima-Zwanzig equation

As an intermediate step we first derive the Nakajima-Zwanzig equation for the reduced
density matrix ̺. This equation explicitly eliminates the unseen environmental degrees of
freedom to rewrite the Liouville equation purely in terms of the observed degrees of freedom.

Although very general, this equation computes ∂t̺ as a convolution of the earlier values
of ̺ throughout its past history, and so is not so in itself. We show how this equation
simplifies when specializing to super-Hubble modes at very late times (compared with the
Hubble time), because it then becomes Markovian. The resulting Lindblad-type evolution
equation for the reduced density matrix ̺ lends itself to making reliable late-time predictions
that would otherwise lie beyond the reach of perturbative methods.

3.1.1 General derivation

To simplify later formulae it is useful to write the interaction-picture interaction Hamilto-
nian (2.27) as

Hint(η) = G(η)

∫
d3x vA(η, x) ⊗ B(η, x) , (3.1)

where B denotes the relevant environmental field combination

B(η, x) := δij∂ivB(η, x)∂jvB(η, x), (3.2)

and the coupling strength is

G(η) := −
√

ε1

2
√

2 Mp a(η)
. (3.3)

To derive the Nakajima-Zwanzig equation (see ref. [28] for a similar derivation in a
simpler setting) we define the projection super-operator P to act on an arbitrary operator O
in the Hilbert space by

P{O} = Tr
B

[
O
]

⊗ |0B〉〈0B| , (3.4)

where |0B〉〈0B| is the Bunch Davies vacuum for the environment sector as given in eq. (2.39).
This satisfies P2 = P as does its complement Q = 1 − P, which is also a projection super-
operator. In particular, P maps the full density matrix ρ(η) onto the reduced density matrix
̺(η) as follows:

P{ρ(η)} = ̺(η) ⊗ |0B〉〈0B| , (3.5)

where ̺ is the reduced density matrix for the system defined by (2.41).
The Nakajima-Zwanzig equation for ̺(η) is derived by applying P to the interaction

picture Liouville equation, written in terms of a Liouville super-operator:

∂ηρ(η) = Lη{ρ(η)} with Lη{ρ(η)} := −i
[
Hint(η), ρ(η)

]
, (3.6)

with the goal of expressing it purely in terms of ̺. Using P + Q = 1 this leads to

P {∂ηρ(η)} = PLηP{ρ(η)} + PLηQ{ρ(η)} (3.7)

Q{∂ηρ(η)} = QLηP{ρ(η)} + QLηQ{ρ(η)} . (3.8)

These can be regarded as evolution equations for P{ρ} and Q{ρ} provided P{∂ηρ} =
∂ηP{ρ}, which is true because the Bunch-Davies vacuum used in the definition (3.5) is
time-independent in the interaction picture.
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(3.8) can then be employed to eliminate Q{ρ(η)}, using the formal solution

Q{ρ(η)} = G(η, ηin)Q{ρ(ηin)} +

∫ η

ηin

dτ G(η, τ)QLηP{ρ(τ)} (3.9)

where

G(η, τ) := 1 +
∞∑

n=1

∫ η

τ
dτ1 · · ·

∫ τn−1

τ
dτn QLτ1 · · · QLτn . (3.10)

Inserting this into eq. (3.7) yields

P{∂ηρ(η)} = PLηP{ρ(η)} + PLηG(η, 0)Q{ρ(ηin)} +

∫ η

ηin

ds K(η, s){ρ(s)} (3.11)

with kernel
K(η, s) = PLηG(η, s)QLsP . (3.12)

For the uncorrelated initial state used here the second term in eq. (3.11) vanishes, since

Q
{
|0A〉〈0A| ⊗ |0B〉〈0B|

}
= 0 . (3.13)

This gives an evolution equation that involves only P{ρ}, which can be expanded to
any desired order in Hint. Stopping at second order — for which we may use G(η, s) ≃ 1 —
we find

∂ηP{ρ(η)} = P{∂ηρ(η)} ≃ PLηP{ρ(η)} +

∫ η

ηin

ds PLηQLsP{ρ(s)} , (3.14)

which, using the definitions of P, Q and Lη, becomes the following equation for ̺:

∂̺

∂η
≃ −i Tr

B

{[
Hint(η), ̺(η) ⊗ |0B〉〈0B|

]}
−
∫ η

ηin

dη′ Tr
B

{[
Hint(η) ,

[
Hint(η

′) , ̺(η′) ⊗ |0B〉〈0B|
]

− Tr
B

{[
Hint(η

′), ̺(η′) ⊗ |0B〉〈0B|
]}

⊗ |0B〉〈0B|
]}

. (3.15)

Specializing to the interaction (3.1) the evolution equation for ̺ finally simplifies to

∂̺

∂η
≃ −iG(η)B(η)

∫
d3x [vA(η, x), ̺(η)] −

∫
d3x

∫
d3x′

∫ η

ηin

dη′ G(η)G(η′)

×
{ [

vA(η, x), vA(η′, x′)̺(η′)
]
CB(η, η′; x − x′) +

[
̺(η′)vA(η′, x′), vA(η, x)

]
C∗

B(η, η′; x − x′)
}

(3.16)
whose right-hand side neglects O(G3) terms. The required expectation values of the envi-
ronment operator B are

B(η) := 〈0B|B(η, x)|0B〉 =

∫

k>kUV

d3k

(2π)3
|k|2|uk(η)|2 (3.17)

and
CB(η, η′; x − x′) = 〈0B| [B(η, x) − B(η)]

[
B(η′, x′) − B(η′)

]
|0B〉. (3.18)

The second equality in (3.17) uses the translation-invariance of the Bunch-Davies state as
well as the specific for the operator given in (3.2), and a similar expression for CB is given
in eq. (B.9). The integral in (3.17) diverges and part of the later discussion shows how such
divergences are handled.
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Re[Ck(η,η
′)]/k5

Im[Ck(η,η
′)]/k5

Figure 2. Re[Ck(η, η′)] and Im[Ck(η, η′)] as a function of kη′ for kη = −0.2 and kUV/k = 5. Note
the singularity at η′ ≃ η.

3.1.2 Nakajima-Zwanzig equation for each mode

The second-order Nakajima-Zwanzig equation (3.16) simplifies considerably when the inter-
action is linear in vA — as it is in (3.1) — because evolution does not mix modes, similar
to free evolution. To make this explicit define the momentum-space correlation function
Ck(η, η′) using

CB(η, η′; y) =

∫
d3k

(2π)3/2
Ck(η, η′)eik·y . (3.19)

Ck is computed explicitly in appendix B.2 for k < kUV, which shows in particular that
Ck(η, η′) only depends on the modulus k = |k| — and so in particular C−k(η, η′) = Ck(η, η′).

Factorizing the density matrix as in eq. (2.42) shows that ̺k for each mode k evolves
independently. Eq. (3.16) implies that (for k 6= 0) each factor separately satisfies

V
(2π)3

∂̺k

∂η
= −(2π)3/2

∫ η

ηin

dη′ G(η) G(η′)
{ [

ṽk(η), ṽk(η′)̺k(η′)
]
Ck(η, η′)

+
[
̺k(η′)ṽk(η′), ṽk(η)

]
C

∗
k (η, η′)

}
, (3.20)

where ṽk is the proxy for vR
k and vI

k defined below (2.21) and the factor V denotes the
volume of space and arises when keeping track of the normalization of momentum modes
in the continuum limit (see appendix D). Its presence ensures the final expressions remains
finite as V → ∞ when k is taken to be continuum normalized. A similar expression also
holds for k = 0 but also includes a contribution from B = 〈B〉env.

3.1.3 Environmental correlations

Later sections explore implications of the Nakajima-Zwanzig equation (3.20) and in particular
what it predicts for very late times. The result depends in detail on the environmental
correlator Ck(η, η′), which is computed explicitly in appendix B, see eq. (B.62). It is plotted
as a function of kη′ in figure 2. For later use this section summarizes several useful limits of
the result found there.
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In the coincidence limit η′ → η, the correlator is singular and can be expanded as

Ck(η, η′) ≃ k5

32(2π)7/2

[
1

(−kη)4

(
−32κ − 8 − 64

3κ
+

4

κ2

)
+

1

(−kη)2

(
−64

3
κ3 − 16κ2 + 32κ

+
16

3
+

64

15κ

)
− 32

5
κ5 − 8κ4 +

32

9
κ3 + 4κ2 − 64

15
κ − 44

45

]
+

π

32(2π)7/2

[
δ′′′′(η − η′)

+
4(η − η′)

ηη′ δ′′′(η − η′) +
4
[
η2 + (η′)2 +

(
5
6k2ηη′ − 4

)
ηη′
]

η2(η′)2
δ′′(η − η′)

+
4(η − η′)

(
3k2ηη′ − 4

)

η2(η′)2
δ′(η − η′) +

43
15k4η2(η′)2 + 4

3k2
[
9η2 − 32ηη′ + 9(η′)2

]
+ 16

η2(η′)2

×δ(η − η′)
]
+

i

32(2π)7/2

[
24

(η′ − η)5
+

20(k2η2 − 6)

3η2(η′ − η)3
+

40

η3(η′ − η)2

+
k2(43k2η2 − 460)

15η2(η′ − η)
− 40

η5
+

92k2

3η3

]
. (3.21)

where we define

κ :=
kUV

k
> 1 . (3.22)

The above expression assumes η > η′ and the result for η < η′ is found using Ck(η, η′) =
C ∗

k (η′, η). Notice that the imaginary part is completely contained in the last lines of this
expression, and is totally independent of the parameter kUV.

Alternatively, for η′ → −∞ (for fixed η and parametrically making |kη′| ≫ 1) the
correlator instead has the form

Ck(η, η′) ≃ k5

32(2π)7/2

{
−4 [i + κ(−kη)]2

(
2κ2 − 1

)2

κ2(−kη)2(−kη′)2
e−2ikUV(η−η′) (3.23)

+
16κ (κ + 1) [i + κ(−kη)] [i + (−kη)(κ + 1)]

(−kη)2(−kη′)2
e−i(1+2κ)k(η−η′)

}
. (3.24)

which falls off for large η′ proportional to (η′)−2.

3.2 Markovian approximation

Now comes the main approximation. The main observation is that the Nakajima-Zwanzig
equation (3.20) for each mode simplifies if the contribution to the kernel G(η)G(η′)Ck(η, η′)
is so sharply peaked about η′ ≃ η that ̺k(η) does not vary significantly in the integration
region where the kernel has appreciable support. When this is true the evolution becomes
Markovian in the sense that ∂η̺k depends only on ̺k evaluated at the same time (rather
than on its entire earlier history).

3.2.1 A false start

Before proceeding we first pause to describe a common method often used in the literature,
which in this case does not reveal the correct Markovian limit. In this method one expands
the density matrix in a Taylor series,

̺k(η′) ≃ ̺k(η) + (η′ − η)∂η̺k(η) + O
[
(η′ − η)2] (3.25)
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with the result truncated at leading order to obtain the Markovian regime. Such an ex-
pansion seems very likely to be a good approximation because eq. (2.32) shows that in the
interaction picture all contributions to ∂η̺k are suppressed by the perturbative coupling (in
our case H2/M2

p).
Interestingly, we find that this derivation leads in the present instance to an unphysical

Markovian limit, whose evolution equation can violate the fundamental positivity conditions
that density matrices must satisfy. This signals a failure of the approximations used. Since
this procedure is frequently used in the literature, we here describe in more detail the way
in which it fails in the current setting.

Inserting the leading term of eq. (3.25) into eq. (3.20) leads to the evolution equation8

V
(2π)3

∂̺k

∂η
= −i

[
Heffk(η), ̺k

]
+

2∑

n,m=1

hk,nm

[
Ok,n̺k(η)O†

k,m − 1

2

{
O†

k,mOk,n, ̺k(η)
}]

,

(3.26)

where we define
Ok,1 := k2 ṽk , Ok,2 := k p̃k , (3.27)

and
Heffk(η) = Im [Ak(η, ηin)] (ṽk)2 + Im [Bk(η, ηin)] ṽkp̃k . (3.28)

The matrix of coefficients is

hk,nm =
1

k4

(
2Re [Ak(η, ηin)] k B∗

k(η, ηin)
k Bk(η, ηin) 0

)
, (3.29)

where

Ak(η, ηin) := i(2π)3/2
∫ η

ηin

dη′ G(η)G(η′)Ck(η, η′)
[
−u∗′

k (η)uk(η′) + u′
k(η)u∗

k(η′)
]

, (3.30)

Bk(η, ηin) := i(2π)3/2
∫ η

ηin

dη′ G(η)G(η′)Ck(η, η′)
[
u∗

k(η)uk(η′) − uk(η)u∗
k(η′)

]
. (3.31)

Now comes the main point: evolution using eq. (3.26) only keeps the eigenvalues of ̺
real and between 0 and 1 (as required for probabilities) if the eigenvalues

λ±
k = k−4Re [Ak(η)] ± k−4

√
Re [Ak(η)]2 + k2 Re [Bk(η)]2 + k2 Im [Bk(η)]2 (3.32)

of hk,nm are strictly non-negative. But in the super-Hubble limit −kη ≪ 1 with −kηin fixed
and κ = kUV/k ≫ 1 one finds

Re[Ak] ≃ − 3ǫ1H2

256π2M2
p

k3

kUV(−kη)3
+ · · · (3.33)

is negative and this implies λ−
k is also negative. The sign of Re(Ak) is evaluated numerically

and shown in figure 3 as a function of kUV/k and kη (for the case of kηin → −∞); showing that
the leading small −kη limit is negative whenever −kUVη .

√
3 (and so kUV is super-Hubble)

but is positive otherwise.
8In order to arrive at this equation using these steps, one must expand vk(η′) in terms of ladder operators

which are then inverted with a Bogoliubov transformation to give rise to the operators in eq. (3.27).
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Figure 3. A plot of the sign of Re Ak as a function of kη and κ = kUV/k (for the case kηin → −∞),
with blue representing positive and red being negative. The boundary between the two signs follows
roughly the curve kUVη ≃

√
3 .

3.2.2 A Markovian regime

Another strategy is to jointly expand all terms that multiply the sharply peaked kernel
G(η)G(η′)Ck(η, η′) in the integrand of eq. (3.20),
[
ṽk(η), ṽk(η′)̺k(η′)

]
≃
[
ṽk(η), ṽk(η)̺k(η)

]
+ (η′ − η)

[
ṽk(η), [ṽk(η)∂η̺k(η) + p̃k(η)̺k(η)]

]
+ · · · ,

(3.34)
and
[
̺k(η′)ṽk(η′), ṽk(η)

]
≃
[
̺k(η)ṽk(η), ṽk(η)

]
+ (η′ − η)

[
[∂η̺k(η)ṽk(η) + ̺k(η)p̃k(η)] , ṽk(η)

]
+ · · · ,

(3.35)
and seek the regime where the first term dominates the integral.

When this is a good approximation eq. (3.20) becomes the following interaction-picture
Lindblad equation,

V
(2π)3

∂̺k

∂η
≃ − Re[Fk(η, ηin)]

[
ṽk(η),

[
ṽk(η), ̺k(η)

]]
− i Im[Fk(η, ηin)]

[
[ṽk(η)]2 , ̺k(η)

]
,

(3.36)
where we define the integrated environmental coefficient

Fk(η, ηin) := (2π)3/2
∫ η

ηin

dη′ G(η)G(η′)Ck(η, η′) (scalar environment) . (3.37)

Eq. (3.36) describes Markovian evolution and, for the same reasons as described above for
the false start, the evolution (3.36) is only consistent with a probability interpretation for ̺k

if Re[Fk] > 0, so this must be true in any valid approximation. We verify that it is true for
several explicit limits below.

Experience with open systems suggests that the solutions to eq. (3.37) can sometimes
be trusted well into the future in a way that those of eq. (3.20) cannot. A necessary condition
for this extended domain of validity is that the right-hand side not make explicit reference
to the initial time ηin, since it is only then that one can expect the evolution equation to

– 17 –



J
C
A
P
0
7
(
2
0
2
3
)
0
2
2

have a broader domain of validity than its perturbative derivation (for the reasons outlined
in detail in ref. [26]). For this to be useful in the present instance would require the function
Fk(η, ηin) to be approximately independent of ηin.

We therefore evaluate eq. (3.37) in some detail in appendix C, encountering along the
way ultraviolet divergences that we renormalize after first regularizing using a variant of
dimensional regularization. The general expression for Fk we obtain is somewhat unwieldy
for general values of its arguments η, ηin and kUV > k and so we quote here only several useful
limiting forms. In particular we find that Re [Fk(η, ηin)] is UV finite and becomes universal
in the late-time super-Hubble limit −kη ≪ 1, with

Re [Fk(η, ηin)] ≃ ε1H2k2

1024π2M2
p

{
20π

(−kη)2
+

g (κ, kηin)

(−kη)
+ O

[
(−kη)0

]}
. (3.38)

This is universal in the sense that all dependence on the parameters kUV and ηin first appear
at subdominant order in kη; within the known function g(κ, kηin). We show below that
Re [Fk(η, ηin)] is the quantity relevant to decoherence and its universal form for late times
opens up the possibility of also trusting its solutions at very late times.

In the slightly more restrictive regime −kη ≪ −kηin ≪ 1 we similarly have — see
formula (C.59) — Fk = F

(div)
k + F

(fin)
k where the UV-divergent part is

F
(div)
k (η, ηin) =

iε1H2k2

1024π2M2
p

[
40

(−kη)2
− 92

3
+

43

15
(−kη)2

]{
1

ǫ
+ log

[
kUV

µ

(
2 +

1

κ

)]}
(3.39)

and so only contributes to Im Fk. The remaining finite part is

F
(fin)
k (η, ηin) ≃ ε1H2k2

1024π2M2
p

(
20π

(−kη)2
+

4i

(−kη)2
{7 − 10 log [eγ(2κ + 1)(−kη)]}

+
1

(−kη)

[
4

3

(
24κ + 6 +

16

κ
− 3

κ2

)
log

(
η

ηin

)
+

40i

zin

]
− 46π

3
− 128i

3

+
92i

3
log [eγ(2κ + 1)(−kη)] + O (−kη, −kηin)

)
, (3.40)

where γ is Euler-Mascheroni constant. The divergence is visible in the limit that the regular-
ization parameter 0 < |ǫ| ≪ 1 tends to zero, and µ > 0 is the usual associated arbitrary mass
scale. Although the formula (3.40) above neglects terms O(−kη), we explicitly write out
the divergence proportional to (−kη)2 in formula (3.39) for completeness, and for later use
when asking whether and how the divergences appearing in eq. (3.39) can be renormalized
by appropriate choice of counter-term.

The goal is to solve eq. (3.36) and extract the physical observables from it, such as the
decoherence rate and the (very small) corrections to the power spectrum. Before pursuing
this we must tie up two loose ends: understand how to renormalize the divergences appearing
in eq. (3.40) (so that we can understand why they do not affect the physical predictions) and
verify the validity of the underlying Markovian approximation.

3.2.3 Domain of validity of the Markovian approximation

As the example of section 3.2.1 shows, truncating a Taylor expansion inside the integral need
not always be a good approximation. It should be a good approximation however if the
time-scale T over which the Taylor expanded quantity varies is much longer than the width
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τ of the correlation function’s peak, since then subsequent terms should be suppressed by
powers of τ/T . We here show that the leading corrections to eq. (3.36) are suppressed by
powers of kη in the late-time super-Hubble limit (for which kη → 0).

To see why, insert the subdominant term of eq. (3.35) into eq. (3.20), yielding

V
(2π)3

∂̺k

∂η
= − Re [Fk(η, ηin)] [ṽk(η), [ṽk(η), ̺k(η)]] − i Im [Fk(η, ηin)]

[(
ṽk(η)

)2
, ̺k(η)

]

− Re [Mk(η, ηin)] [ṽk(η), [p̃k(η), ̺k(η)]] − i Im [Mk(η, ηin)] [ṽk(η), {p̃k(η), ̺k(η)}] ,

(3.41)
where the first line is the same as eq. (3.36) and Fk is as defined in eq. (3.37) while

Mk(η, ηin) := (2π)3/2
∫ η

ηin

dη′ G(η)G(η′)Ck(η, η′) (η′ − η) . (3.42)

We seek the regime where the terms involving Fk dominate those proportional to Mk.
The function Mk is computed in appendix C.4, where we find — cf. formula (C.67) —

that in the super-Hubble limit 0 < −kη ≪ −kηin ≪ 1

Mk(η, ηin) ≃ ε1H2k

1024π2M2
p

[
−40i log (η/ηin) + O(−kηin)

−kη
+

40i

(−kηin)

+ 4

(
8κ + 2 +

16

3κ
− 1

κ2

)
log

(
η

eηin

)
+ O(−kη)

]
+ M

(div)
k (η, ηin) , (3.43)

where we again encounter a 1/ǫ divergence in the imaginary part of the form

M
(div)
k (η, ηin) ≃ − 5iε1H2k

768π2M2
p

(−kη)

{
1

ǫ
+ log

[
2kUV + k

µ

]}
. (3.44)

This can be absorbed by a counter-term in the same way as can the divergences in Fk (see
below). By contrast, the real part Re[Mk(η, ηin)] is finite and O

[
(−kη)0

]
in the super-

Hubble limit. What is important is that this is subdominant to Re[Fk(η, ηin)] ∝ (kη)−2 in
this regime; putting late times and super-Hubble scales squarely within the domain of validity
of the Markovian methods.

3.2.4 Renormalization of the Lindblad equation

Next consider the issue of renormalization. How renormalization works is easier to see if we
convert eq. (3.36) to Schrödinger picture, since this reintroduces the free Hamiltonian (whose
parameters are presumably the ones that get renormalized) into the evolution.

Repeating the above steps leads to the Schrödinger picture Lindblad equation,

V
(2π)3

∂̺Sk

∂η
≃ −Re[Fk(η, ηin)]

[
ṽSk,

[
ṽSk, ̺Sk(η)

]]
(3.45)

− i
[

HSk(η) + Im[Fk(η, ηin)]ṽ2
Sk, ̺Sk(η)

]
, (3.46)

where the Hamiltonian in momentum space is HSk(η) = H(0)
Sk (η) + δHSk(η) where

H(0)
Sk (η) =

1

2

[
p̃2

Sk +

(
k2 − 2

η2

)
ṽ2

Sk

]
, (3.47)
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is the free part coming from the action of eq. (2.1) and δHSk(η) contains any order 1/M2
p terms

coming from local corrections to this action. The counterterms that cancel the divergence
in Im [Fk(η, ηin)] must come from the quadratic term ṽk in the expansion of δHSk(η). What
is important in eq. (3.45) is that this is possible because these counter-terms only appear
together with the imaginary part of Fk that contains the 1/ǫ divergences in eq. (3.40).

But what are the counter-terms into which divergences might go? This ultimately is
determined by the parameters appearing in the Lagrangian, and for a renormalizable theory
(like QED) this would simply be our starting Lagrangian (2.1). However General Relativity is
famously not renormalizable in the same way, and so for it divergences must be handled within
an effective field theory treatment in which eq. (2.1) is regarded as the leading part of a low-
energy derivative expansion. In this case standard power-counting arguments [66] determine
what kinds of terms must be added to it at any perturbative order to capture divergences.
For the gravitational systems of interest here this means that counter-terms arise either as
renormalizations of Newton’s constant (or Mp) or as parameters appearing in four-derivative
interactions, like curvature-squared or mixed scalar-derivative/curvature terms.

Although we cannot here definitely prove that divergences all get renormalized into these
parameters, we can provide several consistency checks. We cannot be definitive because it
was only when we specialize to decoherence that we are free to ignore all other interactions
beyond our specific cubic interaction, even at order 1/M2

p . But these other interactions can
contribute UV divergences and it is only the complete set of divergences at a fixed order in
the small couplings — powers of H2/M2

p and ε1 in the present instance [45, 46] — that are
guaranteed to cancel. What we can do is check that the divergences we encounter have the
dependence on k and η that is required if they are to be absorbable into the expected Einstein-
Hilbert or curvature-squared counter-terms. Along the way we show that the decoherence
calculation is UV finite, and so in particular is independent of the values of these renormalized
parameters.

To see how this works9 notice that formula (3.39) shows that the divergences encountered
in eq. (3.45) all have the form

Im [Fk(η, ηin)] ṽ2
Sk ∝ ε1H2

M2
p

(
c1

η2
+ c2 k2 + c3 k4η2

)
ṽ2

Sk (3.48)

for some real constants c1,2,3 that all contain a 1/ǫ divergence in dimensional regularization.
Keeping in mind that a(η) = −(Hη)−1, these have the k- and η-dependence appropriate to
the renormalization of terms in the Lagrangian of the form

c1

η2
ṽ2

Sk ⊂
[

d

dt
(av)

]2

, c2 k2ṽ2
Sk ⊂ c2(∂v)2 and c3 k4η2ṽ2

Sk ⊂ c3 (∂2v)2 . (3.49)

These are among the kinds of operators that arise in the fluctuation expansion of the Einstein-
Hilbert Lagrangian

√−g R, or of a curvature-squared term like
√−g R2. (For more detail

on this see appendix A.)
The same EFT reasoning also explain why terms proportional to η2 — such as in

eq. (3.39) — are not problems even at early times where η can be big (a limit that would
also require choosing ηin to be big as well). These naively seem to be in danger of interfering

9Notice that these types of consistency checks are easiest to do when using dimensional regularization since
this preserves the underlying gauge symmetries of the gravitational action.
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with the physical arguments that select the adiabatic Bunch-Davies initial conditions at early
times. To see why they are not a worry, consider for example a term of the form

ε1H2

M2
p

(kη)2 ∼
ε1ℓ2

p

λ2
phys

(3.50)

where ℓp = 1/Mp is the Planck length and λphys ∼ a/k = (−Hkη)−1. Such terms can only
be important for physical wavelengths λphys .

√
ε1 ℓp, and so lie well outside the domain of

validity of any EFT of gravity.

3.3 Gaussian transport

Because the right-hand side of eq. (3.45) is quadratic in the fields it follows that an initially
gaussian state — such as the Bunch-Davies vacuum — remains gaussian under evolution.
When this is true eq. (3.45) can be converted into a direct late-time evolution equation for
field correlations (rather than for the density matrix), as we now show. This alternative
formulation is possible because for gaussian systems ̺Sk is completely characterized by the
one- and two-point functions of fields and canonical momenta:

〈ṽSkṽSk′〉 = Pvv(k) δ(k − k′) , 〈p̃Skp̃Sk′〉 = Ppp(k) δ(k − k′), (3.51)

〈ṽSkp̃Sk′〉 =

[
Pvp(k) +

i

2

]
δ(k − k′) . (3.52)

Directly differentiating the definitions — e.g. 〈ṽkṽk〉 = Tr[ṽ2
Sk ̺Sk] — and evaluating the

time derivative of ̺Sk using eq. (3.45), together with commutation relations like eq. (2.17),
leads to the following transport equations for the power spectra

P ′
vv(k, η) = 2 Pvp(k, η) , (3.53)

P ′
vp(k, η) = Ppp(k, η) −

{
ω2(k, η) + Im[Fk(η, ηin)]

}
Pvv(k, η) , (3.54)

P ′
pp(k, η) = −2

{
ω2(k, η) + Im[Fk(η, ηin)]

}
Pvp(k, η) + 2 Re[Fk(η, ηin)] . (3.55)

Like the Lindblad equation these equations can be integrated to late times when the function
Fk is independent of the initial time ηin.

The effect of the cubic interaction in this evolution is twofold. First, it ensures that the
frequency ω2(k) only appears in the combination

ω̃2(k, η) := ω2(k, η) + Im[Fk(η, ηin)] , (3.56)

and so effectively alters the k-dependence of the dispersion relation by shifting ω2(k) →
ω̃2(k). This shift would also be expected from the form of eq. (3.45) since there Im(Fk)
appears as an additive contribution proportional to ṽ2

Sk in the Hamiltonian.10 As described
above, it is because UV divergences only appear in Im(Fk) that they can be renormlized into
parameters appearing in ω2(k). Such terms cannot drive decoherence because they contribute
to evolution as would a correction to the Hamiltonian appearing in the Liouville equation,
and so cannot evolve pure states into mixed states.

10In an unfortunate nomenclature corrections like these to the lowest-order dispersion relation have come
to be referred to in the literature as ‘Lamb shift’ terms.
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The cubic interaction’s other effect is to add a source term Re(Fk) into the evolution
equation for Ppp. Section 4 below shows that this term is the one responsible for decoherence
and because Re(Fk) is UV finite so must be the decoherence rate. Showing this involves
solving these equations explicitly and this is facilitated by eliminating two of the variables
to obtain a single third-order differential equation for Pvv:

P ′′′
vv(k, η) + 4 ω̃2(k, η) P ′

vv(k, η) + 4 ω̃(k, η) ω̃′(k, η) Pvv = 4 Re[Fk(η, ηin)] . (3.57)

Once this is solved the remaining correlators Pvp and Ppp are found from eqs. (3.53) and (3.54).

3.4 Contribution from the tensor environment

Before finding solutions we conclude this section by computing the rate with which an en-
vironment of short-wavelength tensor modes decoheres the long-wavelength scalars, showing
that it gives twice the rate found above from a scalar environment. The full rate for de-
cohering visible scalar fluctuations is the sum of the contributions from smaller scalar and
tensor modes.

We first show that a tensor environment contributes to decoherence with the same
leading parametric dependence on ε1, H/Mp and −kη = k/(aH) as does a scalar environ-
ment. The same arguments as given above again imply that decoherence first arises at order
(H/Mp)2 and does so only through cubic interactions. Furthermore, short-wavelength tensor
modes can only decohere super-Hubble scalar fluctuations through the tensor-tensor-scalar
interactions listed in ref. [47] [see also eq. (A.20) and eq. (E.1)], and of these only the inter-
action

(3)S ⊃
M2

p

8

∫
dt d3x a ε1 ζ ∂lγij∂lγij , (3.58)

contributes at leading order in slow-roll parameters and in powers of k/(aH).
Appendix E shows in detail how scalar evolution is modified by the presence of the tensor

environment, again leading to an evolution equation of the Nakajima-Zwanzig form (3.20),
but with the correlator Ck replaced by Ck + Tk, with Tk defined by

CT(η, η′; y) := 〈0B| [BT(η, x) − BT(η)]
[
BT(η′, x′) − BT(η′)

]
|0B〉 =

∫
d3k

(2π)3/2
Tk(η, η′)eik·y ,

(3.59)

where BT(η) := 〈0B|BT(η, x)|0B〉 and

BT(x) := δijδklδrs∂ivkr(η, x)∂jvls(η, x) (3.60)

is the new (tensor) environmental operator implied by eq. (3.58).
Appendix E also evaluates the leading behaviour of Tk for small (−kη), which turns out

to be twice the contribution from Ck alone. The combined tensor and scalar contributions
are therefore three times larger than the scalar result alone, with the combination of scalar
and tensor environments leading to a late-time limit −kη ≪ 1 limit that is three times larger
than in eq. (3.38) [see eq. (E.71)]:

Re[Fk(η, ηin)] ≃ ε1H2k2

1024π2M2
p

[
60π

(−kη)2
+ O

(
1

−kη

)]
(scalar+tensor environment) .

(3.61)
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Again all dependence on ηin and kUV appear only at subdominant order in (−kη). We
comment here that the kUV-independence of the result follows because the most important
scales for decoherence are the ones that are closest to the scale k being decohered (both
much larger than the Hubble length). Because the important scales are not at the cutoff,
the decoherence is largely insensitive to the value used for kUV. This also helps to further
underline why the vA ⊗ (∂vB)2 interaction is the dominant contribution in going from (2.14)
to (2.27) — all other neglected interactions there contribute most near the value of kUV and
so are unimportant for decoherence (for the same reason the value of kUV itself is not).

4 Late-time solutions

We now solve the Lindblad equation (3.45) to extract some of its physical implications.

4.1 Solution to the Lindblad equation

Because the right-hand side of the Lindblad equation is quadratic in the system field v(η, x),
the solutions for the reduced density matrix in the field eigenstate basis remain Gaussian. In
Schrödinger picture this means

〈ṽSk,1| ̺Sk |ṽSk,2〉 =

√
Re(ak) − ck

π
exp

(
−ak

2
ṽ2

Sk,1 − a∗
k

2
ṽ2

Sk,2 + ck ṽSk,1ṽSk,2

)
, (4.1)

for time-dependent functions ak(η) and ck(η). This state is properly normalised inasmuch as
Tr(̺Sk) = 1 and the requirement ̺†

Sk = ̺Sk implies ck is real.
The Lindblad equation determines the functions ak(η) and ck(η), and because the state

is Gaussian these are completely determined by the two-point functions Pvv(k), Pvp(k) and
Ppp(k), through the formulae

Pvv(k) =
1

2 [Re(ak) − ck]
, Pvp(k) = − Im(ak)

2 [Re(ak) − ck]
, Ppp(k) =

|ak|2 − c2
k

2 [Re(ak) − ck]
, (4.2)

which invert to give

Re(ak) =
1

Pvv(k)

[
Pvv(k)Ppp(k) − P 2

vp(k) +
1

4

]
, Im(ak) = −Pvp(k)

Pvv(k)
(4.3)

ck =
1

Pvv(k)

[
Pvv(k)Ppp(k) − P 2

vp(k) − 1

4

]
. (4.4)

A measure of the state’s decoherence is given by its ‘purity’, defined by

pk(η) := Tr
[
̺2

Sk(η)
]

. (4.5)

This quantity satisfies 0 ≤ pk ≤ 1 and pk = 1 if and only if ̺k is a pure state. Decoherence is
said to be effective when pk ≪ 1. For a Gaussian state the purity (4.1) evaluates to [22, 67–69]

pk =

√
Re(ak) − ck

Re(ak) + ck
=

1

2
√

Pvv(k)Ppp(k) − P 2
vp(k)

, (4.6)

where the second equality uses eqs. (4.3)–(4.4).
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The state is pure if and only if ck = 0, or equivalently Pvv(k)Ppp(k) − P 2
vp(k) = 1/4.

By contrast, the state is strongly decohered when pk ≪ 1 and so Pvv(k)Ppp(k) − P 2
vp ≫ 1/4.

This corresponds to the case ck ≃ Re(ak) and so eq. (4.1) becomes
∣∣∣〈ṽSk,1| ̺Sk |ṽSk,2〉

∣∣∣ ∝ exp

[
−Re(ak)

2
(ṽSk,1 − ṽSk,2)2

]
, (4.7)

showing in particular that decoherence occurs in the field basis — i.e. |〈ṽ1|̺ |ṽ2〉| → δ(ṽ1 − ṽ2)
— if ℜe (ak) also grows in this limit.

For later use we notice that eqs. (3.53)–(3.55) imply the following evolution equation
for the combination of correlators that controls the purity:

∂

∂η

[
Pvv(k, η)Ppp(k, η) − P 2

vp(k, η)
]

= 2 Re[Fk(η, ηin)] Pvv(k) . (4.8)

Among other things this confirms that decoherence is driven purely by the UV-finite quantity
Re(Fk), as foreshadowed in earlier sections. Its late-time behaviour is reliable in the regime
−kη ≪ 1 because in this regime eq. (3.61) shows Re(Fk) is approximately independent of ηin

and kUV.

4.2 Solution to the transport equations

It remains to solve the Lindblad equation to determine the functions ak(η) and ck(η). We
exploit the Gaussianity to do so directly using the equivalent transport equations (3.53)
through (3.55) or their equivalent (3.57).

Eq. (3.57) can be integrated when there is no source term on its right-hand side, with
solution given by Pvv = |ũk|2, where ũk solves the Mukhanov-Sasaki equation ũ′′

k +ω̃2(k)ũk =
0 obtained using the modified dispersion relation ω(k) → ω̃(k). This solution builds in
the initial condition that it approaches the Bunch-Davies vacuum ũk → uk in the limit of
vanishing cubic coupling.

Nonzero source term can then be included using the Green’s function formalism, lead-
ing to

Pvv(k, η) = |ũk(η)|2 + 8

∫ η

ηin

dη′ Re[Fk(η′, ηin)] Im2 [ũk(η′)ũ∗
k(η)

]
. (4.9)

Eqs. (3.54) and (3.55) then give the two other power spectra,

Pvp(k, η) = Re
[
ũ′

k(η)ũ∗
k(η)

]
+ 8

∫ η

ηin

dη′ Re[Fk(η′, ηin)] Im
[
ũk(η′)ũ∗

k(η)
]

Im
[
ũk(η′)ũ∗′

k (η)
]

(4.10)

Ppp(k, η) =
∣∣ũ′

k(η)
∣∣2 + 8

∫ η

ηin

dη′ Re[Fk(η′, ηin)] Im2 [ũk(η′)ũ∗′
k (η)

]
. (4.11)

These in principle solve the Lindblad equation entirely once eqs. (4.9)–(4.10) are used in
eqs. (4.3)–(4.4) to evaluate the density matrix (4.1). We do not write the corresponding
expression here explicitly because our purposes are already well served by eqs. (4.9)–(4.10).

There are two distinct regimes in which these solutions can be used. In straight-up
perturbation theory they can be used directly provided one works only to lowest order in
the semiclassical expansion. This in turn requires replacing ũk with uk inside the integrals
given that Fk is already order (H/Mp)2. An extended domain of validity could apply in
circumstances where Re(Fk) and Im(Fk) are independent of ηin, but this must be checked on
a case-by-case basis.
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4.3 Quantifying decoherence

We may now compute the time-dependence of the state’s purity by directly integrating
eq. (4.8). Assuming that the state is pure at η = ηin we have

pk(η) =
1√

1 + Ξk(η)
(4.12)

with

Ξk(η) = 8

∫ η

ηin

dη′ Re[Fk(η′, ηin)]Pvv(k, η′) , (4.13)

where Pvv is given in eq. (4.9). We next evaluate this expression and assess its domain of
validity.

To that end we first remark that Pvv never deviates much from its counterpart in the free
theory, namely P free

vv = |uk|2 where uk is the Bunch-Davies mode function (2.40). Although
eq. (3.40) shows that Im(Fk) ∝ (H/Mp)2η−2 ∝ a2H4/M2

p (up to logarithms) grows strongly
on super-Hubble scales, it does not grow faster than ω2 ∝ η−2 ∝ a2H2. Up to logarithms
both quantities grow at the same rate and so Im(Fk) gives a correction to the effective
mass of super-Hubble fluctuations (and so to the tilt of the power spectrum) of relative size
Im(Fk)/ω2 ∝ (H/Mp)2 (and therefore remains negligible even at late times).

The integral in eq. (4.9) can thus be evaluated by letting ũk ≃ uk. Using the ap-
proximate form (3.61) (which includes the contribution of small-scale tensors) for Re Fk on
super-Hubble scales, together with the super-Hubble limit

Im
[
uk(η′)u∗

k(η)
]

≃ (η3 − η′3)

6ηη′ + O(k2η3), (4.14)

which follows from eq. (2.40), leads to the power-spectrum correction

∆Pvv ≃ 5ε1H2

192πM2
p

[
1

6

(
η4

η3
in

− η3
in

η2

)
− η log

(
η

ηin

)]
. (4.15)

Here, ηin corresponds to the time at which the integration starts, which in this expression
is assumed to be already super-Hubble, so that the Markovian approximation holds (see
section 3.2.3). In practice, suppose k = σainHin, where σ < 1 denotes the ratio between the
Hubble radius and the mode wavelength at the initial time. The above thus implies a very
small, time-independent and scale-invariant fractional correction to the power spectrum

∆Pvv

Pvv
≃ 5ε1H2σ3

576πM2
p

. (4.16)

In summary, as expected gravitational mode coupling leaves only a tenuous imprint on the
power spectrum: an extremely small correction to the its tilt that is suppressed by (H/Mp)2,
and a correction to its amplitude that is suppressed by ε1(H/Mp)2 (see also [40]).

Returning now to the decoherence, we therefore approximate Pvv in eq. (4.13) by its
Bunch-Davies counterpart, Pvv = |uk|2. Recall that eq. (4.13) is derived by integrating
the Markovian evolution equations and so strictly speaking its validity requires −kη′ ≪
1 throughout the entire integration region. But within this region the small kη′ form of
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Fk(η′, ηin) shows that the integrand strongly peaks11 in the regime −1 ≪ kη′ ≤ kη, with
the dominant contribution coming at late times driven by the universal leading behaviour
shown in eq. (3.61). Using this and the super-Hubble form Pvv ≃ a2H2/(2k3) = 1/(2k3η2)
in eq. (4.13) leads to

Ξk(η) ≃ 5ε1

64π

(
H

Mp

)2
1

(−kη)3
=

5ε1

64π

(
H

Mp

)2 (
aH

k

)3

, (4.17)

showing how Ξk(η) grows strongly at late times. This type of growth proportional to a3 is as
expected fairly generally when decoherence is driven by a short-distance environment [14, 17],
and is also seen in the strictly perturbative calculation of [70].

Eq. (4.17) leads to several interpretational questions. First, the strong a3 growth implies
that Ξk(η) can easily become order unity over 60 e-foldings of inflation despite the presence
of the extremely small factors ε1H2/M2

p . Can eqs. (4.12) and (4.17) still be trusted once
Ξk is no longer small? We argue that they can because in the late-time regime where
this growth dominates the evolution is controlled by eq. (3.36) — or eq. (3.45) — with a
coefficient function Fk that is independent of ηin. This is the regime for which the arguments
of [28, 29, 35] (see also [26]) allow the domain of validity of the Lindblad evolution equation
to be broader than the naive perturbative domain on which the Lindblad evolution itself is
derived.12 This is why we use the full form (4.12) rather than expanding pk out to linear
order in Ξk.

Another conceptual question concerns the restriction −kηin ≪ 1 that is required to
keep the entire integration regime of eq. (4.13) within the Markovian regime. Ideally we’d
instead like to take the limit ηin → −∞, pushing the initial epoch when environment and
system are uncorrelated to the distant past where the uncorrelated Bunch-Davies modes for
the environment are deeply sub-Hubble and effectively behave as if they are in flat space.

Physically one expects that no decoherence arises for early times because at these times
both the system modes of interest and their shorter-wavelength brethren in the environment
are all sub-Hubble and so behave largely as they would in flat space. The vacuum then
doesn’t decohere for the same reason that short-wavelength vacuum modes don’t sponta-
neously decohere long-wavelength quantum systems around us all the time in flat space. In
principle this can be demonstrated explicitly in perturbation theory without the need for
any late-time resummation (such as by going back to the full Nakajima-Zwanzig evolution
equation (3.20) to compute how things evolve once kη′ ≪ −1 in the presence of the full
correlation function Ck + Tk).13

One therefore expects decoherence to begin only once modes become of order Hubble
size, and because decoherence rates are usually suppressed relative to the enivronment’s
underlying correlation scale (the Hubble scale in the de Sitter example) by factors of the
system-environment coupling (in our case gravitational in size: H2/M2

p) it is plausible that

11As a technical aside, one might worry that because Re [Fk(η, ηin)] is singular in the coincident limit,
integrating through the singular region away from small kη might give a competing contribution. Appendix C.3
shows that these contributions are in fact subdominant in kη.

12This is much the same way that the evolution equation dn/dt = −Γn reliably predicts the exponen-
tial decay law when Γt is greater than unity, despite the decay rate Γ itself usually being computed only
perturbatively.

13It is important when doing so to keep in mind that all times are evaluated along a time contour that has
a small negative imaginary part (as is also done here), since this is what projects the initial state onto the
vacuum along the lines described in [47].
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most of the decoherence happens only once modes are deep in the super-Hubble regime. In
this paper we compute for technical reasons the late-time decoherence (with kηin also chosen
to be super-Hubble) but the fact that our leading results are universal (independent of kUV

and ηin) strongly suggests that the decoherence rate we find also captures the dominant super-
Hubble evolution experienced by modes prepared in the Bunch Davies vacuum at ηin → −∞.

A final dangling question involves the relative importance of cubic interactions involving
environmental fields differentiated with respect to time rather than space. As argued earlier,
these are subdominant when the environmental modes are super-Hubble, so the validity of
neglecting them depends on whether Hubble-sized or sub-Hubble modes in the environment
contribute significantly to the decoherence of super-Hubble system states. At face value our
calculation does not rule this out because it shows that the decoherence of super-Hubble
sytem modes at time η is mostly driven by environmental correlations between times η and
η′ → η. Since this receives contributions from very short wavelength fluctuations it is con-
ceivable that sub-Hubble modes are significant, and so we are continuing to examine whether
additional environmental operators can contribute significanly to the decoherence rate.

4.3.1 Numerical estimates

Let us re-express the small factor ε1H2/M2
p appearing in the decoherence parameter (4.13)

in terms of common observables, in order to better understand its size.
In the single-field slow-roll inflationary models of interest here, the amplitude of the

primordial scalar power spectrum is given by

Pζ ≃ H2

8π2ε1M2
p

≃ 2.2 × 10−9 (4.18)

where the numerical size is what is required for this to explain the observed primordial power
spectrum [61]. Furthermore, in these models the first slow-roll parameter is directly related
to the tensor-to-scalar ratio r by r = 16ε1. It follows that

Ξk(N) ≃ 1.7 × 10−17
( Pζ

2.2 × 10−9

)(
r

10−3

)2

e3(Nend−N∗)−3(Nend−N) , (4.19)

where we trade time for the number of inflationary e-folds N , with Nend denoting the number
of e-folds at the end of inflation while N∗ = N∗(k) is the number of e-folds evaluated at the
horizon exit during inflation for mode k. The same expression can alternatively be written
in terms of the energy scale at which inflation proceeds, ρ

1/4
inf , leading to

Ξk(N) = 1.6 × 105
( Pζ

2.2 × 10−9

)−1
(

ρ
1/4
inf

Mp

)8

e3(Nend−N∗)−3(Nend−N) . (4.20)

For scales probed in CMB experiments one typically has Nend − N∗ ≃ 50 and if so
eq. (4.19) or (4.20) show the purity for CMB scales at the end of inflation is given by

pCMB(Nend) ≃ 6.5 × 10−25

(
10−3

r

)
≃ 2.1 × 10−35

(
Mp

ρ
1/4
inf

)4

. (4.21)

Gravitational decoherence is efficient if inflation proceeds at energy scales larger than ρ
1/4
inf >

5.2 × 109 GeV or (equivalently) r > 6.5 × 10−28. Alternatively, a future detection of the
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tensor-to-scalar ratio r at a level above r ∼ 10−3 as targeted by future CMB polarization
experiments [71] (which puts the energy scale of inflation above 1015 GeV) implies decoherence
proceeds quickly after Hubble crossing during inflation.

More generally, the purity at the end of inflation, pend := pk(Nend), depends on two
parameters: the mode k of interest — characterized by Nend − N∗(k) — and the energy
scale of inflation, ρ

1/4
inf . This dependence is shown as a colour scale in figure 4, which reveals

two regions — one for which pend ≪ 1 (red ‘decohered’ region) and one for which pend ≃ 1
(black ‘coherent’ region), separated by the relatively abrupt transition represented by the
thin white region. This transition corresponds to where Ξk in eq. (4.20) is order unity; i.e.
by the straight line Nend − N∗ ≃ 110 − 6.14 ln

[
ρ

1/4
inf /(1 GeV)

]
.

For comparison, for any fixed k a relationship is also predicted between Nend − N∗(k)

and ρ
1/4
inf by following the mode’s post-inflationary evolution through the reheating epoch

up to the present day. For k corresponding to a physical wavelength that today equals the
Hubble radius, k/anow = Hnow = h (100 km/sec/Mpc) the prediction is

N∗ − Nend = ln


(Ωγ0)−1/4 ρ

1/4
cri

1 GeV

(
π2g∗
30

) −1+3w
12(1+w)


− 2

3

(
1 + 3w

1 + w

)
ln

(
ρ

1/4
inf

1 GeV

)

− 1 − 3w

3(1 + w)
ln

(
Treheat

1 GeV

)
, (4.22)

where Ωγ0 ≃ 2.471×10−5/h2 is the fraction of radiation today, ρcri ≃ 8.099 h2 ×10−47 GeV−4

is the critical energy density today, g∗ the number of degrees of freedom after the end of
inflation, Treheat the reheat temperature and w = prh/ρrh the equation of state parameter
during reheating. The curves expressing eq. (4.22) are also shown in figure 4 for several
choices of reheating properties.

If CMB polarization experiments detect a cosmic gravitational wave background in the
foreseeable future then r cannot be too much smaller than r ≃ 10−3 and the above expressions
show that only modes that leave the Hubble radius less than ≃ 12.9 e-folds before the end of
inflation do not have time to decohere. Whether the very small scales associated with such
modes can be probed observationally is of course an open question.

5 Discussion

The main conceptual result of this paper is to apply open-system techniques to the evolution
equation for the quantum state of observed metric modes during single-field inflation, includ-
ing effects generated by their gravitational interaction with shorter wavelength modes. We
identify those gravitational interactions that dominate the decoherence of long-wavelength
modes, and show that their contribution to the evolution of longer-wavelength modes is given
by equations like (3.20).

5.1 Decoherence of scalar modes

We compute the relevant environmental correlation functions — i.e. the function Ck(η) ap-
pearing in eq. (3.20) and its tensor counterpart Tk(η) once short-wavelength tensors are in-
cluded in the environment — and show that their peaked form implies the evolution becomes
Markovian for super-Hubble modes during inflation, leading to the approximate evolution
equations (3.36) or (3.45) (in interaction and Schrödinger pictures, respectively) whose coef-
ficient function Fk(η, ηin) we also compute explicitly. In particular Fk(η, ηin) turns out to be
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Figure 4. Purity as a function of the scale (namely, number of e-folds before the end of inflation) and
the energy scale of inflation. Also plotted are predictions for how these two quantities are related for
the value of k that is just re-entering the Hubble scale today, as a function of assumptions made about
the post-inflationary reheat epoch, with the solid, dashed and dotted lines respectively representing
instantaneous reheating at the end of inflation, Treh = 1012 GeV and Treh = 109 GeV (with g∗ ≃ 1000
and w = 0 during reheating for the latter two).

universal (depend only on kη to leading approximation in the super-Hubble, late-time regime
and grows strongly with dominant support at late times when kη is small). All dependence
on other parameters (like ηin and kUV) arising only at subdominant order in kη. We also
derive an equivalent set of evolution equations — eqs. (3.53) through (3.55) — for correlation
functions in this Markovian regime.

Because Fk peaks at small kη it is super-Hubble modes in the environment that dominate
the decoherence process. This in turn simplifies the selection of the dominant interactions
because it implies that interactions can be neglected if they involve time derivatives (as
opposed to spatial derivatives) acting on environmental fields.

Following refs. [26–29, 35] we argue that the universality of Fk(η, ηin) allows the solutions
to eqs. (3.36) and (3.45) to be trusted to later times than usual for perturbative reasoning,
and so allows the late-time resummation of the secular growth found within the perturbative
predictions for decoherence. We compute the late-time behaviour implied by the leading
Markovian evolution and use it to evaluate the evolution of the mode purity.

The main practical results that emerge from this reasoning are given in eqs. (4.17)
and (4.16) that respectively describe the rapid decoherence of observable primordial scalar
metric fluctuations and the (very small) change to their power spectrum arising from their
interactions with the environment of shorter-wavelength metric modes. Both scalar and
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tensor metric fluctuations in the environment act to decohere super-Hubble scalar modes
and do so with the same dependence on inflationary parameters and the same efficiency
per mode. The two spin states then ensure that tensor modes give twice the decoherence
of scalars.

Because super-Hubble modes during inflation decohere at a rate proportional to
(aH/k)3 ∝ e3Ht, they grow exponentially quickly in cosmic time. This growth is initially
small because it is suppressed by a small coupling prefactor ∝ ε1GH2, and so starts off at
most 10−14 in single-field models. But it can become order unity during the 40–60 e-foldings
of inflation that follow horizon exit and so can easily allow decoherence to be complete well
before inflation ends. We believe our predictions continue to be valid even when decoherence
is not small because the Lindblad evolution resums this late time growth. The associated
modification to the power spectrum for scalar and tensor fluctuations remains very small
(being loop-suppressed) at all times.

5.2 Decoherence of tensor modes by a scalar environment

We note in passing that the slow-roll suppression found above is not generic for all fluctu-
ations. In particular super-Hubble tensor modes decohere more quickly than scalar modes
because their dominant interactions are unsuppressed by slow-roll parameters. Since the
factors of H/Mp and (aH/k) arise on very general grounds (leading order in the semiclassical
expansion and the environment having shorter wavelength than the decohering modes) one
is led to expect the decoherence of tensor modes to be of order (H/Mp)2(aH/k)3, and so be
larger than our scalar result by a factor of 1/ε1.

This expectation can be tested using a relatively minor extension of the calculations
described above that give the decoherence rate of tensor modes due to an environment of
shorter-wavelength scalar metric fluctuations. We here provide a partial calculation of this;
computing only the decoherence caused by interactions with environmental short-wavelength
scalar metric fluctuations. A full calculation of the total rate with which tensor modes are
decohered by their couplings to the short-wavelength tensor environment is in preparation.

5.2.1 Lindblad evolution

Repeating the same arguments as above shows that the leading cubic tensor-scalar-scalar
interactions from the list in ref. [47] — cf. eq. (A.19) — is

(3)S ⊃
∫

dt d3x M2
pε1aγij(∂iζ)(∂jζ) , (5.1)

which contributes to the interaction hamiltonian the slow-roll unsuppressed interaction

Hint(η) = − 1

Mpa

∫
d3x vij(η, x) ⊗ Bij(η, x) . (5.2)

Here vij is the canonical field related to γij by eq. (A.17) and the environmental operator

Bij(x) := δikδjl∂kv(η, x)∂lv(η, x) , (5.3)

is related to the operator B of eq. (3.2) by δijBij = B. Crucially, the absence of slow-roll
suppression in eq. (5.2) gives it an effective coupling

G̃(η) = − 1

Mpa(η)
= 2

√
2

ε1
G(η) , (5.4)

where G(η) is the effective coupling defined in eq. (3.3).
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Rotation invariance implies Bij = 〈0B|Bij | 0B〉 ∝ δij and so because δijvij = 0 the mean
of Bij can be ignored in what follows. Similarly, the required correlation function is

Ciajb(η, η′; x − x′) := 〈0B|
[
Bia(η, x) − B

ia(η)
] [

Bjb(η′, x′) − B
jb(η′)

]
|0B〉 (5.5)

=

∫
d3k

(2π)3/2
C

iajb
k eik·(x−x′) , (5.6)

with

C
iajb
k =

2

(2π)9/2

∫

q,p>kUV

d3q d3p piqapjqb uq(η)up(η)u∗
q(η′)u∗

p(η′) δ(p + q − k) , (5.7)

and comparing this with eq. (B.12) shows that Ck = δiaδjbC
iajb
k is the quantity computed in

section 3.1.3 above. Appendix F shows how rotation invariance can also be used to reduce
this to a set of scalar integrals, related to those appearing in Ck(η, η′). Once contracted
with the graviton polarization tensors the required correlator at leading order in kη is again
universal — i.e. independent of ηin and kUV — and related to our earlier result by

C
iajb
k ǫP

iaǫP
′

jb ≃ 2

15
CkδP P

′

(5.8)

up to subdominant order in kη.
Keeping in mind the coupling (5.4), repeating the same steps as in earlier sections

imply the analog of the Nakajima-Zwanzig evolution equation (3.20) involves C
ijkl
k , and in

the super-Hubble limit again takes the Lindblad form (3.36) but with eq. (3.37) now given
by the leading universal form

Re [Tk(η, ηin)] ≃ ε1H2k2

1024π2M2
p

{
20π

(−kη)2
+ O

[
(−kη)−1

]}( 16

15ε1

)
≃ H2

48πM2
pη2

, (5.9)

with Tk the Lindblad coefficient analogous to Fk for the scalar (defined in eq. (F.40)).
Comparing this with the result (3.38) for how scalars modes decohere other scalar modes

reveals the expected lack of slow-roll suppression.

5.2.2 Decoherence

The contribution of scalars already shows that tensor modes decohere more quickly than do
scalar modes because their self-interactions are less suppressed by slow-roll parameters. The
purity of tensor modes is given by an expression like eq. (4.12) with Ξk replaced by

ΞT
k(η) = 8

∫ η

ηin

dη′ Re[Tk(η′, ηin)]|uk(η)|2 , (5.10)

and the universal late-time contribution of the short-wavelength scalar environment to Fk

given by eq. (5.9). This implies a leading late-time contribution to ΞT
k of size

ΞT
k(η) ≃ 1

36π

(
H

Mp

)2
1

(−kη)3
=

1

36π

(
H

Mp

)2 (
aH

k

)3

, (5.11)

which is to be compared with equation (4.17). In particular it is unsuppressed by slow-roll
parameters, as claimed (see also [72, 73]). The full expression for tensor decoherence requires
adding to this the contribution of the tensor environment.

– 31 –



J
C
A
P
0
7
(
2
0
2
3
)
0
2
2

5.3 Open questions

The calculation described herein is clearly only the first step in a potentially long journey.
Many things remain to be pinned down, and there is much value in doing so particularly if
primordial fluctuations turn out to have a quantum origin (as they so far seem to do). We
next list some of the open issues for scalar-mode decoherence, and then turn to what our result
might imply for proposed late-time searches for observational quantum signatures [18–21].

One open issue concerns post-inflationary evolution of the reduced density matrix. We
have shown how super-Hubble evolution during inflation acts to diagonalize the density ma-
trix in a field basis, but we also know that the large factor (aH/k)3 shrinks after inflation
until it is again order unity at horizon re-entry. When saying that decoherence is efficient in
the later universe we take for granted that the reduced density matrix remains effectively di-
agonal during the subsequent post-inflationary evolution before horizon re-entry. This seems
intuitively reasonable: entanglement can be fragile and one rarely expects initially classical
mixed systems to spontaneously self-purify. But this should be possible to prove, and we
have not yet done so.

A related question concerns the effects of other degrees of freedom with other (possi-
bly stronger) interactions or other variations like possible changes to the speed of sound (as
in the EFT of inflation [74]). We have no general statements as to how more complicated
interactions might change our result (4.17) apart from the general observation that most
interactions are stronger than gravity and so likely produce a larger effect, making the de-
coherence progress faster — it is in this sense that our calculation is minimal. One suspects
that many of these issues can benefit from further exchange of ideas between cosmology and
the physics of open quantum systems.

5.4 Loopholes

At face value the efficiency of gravitational decoherence we find makes observing quantum
coherence in measurements of primordial fluctuations much harder, assuming that these
are generated by quantum fluctuations in single-field inflationary models and that the scale
of inflation is not extremely low. So if evidence for coherent fluctuations should appear
tomorrow, what might this mean?

Calculations like ours are useful for this question because they identify how decoherence
depends on a theory’s parameters. Even within the domain of validity of our result the
inflationary scale might turn out to be very small. Or the modes in question might be
short enough that they do not spend as much time outside the Hubble scale (even for ε1 ∼
10−2 modes can spend about 10 e-foldings outside the Hubble scale during inflation before
decoherence stops being negligible).

There are also a variety of assumptions on which our calculations rely, at least one of
which would have to break down. Perhaps the model involves more than the single inflaton; if
so then ζ need not be conserved and this conservation played an important role in suppressing
interactions involving time derivatives. Perhaps the important environmental scales are not
at short wavelengths compared with observable modes; if so then their interactions need not
be local and so the general argument of ref. [17] need no longer imply the same dependence
on a3 as found here. Perhaps additional interactions can re-cohere initially decohered states.
Inquiring minds need to know.

Let us also note that the precise amount of decoherence it takes to erase a particular
quantum feature can vary. For instance, in ref. [22], it was shown that decohered states
in a de Sitter universe still carry a large quantum discord if decoherence is slow enough,
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i.e. if pk ∝ a−p with p < 4. Given that we have found p = 3/2 in the case of gravitational
decoherence, this implies that, although decoherence is very effective, the erasure of quantum
discord is not, which might still leave open the possibility to detect quantum signatures.
There is also the possibility to look for quantum effects at small scales, that spend too few
e-folds outside the Hubble radius during inflation to efficiently decohere. If inflation proceeds
at GUT scale, such wavelengths cannot be probed in the CMB, but they might be accessible
in smaller-scale structures.

In many ways finding observational evidence for quantum coherence amongst primordial
fluctuations is the most attractive option; by our present lights it would be the most surprising
and so likely teach us the most.
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A Higher-derivative operators in the action

This appendix fleshes out the details of the derivation of the standard EFT of scalar and
tensor fluctuations for single-field inflation (defined in ref. [47]), as well as the expansion
of higher-curvature squared operators when this is understood as an EFT of gravity. The
purpose of this appendix is two-fold: first, it is to review the set of cubic interactions con-
sidered in this work and in particular to further identify which interactions are dominant
in driving decoherence. Secondly, it is to provide evidence that the counter-term operators
renormalizing divergences in section 3.2.4 are indeed amongst those in the EFT of gravity in
single-field inflation.

A.1 Single-field inflation

We start with a brief review of the standard fluctuation formalism that is to be used. As
described in section 2, single-field inflation consists of gravity and a single scalar field in the
form of the action (2.1), repeated here for convenience,

S[gµν , ϕ] =

∫
d4x

√−g

[
M2

p

2
R − 1

2
gµν ∂µϕ ∂νϕ − V (ϕ)

]
. (A.1)

Homogeneous classical solutions for the inflaton φ(t) and Hubble parameter H = ȧ/a (recall
that a dot means derivative with respect to cosmic time) therefore obey

3M2
pH2 =

1

2
φ̇2 + V (φ) , M2

pḢ = −1

2
φ̇2 and φ̈ + 3Hφ̇ + V ′(φ) = 0 . (A.2)

– 33 –



J
C
A
P
0
7
(
2
0
2
3
)
0
2
2

We perturb about a near-de Sitter spacetime, ds2 = −dt2+a2(t)dx2, working in the Arnowitt-
Deser-Misner (ADM) formalism as in ref. [47] using the perturbed metric

ds2 = −N2dt2 + hij

(
N idt + dxi

) (
N jdt + dxj

)
, (A.3)

with N the lapse function and N i the shift vector and the inverse of spatial metric hij defined
by hijhjk = δi

k. In terms of these variables the action (A.1) becomes

S =

∫
d4x

√
h N

[
M2

p

2

(
R +

EijEij − E2

N2

)
− V (ϕ) +

(
ϕ̇ − N i∂iϕ

)2

2N2
− 1

2
hij∂iϕ ∂jϕ

]

(A.4)

with R the 3D Ricci scalar built from the spatial metric hij and Kij = Eij/N is the extrinsic
curvature of these spatial slices, where

Eij :=
1

2

(
ḣij − ∇iNj − ∇jNi

)
and E := hijEij . (A.5)

Specializing to the gauge where the inflaton has no perturbation, δϕ = 0 and so ϕ = φ(t),
the vanishing spatial derivative ∂jϕ = 0 allows the action to be simplified to

S =

∫
d4x

√
h N

[
M2

p

2

(
R +

EijEij − E2

N2

)
− V (φ) +

φ̇2

2N2

]
. (A.6)

The constraint equations obtained by varying N and N i then become

∇i

(
Ei

j − δi
jE

N

)
= 0,

M2
p

2

(
R +

EijEij − E2

N2

)
− V (φ) +

φ̇2

2N2
= 0 . (A.7)

These constraint equations are solved for N and N i as functions of the physical variables ζ
and γij , defined by

hij = a2e2ζ
(

δij + γij +
1

2
γiℓγℓj + . . .

)
, (A.8)

with ∂iγij = γii = 0. The goal is to express the action (A.6) as a function of these variables
after eliminating N and N i using the constraints. Since our focus is mainly on scalar fluc-
tuations we drop γij in what follows, simply quoting when needed the graviton-dependent
terms found elsewhere [47]. For the metric (A.8) the following relations prove useful:

√
h = a3e3ζ , R = a−2e−2ζ

[
−4(∂2ζ) − 2(∂ζ)2

]
, (A.9)

where “∂” here denotes spatial differentiation.

A.2 Quadratic scalar action

We first verify the standard quadratic action for ζ. At leading order in ζ the lapse and
shift are

N ≃ 1 +
ζ̇

H
, Ni ≃ − ∂iζ

a2H
+ ∂iχ , (A.10)
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where the field χ is defined as a solution to the equation ∂2χ = φ̇2ζ̇/(2H2M2
p), and so

χ :=
φ̇2

2H2M2
p

∂−2ζ̇ = ε1∂−2ζ̇ . (A.11)

Using the background equations of motion (A.2) and integrating by parts gives the quadratic
action

(2)S =

∫
dt d3x M2

pε1

[
a3ζ̇2 − a(∂ζ)2

]
(A.12)

as given as eq. (2.6) in the main text, with ε1 = −Ḣ/H2 = φ̇2/(2H2M2
p). This becomes

canonical when expressed in terms of the Mukhanov-Sasaki field

v = aMp

√
2ε1 ζ (A.13)

and when specialized to near-de Sitter geometries. Eq. (A.12) has the same form as two
of the three divergent terms found in eq. (3.49) that require renormalizing in the Lindblad
equation:

(2)S ≃
∫

dη d3x

[
1

2
(v′) +

1

η2
v2 − 1

2
(∂v)2

]
. (A.14)

A.3 Cubic scalar interactions

We next record the cubic self-interactions contained in the cubic part of the expansion S =
(2)S + (3)S + . . . of the action in powers of the fluctuations found in ref. [47]. The part cubic
in the scalar perturbation can be written

(3)S =

∫
dt d3x

{
ε2

1M2
p

[
a (∂ζ)2 ζ + a3ζ̇2ζ

]
− 2ε2

1M2
pa3 ζ̇

(
∂i∂

−2ζ̇
)

(∂iζ) − 1

2
ǫ3
1M2

pa3ζ̇2ζ

+ 2ε1M4
pa3ζ̇ζ2 d

dt

(
φ̈

2φ̇H
+

φ̇2

4H2M2
p

)
+

1

2
ε3

1M2
pa3

(
∂i∂j∂−2ζ̇

) (
∂i∂j∂−2ζ̇

)
ζ

}
.

(A.15)

This way of writing the cubic action is organized in increasing powers of the slow-roll pa-
rameter, with the first line containing the dominant terms and the rest being subdominant.
Although the first line is naively O(ε2

1) the quadratic action (A.12) shows that correlations
of ζ are themselves enhanced by slow-roll parameters. For this reason slow-roll behaviour
is easier to read when the action is expressed in terms of v, and shows that the leading
term of eq. (A.15) is actually O(

√
ε1 ). Notice also that for super-Hubble modes each time

derivative of ζ counts as two spatial derivatives, so only the very first term dominates when
both slow-roll parameters and k/(aH) are small.

A.4 Tensor fluctuations

Tensor fluctuations are also straightforward to include by expanding the action (A.1), leading
to the quadratic piece

(2)S ⊃
∫

dt d3x
M2

p

8

[
a3γ̇ij γ̇ij − a(∂kγij)(∂kγij)

]
, (A.16)
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and revealing the canonically normalized field to be

vij =
1

2
aMpγij . (A.17)

The momentum-space mode expansion for this field then becomes

vij(η, x) =

∫
d3k

(2π)3

∑

P=+,×
ǫP

ij(k)vP

k (η)eik·x (A.18)

where ǫP

ij(k) is the polarization tensor with properties kiǫP

ij(k) = 0 and ǫP

ijǫP
′

ij = δP P
′
.

The cubic interactions that involve both scalar and tensor fluctuations are obtained
along the same lines as above, leading to the following expressions [47] for the tensor-scalar-
scalar interaction:

(3)S ⊃
∫

dt d3x M2
p

[
ε1aγij(∂iζ)(∂jζ) +

1

4
a3∂2γij(∂iχ)(∂jχ) +

1

2
ε1a3γ̇ij(∂iζ)(∂jχ)

+
1

2
Ha5γ̇ij γ̇ijχ

]
, (A.19)

which ignores redundant terms such as total derivatives and those that can be removed with
field re-definitions. The χ-dependent terms become non-local expressions once χ is eliminated
using eq. (A.11). Again only the very first term dominates in the slow-roll limit, but this
time arises unsuppressed by ε1 as is most easily seen when expressed using v rather than ζ.

The tensor-tensor-scalar interaction is found in an identical way and is given by

(3)S ⊃
∫

dt d3x M2
p

(
ε1

8
a ζ ∂lγij∂lγij +

ε1

8
a3ζγ̇ij γ̇ij − 1

4
a3γ̇ij∂lγij∂lχ

)
, (A.20)

where χ is again given by eq. (A.11) and redundant terms are dropped. For super-Hubble
modes only the first term dominates in the slow-roll approximation and once powers of
k/(aH) are neglected, showing that the leading result is in this case O(

√
ε1 ).

A.5 Curvature-squared counterterms

We finally show that the final divergent contribution depends on k and η in a way con-
sistent with it being absorbed into a curvature-squared counter-term, which can have the
general form

S ⊃
∫

d4x
√−g

(
c0R2 + d0RµνRµν

)
, (A.21)

where c0 and d0 are two constants. There is no RµνσλRµνσλ term here because we work in
4D where this term can be regarded as part of a topological invariant.

In particular, the operator proportional to k4η2
(
v

(α)
Sk

)2 in eq. (3.49) is found within the
R2 term, which when expanded in powers of ζ contains the contribution

∫
d4x

√−g R2 =

∫
dt d3x a3(1 + 3ζ)

(
1 +

ζ̇

H

){
M2

pa−2e−2ζ
[
−4(∂2ζ) − 2(∂ζ)2

]

2
+ · · ·

}2

,

(A.22)
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which when expanded out involves the term
∫

d4x
√−g R2 ⊃

∫
dt d3x a3 (1 + 3ζ)

(
1 +

ζ̇

H

)
M4

pa−4e−4ζ4
(
∂2ζ

)2

⊃
∫

dt d3x 4M4
pa−1(∂2ζ)2 =

∫
dη d3x

2M2
p

ε1a2
(∂2v)2 . (A.23)

Once translated to Fourier space (and using a ∝ η−1) this has the same time- and momentum-
dependence — k4η2

(
v

(α)
Sk

)2 — that appears in the last operator of eq. (3.49).

B Environmental correlations

B.1 Correlations in real space

In this appendix, we explicitly compute the correlation function Ck(η, η′) defined in eq. (3.19)
for each mode k in the Lindblad equation associated with the environment operator

B(η, x) = δij∂ivB(η, x)∂jvB(η, x) . (B.1)

Using the canonical commutation relations (2.17) it is easy to see that the one-point function
defined in eq. (3.17) has the integral representation

B(η) := 〈0B|B(η, x)|0B〉 = −
∫∫

k,q>kUV

d3k d3q

(2π)3
(k · q) uk(η) u∗

q(η) δ(k + q) ei(k+q)·x

(B.2)

=

∫

k>kUV

d3k

(2π)3
k2 |uk(η)|2 . (B.3)

This function is independent of the position x and is also formally divergent, although we
avoid regulating it since it does not enter into any physical predictions in this work.

From here we similarly compute the two-point function:

〈0B|B(η, x)B(η′, x′)|0B〉 =

∫∫

k,q>kUV

d3k d3q

(2π)3

∫∫

p,ℓ>kUV

d3p d3ℓ

(2π)3

× (k · q)(p · ℓ)〈0B|vk(η)vq(η)vp(η′)vℓ(η
′)|0B〉 ei(k+q)·x+i(p+ℓ)·x′

.
(B.4)

In the expectation value above there are many combinations of creation and annihilation
operators which occur, but only the following two survive:

〈0B|ckc†
−qcpc†

−ℓ|0B〉 = δ(k + q)δ(p + ℓ) (B.5)

〈0B|ckcqc†
−pc†

−ℓ|0B〉 = δ(k + ℓ)δ(p + q) + δ(k + p)δ(ℓ + q). (B.6)

This gives

〈0B|B(η, x)B(η′, x′)|0B〉 =

∫∫

k,q>kUV

d3k d3q

(2π)3

∫∫

p,ℓ>kUV

d3p d3ℓ

(2π)3
(k · q)(p · ℓ) ei(k+q)·x+i(p+ℓ)·x′

×
{

uk(η)u∗

q(η)up(η′)u∗

ℓ(η′)δ(k + q)δ(p + ℓ) + uk(η)uq(η)u∗

p(η′)u∗

ℓ(η′)

× [δ(k + ℓ)δ(p + q) + δ(k + p)δ(ℓ + q)]
}

. (B.7)
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Using eq. (B.2) the first pair of δ-functions can be seen to give rise to a pair of 1-point
functions. In addition to this, the term involving the second pair of δ-functions is easily seen
to be equal to the term involving the third pair after a re-labeling of momenta giving

〈0B|B(η, x)B(η′, x′)|0B〉 = B(η)B(η′) + 2

∫∫

k,q>kUV

d3k d3q

(2π)3
(k · q)(k · q) ei(k+q)·(x−x′)

× uk(η)uq(η)u∗
k(η′)u∗

q(η′), (B.8)

and so

CB(η, η′; x − x′) = 〈0B|B(η, x)B(η′, x′)|0B〉 − B(η)B(η′)

=

∫∫

q,p>kUV

d3q d3p

(2π)6
2(q · p)2uq(η)up(η)u∗

q(η′)u∗
p(η′)ei(q+p)·(x−x′). (B.9)

B.2 Correlations for each mode k

B.2.1 Integral expression

Finally we here compute eq. (3.19) defined in the main text, which is the Fourier transform
of the fluctuating part of the environment correlation function, where

Ck(η, η′) =

∫
d3y

(2π)3/2
CB(η, η′; y)e−ik·y . (B.10)

We note in particular that we are interested in Ck(η, η′) for modes k ∈ R
3+ in the open

system with 0 < k < kUV since the Nakajima-Zwanzig equation (3.20) is written in terms of
these modes. We begin with the position space representation (B.9)

CB(η, η′; y) =

∫∫

q,p>kUV

d3q d3p

(2π)6
2(q · p)2 uq(η)up(η)u∗

q(η′)u∗
p(η′) ei(q+p)·y. (B.11)

We notice that the (double) momentum integration is restricted to be in the environment
only. Next notice that CB(η, η′; y) is a function of y = |y| only — to see why, note that
any rotation y → y′ = Ry can be undone by a rotation of coordinates in the integrals,
such that q′ = R−1q and p′ = R−1p (each with Jacobian one) so that clearly CB(η, η′; y) =
CB(η, η; Ry) for any rotation matrix R. This then of course implies the Fourier transform
Ck(η, η′) is a function of k = |k| only.

Inserting the above expression for CB(η, η′; y) into our definition for Ck(η, η′) we get

Ck(η, η′) =
2

(2π)9/2

∫∫

q,p>kUV

d3q d3p (q · p)2 uq (η) up (η) u∗
p

(
η′)u∗

q

(
η′) δ(q + p − k).

(B.12)

From here we convert to spherical coordinates q = (q, θq, ϕq) and p = (p, θp, ϕp), where
we have

q · p = q p [sin θq sin θp cos(ϕq − ϕp) + cos θq cos θp] , (B.13)

and, in addition, we have the identity (for any arbitrary vector ℓ)

δ(q − ℓ) =
δ(q − ℓ)δ(θq − θℓ)δ(ϕq − ϕℓ)

q2| sin θq| . (B.14)
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In eq. (B.12) we must express the vector ℓ := k − p in spherical coordinates — to this end,
we exploit the rotational symmetry of the function Ck(η, η′) in k and pick k = (0, 0, k) to be
pointing along the 3-axis, so that in Cartesian coordinates ℓ := k − p = (−px, −py, k − pz),
which implies that

ℓ =
√

p2 + k2 − 2kp cos θp , θℓ = cos−1


 k − p cos θp√

p2 + k2 − 2kp cos θp


 , ϕℓ = ϕp + π .

(B.15)

With these identities, eq. (B.12) becomes

Ck(η, η′) =
2

(2π)9/2

∫ ∞

kUV

dq q2
∫ π

0
dθq sin θq

∫ 2π

0
dϕq

∫ ∞

kUV

dp p2
∫ π

0
dθp sin θp

∫ 2π

0
dϕp

× (qp)2 [sin θq sin θp cos(ϕq − ϕp) + cos θq cos θp]2 uq (η) up (η) u∗
p

(
η′)u∗

q

(
η′)

× 1

q2 sin θq
δ

[
q −

√
p2 + k2 − 2kp cos θp

]
δ


θq − cos−1


 k − p cos θp√

p2 + k2 − 2kp cos θp






× δ [ϕq − (ϕp + π)] , (B.16)

Integrating over ϕq and then ϕp yields

Ck(η, η′) =
2

(2π)7/2

∫ ∞

kUV

dq

∫ π

0
dθq

∫ ∞

kUV

dp

∫ π

0
dθp q2 p4 sin θp (− sin θq sin θp + cos θq cos θp)2

× uq (η) up (η) u∗
p

(
η′)u∗

q

(
η′) δ

[
q −

√
p2 + k2 − 2kp cos θp

]

× δ


θq − cos−1


 k − p cos θp√

p2 + k2 − 2kp cos θp




 . (B.17)

The next step consists in integrating over θq. Using the identities

cos


cos−1


 k − p cos θp√

p2 + k2 − 2kp cos θp




 =

k − p cos θp√
p2 + k2 − 2kp cos θp

, (B.18)

sin


cos−1


 k − p cos θp√

p2 + k2 − 2kp cos θp




 =

p sin θp√
p2 + k2 − 2kp cos θp

, (B.19)

this leads to

Ck(η, η′) =
2

(2π)7/2

∫ ∞

kUV

dq

∫ ∞

kUV

dp

∫ π

0
dθp q2 p4 sin θp

[
(k − p cos θp) cos θp − p sin2 θp

]2

p2 + k2 − 2kp cos θp

× uq (η) up (η) u∗
p

(
η′)u∗

q

(
η′) δ

(
q −

√
p2 + k2 − 2kp cos θp

)
. (B.20)

Now switching coordinates to µ := cos θp turns the above into

Ck(η, η′) =
2

(2π)7/2

∫ ∞

kUV

dq

∫ ∞

kUV

dp

∫ 1

−1
dµ q2 p4 (p − kµ)2

p2 + k2 − 2kpµ
uq (η) up (η) u∗

p

(
η′)u∗

q

(
η′)

× δ

(
q −

√
p2 + k2 − 2kpµ

)
. (B.21)
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Next, we notice that the δ-function is actually easiest to integrate over the µ variable, and so
to this end we take note of the rule δ

[
f(µ)

]
= δ(µ−µ0)/|f ′(µ0)| where µ0 = (p2+k2−q2)/(2pk)

is the (only) zero of the function f(µ) := q −
√

p2 + k2 − 2pkµ . This implies

δ

(
q −

√
p2 + k2 − 2pkµ

)
=

q

kp
δ

(
µ − p2 + k2 − q2

2pk

)
(B.22)

giving

Ck(η, η′) =
2

(2π)7/2k

∫ ∞

kUV

dq

∫ ∞

kUV

dp q3p3uq (η) up (η) u∗
p

(
η′)u∗

q

(
η′)

×
∫ 1

−1
dµ

(p − kµ)2

p2 + k2 − 2kpµ
δ

(
µ − p2 + k2 − q2

2pk

)
. (B.23)

The µ-integration can now be performed in the sense that
∫ 1

−1
dµ

(p − kµ)2

p2 + k2 − 2kpµ
δ

(
µ − p2 + k2 − q2

2pk

)
=

(q2 + p2 − k2)2

4q2p2
(B.24)

but only in the region of momentum space where

− 1 <
p2 + k2 − q2

2pk
< 1 , (B.25)

which affects the region of integration in the (p, q)-plane. Note that this means the region
which the above inequality bounds is actually rectangular — to see why note that −1 <
p2+k2−q2

2pk implies (p + k)2 > q2 while p2+k2−q2

2pk < 1 implies (p − k)2 < q2, which means that
this region corresponds to

|p − k| < q < p + k . (B.26)

Note that whenever k < kUV (as we use in the main text), the above simplifies to the region
in which p − k < q < p + k (since p > kUV > k). Note however that we must have p > kUV

and q > kUV in addition to the earlier inequality being satisfied — this means that the actual
region being integrated is the quadrilateral region U depicted in figure 5, giving

Ck(η, η′) =
1

2(2π)7/2k

∫∫

U
dp dq p q (q2 + p2 − k2)2 uq (η) up (η) u∗

p

(
η′)u∗

q

(
η′) . (B.27)

In the current form it is complicated to integrate the above integrand — for this reason we
transform integration variables to

p =
P + Q

2
and q =

P − Q

2
(B.28)

with the Jacobian ∣∣∣∣
∂(p, q)

∂(P, Q)

∣∣∣∣ =
1

2
. (B.29)

The transformation (p, q) → (P, Q) rotates the region U by π/4 (and rescales it as well)
giving rise to the set U ′ depicted in figure 6 below. Then, using the explicit form of the mode
functions, this leads to the following expression

Ck(η, η′) =
1

64(2π)7/2k

∫∫

U ′
dP dQ (P 2 + Q2 − 2k2)2

[
1 − 2i

(P − Q)η

] [
1 +

2i

(P − Q)η′

]

×
[
1 − 2i

(P + Q)η

] [
1 +

2i

(P + Q)η′

]
e−iP (η−η′). (B.30)
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p

q

0 k kUV k + kUV k + 2kUV

0

k

kUV

k + kUV

k + 2kUV

U

q
=
−

p
+
k
+
2k
U
V

Figure 5. Defining the integration region in (p, q)-space for computing Ck(η, η′) in eq. (B.27) i.e.
after the µ-integration is completed in eq. (B.23). The green region corresponds to p, q > kUV and
the blue region corresponds to −1 < (p2 + k2 − q2)/(2pk) < 1 (assuming k < kUV) — the intersection
of these regions (in red) is the resulting integration region U for computing Ck(η, η′) in (p, q)-space
in eq. (B.27).

P

Q

2kUV 2kUV + k
0

−k

+k

U 0

Figure 6. Defining the integration region U ′ in (P, Q)-space (after transforming (p, q) → (P, Q) in
eq. (B.28)) for computing Ck(η, η′) in eq. (B.30).

By noting that the integrand in eq. (B.30) is symmetric under Q → −Q, one can explicitly
integrate over the region U ′ as

Ck(η, η′) =
1

32(2π)7/2k

∫ k

0
dQ

∫ ∞

Q+2kUV

dP (P 2 + Q2 − 2k2)2
[
1 − 2i

(P − Q)η

] [
1 +

2i

(P − Q)η′

]

×
[
1 − 2i

(P + Q)η

] [
1 +

2i

(P + Q)η′

]
e−iP (η−η′). (B.31)

This representation of the correlator is most useful for computing the Lindblad coefficient Fk

appearing in the Lindblad equation.
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B.2.2 Integration of CCC k(η, η′)

We begin with the double integral (B.31), and note that it is somewhat tricky to evaluate the
P -integral because it is formally divergent in the ultraviolet. All this means is that we are
to understand these integrals as distributions — to deal with this we organize the integrand
in eq. (B.31) in terms of decreasing powers of P such that

Ck(η, η′) =
1

32(2π)7/2k

∫ k

0
dQ

∫ ∞

Q+2kUV

dP [D(P, Q) + F(P, Q)] e−iP (η−η′) , (B.32)

where we define the function D(P, Q) (giving rise to a formally divergent P -integral in the UV)

D(P, Q) := P 4 +
4i(η − η′)

ηη′ P 3 + 2

[
Q2 − 2k2 +

8ηη′ − 2η2 − 2(η′)2

η2(η′)2

]
P 2

+
16i(η − η′)

[
1 +

(
3
4Q2 − k2

)
ηη′
]

η2(η′)2
P

+
16
{

1 − 4(k2 − Q2)ηη′ +
(
k2 − 3

4Q2
) [

η2 + (η′)2
]

+ (Q2−2k2)2

16 η2(η′)2
}

η2(η′)2
,

(B.33)

as well as the function F(P, Q) (yielding a formally convergent P -integral in the UV)

F(P, Q) :=
16(k2 − Q2)

η2(η′)2(P 2 − Q2)2

(
i(η − η′)

[
(k2 − Q2)ηη′ − 4

]
P 3 +

{[
η2 + (η′)2

]
(Q2 − k2)

−4(2Q2 − k2)ηη′ − 4
}

P 2 + i(η − η′)
[
Q4ηη′ + k2(4 − Q2ηη′)

]
P

+
{

4 + Q2[η2 + (η′)2]
}

k2 − Q4
[
η2 − 4ηη′ + (η′)2

])
. (B.34)

To further simplify the calculation, we compute the above under the assumption that η > η′,
which is the more useful case for the calculation in the main text (and furthermore, we can
easily extract the opposing case η < η′ from the symmetry C ∗

k (η, η′) = Ck(η′, η) and so the
calculation is performed without any loss of generality).

First we compute the part of the double integral (B.32) above involving F defined in
eq. (B.34), namely the quantity

1

k

∫ k

0
dQ

∫ ∞

Q+2kUV

dP F(P, Q) e−iP (η−η′) (B.35)

which we note yields a convergent P -integral in the ultraviolet since for large P the associated
integrand behaves as:

F(P, Q) =
16i(k2 − Q2)(η − η′)

[
(k2 − Q2)ηη′ − 4

]

η2(η′)2

1

P
+ O

(
P −2

)
. (B.36)
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It turns out that we can exactly write down the P -primitive of F(P, Q) e−iP (η−η′), where

∫
dP F(P, Q) e−iP (η−η′) = −32(k2 − Q2)2

[
P (1 + Q2ηη′) + iQ2(η − η′)

]

η2(η′)2Q2 (P 2 − Q2)
e−iP (η−η′)

− 8(k2 − Q2)(η − η′)
η2(η′)2Q

{
k2

Q2

[
2

η − η′ + 2iQ − Q2(η − η′) + iQ3ηη′
]

+
2

η − η′ + 2iQ + Q2 (η + η′)2

η − η′ − iQ3ηη′
}

Ei
[
−i(P − Q)(η − η′)

]
e−iQ(η−η′)

+
8(k2 − Q2)(η − η′)

η2(η′)2Q

{
k2

Q2

[
2

η − η′ − 2iQ − Q2(η − η′) − iQ3ηη′
]

+
2

η − η′ − 2iQ + Q2 (η + η′)2

η − η′ + iQ3ηη′
}

Ei
[
−i(P + Q)(η − η′)

]
eiQ(η−η′), (B.37)

where Ei is the exponential integral function defined for z ∈ C\(−∞, 0] (i.e. there is a branch
cut along the negative real axis) as

Ei(z) = −
∫ ∞

−z
dt

e−t

t
, (B.38)

where the principal value of the integral is taken.
To evaluate the above primitive at the endpoint P → ∞, we note the property

Ei(−iy) ≃ −iπ for y ≫ 1 , (B.39)

which must be used since we are evaluating the correlator under the assumption that η−η′ >
0. Evaluating the P -integral for the required endpoints and simplifying yields

∫ ∞

Q+2kUV

dP F(P, Q) e−iP (η−η′) = −16π(k2 − Q2)

η2(η′)2Q3

(
Q(η − η′)

[
2(k2 + Q2) + (k2 − Q2)Q2ηη′

]

× cos[Q(η − η′)] +
{

k2
[
Q2(η − η′)2 − 2

]
− Q2

[
Q2(η + η′)2 + 2

]}
sin[Q(η − η′)]

)

+
32(k2 − Q2)2

η2(η′)2Q2

[Q + 2kUV(η)](1 + Q2ηη′) + iQ2(η − η′)
[Q + 2kUV(η)]2 − Q2

e−i(Q+2kUV)(η−η′)

+
8(k2 − Q2)(η − η′)

η2(η′)2Q3

{
k2
[

2

η − η′ + 2iQ − Q2(η − η′) + iQ3ηη′
]

+Q2

[
2

η − η′ + 2iQ + Q2 (η + η′)2

η − η′ − iQ3ηη′
]}

Ei
[
−2ikUV(η − η′)

]
e−iQ(η−η′)

− 8(k2 − Q2)(η − η′)
η2(η′)2Q3

{
k2
[

2

η − η′ − 2iQ − Q2(η − η′) − iQ3ηη′
]

+Q2

[
2

η − η′ − 2iQ + Q2 (η + η′)2

η − η′ + iQ3ηη′
]}

Ei
[
−2i(Q + kUV)(η − η′)

]
eiQ(η−η′). (B.40)
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Next we need to integrate the above function with respect to Q, where we get exactly

∫
dQ

∫ ∞

Q+2kUV

dP F(P, Q) e−iP (η−η′) = −16πk4 sin[Q(η − η′)]
η2(η′)2

1

Q2

+
16k4

η2(η′)2

{
π(η − η′) cos[Q(η − η′)] − e−i(Q+2kUV)(η−η′)

2kUV

}
1

Q
+

16πk2(2 − k2ηη′) sin[Q(η − η′)]
η2(η′)2

+
16ie−i(Q+2kUV)(η−η′)

2kUV η2(η − η′)5(η′)2

{
k4η(η − η′)4η′ − 4k2(η − η′)2

[
η2 − 3ηη′ + (η′)2

]

−8
[
η2 − 5ηη′ + (η′)2

]}
+

32k2(η − η′)
η2(η′)2

(
−π cos[Q(η − η′)] +

e−i(Q+2kUV)(η−η′)

2k2kUV (η − η′)5

×
{

k2(η − η′)2
[
η2 − 4ηη′ + (η′)2

]
+ 4

[
η2 − 5ηη′ + (η′)2

]})
Q

+
16

η2(η′)2

(
π(2k2ηη′ − 1) sin[Q(η − η′)] − ie−i(Q+2kUV)(η−η′)

kUV (η − η′)3

{
k2η(η − η′)2η′

−2
[
η2 − 5ηη′ + (η′)2

]})
Q2 +

16(η − η′)
η2(η′)2

{
π cos[Q(η − η′)] − e−i(Q+2kUV)(η−η′)

2kUV (η − η′)3

[
η2 − 6ηη′

+(η′)2
]}

Q3 +
16

ηη′

{
−π sin[Q(η − η′)] +

ie−i(Q+2kUV)(η−η′)

2kUV (η − η′)

}
Q4

+
8(k2 − Q2)2

Q2η2(η′)2

{
(i − Qη)(i + Qη′)Ei

[
−2ikUV(η − η′)

]
e−iQ(η−η′) − (i + Qη)(i − Qη′)

×Ei
[
−2i(Q + kUV)(η − η′)

]
eiQ(η−η′)

}
. (B.41)

The first few terms are organized by increasing powers of Q, and the last term involves Ei
functions. Finally, evaluating the above primitive at the endpoints (from Q = 0 to Q = k)
gives

∫ k

0
dQ

∫ ∞

Q+2kUV

dP F(P, Q) e−iP (η−η′) = − 192i

kUV η2(η − η′)5

[
e−2ikUV(η−η′) − e−i(k+2kUV)(η−η′)

]

− 192i

kUV η3(η − η′)4

[
e−2ikUV(η−η′) − e−i(k+2kUV)(η−η′)(1 + ikη)

]

− 32i

kUV η4(η − η′)3

[
e−2ikUV(η−η′)(4 + k2η2) − 2 e−i(k+2kUV)(η−η′)(1 + ikη)(2 + ikη)

]

− 32i

kUV η5(η − η′)2

[
e−2ikUV(η−η′)(2 + k2η2) − 2 e−i(k+2kUV)(η−η′)(1 + ikη)2

]

− 8ik

kUVη5

[
e−2ikUV(η−η′)k3η3 − 8i e−i(k+2kUV)(η−η′)(1 + ikη)

] ( 1

η − η′ +
1

η′

)

+
4i

k2
UVη5(η′)2

{
e−2ikUV(η−η′)

[
8kUV(2 + k2η2) − ik4η3

]
− 16 e−i(k+2kUV)(η−η′)kUV(1 + ikη)

}
.

(B.42)
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Our next move consists in computing the part of the double integral (B.32) above
involving D defined in eq. (B.33), namely

1

k

∫ k

0
dQ

∫ ∞

Q+2kUV

dP D(P, Q)e−iP (η−η′). (B.43)

As mentioned previously, the above P -integral is formally divergent (the integrand scaling as
∝ P 4 in the ultraviolet) however it is meaningful when understood as a distribution. Using
the definition (B.33) we write the above integral over P as

∫ ∞

Q+2kUV

dP D(P, Q) e−iP (η−η′) =α4
(
η−η′, Q+2kUV

)
+

4i(η−η′)
ηη′ α3

(
η−η′, Q+2kUV

)

+2

[
Q2 −2k2 +

8ηη′ −2η2 −2(η′)2

η2(η′)2

]
α2
(
η−η′, Q+2kUV

)
+

16i(η−η′)
[
1+
(

3
4Q2 −k2

)
ηη′
]

η2(η′)2

×α1
(
η−η′, Q+2kUV

)
+

16
{

1−4(k2 −Q2)ηη′ +
(
k2 − 3

4Q2
) [

η2 +(η′)2
]
+ (Q2−2k2)2

16 η2(η′)2
}

η2(η′)2

×α0
(
η−η′, Q+2kUV

)
, (B.44)

where we define the distributions for m ∈ {0, 1, 2, 3, 4}

αm(x, y) :=

∫ ∞

y
dP P me−iP x , (B.45)

which we must now compute. We first note the Fourier representation of the Heaviside step
function

Θ(P ) = lim
δ→0+

∫ ∞

−∞
dx

eiP x

2πi(x − iδ)
(B.46)

where we recall that Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0. Inverting the above gives

∫ ∞

0
dP e−iP x =

−i

x − iδ
= − i

x
+ πδ(x) (B.47)

understood in the limit δ → 0+ (in the last equality we have used (x ± iδ)−1 = x−1 ∓ iπδ(x)
— the so called “Sochocki-Plemelj” theorem). From this we easily find that

α0(x, y) =

∫ ∞

y
dP e−iP x =

−ie−ixy

x − iδ
, (B.48)

which easily follows from a shift P → L in the integration variable L = P − y. By taking
the limit δ → 0+ in the above and using the property f(x)δ(x) = f(0)δ(x) of δ-functions the
above can be more simply written as

α0(x, y) =
−ie−ixy

x
+ πδ(x) . (B.49)
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From here we can easily get the remaining set of required functions by noticing that
i∂xαm(x, y) = αm+1(x, y), giving:

α1(x, y) =

∫ ∞

y
dP Pe−iP x = e−ixy

(
− 1

x2
− iy

x

)
+ iπδ′(x) , (B.50)

α2(x, y) =

∫ ∞

y
dP P 2e−iP x = e−ixy

(
2i

x3
− 2y

x2
− iy2

x

)
− πδ′′(x) , (B.51)

α3(x, y) =

∫ ∞

y
dP P 3e−iP x = e−ixy

(
6

x4
+

6iy

x3
− 3y2

x2
− iy3

x

)
− iπδ′′′(x) , (B.52)

α4(x, y) =

∫ ∞

y
dP P 4e−iP x = e−ixy

(
−24i

x5
+

24y

x4
+

12iy2

x3
− 4y3

x2
− iy4

x

)
+ πδ′′′′(x) .

(B.53)

Inserting the distributions αm(x, y) with x = η − η′ and y = Q + 2kUV into eq. (B.44) yields
the following expression

∫ ∞

Q+2kUV

dP D(P, Q)e−iP (η−η′) = e−i(Q+2kUV)(η−η′)



[
− 24i

(η−η′)5
+

24(Q+2kUV)

(η−η′)4

+
12i(Q+2kUV)2

(η−η′)3
− 4(Q+2kUV)3

(η−η′)2
− i(Q+2kUV)4

η−η′

]
+

4i(η−η′)
ηη′

[
6

(η−η′)4
+

6i(Q+2kUV)

(η−η′)3

−3(Q+2kUV)2

(η−η′)2
− i(Q+2kUV)3

η−η′

]
+2

[
Q2 −2k2 +

8ηη′ −2η2 −2(η′)2

η2(η′)2

] [
2i

(η−η′)3

−2(Q+2kUV)

(η−η′)2
− i(Q+2kUV)2

η−η′

]
−

16i(η−η′)
[
1+
(

3
4Q2 −k2

)
ηη′
]

η2(η′)2

[
1

(η−η′)2
+

i(Q+2kUV)

η−η′

]

+
16
{

1−4(k2 −Q2)ηη′ +
(
k2 − 3

4Q2
) [

η2 +(η′)2
]
+ (Q2−2k2)2

16 η2(η′)2
}

η2(η′)2

( −i

η−η′

)


+π

(
δ′′′′(η−η′)+

4(η−η′)
ηη′ δ′′′(η−η′)−2

[
Q2 −2k2 +

8ηη′ −2η2 −2(η′)2

η2(η′)2

]
δ′′(η−η′)

−
16(η−η′)

[
1+
(

3
4Q2 −k2

)
ηη′
]

η2(η′)2
δ′(η−η′)

+
16
{

1−4(k2 −Q2)ηη′ +
(
k2 − 3

4Q2
) [

η2 +(η′)2
]
+ (Q2−2k2)2

16 η2(η′)2
}

η2(η′)2
δ(η−η′)


 . (B.54)

All that is left to do is to integrate over Q, which happens to be straightforward in this case
with use of the integrals:

∫ k

0
dQ Qn =

kn+1

n + 1
, (B.55)

∫ k

0
dQ e−i(Q+2kUV)(η−η′) =

ie−2ikUV(η−η′)
[
−1 + e−ik(η−η′)

]

(η − η′)
, (B.56)
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∫ k

0
dQ e−i(Q+2kUV)(η−η′)Q =

e−2ikUV(η−η′)
{

−1 + [1 + ik(η − η′)] e−ik(η−η′)
}

(η − η′)2
, (B.57)

∫ k

0
dQ e−i(Q+2kUV)(η−η′)Q2 =

i e−2ikUV(η−η′)
{

2 + [−2 − 2ik(η − η′) + k2(η − η′)2]e−ik(η−η′)
}

(η − η′)3
,

(B.58)

∫ k

0
dQ e−i(Q+2kUV)(η−η′)Q3 =

e−2ikUV(η−η′)

(η − η′)4

{
6 +

[
−6 − 6ik(η − η′) + 3k2(η − η′)2

+ik3(η − η′)3
]

e−ik(η−η′)
}

, (B.59)

∫ k

0
dQ

e−i(Q+2kUV)(η−η′)

k
Q4 =

i e−2ikUV(η−η′)

(η − η′)5

{
−24 +

[
24 + 24ik(η − η′) − 12k2(η − η′)2

−4ik3(η − η′)3 + k4(η − η′)4
]

e−ik(η−η′)
}

. (B.60)

The resulting expression contains many terms, but organizing the expression as a partial
fraction expansion in terms of η′ yields:

∫ k

0
dQ

∫ ∞

Q+2kUV

dP D(P, Q)e−iP (η−η′)P = − 224

(η − η′)6

[
e−2ikUV(η−η′) − e−i(k+2kUV)(η−η′)

]

− 8i

(η − η′)5

[
32kUVe−2ikUV(η−η′) − (25k + 32kUV)e−i(k+2kUV)(η−η′)

]

+
1

η2(η − η′)4

{
32
[
10 + (5k2

UV − k2)η2
]

e−2ikUV(η−η′) − 8
[
40 + (7k2 + 26kkUV + 20k2

UV)η2
]

×e−i(k+2kUV)(η−η′)
}

+
1

η3(η − η′)3

{
32
[
10 + 8ikUVη − ikUV(k2 − 2k2

UV)η3
]

e−2ikUV(η−η′)

−8
[
40 + i(35k + 32kUV)η + 2ikUV(3k2 + 7kkUV + 4k2

UV)η3
]

e−i(k+2kUV)(η−η′)
}

+
4

η4(η − η′)2

[
56 + 64ikUVη + 16(k2 − 2k2

UV)η2 − (k2 − 2k2
UV)2η4

]
e−2ikUV(η−η′)

− 8

η4(η − η′)2

[
28 + i(35k + 32kUV)η − (k + 2kUV)(7k + 8kUV)η2 − 2k2

UV(k + kUV)2η4
]

× e−i(k+2kUV)(η−η′) +
32

η5
(2 + ikUVη)[2 + 2ikUVη + (k2 − k2

UV)η2]e−2ikUV(η−η′)
(

1

η − η′ +
1

η′

)

− 8

η5

[
16 + 4i(7k + 6kUV)η − (k + 2kUV)(7k + 8kUV)η2 − 2ikUV(k + 2kUV)(k + kUV)η3

]

e−i(k+2kUV)(η−η′)
(

1

η − η′ +
1

η′

)
− 1

η4(η′)2

{
16
[
6 + 4ikUVη + (k2 − k2

UV)η2
]

e−2ikUV(η−η′)

−8
[
12 + i(7k + 8kUV)η − 2kUV(k + kUV)η2

]
e−i(k+2kUV)(η−η′)

}
+ πk

[
δ′′′′(η − η′)
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+
4(η − η′)

ηη′ δ′′′(η − η′) +
4
[
η2 + (η′)2 +

(
5
6k2ηη′ − 4

)
ηη′
]

η2(η′)2
δ′′(η − η′)

+
4(η − η′)

(
3k2ηη′ − 4

)

η2(η′)2
δ′(η − η′) +

43
15k4η2(η′)2 + 4

3k2
[
9η2 − 32ηη′ + 9(η′)2

]
+ 16

η2(η′)2
δ(η − η′)

]
.

(B.61)

We are now in a position where the final result for Ck(η, η′) can be obtained. The correlator
we seek is given by eq. (B.32). Using the derived results (B.42) and (B.61), and organizing
in terms of a partial fraction expansion in η′ the result is at last

Ck(η, η′) =
1

32(2π)7/2

(
− 224

k(η − η′)6

[
e−2ikUV(η−η′) − e−i(k+2kUV)(η−η′)

]

− 1

k kUV η2 (η − η′)5

{
64i(3 + 4k2

UVη2)e−2ikUV(η−η′) − 8i[24 + kUV(25k + 32kUV)η2]

×e−i(k+2kUV)(η−η′)
}

+
1

k kUV η3 (η − η′)4

{
32[−6i + 10kUVη − kUV(k2 − 5k2

UV)η3]

×e−2ikUV(η−η′) + 8[24i − 8(3k + 5kUV)η − kUV(7k2 + 26kkUV + 20k2
UV)η3]

×e−i(k+2kUV)(η−η′)
}

+
32

k kUV η4 (η − η′)3
(−i + kUVη)[4 + 6ikUVη + (k2 − 2k2

UV)η2

−ikUV(k2 − 2k2
UV)η3]e−2ikUV(η−η′) − 8i

k kUV η4 (η − η′)3
[−16 − 8i(3k + 5kUV)η

+(8k2 + 35kkUV + 32k2
UV)η2 + 2k2

UV(k + kUV)(3k + 4kUV)η4]e−i(k+2kUV)(η−η′)

− 4

k kUV η5 (η − η′)2
[16i − 56kUVη + 8i(k2 − 8k2

UV)η2 − 16kUV(k2 − 2k2
UV)η3

+kUV(k2 − 2k2
UV)2η5]e−2ikUV(η−η′) +

8

k kUV η5 (η − η′)2
[8i − 4(4k + 7kUV)η

−i(8k2 + 35kkUV + 32k2
UV)η2 + kUV(k + 2kUV)(7k + 8kUV)η3 + 2k3

UV(k + kUV)2η5]

×e−i(k+2kUV)(η−η′) +
8

k kUV η5
[16kUV + 24ik2

UVη + 8kUV(k2 − 2k2
UV)η2

−i(k2 − 2k2
UV)2η3]e−2ikUV(η−η′)

(
1

η − η′ +
1

η′

)
+

8

k kUV η5
(k + 2kUV)[−8

−4i(2k + 3kUV)η + kUV(7k + 8kUV)η2 + 2ik2
UV(k + kUV)η3]e−i(k+2kUV)(η−η′)

×
(

1

η − η′ +
1

η′

)
+

4

k k2
UV η5 (η′)2

[16ikUV − 24k2
UVη + 8ikUV(k2 − 2k2

UV)η2

+(k2 − 2k2
UV)2η3]e−2ikUV(η−η′) − 8

k k2
UV η5 (η′)2

kUV[8i − 4(2k + 3kUV)η

−ikUV(7k + 8kUV)η2 + 2k2
UV(k + kUV)η3]e−i(k+2kUV)(η−η′) + π

[
δ′′′′(η − η′)
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+
4(η − η′)

ηη′ δ′′′(η − η′) +
4
[
η2 + (η′)2 +

(
5
6k2ηη′ − 4

)
ηη′
]

η2(η′)2
δ′′(η − η′)

+
4(η − η′)

(
3k2ηη′ − 4

)

η2(η′)2
δ′(η − η′)

+
43
15k4η2(η′)2 + 4

3k2
[
9η2 − 32ηη′ + 9(η′)2

]
+ 16

η2(η′)2
δ(η − η′)

])
. (B.62)

which assumes that η > η′ (the result for the opposing case of η < η′ can be extracted from
the symmetry Ck(η, η′) = C ∗

k (η′, η) easily). This is the result used in the main text. In
section 3.1.3, we present the coincidence and the early time η′ limits of the exact expression,
see eqs. (3.21) and (3.23).

C Lindblad coefficients

In this appendix we explicitly compute the Lindblad coefficient Fk defined in eq. (3.37) used
to derive the physical predictions of the Lindblad equation. We later also compute the validity
coefficient Mk defined in eq. (3.42).

We begin with the integral Fk defined in eq. (3.37), repeated here,

Fk(η, ηin) := (2π)3/2
∫ η

ηin

dη′ G(η)G(η′)Ck(η, η′) , (C.1)

where we here assume that ηin is fixed and arbitrary (assuming only that ηin < η < 0). To
evaluate this we use the representation (B.31) of Ck(η, η′), as well as G(η)G(η′) = ε1H2

8M2
p

ηη′,

see eq. (3.3), which expresses Fk as the triple integral

Fk(η, ηin) =
ε1H2

1024π2M2
pk

∫ η

ηin

dη′
∫ k

0
dQ

∫ ∞

Q+2kUV

dP η η′ (P 2 + Q2 − 2k2)2
[
1 − 2i

(P − Q)η

]

×
[
1 +

2i

(P − Q)η′

] [
1 − 2i

(P + Q)η

] [
1 +

2i

(P + Q)η′

]
e−iP (η−η′). (C.2)

The utility of this representation is that it allows for a more standard/straightforward han-
dling of the UV divergences that arise (which can be understood as UV divergences arising
in the P → ∞ limit). We proceed by computing the η′ integrals first, where we note that

∫ η

ηin

dη′ η′
[
1 +

2i

(P − Q)η′

] [
1 +

2i

(P + Q)η′

]
e−iP (η−η′) =

1

P 2
− iη

P
+

4

P 2 − Q2

− 4e−iP η Ei(iPη)

P 2 − Q2
− e−iP (η−ηin)

(
1

P 2
− iηin

P
+

4

P 2 − Q2

)
+

4e−iP η Ei(iPηin)

P 2 − Q2
, (C.3)

where Ei is the exponential integral function defined around eq. (B.38).
To simplify the above expression we wish to express it in terms of dimensionless and

positive variables, so to this end we define

z := −kη , zin := −kηin (C.4)
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and we also switch integration variables to

a :=
Q

k
and b :=

P

k
. (C.5)

After using the result (C.3) as well as these variable definitions, we find that eq. (C.2) becomes

Fk(η, ηin) =
ε1H2k2

1024π2M2
p

∫ 1

0
da

∫ ∞

a+2κ
db z (a2 + b2 − 2)2

[
1 +

2i

(b − a)z

] [
1 +

2i

(b + a)z

]

×
[
− 1

b2
− iz

b
− 4

b2 − a2
+

4eibzEi(−ibz)

b2 − a2
+ e−ib(zin−z)

(
1

b2
+

izin

b
+

4

b2 − a2

)

−4eibzEi(−ibzin)

b2 − a2

]
. (C.6)

To emphasize the terms which depend on ηin, we split up the above function into two pieces,

Fk(η, ηin) =
ε1H2k2

1024π2M2
p

[Ik(η) − Gk(η, ηin)] (C.7)

where

Ik(η) :=

∫ 1

0
da

∫ ∞

a+2κ
db z (a2 + b2 − 2)2

[
1 +

2i

(b − a)z

] [
1 +

2i

(b + a)z

]

×
[
− 1

b2
− iz

b
− 4

b2 − a2
+

4eibzEi(−ibz)

b2 − a2

]
(C.8)

Gk(η, ηin) :=

∫ 1

0
da

∫ ∞

a+2κ
db z (a2 + b2 − 2)2

[
1 +

2i

(b − a)z

] [
1 +

2i

(b + a)z

]

×
[
−e−ib(zin−z)

(
1

b2
+

izin

b
+

4

b2 − a2

)
+

4eibzEi(−ibzin)

b2 − a2

]
. (C.9)

We next evaluate each of these functions exactly, and also derive asymptotic series for each.
We start by evaluating Gk and then use this to get Ik (which is straightforward to derive
once we know what Gk is).

C.1 The function G

Here we exactly compute Gk(η, ηin) defined in eq. (C.9). It turns out that it is easiest to do
this by switching the order of integration relative to the formula (C.9), and so we compute
it in two pieces

Gk(η, ηin) = G∆
k (η, ηin) + G�

k (η, ηin) (C.10)

where G∆
k integrates over a triangular region

G∆
k (η, ηin) :=

∫ 2κ+1

2κ
db

∫ b−2κ

0
da f(a, b, z, zin) (C.11)

and where G�
k integrates over a rectangular region

G�
k (η, ηin) :=

∫ ∞

2κ+1
db

∫ 1

0
da f(a, b, z, zin) , (C.12)
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!
∆

Figure 7. The triangular region ∆ integrated over in equation (C.11) is shown in green and the
rectangular region � integrated over in equation (C.12) is shown in blue.

using the shorthand

f(a, b, z, zin) := z (a2 + b2 − 2)2
[
1 +

2i

(b − a)z

] [
1 +

2i

(b + a)z

]

×
[
−e−ib(zin−z)

(
1

b2
+

izin

b
+

4

b2 − a2

)
+

4eibz Ei(−ibzin)

b2 − a2

]
(C.13)

for the integrand given in the definition (C.9). For a visual representation of the domains of
integration ∆ and � see figure 7.

In order to proceed we note that f has the following a-primitive (assuming b > a)
∫

da f(a, b, z, zin) = e−ib(zin−z)

{
−z(1 + ibzin)

5b2
a5 +

[
4(i + bz)(i − bzin)

3b2z

+
2z(2 + 2ibzin + b2 − ib3zin)

3b2

]
a3

+
z(4 + 4ibzin + 12b2 − 4ib3zin − 11b4 + ib5zin)

b2
a − 8(i + bz)(6i − 6bzin + ib2 + 5b3zin)

3bz

−4z(15 + 15ibzin + 40b2 − 20ib3zin − 43b4 + 7ib5zin)

15b
+

16(b2 − 1)2(−1 + ibz)

b2z

×
(

1

a + b
+

1

a − b

)
+

[
−16(b2 − 1)2z

b
+

16(b2 − 1)(i + bz)(3i − bzin + ib2 + b3zin)

b3z

]

× coth−1
(

b

a

)}
+

{
− z

3
a3 +

(
−4

z
+ 4z + 4ib − 3b2z

)
a +

2

3
b

(
−6

z
+ 6z + 6ib − 5b2z

)

+
4(b2 − 1)2(1 − ibz)

b2z

(
1

a + b
+

1

a − b

)
+ 4(b2 − 1)

[
2(b2 + 1)(1 − ibz)

b3z
+

(b2 − 1)z

b

]

× coth−1
(

b

a

)}
4 eibz Ei(−ibzin). (C.14)

Next we use this primitive to evaluate both G∆
k (η, ηin) and G�

k (η, ηin).
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Let us start with G∆
k . Here we take the double integral G∆

k defined in eq. (C.11), and
perform the a-integration by evaluating the a-primitive (C.14) at the end points a = 0 to
a = b − 2κ:
∫ b−2κ

0
da f(a, b, z, zin) = e−ib(zin−z)

(
− 28izzin

15
b4 + 4

[
−2i

κ
− 10zin

3
+

(
43

15
+ 2iκzin

)
z

]
b3

+8

{
3 − 5iκzin

3κz
+

2(i + 6κzin)

3
+

[
−3κ +

2i(1 − 3κ2)zin

3

]
z

}
b2

+8

{
2(−1 + 6iκzin)

3z
+

2i

κ
+ iκ + 2(1 − κ2)zin +

2
[
−2 + iκ(4κ2 − 3)zin

]

3
z

}
b

+4

{
−2

[
2 + κ2 + 2iκ(κ2 − 1)zin

]

κz
+ 2i(3κ2 − 4) +

8κ(κ2 − 3)zin

3

+

[
4κ(2κ2 + 3)

3
− i(2κ2 − 1)2zin

]
z

}
+

4

3

{
2
[
3 − 6κ2(κ2 − 1) + 4iκ3(κ2 − 3)zin

]

κ2z

−4i(2κ4 − 6κ2 + 3)

κ
+

2iκ(12κ4 − 20κ2 + 15)zin − 15(2κ2 − 1)2

5
z

}
1

b

+
8(κ2 − 1)2(−1 + iκz)

κ2z(b − κ)
+

8

3

[
4κ4 − 12κ2 + 6

κz
+

κ(12κ4 − 20κ2 + 15)

5
z

]
1

b2

+16

[
(zin − z)b3 +

i(zin + z)

z
b2 −

(
1

z
− 2z + 2zin

)
b − 2i(zin − z)

z
− 2 + z2 − zzin

bz

+
i(zin − 3z)

zb2
+

3

zb3

]
coth−1

(
b

b − 2κ

))
+

{
2(3i − 5κz)

3κ
b3 + 2

(
− 1

κz
+ i + 4κz

)
b2

+2

[
−1

z
− i(5κ2 + 2)

κ
+ 2(1 − κ2)z

]
b +

10κ2 + 4

κz
− 2i(κ2 − 2) +

8κ(κ2 − 3)

3
z

+
4iκz − 2

κ2zb
+

2(κ2 − 1)2(1 − iκz)

κ2z(b − κ)
− 4

κzb2
+ 4

[
zb3 − 2ib2 +

(
2

z
− 2z

)
b +

z

b

+
2i

b2
− 2

zb3

]
coth−1

(
b

b − 2κ

)}
4 e+ibz Ei(−ibzin) . (C.15)

Next we find that we can explicitly write down the b-primitive (up to a constant) of the above:

∫
db

∫ b−2κ

0
da f(a, b, z, zin) = e−ib(zin−z)

(
224z2

in

5(zin − z)5
+

1

(zin − z)4

[
48i

κ
− 168zin

5

+
16i(14b − 15κ)z2

in

5

]
− 1

(zin − z)3

[
8(90b − 19κ)

15κ
+

8i(21b − 20κ)zin

5

+
16(21b2 − 45bκ + 30κ2 − 10)z2

in

15

]
+

64i

κzinz3
+

1

(zin − z)2

{
− 32i

κz2
in

+
8i[−45b2 + 19bκ + 30(κ2 + 1)]

15κ
+

4(63b2 − 120bκ + 60κ2 − 20)zin

15
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−8i
[
14b3 − 45b2κ + 20b

(
3κ2 − 1

)
− 40κ3 + 30κ

]
z2

in

15

}
+

32

κz2

(
i

z2
in

+
b − κ

zin

)

+
1

zin − z

{
32(b − κ)

κz2
in

+
8(b2 − 2)b

κ
− 4(19b2 + 20)

15
− 16κ(b − κ)

+
4ib(21b2 − 60bκ + 60κ2 − 20)

15
zin +

4

15

[
7b4 + 60(b2 − 1)κ2 − 30(b2 − 2)bκ − 20b2

−80bκ3 + 60κ4 + 15
]

z2
in

}
+

8

3z

[
12(b − κ)

κz2
in

+
(b − 2κ)

(
5b2 − 2bκ + 2κ2 − 6

)

b

]

+
1

15

{
4i
(
−43b3 + 90b2κ + 40b − 40κ3 − 60κ

)
− 4zin

[
7b4 + 60

(
b2 − 1

)
κ2

−30
(
b2 − 2

)
bκ − 20b2 − 80bκ3 + 60κ4 + 15

]
− 8κ

(
12κ4 − 20κ2 + 15

)
z

b

})

+

[
64i

κz4
+

32i

κz2
− 32

z3
+

8i
(
4κ4 − 12κ2 − 3

)

3κ
− 4

(
2κ2 − 1

)2
z +

8iκ
(
12κ4 − 20κ2 + 15

)

15
z2

]

× Ei [−ib(zin − z)] +

[
64i

κz4
− 32

z3
+

32i

κz2
+

8i
(
4κ4 − 12κ2 − 3

)

3κ
− 4(2κ2 − 1)2z

+
8iκ

(
12κ4 − 20κ2 + 15

)

15
z2

]
Ei [−ib(zin − z)] + 8

{(
3

κz
+ 5i

)
b3

3
+

(
4i

κz2
− 3

z
− 4iκ

)
b2

+2

[
− 4

κz3
− 2i

z2
+

2κ2 − 1

κz
+ i(κ2 − 1)

]
b − 8i

κz4
+

4

z3
− 4i

κz2
− 2

(
κ2 − 1

)

z
− 4iκ

(
κ2 − 3

)

3

+
1

κzb

}
eibzEi(−ibzin) +

16
(
b2 − 1

)2
(1 − ibz)

b2z
coth−1

(
b

b − 2κ

) [
eibzEi(−ibzin)

−e−ib(zin−z)
]

. (C.16)

Finally we can evaluate this at the endpoints from b = 2κ to b = 2κ + 1 and we are left with
the answer

G∆
k (η, ηin) = e−i(2κ+1)(zin−z)

{
224z2

in

5(zin − z)5
+

1

(zin − z)4

[
48i

κ
− 168zin

5
+

16i(13κ + 14)

5
z2

in

]

+
1

(zin − z)3

[
−1288

15
− 48

κ
− 8i(22κ + 21)zin

5
− 16(24κ2 + 39κ + 11)z2

in

15

]
+

64i

κzinz3

+
1

(zin − z)2

[
− 32i

κz2
in

− 8i(112κ2 + 161κ + 15)

15κ
+

4(72κ2 + 132κ + 43)zin

15

−8i(12κ3 + 48κ2 + 29κ − 6)z2
in

15

]
+

32

z2

(
i

κz2
in

+
κ + 1

κzin

)
+

1

zin − z

[
32(κ + 1)

κz2
in

+
4(104κ3 + 224κ2 + 21κ − 30)

15κ
+

4i
(
48κ3 + 72κ2 + 26κ + 1

)
zin

15
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+
8(6κ4 + 12κ3 + 14κ2 + 3κ + 1)z2

in

15

]
+

32(κ + 1)

κz2
inz

+
8(18κ2 + 18κ − 1)

3(2κ + 1)z

−4i(24κ3 + 156κ2 + 148κ + 3)

15
− 8κ(12κ4 − 20κ2 + 15)z

15(2κ + 1)

−8
(
6κ4 + 12κ3 + 14κ2 + 3κ + 1

)
zin

15
+

128i(κ + 1)2κ2[i + (2κ + 1)z]

(2κ + 1)2z
log

(
κ + 1

κ

)}

+ e−2iκ(zin−z)

{
− 224z2

in

5(zin − z)5
+

1

(zin − z)4

(
−48i

κ
+

168zin

5
− 208iκz2

in

5

)

+
1

(zin − z)3

[
1288

15
+

176iκzin

5
+

32(12κ2 − 5)z2
in

15

]
− 64i

κzinz3
+

1

(zin − z)2

[
32i

κz2
in

+
16i(56κ2 − 15)

15κ
− 16(18κ2 − 5)zin

15
+

16iκ
(
6κ2 − 5

)
z2

in

15

]
− 32

z2

(
i

κz2
in

+
1

zin

)

− 4

zin − z

[
8

z2
in

+
4(26κ2 − 35)

15
+

8iκ(6κ2 − 5)zin

15
+

(12κ4 − 20κ2 + 15)z2
in

15

]

− 32

zz2
in

+
16iκ(6κ2 − 5)

15
+

4
(
12κ4 − 20κ2 + 15

)

15
(zin + z)

}
+ 8

[
− 8i

κz4
+

4

z3
− 4i

κz2

− i(4κ4 − 12κ2 − 3)

3κ
+

(2κ2 − 1)2z

2
− iκ(12κ4 − 20κ2 + 15)z2

15

]
{Ei [−2iκ(zin − z)]

−Ei [−i(2κ + 1)(zin − z)]} + 8

[
8i

κz4
+

12

z3
− 4i(2κ2 − 1)

κz2
− 4κ4 − 4κ2 + 1

2κ2z

]

× e2iκzEi(−2iκzin) + 8

{
− 8i

κz4
− 4(3κ + 2)

κz3
+

4i(2κ + 3)

z2
+

4κ3 + 10κ2 + 6κ − 1

(2κ + 1)z

+
i(18κ2 + 18κ − 1)

3
+

16(κ + 1)2κ2[1 − i(2κ + 1)z]

(2κ + 1)2z
log

(
κ + 1

κ

)}
ei(2κ+1)z

× Ei [−i(2κ + 1)zin] . (C.17)

We now turn to the calculation of G�
k . We follow similar steps for evaluating G�

k defined in
eq. (C.12). We first perform the a-integration by evaluating the a-primitive in eq. (C.14) at
the endpoints from a = 0 to a = 1 giving:

G�
k (η, ηin) =

∫ +∞

2κ+1

db

(
e−ib(zin−z)

{(
1

z
− ib

)[
4(27b2 − 13)

3b2
− 4i(9b2 − 11)zin

3b

]

+

[
11b2 − 34

3
− 43

15b2
− i(15b4 − 50b2 + 43)zin

15b

]
z +

16
(
b2 − 1

)

b

[
i(b2 − 1)bzin − b2 − 3

b2z

+
i(b2 + 3)

b
+ (b2 − 1)(zin − z)

]
coth−1(b)

}
+ 4

{
4(2 − 3b2)

b

(
1

bz
− i

)
− 9b2 − 11

3
z

+

[
8(b4 − 1)

b2

(
1

bz
− i

)
+

4(b2 − 1)2

b
z

]
coth−1(b)

}
eibz Ei(−ibzin)

)
. (C.18)
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At this stage we must deal with a subtlety occurring in the above integration: the integral is
formally divergent in the b → ∞ limit (since b ∝ P this means these are UV divergences). To
deal with this we separate out the diverging b → ∞ behaviour from the rest of the integrand,
so that

G�
k (η, ηin) = G�,div

k (η, ηin) + G�,reg
k (η, ηin) (C.19)

where we define

G�,div
k (η,ηin) :=

∫ ∞

2κ+1
db

(
4πeibz

[
−izb2 +4b+i

(
3z+

4

z

)]
+e−ib(zin−z)

{
−izzinb3

−(5z−4zin)b2 +
2ib

3

[
6zin

z
−30+

(
6

zin
+5zin

)
z

]
+2

(
10

z
− 8

zin
−6zin

+
23z2

in −6

3z2
in

z

)
+

4i

b

[
−
(

4

zin
+3zin

)
1

z
− 4

z2
in

+
41

3
−
(

2

z3
in

+
3

zin
+

43zin

60

)
z

]})

(C.20)

G�,reg
k (η,ηin) :=

∫ ∞

2κ+1
db

(
−4πeibz

[
−izb2 +4b+i

(
3z+

4

z

)]
+e−ib(zin−z)

{
−16(zin −z)b2

−4i(z+2zin)2b

zzin
+4

[
4

z
+

4

zin
+

z

z2
in

+
20

3
(zin −z)

]
+

4i

b

(
2z

z3
in

+
3z

zin
+

20zin

3z

+
4

zzin
+

4

z2
in

− 28

3

)
− 1

b2

(
43z

15
+

52

3z

)
+

16
(
b2 −1

)

b

[
i(b2 −1)bzin −b2 −3

b2z

+
i(b2 +3)

b
+(b2 −1)(zin −z)

]
coth−1(b)

}
+4

{
4(2−3b2)

b

(
1

bz
−i

)

−9b2 −11

3
z+

[
8(b4 −1)

b2

(
1

bz
−i

)
+

4(b2 −1)2

b
z

]
coth−1(b)

}
eibzEi(−ibzin)

)
.

(C.21)

One may check that summing G�,div
k + G�,reg

k gives exactly eq. (C.18). The logic for this
organization is that G�,div

k contains all the divergences, while G�,reg
k is a formally convergent

integral (one may check that it falls off fast enough to converge, like ∝ b−1e+ibz + . . . , in the
limit b → ∞).

In order to make sense of the divergent integral G�,div
k , we must understand it in the

distributional sense — using the results (B.49) and (B.50) we have

∫ ∞

2κ+1
db e−ib(zin−z)b3 = e−i(2κ+1)(zin−z)

[
6

(zin − z)4
+

6i(2κ + 1)

(zin − z)3
− 3(2κ + 1)2

(zin − z)2
− i(2κ + 1)3

zin − z

]

− iπδ′′′(zin − z) , (C.22)
∫ ∞

2κ+1
db e−ib(zin−z)b2 = e−i(2κ+1)(zin−z)

[
2i

(zin − z)3
− 2(2κ + 1)

(zin − z)2
− i(2κ + 1)2

zin − z

]
− πδ′′(zin − z) ,

(C.23)
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∫ ∞

2κ+1
db e−ib(zin−z)b = e−i(2κ+1)(zin−z)

[
− 1

(zin − z)2
− i(2κ + 1)

zin − z

]
+ iπδ′(zin − z) , (C.24)

∫ ∞

2κ+1
db e−ib(zin−z) =

−ie−i(2κ+1)(zin−z)

zin − z
+ πδ(zin − z), (C.25)

and similarly

∫ ∞

2κ+1
db eibzb2 = e+i(2κ+1)z

[
− 2i

z3
− 2(2κ + 1)

z2
+

i(2κ + 1)2

z

]
− πδ′′(z) , (C.26)

∫ ∞

2κ+1
db e+ibzb = e+i(2κ+1)z

[
− 1

z2
+

i(2κ + 1)

z

]
− iπδ′(z) , (C.27)

∫ ∞

2κ+1
db e+ibz =

ie+i(2κ+1)z

z
+ πδ(z) . (C.28)

A comment on the δ-functions is in order: we can ignore δ(z) = 0 and its derivatives, since
we always assume that z > 0. Since we will care about the coincident limit zin → z → 0 later
on, we need to keep δ(zin − z) and its derivatives. Finally we also need to use

∫ ∞

2κ+1
db

e−ib(zin−z)

b
= − {Ei [−i(2κ + 1)(zin − z)] + iπ} . (C.29)

Putting the above pieces all together in eq. (C.20) leaves us with

G�,div
k (η, ηin) = 8πei(2κ+1)z

[
− 5

z2
+

3i(2κ + 1)

z
+ 2κ2 + 2κ − 1

]
+ e−i(2κ+1)(zin−z)

{
− 6iz2

in

(zin − z)4

+
2

(zin − z)3
[2i + 3(2κ + 1)zin]zin +

1

(zin − z)2
{22i − 4(2κ + 1)zin

+
i[36κ(κ + 1) − 1]

3
z2

in

}
− 1

zin − z
(2κ + 1)

[
22 + 2i(2κ + 1)zin +

12κ2 + 12κ − 7

3
z2

in

]

+
4

z

(
− 6i

zin
+ 2κ + 1

)
− 4i

z2
in

− 4(2κ + 1)

zin
− i

(
60κ2 + 60κ − 31

)

3

+
(2κ + 1)

(
12κ2 + 12κ − 7

)

3
zin

}
+ 4i

[
1

z

(
4

zin
+ 3zin

)
+

4

z2
in

− 41

3

+

(
2

z3
in

+
3

zin
+

43zin

60

)
z

]
{Ei [−i(2κ + 1)(zin − z)] + iπ} + π

{
− zzinδ′′′(zin − z)

+(5z − 4zin)δ′′(zin − z) − 2

3

(
5zzin +

6z

zin
+

6zin

z
− 30

)
δ′(zin − z)

+2

[
10

z
− 8

zin
− 6zin +

(
23

3
− 2

z2
in

)
z

]
δ(zin − z)

}
. (C.30)

We recall that, in the above expression, we have ignored the Dirac functions δ(z) and its
derivatives.
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Next we compute G�,reg
k . To this end note that the integrand in the definition (C.21)

has an explicit b-primitive where

G�,reg
k (η, ηin) =

(
4πeibz

(
b2 +

6ib

z
− 10

z2
− 3

)
+ e−ib(zin−z)

{
− 16ib2 +

(
16

z
− 4

zin

)
b

+
4i

3

[
20 − 3(z + 6zin)

zz2
in

]
+

43z2 − 220

15bz
+

16
(
b2 − 1

)2
(−1 + ibz)

b2z
coth−1(b)

}

+

[
− 40i

z2zin
+

12i
(
z2

in − 2
)

zz2
in

+
43i

15
z − 4i(3z2

in + 2)

z3
in

]
(zin − z)Ei [−ib(zin − z)]

+4

[
10i

z2
+

2(b2 − 2)

bz
+

i(9b2 − 11)

3
+

4(b2 − 1)2(1 − ibz)

b2z
coth−1(b)

]

× eibzEi(−ibzin)

) ∣∣∣∣∣

b→∞

b=2κ+1

. (C.31)

The integrand approaches π(z − zin)
[

40
z2zin

− 12(z2
in−2)

zz2
in

+
4(3z2

in+2)

z3
in

− 43z
15

]
at the upper limit

b → ∞. We find then that the result is

G�,reg
k (η,ηin)=π(z−zin)

[
40

z2zin
− 12(z2

in −2)

zz2
in

+
4(3z2

in +2)

z3
in

− 43z

15

]
−4πei(2κ+1)z

[
−10

z2

+
6i(2κ+1)

z
+4κ2 +4κ−2

]
−e−i(2κ+1)(zin−z)

{
−16i(2κ+1)2 +

43z2 −220

15(2κ+1)z

+(2κ+1)

(
16

z
− 4

zin

)
+

4i

3

[
20− 3(z+6zin)

zz2
in

]
+

128κ2(κ+1)2[−1+i(2κ+1)z]

(2κ+1)2z

×log

(
κ+1

κ

)}
−4

{
10i

z2
+

2
(
4κ2 +4κ−1

)

(2κ+1)z
+

i(36κ2 +36κ−2)

3

+
32κ2(κ+1)2[1−i(2κ+1)z]

(2κ+1)2z
log

(
κ+1

κ

)}
ei(2κ+1)zEi[−i(2κ+1)zin]

−i

[
− 40

z2zin
+

12
(
z2

in −2
)

zz2
in

− 4
(
3z2

in +2
)

z3
in

+
43

15
z

]
(zin −z)Ei[−i(2κ+1)(zin −z)].

(C.32)

We now have explicit expressions for G�,div
k and G�,reg

k and so we can finally write down an
expression for Gk using the sum

Gk(η, ηin) = G∆
k (η, ηin) + G�,div

k (η, ηin) + G�,reg
k (η, ηin). (C.33)

Using the explicit formulae (C.17), (C.30) and (C.32) we arrive at last to the formula:

Gk(η,ηin)=e−i(2κ+1)(zin−z)

{
224z2

in

5(zin −z)5
+

1

(zin −z)4

[
48i

κ
− 168zin

5
+

2i(104κ+97)

5
z2

in

]

+
64i

κzinz3
+

1

(zin −z)3

[
−8(161κ+90)

15κ
− 4i(44κ+37)

5
zin − 2(192κ2 +222κ+43)

15
z2

in

]
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+
32

κz2

(
i

z2
in

+
κ+1

zin

)
+

1

(zin −z)2

[
− 32i

κz2
in

− 2i(448κ2 +479κ+60)

15κ

+
8(36κ2 +51κ+14)

15
zin − i(96κ3 +204κ2 +52κ−43)

15
z2

in

]

+
32(κ+1)

κz2
inz

+
1

zin −z

[
32(κ+1)

κz2
in

+
2(208κ2 +118κ− 60

κ −123)

15

+
2i(2κ+1)(48κ2 +18κ−13)

15
zin +

48κ4 −24κ3 −68κ2 +34κ+43

15
z2

in

]

− i

15

(
96κ3 −36κ2 −68κ+17

)
− 1

15

(
48κ4 −24κ3 −68κ2 +34κ+43

)
(zin +z)

}

+e−2iκ(zin−z)

{
− 224z2

in

5(zin −z)5
+

1

(zin −z)4

[
−48i

κ
+

168

5
zin − 208iκ

5
z2

in

]
− 64i

κzinz3

+
1

(zin −z)3

[
1288

15
+

176iκ

5
zin +

32(12κ2 −5)

15
z2

in

]
− 32

z2

(
i

κz2
in

+
1

zin

)

+
1

(zin −z)2

[
32i

κz2
in

− 16(18κ2 −5)

15
zin +

16i
(
56κ2 −15

)

15κ
+

16iκ(6κ2 −5)

15
z2

in

]

− 4

zin −z

[
8

z2
in

+
4(26κ2 −35)

15
+

8iκ(6κ2 −5)

15
zin +

12κ4 −20κ2 +15

15
z2

in

]
− 32

z2
inz

+
16i(6κ2 −5)κ

15
+

4(12κ4 −20κ2 +15)

15
(z+zin)

}
+

(
−40

z2
+

92

3
− 43

15
z2
)

×{π−iEi[−i(2κ+1)(zin −z)]}+4

[
− 16i

κz4
+

8

z3
− 8i

κz2
− 2i(4κ4 −12κ2 −3)

3κ

+(2κ2 −1)2z− 2iκ(12κ4 −20κ2 +15)

15
z2

]
{Ei[−2iκ(zin −z)]

−Ei[−i(2κ+1)(zin −z)]}+4

[
16i

κz4
+

24

z3
− 8i(2κ2 −1)

κz2
+

−4κ4 +4κ2 −1

κ2z

]

×e2iκzEi(−2iκzin)+4

[
− 16i

κz4
− 8(3κ+2)

κz3
+

2i(8κ+7)

z2
+

4κ(κ+1)

z

]

×ei(2κ+1)zEi[−i(2κ+1)zin]+π

{
−zzinδ′′′(zin −z)+(5z−4zin)δ′′(zin −z)

−2

3

(
5zzin +

6z

zin
+

6zin

z
−30

)
δ′(zin −z)+2

[
10

z
− 8

zin
−6zin

+

(
23

3
− 2

z2
in

)
z

]
δ(zin −z)

}
. (C.34)
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Next we explore the various asymptotic limits of Gk(η, ηin). First we note that in the limit
zin ≫ 1 (so that ηin → −∞ in the distant past) we have

Gk(η, ηin) ≃ 4πe2iκz

[
16

κz4
− 24i

z3
− 8

(
2κ2 − 1

)

κz2
+

i
(
2κ2 − 1

)2

κ2z

]

+ 8πei(2κ+1)z
[
− 8

κz4
+

4i(3κ + 2)

κz3
+

8κ + 7

z2
− 2iκ(κ + 1)

z

]
+ O

(
1

zin

)
, (C.35)

and note that if we furthermore take the super-Hubble limit of this then we get

Gk(η, ηin) ≃ −40π

z2
− 4iπ

(
24κ3 + 6κ2 + 16κ − 3

)

3κ2z
+

92π

3
+ O(z) . (C.36)

Next let us fix arbitrary zin and take the super-Hubble limit z ≪ 1 so that

Gk(η, ηin) ≃ −40π

z2
+

16

3z

{
e−2iκzin

[
−2i(κ2 − 3)

κzin
+

4i

κz3
in

− 5

z2
in

]
+ e−i(2κ+1)zin

[
− 4i

κz3
in

+
5κ + 4

κz2
in

+
i(4κ2 − 5κ − 8)

2κzin

]
+

(
κ2 − 9 − 3

4κ2

)
Ei(−2iκzin) +

(
−κ2 + 6κ +

4

κ
+

21

2

)

× Ei [−i(2κ + 1)zin]

}
+

92π

3
+ O(z) . (C.37)

Let us now take the above expression and take zin ≪ 1 (assuming the hierarchy z ≪ zin ≪ 1)

Gk(η, ηin) ≃ −40π

z2
+

1

z

[
− 40i

zin
+ 2

(
− 1

κ2
+ 8κ +

16

3κ
+ 2

)
{2 log [eγ(2κ + 1)zin] − iπ}

+4

(
−4κ2

3
+

1

κ2
+ 12

)
log

(
2κ + 1

2κ

)
− 16(39κ + 15 + 16/κ)

9
+ O(zin)

]

+
92π

3
+ O(z) (C.38)

where γ is Euler-Mascheroni constant.
Finally let us take the coincident limit for z → zin where we have

Gk(η, ηin) ≃ − 6iz2
in

(zin − z)4
+

4izin

(zin − z)3
+

2i
(
33 − 5z2

in

)

3(zin − z)2
+ i

(
40

z2
in

− 92

3
+

43

15
z2

in

)

× log [eγ(2κ + 1)(zin − z)] + π

{
− zzinδ′′′(zin − z) + (5z − 4zin)δ′′(zin − z)

−2

3

(
5zzin +

6z

zin
+

6zin

z
− 30

)
δ′(zin − z) + 2

[
10

z
− 8

zin
− 6zin

+

(
23

3
− 2

z2
in

)
z

]
δ(zin − z)

}
+ O

[
(zin − z)0

]
. (C.39)

Most important for us is the real part of the above, where we have

Re [Gk(η, ηin)] ≃ π

{
−zzinδ′′′(zin − z) + (5z − 4zin)δ′′(zin − z) − 2

3

(
5zzin +

6z

zin
+

6zin

z
− 30

)

×δ′(zin − z) + 2

[
10

z
− 8

zin
− 6zin +

(
23

3
− 2

z2
in

)
z

]
δ(zin − z)

}
+ O

[
(zin − z)0

]
.

(C.40)
Notice that the singular part of the above is only coming from the δ-functions.
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C.2 The function I

Here we compute the integral (C.8), repeated here for convenience

Ik(η) :=

∫ 1

0
da

∫ ∞

a+2κ
db z (a2 + b2 − 2)2

[
1 +

2i

(b − a)z

] [
1 +

2i

(b + a)z

]

×
[
− 1

b2
− iz

b
− 4

b2 − a2
+

4eibzEi(−ibz)

b2 − a2

]
. (C.41)

Luckily the computation of this is straightforward since we already know what the function
Gk(η, ηin) is — the reason for this is that the integrand of Ik(η) and Gk(η, ηin) are identical in
the limit ηin → η (one must only be careful about the divergences in making this replacement).

As before, we split apart the integral Ik(η) into a triangular and rectangular region,

Ik(η) = I∆
k (η) + I�

k (η) (C.42)

where we define

I∆
k (η) :=

∫ 2κ+1

2κ
db

∫ b−2r

0
da f(a, b, z, z) (C.43)

I�
k (η) :=

∫ ∞

2κ+1
db

∫ 1

0
da f(a, b, z, z) , (C.44)

cf. eqs. (C.11) and (C.12) where we use

f(a, b, z, z) = z (a2 + b2 − 2)2
[
1 +

2i

(b − a)z

] [
1 +

2i

(b + a)z

]

×
[
− 1

b2
− iz

b
− 4

b2 − a2
+

4eibzEi(−ibz)

b2 − a2

]
, (C.45)

where f(a, b, z, zin) is the integrand of Gk(η, ηin), defined in eq. (C.13).
Note that

I∆
k (η) = lim

zin→z

[
G∆

k (η, ηin)
]

(C.46)

where we have the explicit formula for G∆
k (η, ηin) given in eq. (C.17) and so we straightfor-

wardly have an answer for I∆
k (η) (for brevity we avoid writing it down here).

For computing I�
k (η) in eq. (C.44) we use the formula (C.18) (after a integration has

been performed) and take the limit zin → z giving

I�
k (η) = I�,div

k (η) + I�,reg
k (η) , (C.47)

where

I�,div
k (η) :=

∫ ∞

2κ+1
db

{
4πe+ibz

[
−izb2 + 4b + i

(
3z +

4

z

)]
+

[
− iz2b3 − zb2

+
2i(5z2 − 18)

3
b +

10z

3
+

i

b

(
−40

z2
+

92

3
− 43

15
z2
)]}

(C.48)

– 60 –



J
C
A
P
0
7
(
2
0
2
3
)
0
2
2

I�,reg
k (η) :=

∫ ∞

2κ+1
db

(
−4πe+ibz

[
−izb2 + 4b + i

(
3z +

4

z

)]
− 36ib +

36

z
+

4i
(
z2 + 30

)

3bz2

+
−43z2 − 260

15b2z
+

16
(
2ib5z − b4 − 2b2 − 2ibz + 3

)

b3z
coth−1(b) + 4

{
− 3b2z + 12ib

+
11z2 − 36

3z
− 8i

b
+

8

b2z
+

[
4(b2 − 1)2z

b
+

8

b2
(b4 − 1)

(
1

bz
− i

)]
coth−1(b)

}

× eibzEi(−ibz)

)
(C.49)

cf. the definitions (C.20) and (C.21). Note in particular that

I�,reg
k (η) = lim

zin→z

[
G�,reg

k (η, ηin)
]

, (C.50)

where we can straightforwardly write down an expression for I�,reg
k (η) given we know what

G�,reg
k (η, ηin) is in eq. (C.32) (although once again we avoid writing this down here for brevity).

One can almost make a similar statement for I�,1
k (η), but not exactly because this

integral is formally divergent — we need to use the distributions (C.26) to evaluate the first
terms in eq. (C.48), as well as the following dimensional regularizations of various powers of b:

∫ ∞

2κ+1
db bj

(
b

M

)ǫ

= − (2κ + 1)ǫ+j+1

M ǫ(ǫ + j + 1)
≃ −(2κ + 1)j+1

j + 1
+ O(ǫ), (C.51)

∫ ∞

2κ+1
db

1

b

(
b

M

)ǫ

= −(2κ + 1)ǫ

M ǫǫ
≃ −1

ǫ
− log

(
2κ + 1

M

)
+ O(ǫ) (C.52)

where the first relation applies for j ∈ {0, 1, 2, 3} and M = µ/k > 0 (ǫ ∈ C) for some mass
scale µ > 0 and where we have expanded the above integrals for 0 < |ǫ| ≪ 1 (although the
integrals are technically only convergent for Re(ǫ) < −j − 1 and Re(ǫ) < 0 respectively).
With this, we find that

I�,div
k (η) = i

(
40

z2
− 92

3
+

43

15
z2
)[

log

(
2κ + 1

M

)
+

1

ǫ

]
+ 8πei(2κ+1)z

[
− 5

z2
+

3i(2κ + 1)

z

+ 2κ2 + 2κ − 1

]
+ 6i(2κ + 1)2 +

(2κ + 1)(4κ2 + 4κ − 9)

3
z

+
i(2κ + 1)2(12κ2 + 12κ − 17)

12
z2 , (C.53)

where we have ignored the Dirac functions. With the above, we can at last sum together all
the pieces to get our result

Ik(η) = I∆
k (η) + I�,div

k (η) + I�,reg
k (η)

= i

(
40

z2
− 92

3
+

43

15
z2
)[

1

ǫ
+ log

(
2kUV + k

µ

)]
+

64

κz3
− 4i(κ + 4)

κz2
+

2i

9κ

(
84κ3 + 60κ2

+ 79κ + 27
)

+
(32κ3 − 40κ + 1)z

3
+

i

900

(
−3611 − 3360κ + 360κ2 + 4320κ3 + 720κ4

)
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+

[
64i

κz4
− 32

z3
+

32i

κz2
+

8i(4κ4 − 12κ2 − 3)

3κ
− 4(2κ2 − 1)2z +

8iκ(12κ4 − 20κ2 + 15)

15
z2

]

× log

(
2κ + 1

2κ

)
+ 8ei(2κ+1)zEi [−i(2κ + 1)z]

[
− 8i

κz4
− 4(3κ + 2)

κz3
+

i(8κ + 7)

z2

+
2κ(κ + 1)

z

]
+ 8e2iκzEi (−2iκz)

[
8i

κz4
+

12

z3
− 4i(2κ2 − 1)

κz2
− (2κ2 − 1)2

2κ2z

]
. (C.54)

Writing out the real and imaginary parts of the above function gives

Re [Ik(η)] =
64

κz3
+

(32κ3 − 40κ + 1)z

3
+

[
−32

z3
− 4(2κ2 − 1)2z

]
log

(
2κ + 1

2κ

)

+ Re

{
8ei(2κ+1)zEi [−i(2κ + 1)z]

[
− 8i

κz4
− 4(3κ + 2)

κz3
+

i(8κ + 7)

z2
+

2κ(κ + 1)

z

]}

+ Re

{
8e2iκzEi (−2iκz)

[
8i

κz4
+

12

z3
− 4i(2κ2 − 1)

κz2
− (2κ2 − 1)2

2κ2z

]}
(C.55)

while the imaginary part is

Im [Ik(η)] =

(
40

z2
− 92

3
+

43

15
z2
)[

1

ǫ
+ log

(
2kUV + k

µ

)]
− 4(κ + 4)

κz2
+

2

9κ

(
84κ3 + 60κ2

+ 79κ + 27
)

+
−3611 − 3360κ + 360κ2 + 4320κ3 + 720κ4

900
z2 +

[
64

κz4
+

32

κz2

+
8(4κ4 − 12κ2 − 3)

3κ
+

8κ(12κ4 − 20κ2 + 15)

15
z2

]
log

(
2κ + 1

2κ

)

+ Im

{
8ei(2κ+1)zEi [−i(2κ + 1)z]

[
− 8i

κz4
− 4(3κ + 2)

κz3
+

i(8κ + 7)

z2
+

2κ(κ + 1)

z

]}

+ Im

{
8e2iκzEi (−2iκz)

[
8i

κz4
+

12

z3
− 4i(2κ2 − 1)

κz2
− (2κ2 − 1)2

2κ2z

]}
. (C.56)

Next we explore the various asymptotic limits of Ik(η). First we consider the super-Hubble
limit z ≪ 1 (which also assumes κz = −kUVη ≪ 1)

Ik(η) ≃ i

(
40

z2
− 92

3

)[
1

ǫ
+ log

(
2kUV + k

µ

)]
+

−20π + 28i − 40i log[eγ(2κ + 1)z]

z2

+
1

z

(
4

9

{
−4

(
39κ + 15 +

16

κ

)
+ 3

(
−4κ2 + 36 +

3

κ2

)
log

(
2κ + 1

2κ

)
+

(
72κ + 18

+
48

κ
− 9

κ2

)
log [eγ(2κ + 1)z]

}
− 2iπ

(
8κ + 2 +

16

3κ
− 1

κ2

))
+

1

3
{46π

+92i log[eγ(2κ + 1)z] − 128i} + O(z) (C.57)

Next we consider the early-time expansion z ≫ 1 (which implicitly assumes that zin ≫ z ≫
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1), where

Ik(η)≃ i

(
−92

3
+

43

15
z2
)[

1

ǫ
+log

(
2kUV +k

µ

)]
+i

[
720κ4 +4320κ3 +360κ2 −3360κ−3611

900

+
8κ
(
12κ4 −20κ2 +15

)

15
log

(
2κ+1

2κ

)]
z2 +

[
32κ3 −40κ+1

3
−4

(
1−2κ2

)2

×log

(
2κ+1

2κ

)]
z+

2i

9κ

[
84κ3 +60κ2 +79κ+27+12

(
4κ4 −12κ2 −3

)
log

(
2κ+1

2κ

)]

+O
(

1

z

)
. (C.58)

C.3 Asymptotics of F

We can now take the above asymptotic expressions for Gk(η, ηin) and Ik(η) and use for-
mula (C.7) to obtain expressions for Fk(η, ηin) in various limits used in the main text. Most
importantly we consider the limit z ≪ zin ≪ 1 in which, using eqs. (C.37) and (C.57), we have

Fk(η, ηin) =
ε1H2k2

1024π2M2
p

(
40i

z2

[
1

ǫ
+ log

(
2kUV + k

µ

)]
− 20π

z2
+

i

z2
{28 − 40 log [eγ(2κ + 1)z]}

+O
(

1

z

)
−
[
−40π

z2
+ O

(
1

z

)])
. (C.59)

This expression (in fact an even more accurate version of this equation with higher order
terms written explicitly) is given in eq. (3.40). Eq. (3.38), which is also used in the main
text, also corresponds to the limit z ≪ 1 but for arbitrary zin.

We now turn to address the question raised in footnote 11. This footnote asks whether
the singularity of Re [Fk(η, ηin)] in the coincident limit might mean that integrating through
the coincident limit might compete in the expression for Ξk even if kη is not small. We show
here that these corrections are in fact subdominant in kηin. In the coincidence limit, the
integral in the denominator of eq. (4.13) can be written as

−
∫ zin

z0

dz′ Re

[
Gk

(
−z′

k
, −zin

k

)] [
1 +

1

(z′)2

]
≃ −π

∫ zin

z0

dz′ {−z′zinδ′′′(zin − z′)

+(5z′ − 4zin)δ′′(zin − z′) − 2

3

(
5z′zin +

6z′

zin
+

6zin

z′ − 30

)
δ′(zin − z′) + 2

[
10

z′ − 8

zin
− 6zin

+

(
23

3
− 2

z2
in

)
z′
]

δ(zin − z′)
}[

1 +
1

(z′)2

]
(C.60)

where we have used Fk ∝ Ik − Gk and where z ≃ z0 is close to the coincident limit so that
|z0 − zin| ≪ 1 and where we keep the δ-functions because all other terms are regular in the
coincident limit. The above integral can be calculated exactly by using the regularization
δǫ(x) = π−1 limǫ→0 ǫ/(x2 + ǫ2). Then, one obtains

−
∫ zin

z0

dz′ Re

[
Gk

(
−z′

k
, −zin

k

)] [
1 +

1

(z′)2

]
≃ 2

(
z2

in + 1
)

ǫ3
− 10z4

in − 41z2
in − 39

3z2
inǫ

− 2π
(
5z2

in − 24
)

3z3
in

+ O(ǫ). (C.61)

We see that the ǫ-dependence is power-law, and any zin-dependence is subdominant to the
result quoted in the main text.
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C.4 The validity coefficient

Here we compute the integral Mk defined in eq. (3.42)

Mk(η, ηin) := (2π)3/2
∫ η

ηin

dη′ G(η)G(η′)Ck(η, η′) (η′ − η) . (C.62)

Noting the earlier definition (3.37) of Fk(η, ηin), it turns out that we can decompose Mk as
follows

Mk(η, ηin) = Nk(η, ηin) − ηFk(η, ηin) (C.63)

with Nk is defined by

Nk(η, ηin) := (2π)3/2
∫ η

ηin

dη′ G(η) G(η′) Ck(η, η′) η′ . (C.64)

Following similar steps for the computation as for Fk(η, ηin) as in appendix C, we find that
Nk(η, ηin) is given by the following expression

Nk(η, ηin) =
ε1H2k

1024π2M2
p

(
−32κ − 8 − 64

3κ
+

4

κ2
− 2z2

3

[
32κ3 − 40κ + 1 − 12

(
2κ2 − 1

)2

× log

(
2κ + 1

2r

)]
− iz

(
40

z2
− 24 +

43z2

15

)[
1

ǫ
+ log

(
2κ + 1

M

)]
+

i

z

[
2

(
1

κ3
+

2

2κ + 1
+

4

κ

)

−32

κ
log

(
2κ + 1

2κ

)]
+

iz

κ

[
8
(
4κ4 + 1

)
log

(
2κ + 1

2κ

)
− 2

(
36κ4 + 24κ3 + 6κ2 + 9κ + 4

)

2κ + 1

]

+
iz3

15

[
−12κ4 − 72κ3 − 6κ2 + 56κ +

3611

60
− 8

(
12κ4 − 20κ2 + 15

)
κ log

(
2κ + 1

2r

)]

−8

[
4i

κz
− i

(
4κ3 +

1

κ

)
z −

(
1 − 2κ2

)2
z2 +

iκ(12κ4 − 20κ2 + 15)

15
z3

]
Ei [−2iκ(zin − z)]

−8

[
− i

z

(
4

κ
+ 5

)
+

iz

κ

(
4κ4 + 3κ + 1

)
+
(
1 − 2κ2

)2
z2 − iz3

120

(
96κ5 − 160κ3 + 120κ

+ 43
)]

Ei [i(2κ + 1)(z − zin)] − π

(
43z3

15
− 24z +

40

z

)

+e−2iκ(zin−z)

{
− 224z3

in

5(zin − z)5
+

16zin

5(zin − z)4

(
−13iκz2

in − 15i

κ
+ 7zin

)
+

16

15(zin − z)3

×
[
2
(
12κ2 − 5

)
z3

in + 27iκz2
in − 15i

κ
+ 84zin

]
+

16

15(zin − z)2

[
iκ
(
6κ2 − 5

)
z3

in − 12κ2z2
in

+
3i
(
21κ2 − 5

)
zin

κ
+

30i

κzin
+ 27

]
+

4

15(zin − z)

[
− 12iκ

(
6κ2 − 5

)
z2

in − 24
(
3κ2 − 5

)
zin

+
12i

(
3κ2 − 5

)

κ
−
(
12κ4 − 20κ2 + 15

)
z3

in +
120i

κz2
in

− 120

zin

]
+

2

z

[
− i
(
2κ2 − 1

)2

κ3
+

16i

κz2
in
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− 16

zin

]
+

4

15

[
8iκ

(
6κ2 − 5

)
zin +

(
12κ4 − 20κ2 + 15

)
z2

in − 36κ4 + 20κ2 + 15

κ2

]

+
4z2

15

(
12κ4 − 20κ2 + 15

)
+

2z

15

[
2
(
12κ4 − 20κ2 + 15

)
zin +

i
(
108κ4 − 100κ2 + 15

)

κ

]}

+e−i(2κ+1)(zin−z)

{
224z3

in

5(zin − z)5
+

2zin

5(zin − z)4

[
i(104κ + 97)z2

in +
120i

κ
− 56zin

]

+
1

15(zin − z)3

[
−2
(
192κ2 + 222κ + 43

)
z3

in − 18i(24κ + 17)z2
in − 48(28κ + 15)zin

κ

+
240i

κ

]
+

1

15(zin − z)2

[
−6i

(
168κ2 + 169κ + 20

)
zin

κ
− i

(
96κ3 + 204κ2 + 52κ − 43

)
z3

in

+ 6(2κ + 1)(16κ + 23)z2
in − 480i

κzin
− 48(9κ + 5)

κ

]
+

1

15(zin − z)

[
3i
(
96κ3 + 44κ2

−28κ − 3) z2
in +

(
48κ4 − 24κ3 − 68κ2 + 34κ + 43

)
z3

in − 480i

κz2
in

+
6(2κ + 1)(3κ + 4)(8κ − 5)zin

κ
+

480(κ + 1)

κzin
− 6i(3κ + 4)(8κ − 5)

κ

]

+
16

z

[
− 2i

κz2
in

+
2(κ + 1)

κzin
+

iκ(κ + 1)

2κ + 1

]
+

1

15

[
− 2i

(
96κ3 − 36κ2 − 68κ + 17

)
zin

+
2
(
72κ3 − 18κ2 + 43κ + 60

)

κ
−
(
48κ4 − 24κ3 − 68κ2 + 34κ + 43

)
z2

in

]
− z

15

[(
48κ4

−24κ3 − 68κ2 + 34κ + 43
)

zin +
i
(
432κ4 + 24κ3 − 412κ2 − 34κ + 77

)

2κ + 1

]

−z2

15

(
48κ4 − 24κ3 − 68κ2 + 34κ + 43

)}
+ π

{
− zz2

inδ′′′(zin − z)

+2zin(3z − 2zin)δ′′(zin − z) +
2

3

[
−6z2

in

z
− 5z

(
z2

in + 3
)

+ 36zin

]
δ′(zin − z)

+
4

3

(
14zzin +

18zin

z
− 9z2

in − 30

)
δ(zin − z)

})
. (C.65)

The limit z ≪ zin ≪ 1 of the above is

Nk(η, ηin) ≃ ε1H2k

1024π2M2
p

(
−20π

z
+

4i

z
{10 log [eγ(2κ + 1)zin] − 7} +

(
−32κ − 8 − 64

3κ
+

4

κ2

)

−i
40

z

[
1

ǫ
+ log

(
2κ + 1

M

)]
+ O(z)

)
. (C.66)
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With this formula, along with the earlier formula (C.59) in the same limit, we get

Mk(η, ηin) = Nk(η, ηin) − η Fk(η, ηin) = Nk(η, ηin) +
z

k
Fk(η, ηin)

=
ε1H2k

1024π2M2
p

{
−40i

z
log

(
z

zin

)
+

40i

zin
− 20i

3
z

[
1

ǫ
+ log

(
2κ + 1

M

)]

+4

(
− 1

κ2
+ 8κ +

16

3κ
+ 2

)
log

(
z

ezin

)
+ O(z, zin)

}
, (C.67)

where (as before) M = µ/k.

D Infrared volume factors

After splitting apart the Nakajima-Zwanzig equation into different (continuous) momenta
k ∈ R

3+ in eq. (3.20) there appear volume factors V on the l.h.s. so that the equations
make sense dimensionally. This appendix derives the necessity of these volume factors, in
the simpler setting where there are no interactions at all where

V
(2π)3

∂̺Sk

∂η
= −i [HSk(η), ̺Sk(η)] (D.1)

which is derived from the free Liouville equation. For clarity of notation, we omit the label
α = R, I from eq. (2.21) in the main text in this appendix. This is done by assuming an
ansatz of the form (2.42) for the reduced density matrix, repeated here,

̺(η) =
⊗

q<kUV

̺q(η) , (D.2)

which assumes the momentum label is continuous. We justify the presence of the volume
factors in eq. (D.1) here by passing to the limit where discrete momenta are considered, so
that the system is placed inside a box of volume V. In this case the conversion between
discrete and continuum normalization is given by

∑

k

=
V

(2π)3

∫
d3k , Ck(ηin) =

[
(2π)3

V

]1/2

ck(ηin) , Vk(η) =

[
(2π)3

V

]1/2

vk(η) , (D.3)

where Ck(ηin) are the discretely normalized annihilation operators, and Vk(η) are the dis-
cretely normalized Fourier transforms of the Mukhanov-Sasaki field, and so on. With this,
continuum momentum field expansions like

v(η, x) =

∫
d3k

(2π)3/2
vk(η)eik·x =

∫
d3k

(2π)3/2

[
uk(η)ck(ηin) + u∗

k(η)c†
−k(ηin)

]
eik·x (D.4)

become instead

v(η, x) =
1√
V
∑

k

Vk(η)eik·x =
1√
V
∑

k

[
uk(η)Ck(ηin) + u∗

k(η)C†
−k(ηin)

]
eik·x . (D.5)
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The tensor product structure of the ansatz (D.2) is now the same but over a discrete label
— this allows us to compute the time-derivative of ̺S as

∂̺S

∂η
=

∂

∂η



⊗

k<kUV

̺Sk(η)


 =

∑

k<kUV

∂̺ASk

∂η

⊗

q<kUV,q 6=k

̺Sq(η)

=
V

(2π)3

∫

k<kUV

d3k
∂̺ASk

∂η

⊗

q<kUV,q 6=k

̺Sq(η) . (D.6)

On the other hand, the r.h.s. of the free Liouville equation does not end up with a volume
factor by the above logic. To see why, recall the form of the free Hamiltonian (2.18)

HAS(η) =
1

2

∫

k<kUV

d3k
[
pSk(η)p†

Sk(η) + ω2(k, η)vSk(η)v†
Sk(η)

]
=

1

2

∫

k<kUV

d3k HSk(η)

=
1

2

∑

k<kUV

[
PSk(η)P †

Sk(η) + ω2(k, η)VSk(η)V †
Sk(η)

]
=

∑

k<kUV

hSk(η) (D.7)

where we define the shorthand hSk(η) := 1
2

[
PSk(η)P †

Sk(η) + ω2(k, η)VSk(η)V †
Sk(η)

]
in the last

line, which is the discrete normalized version of the (free) Hamiltonian density HSk(η) —
note that there is no volume factor since this operator is built from two fields. The above
implies that:

−i [HAS(η), ̺AS(η)] = −i



∑

k<kUV

hSk(η),
⊗

q<kUV

̺Sq(η)


 (D.8)

= −i
∑

k<kUV

[hSk(η), ̺Sk(η)]
⊗

q<kUV,q 6=k

̺Sq(η) (D.9)

= −i

∫

k<kUV

d3k [HSk(η), ̺Sk(η)]
⊗

q<kUV,q 6=k

̺Sq(η) . (D.10)

Using the above in the free Liouville equation yields eq. (D.1) with the desired volume factors.

E Scalar decoherence from a tensor environment

E.1 Correlation function in real space

Here we consider the ζγγ interaction,

Sint =
M2

p

8

∫
dt d3x a ε1 ζ∂ℓγij∂ℓγij (E.1)

which, after using a dη = dt corresponds to the interaction Hamiltonian

Hint(η) = −
M2

pε1

8
a2
∫

d3x ζ(η, x) ⊗ ∂ℓγij(η, x)∂ℓγij(η, x) . (E.2)

Our interest is in how the environment of short-wavelength tensors decohering long-
wavelength scalar fluctuations.
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In terms of the canonical fields v = aMp
√

2ε1 ζ and vij = 1
2aMpγij — see eq. (A.17)

and using a−1 = −Hη — we have

Hint(η) = −
√

ε1

2
√

2 a(η)Mp

∫
d3x v(η, x) ⊗ ∂ℓvij(η, x)∂ℓvij(η, x)

= G(η)

∫
d3x v(η, x) ⊗ BT(η, x) (E.3)

where G(η) is the same as that defined in eq. (3.3) and

BT(η, x) := ∂ℓvij(η, x)∂ℓvij(η, x) . (E.4)

Next we concern ourselves with the mode expansion for the graviton, noting that the
free part of the graviton action is

(2)S[γ] =
M2

p

8

∫
dη d3x a2

(
γ′

ijγ′
ij − ∂ℓγij∂ℓγij

)
=

1

2

∫
dη d3x

(
v′

ijv′
ij − ∂ℓvij∂ℓvij +

2

η2
vijvij

)

=
1

2

∑

P=+,×

∫
dη d3k

[∣∣(vP

k )′∣∣2 −
(

k2 − 2

η2

)
|vP

k |2
]

(E.5)

which uses γ̇ij = a−1γ′
ij as well as aγ′

ij = 2
Mp

(v′
ij + vij/η), and the expansion in terms of

graviton modes, already introduced in eq. (A.18), and repeated here for convenience

vij(η, x) =

∫
d3k

(2π)3/2

∑

P=+,×
ǫP

ij(k)vP

k (η)eik·x (E.6)

where we recall that ǫP

ij(k) is the polarization tensor. Let us explain how they are defined
concretely. We here follow the conventions of ref. [75], up to numerical factors. For a given
momentum vector k̂ = k/k pointing along the direction (θ, ϕ) in polar coordinates we define
the vectors

ex(k̂) =




cos θ cos ϕ
cos θ sin ϕ

− sin θ


 , ey(k̂) =




− sin ϕ
cos ϕ

0


 . (E.7)

These vectors are perpendicular to k as well as to each other where

eL(k̂) · eL′

(k̂) = δLL′ , k · eL(k̂) = 0, L, L′ ∈ (x, y) , (E.8)

and under reflection k → −k these satisfy (this means taking θ → π − θ and ϕ → ϕ + π)

ex(−k̂) = ex(k̂), ey(−k̂) = −ey(k̂) . (E.9)

Note that when k̂ = ẑ with ϕ = θ = 0 then the above reduce to ex(ẑ) = (1, 0, 0) and ey(ẑ) =
(0, 1, 0). Next construct ǫ+ := 1√

2
(ex ⊗ ex − ey ⊗ ey) and ǫ× := 1√

2
(ex ⊗ ey + ey ⊗ ex), or

more simply in terms of components as:

ǫ+
ij(k) :=

1√
2

[
ex

i (k̂)ex
j (k̂) − ey

i (k̂)ey
j (k̂)

]
, (E.10)

ǫ×
ij(k) :=

1√
2

[
ex

i (k̂)ey
j (k̂) + ey

i (k̂)ex
j (k̂)

]
. (E.11)
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These are the standard linear polarizations, which for the familiar case of k ∝ ẑ simplify to

ǫ+(ẑ) =
1√
2




1 0 0
0 −1 0
0 0 0


 , ǫ×(ẑ) =

1√
2




0 1 0
1 0 0
0 0 0


 . (E.12)

Note that these are normalized as

ǫP

ij(k)ǫP
′

ij (k) = δP P ′ . (E.13)

Importantly the symmetry under k → −k means that ǫ+
ij(−k) = ǫ+

ij(k) as well as ǫ×
ij(−k) =

−ǫ×
ij(k). This implies that

ǫ+
ij(−k)ǫ+

ij(k) = 1, ǫ×
ij(−k)ǫ×

ij(k) = −1 . (E.14)

Furthermore we have the identify, see eq. (2.21) of ref. [76]

∑

P

ǫP

ij(k)ǫP

nm(k) =
1

2
[⊥in (k) ⊥jm (k)+ ⊥im (k) ⊥jn (k)− ⊥ij (k) ⊥nm (k)] (E.15)

where ⊥ij (k) = δij − kikj/k2 is a (symmetric) projection tensor such that ki ⊥ij= 0.
As for scalars, the reality of vij(η, x) implies that v+∗

k (η) = v+∗
−k(η) and v×∗

k (η) =

−v×∗
−k(η). This has the same mode expansion as the Mukhanov-Sasaki field with an extra

polarization label summing over P = +, ×. We then expand

vP

k (η) = uk(η) cP

k + sP u∗
k(η) cP†

−k (E.16)

with sP = 1 for P = + and sP = −1 for P = ×, where uk are the Bunch-Davies mode
functions (same as for the scalar) and the ladder operators satisfy [cP

k , cP
′†

k ] = δ(k − q)δP P ′

and so on. The above then implies that the operator BT(η, x) has the expansion

BT(η, x) := −
∑

P ,P ′=+,×

∫

k,q>kUV

d3k d3q

(2π)3
(k · q) ǫP

ij(k)ǫP
′

ij (q)vP

k (η)vP
′

q (η)ei(k+q)·x , (E.17)

which can be used to simplify the one-point function,

BT(η) := 〈0B |BT(η, x)| 0B〉 (E.18)

= −
∑

P ,P ′=+,×

∫

k,q>kUV

d3k d3q

(2π)3
(k · q) ǫP

ij(k)ǫP
′

ij (q)sP ′uk(η)u∗
q(η)δ(k + q)δP P ′ei(k+q)·x

(E.19)

= 2

∫

k>kUV

d3k

(2π)3
k2 |uk(η)|2 , (E.20)

where we have used ǫP

ij(−k)sP = ǫP

ij(k) and then ǫP

ij(k)ǫP

ij(k) = 1 for each P = +, ×. Using
the one-point function B(η) defined in eq. (B.2), we find that

BT(η) = 2 B(η) . (E.21)
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Let us now turn to the calculation of the two-point correlation function. Using the expectation
values

〈
0B

∣∣∣cP

kcP
′†

−q cP
′′

p cP
′′′†

−ℓ

∣∣∣ 0B

〉
= δ(k + q)δ(p + ℓ)δP P ′δP ′′P ′′′ , (E.22)

〈
0B

∣∣∣cP

kcP
′

q cP
′′†

−p cP
′′′†

−ℓ

∣∣∣ 0B

〉
= δ(k + ℓ)δ(p + q)δP P ′′′δP ′P ′′ + δ(k + p)δ(ℓ + q)δP P ′′δP ′P ′′′

(E.23)

this quantity simplifies to

〈
0B

∣∣BT(η, x)BT(η′, x′)
∣∣ 0B

〉
= BT(η)BT(η′) + 2

∑

P ,P ′,P ′′,P ′′′

∫

k,q,p,ℓ>kUV

d3k d3q d3p d3ℓ

(2π)6

× ǫP

ij(k)ǫP
′

ij (q)ǫP
′′

nm(p)ǫP
′′′

nm(ℓ) (k · q)(p · ℓ)ei(k+q)·x+i(p+ℓ)·x′

× uk(η)uq(η)u∗
p(η′)u∗

ℓ(η′)sP ′′sP ′′′δ(k + ℓ)δ(p + q)δP P ′′′δP ′P ′′ .

(E.24)

Our interest is in the centred two-point function, defined by

CT(η, η′; x − x′) :=
〈
0B

∣∣[BT(η, x) − BT(η)]
[
BT(η′, x′) − BT(η′)

]∣∣ 0B

〉

=
〈
0B

∣∣BT(η, x)BT(η′, x′)
∣∣ 0B

〉
− BT(η)BT(η′) , (E.25)

which after using eq. (E.24), integrating over the δ-functions and using sP ǫP
nm(−k) = ǫP

nm(k)
gives rise to

CT(η, η′; y) =
∑

P ,P ′

∫

k,q>kUV

d3k d3q

(2π)6
ǫP

ij(k)ǫP
′

ij (q)ǫP
′

nm(q)ǫP

nm(k) 2 (k · q)2

× uk(η)uq(η)u∗
q(η′)u∗

k(η′)ei(k+q)·y . (E.26)

Using the identity (E.15) involving the projection ⊥ij (k) := δij − kikj/k2 the summations
over polarizations can be simplified to

CT(η, η′; y) =

∫

k,q>kUV

d3k d3q

(2π)6

1

2
[⊥in (k) ⊥jm (k)+ ⊥im (k) ⊥jn (k)− ⊥ij (k) ⊥nm (k)]

× 1

2
[⊥in (q) ⊥jm (q)+ ⊥im (q) ⊥jn (q)− ⊥ij (q) ⊥nm (q)] 2 (k · q)2

× uk(η)uq(η)u∗
q(η′)u∗

k(η′)ei(k+q)·y . (E.27)

There is a sum over the indices i, j, n, m, and so to this end we note that

⊥in (k) ⊥in (q) = 1 +
(k · q)2

k2q2
, (E.28)

⊥in (k) ⊥in (q) ⊥jm (k) ⊥jm (q) =

[
1 +

(k · q)2

k2q2

]2

, (E.29)

⊥in (k) ⊥im (q) ⊥jm (k) ⊥jn (q) = 1 +
(k · q)4

k4q4
, (E.30)
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which are the only two types of contractions that occur in the above (after re-labeling i, j, n, m
in various ways). After some manipulation the above implies that

CT(η, η′; y) =

∫

k,q>kUV

d3k d3q

(2π)6

1

4

[
1 + 6

(k · q)2

k2q2
+

(k · q)4

k4q4

]
2(k · q)2

× uk(η)uq(η)u∗
q(η′)u∗

k(η′) ei(k+q)·y . (E.31)

E.2 Fourier transform of CT

What appears in the Lindblad equation for this interaction is of course the Fourier transform
of the above correlator which we define as

Tk(η, η′) :=

∫
d3y

(2π)3/2
CT(η, η′; y) e−ik·y . (E.32)

We again are restricted to modes with 0 < k < kUV and using eq. (E.31) we find

Tk(η, η′) =
2

(2π)9/2

∫

q,p>kUV

d3q d3p (q · p)2

[
1

4
+

3

2

(q · p)2

q2p2
+

1

4

(q · p)4

q4p4

]

× uq (η) up (η) u∗
p

(
η′)u∗

q

(
η′) δ(q + p − k) . (E.33)

From here the integration over the angles goes over exactly in the same manner as in ap-
pendix B.2, eventually giving rise to the expression

Tk(η, η′) =
1

32(2π)7/2k

∫ k

0
dQ

∫ ∞

Q+2kUV

dP

[
1

4
+

3

2

(P 2 + Q2 − 2k2)2

(P 2 − Q2)2
+

1

4

(P 2 + Q2 − 2k2)4

(P 2 − Q2)4

]

×
(
P 2 + Q2 − 2k2

)2
[
1 − 2i

(P − Q)η

] [
1 +

2i

(P − Q)η′

] [
1 − 2i

(P + Q)η

]

×
[
1 +

2i

(P + Q)η′

]
e−i(η−η′)P . (E.34)

E.3 Super-Hubble limit of Lindblad coefficient

Next we must compute the super-Hubble limit of the Lindblad coefficient

Fk(η, ηin) := (2π)3/2
∫ η

ηin

dη′ G(η)G(η′)
[
Ck(η, η′) + Tk(η, η′)

]
. (E.35)

We use the earlier representations (B.31) and (E.34) of Ck and Tk above, as well as
G(η)G(η′) = ε1H2ηη′/(8M2

p), which expresses Fk as the triple integral

Fk(η, ηin) =
ε1H2

1024π2M2
pk

∫ η

ηin

dη′
∫ k

0
dQ

∫ ∞

Q+2kUV

dP η η′
[

5

4
+

3

2

(P 2 + Q2 − 2k2)2

(P 2 − Q2)2

+
1

4

(P 2 + Q2 − 2k2)4

(P 2 − Q2)4

] (
P 2 + Q2 − 2k2

)2
[
1 − 2i

(P − Q)η

] [
1 +

2i

(P − Q)η′

]

×
[
1 − 2i

(P + Q)η

] [
1 +

2i

(P + Q)η′

]
e−iP (η−η′) . (E.36)
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We first evaluate the η′-integral using the formula (C.3),
∫ η

ηin

dη′ η′
[
1 +

2i

(P − Q)η′

] [
1 +

2i

(P + Q)η′

]
e−i(η−η′)P

=

[
e−iP (η−η′)

(
1

P 2
− iη′

P
+

4

P 2 − Q2

)
− 4e−iP ηEi(iPη′)

P 2 − Q2

]∣∣∣∣∣

η′→η

η′→ηin

(E.37)

=
1

P 2
− iη

P
+

4

P 2 − Q2
− 4e−iP η [Ei(iPη) + iπ]

P 2 − Q2
− e−iP (η−ηin)

(
1

P 2
− iηin

P
+

4

P 2 − Q2

)

+
4e−iP η [Ei(iPηin) + iπ]

P 2 − Q2
, (E.38)

where we have added and subtracted an extra factor of 4iπe−iP η/(P 2 − Q2) for convenience
later on. With this we find that

Fk(η, ηin) =
ε1H2

1024π2M2
p

[h(η) + g(η, ηin)] (E.39)

with the definitions

h(η) :=

∫ k

0
dQ

∫ ∞

Q+2kUV

dP η

[
5

4
+

3

2

(P 2 + Q2 − 2k2)2

(P 2 − Q2)2
+

1

4

(P 2 + Q2 − 2k2)4

(P 2 − Q2)4

]

× (P 2 + Q2 − 2k2)2

k

[
1 − 2i

(P − Q)η

] [
1 − 2i

(P + Q)η

]{
1

P 2
− iη

P
+

4

P 2 − Q2

−4e−iP η [Ei(iPη) + iπ]

P 2 − Q2

}
, (E.40)

g(η, ηin) :=

∫ k

0
dQ

∫ ∞

Q+2kUV

dP η

[
5

4
+

3

2

(P 2 + Q2 − 2k2)2

(P 2 − Q2)2
+

1

4

(P 2 + Q2 − 2k2)4

(P 2 − Q2)4

]

× (P 2 + Q2 − 2k2)2

k

[
1 − 2i

(P − Q)η

] [
1 − 2i

(P + Q)η

]{
− e−iP (η−ηin)

(
1

P 2

− iηin

P
+

4

P 2 − Q2

)
+

4e−iP η [Ei(iPηin) + iπ]

P 2 − Q2

}
. (E.41)

Our goal will be write down the 0 ≪ −kη ≪ −kηin ≪ 1 limit of Fk(η, ηin).
Let us now study the super-Hubble limit of h. As before, we make use of the variables

z = −kη, zin = −kηin and κ := kUV/k and change the (positive) integration variables to
x = −Qη and y = −Pη which turns eq. (E.40) into

h(η) :=

∫ z

0
dx

f(x, z)

z3
(E.42)

with f defined by

f(x, z) :=

∫ ∞

x+2κz
dy

[
5

4
+

3

2

(x2 + y2 − 2z2)2

(x2 − y2)2
+

1

4

(x2 + y2 − 2z2)4

(x2 − y2)4

]
(x2 + y2 − 2z2)2

×
(

1 − 2i

x − y

)(
1 +

2i

x + y

){
− 1

y2
− i

y
+

4

x2 − y2
− 4eiy [Ei(−iy) + iπ]

x2 − y2

}
.

(E.43)
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We next notice the Taylor series about z = 0,
∫ z

0
dx f(x, z) ≃ f(0, 0)z + O(z−1) , (E.44)

for 0 < z ≪ 1, which implies that f contributes to h in eq. (E.42) at order z−2 for small z,
such that

h(η) ≃ f(0, 0)

z2
+ O(z−1) (E.45)

with coefficient through eq. (E.43) given as

f(0, 0) := 3

∫ ∞

0
dy y4

(
1 +

2i

y

)2
{

−5 + iy

y2
+

4eiy

y2
[Ei(−iy) + iπ]

}
. (E.46)

In order to compare to the earlier section, let us focus on the real part of the above where

Re [f(0, 0)] = 3

∫ ∞

0
dy
(
20 − y2 + 4(y2 − 4) Re

{
eiy [Ei(−iy) + iπ]

}

−16y Im
{

eiy [Ei(−iy) + iπ]
})

. (E.47)

We next use (for y > 0)

eiy [Ei(−iy) + iπ] = Ci(y) cos y +

[
Si(y) − π

2

]
sin(y) + i

{
Ci(y) sin y −

[
Si(y) − π

2

]
cos y

}
,

(E.48)

where the functions Ci(y) and Si(y) are defined by

Ci(y) = −
∫ ∞

y
dt

cos t

t
, Si(y) =

∫ y

0
dt

sin t

t
, (E.49)

to write

Re [f(0, 0)] = 3

∫ ∞

0
dy

(
−y2 + 20 + 4(y2 − 4)

{
Ci(y) cos y +

[
Si(y) − π

2

]
sin y

}

−16y

{
Ci(y) sin y −

[
Si(y) − π

2

]
cos y

})
. (E.50)

For y ≫ 1 the integrand in this expression behaves as

−y2 +20+4(y2 −4)

{
Ci(y) cos y+

[
Si(y)− π

2

]
sin y

}
−16y

{
Ci(y) sin y−

[
Si(y)− π

2

]
cos y

}

≃ −y2 +
72

y2
+O

(
y−4

)
(E.51)

and so the integral diverges in the UV. A similar divergence also arose when summing over
scalar fluctuations, and corresponded to a distributional singularity in the correlation function
near η = η′, see the discussion surrounding eq. (C.22). The distributional singularities
do not contribute to the integration over η′ performed here, and for the present purposes
it is convenient to have an alternative approach that provides a short-cut to the small-z
behaviour without fully evaluating the position-space correlation function for all values of its
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arguments. We adopt here a regularization of this divergence that properly reproduces the
small-z behaviour found in the more complete treatment of appendix C.

To this end we regulate the divergence by first isolating the UV-divergent part ∝ y2 of
the function, leading to

Re [f(0, 0)] = −3

∫ ∞

0
dy y2 + 3

∫ ∞

0
dy

(
20 − 4(y2 − 4)

{
Ci(y) cos y +

[
Si(y) − π

2

]
sin y

}

−16y

{
Ci(y) sin(y) −

[
Si(y) − π

2

]
cos y

})
. (E.52)

We regulate the divergent integral
∫∞

0 dy y2 in the spirit of dimensional regularization by
writing

∫ ∞

0
dy y2 → lim

q→0+
lim
n→0

∫ ∞

0
dy yn

(
y4

y2 + q2

)
= lim

q→0+
lim
n→0

[
πqn+3

2 cos(nπ/2)

]
= 0, (E.53)

where the initial integral only converges when Re(n) < −5 and we introduce a parameter
q > 0 to regulate the associated divergence in the IR (whose presence ultimately cancels the
UV divergence). This leaves the convergent integral

Re [f reg(0, 0)] = 3

∫ ∞

0
dy

(
20 + 4(y2 − 4)

{
Ci(y) cos y +

[
Si(y) − π

2

]
sin y

}

−16y

{
Ci(y) sin y −

[
Si(y) − π

2

]
cos y

})
(E.54)

=

{
− 4y + 4Ci(y)

[
6y cos y + (y2 − 10) sin y

]
− 4

[(
y2 − 10

)
cos y − 6y sin y

]

×
[
Si(y) − π

2

]}∣∣∣∣
y→∞

y→0
= 60π (E.55)

which is the result used in eq. (E.45).
Let us finally compute the super-Hubble behaviour of g defined in eq. (E.41). We again

use the variables z and zin and we here argue that

g(η, ηin) ∼ O(z−1) (E.56)

in the z ≪ 1 limit and so is subdominant to h. To see why it is easier to use the integration
a := Q/k and b := P/k which turns eq. (E.41) into

g(η, ηin) :=

∫ 1

0
da

∫ ∞

a+2κ
db

[
5

4
+

3

2

(a2 + b2 − 2)2

(a2 − b2)2
+

1

4

(a2 + b2 − 2)4

(a2 − b2)4

]
(a2 + b2 − 2)2z

×
[
1 − 2i

(a − b)z

] [
1 +

2i

(a + b)z

]{
eib(z−zin)

(
1

b2
+

izin

b
− 4

a2 − b2

)

+
4eizb [Ei(−izinb) + iπ]

a2 − b2

}
. (E.57)

We then write the above as

g(z, zin) :=

∫ 1

0
da G (a, z, zin) (E.58)
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where we have

G (a, z, zin) :=

∫ ∞

a+2κ
db

[
χ−1(a, b, zin)

z
+ χ0(a, b, zin) + χ+1(a, b, zin)z

]
eibz (E.59)

with the definitions:

χ−1(a, b, zin) :=
4

a2 − b2

[
5

4
+

3

2

(a2 + b2 − 2)2

(a2 − b2)2
+

1

4

(a2 + b2 − 2)4

(a2 − b2)4

]
(a2 + b2 − 2)2

×
{

e−ibzin

(
1

b2
+

izin

b
− 4

a2 − b2

)
+

4 [Ei(−izinb) + iπ]

a2 − b2

}
(E.60)

χ0(a, b, zin) := − 4ib

a2 − b2

[
5

4
+

3

2

(a2 + b2 − 2)2

(a2 − b2)2
+

1

4

(a2 + b2 − 2)4

(a2 − b2)4

]
(a2 + b2 − 2)2

×
{

e−ibzin

(
1

b2
+

izin

b
− 4

a2 − b2

)
+

4 [Ei(−izinb) + iπ]

a2 − b2

}
(E.61)

χ+1(a, b, zin) :=

[
5

4
+

3

2

(a2 + b2 − 2)2

(a2 − b2)2
+

1

4

(a2 + b2 − 2)4

(a2 − b2)4

]
(a2 + b2 − 2)2

×
{

e−ibzin

(
1

b2
+

izin

b
− 4

a2 − b2

)
+

4 [Ei(−izinb) + iπ]

a2 − b2

}
. (E.62)

Since eq. (E.59) reveals that G is a Fourier transform, we note that its 0 < z ≪ 1 limit
(for fixed zin and κ) is governed by the b ≫ 1 behaviour of the functions χj , in which limit
we have:

χ−1(a, b, zin) ≃ e−ibzin

{
−12ib − 60zin + O

(
b−1
)}

, (E.63)

χ0(a, b, zin) ≃ e−ibzin

{
−12zinb2 + 60ib +

[(
80 − 68a2

)
zin +

48

zin

]
+ O

(
b−1
)}

, (E.64)

χ+1(a, b, zin) ≃ e−ibzin

{
3izinb3 + 15b2 +

2i
[(

7a2 − 10
)

z2
in − 6

]

zin
b +

12

z2
in

+ 82a2 − 100 + O
(
b−1
)
}

.

(E.65)

To derive the required asymptotics of each of the above Fourier transforms, we write
∫ ∞

a+2κ
db χ−1(a, b, zin)eibz =

∫ ∞

a+2κ
db e−ibzin (−12ib − 60zin) eibz + Ξ−1(z, a, zin) (E.66)

with the definition

Ξ−1(z, a, zin) :=

∫ ∞

a+2κ
db
[
χ−1(a, b, zin) − e−ibzin (−12ib − 60zin)

]
eibz . (E.67)

First note that Ξ−1(z, a, zin) ∼ O(z0) in the z ≪ 1 limit, which follows from the fact that
its integrand converges to a z-independent constant when z → 0+. What remains then is to
evaluate the distribution

∫ ∞

a+2κ
db e−ibzin (−12ib − 60zin) eibz = e−i(zin−z)(a+2κ)

[
12i

(zin − z)2
− 12 (a + 2κ − 5i)

zin − z

]

+ 12πδ′(zin − z) − 60πzinδ(zin − z) , (E.68)
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which follows from eqs. (B.49) and (B.50). Fixing a and zin in the above, and taking the
0 < z ≪ 1 limits then implies that (also assuming that κz ≪ 1)

∫ ∞

a+2κ
db e−ibzin (−12ib − 60zin) e+ibz ≃ e−izin(a+2κ)

[
12i

z2
in

− 12 (a + 2κ − 5i)

zin

]
+ O (z) ,

(E.69)

which implies that
∫ ∞

a+2κ
db χ−1(a, b, zin)eibz ∼ O

(
z0
)

. (E.70)

Similar computations show that in the super-Hubble limit 0 < z ≪ 1 with κz ≪ 1,∫∞
a+2κ db χ0,+1(a, b, zin)eibz ∼ O(z0), which when combined with eq. (E.59) show that

G (a, z, zin) ∼ O(z−1) in the same limit. Integrating from a = 0 to a = 1 in eq. (E.58)
leaves the same z-dependence and so we conclude that g(z, zin) ∼ O(z−1).

Combining the above dependences for h and g in eq. (E.39) implies

Fk(η, ηin) ≃ ε1H2k2

1024π2M2
p

60π

(−kη)2
+ O

[
(−kη)−1

]
(E.71)

in the super-Hubble limit, as claimed in the main text, see eq. (3.61).

F Tensor decoherence from a scalar environment

F.1 General considerations

Here we consider the interaction Hamiltonian (5.2)

Hint(η) = G̃(η)

∫
d3x vij(η, x) ⊗ Bij(η, x) , (F.1)

with G̃ = −(2Mpa)−1 defined in eq. (5.4), vij the canonical tensor mode for the sys-
tem modes (related to γij by eq. (A.17)) and the environmental operator Bij(x) =
δikδjl∂kv(η, x)∂lv(η, x) defined in eq. (5.3).

Using an analogous setup as that used for the scalar, the Nakajima-Zwanzig equation
for the reduced density matrix (now for the graviton) at second-order in G̃ is given by

∂̺

∂η
≃ −iG̃(η)Bia(η)

∫
d3x [via(η, x), ̺(η)]

−
∫

d3x

∫
d3x′

∫ η

ηin

dη′ G̃(η)G̃(η′)
{[

via(η, x), vjb(η
′, x′)̺(η′)

]
Ciajb(η, η′; x − x′)

+
[
̺(η′)vjb(η

′, x′), via(η, x)
]
Ciajb∗(η, η′; x − x′)

}
(F.2)

cf. eq. (3.16), with the definitions

B
ia(η) := 〈0B|Bia(η, x)|0B〉 (F.3)

and

Ciajb(η, η′; x − x′) = 〈0B

∣∣∣
[
Bia(η, x) − B

ia(η)
] [

Bjb(η′, x′) − B
jb(η′)

]∣∣∣ 0B〉 . (F.4)
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Using the mode expansion of the scalar as usual one finds that

B
ia(η) =

∫

k>kUV

d3k

(2π)3
kika|uk(η)|2 =

1

3
δia

B(η) (F.5)

with B given in eq. (3.17)14 and

Ciajb(η, η′; x − x′) = 2

∫

q,p>kUV

d3q d3p

(2π)6
piqapjqb uq(η)up(η)u∗

q(η′)u∗
p(η′) ei(q+p)·(x−x′).

(F.6)

Using the mode expansion for vij given in eq. (A.18), repeated here for convenience

vij(η, x) =

∫
d3k

(2π)3/2

∑

P=+,×
ǫP

ij(k)vP

k (η) eik·x , (F.7)

one can re-write the above equation as

∂̺

∂η
= − (2π)3/2

∑

P ,P ′

∫

k<kUV

d3k

∫ η

ηin

dη′ G̃(η)G̃(η′)ǫP

ia(k)ǫP
′

jb (−k)

×
{[

vP

k (η), vP
′

−k(η′)̺(η′)
]
C

iajb
−k (η, η′) +

[
̺(η′)vP

′

−k(η′), vP

k (η)
]
C

iajb∗
−k (η, η′)

}
, (F.8)

where we define the Fourier transform C
iajb
k of the correlator Ciajb(η, η′; y) in the variable

y where

C
iajb
k (η, η′) =

∫
d3y

(2π)3/2
Ciajb(η, η′; y) e−ik·y

=
2

(2π)9/2

∫

q,p>kUV

d3q d3p piqapjqb uq(η)up(η)u∗
q(η′)u∗

p(η′) δ (p + q − k) . (F.9)

From here we note that eq. (F.9) implies C
iajb
−k (η, η′) = C

iajb
k (η, η′), and we also use the

symmetry ǫP
′

jb (−k)vP
′

−k(η′) = ǫP
′

jb (k)vP
′∗

k (η′) for each polarization P ′ giving

∂̺

∂η
= − (2π)3/2

∑

P ,P ′

∫

k<kUV

d3k

∫ η

ηin

dη′ G̃(η)G̃(η′) ǫP

ia(k)ǫP
′

jb (k)

×
{[

vP

k (η), vP
′†

k (η′)̺(η′)
]
C

iajb
k (η, η′) +

[
̺(η′)vP

′†
k (η′), vP

k (η)
]
C

iajb∗
k (η, η′)

}
. (F.10)

We next split the density matrix into a product over modes as before, with mode labels k

and polarizations P = +, ×
ρ =

⊗

k,P

ρP

k (F.11)

and repeating the arguments used in the scalar case leads to the separate evolution equation
for each label:

V
(2π)3/2

∂̺P

k

∂η
= −(2π)3/2

∫ η

ηin

dη′G̃(η)G̃(η′)
{
Sk(η, η′)

[
ṽP

k (η), ṽP

k (η′)̺P

k (η′)
]

+ h.c.
}

. (F.12)

with ṽ a proxy for the real and imaginary parts of the field (as in the text below (2.21)) and
where we define

ǫP

ia(k)ǫP
′

jb (k) C
iajb
k (η, η′) = δP P

′

Sk(η, η′) . (F.13)
14Notice that since B

ia
∝ δia then the contraction in the first term of eq. (F.2) vanishes since we assume

the graviton is traceless, where δiaγia = 0.
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F.2 Computing the correlation function

We first note that eq. (F.9) implies C
iajb
k (η, η′) has the symmetries C

iajb
k = C

jaib
k = C

ibja
k =

C
aibj
k . The most general form possible consistent with these symmetries is

C
iajb
k =

A

2

(
δiaδjb + δibδja

)
+ B δijδab +

C

4

(
δiakjkb + δjakikb + δibkjka + δjbkika

)

+
D

2

(
δijkakb + δabkikj

)
+ E kikjkakb , (F.14)

where the coefficients A through E are functions of η, η′ and k2. Contracting the above form
with two polarization tensors as in eq. (F.13) yields

ǫP

ia(k)ǫP
′

jb (k) C
iajb
k (η, η′) = δP P

′

(
A

2
+ B

)
, (F.15)

which uses ǫP

ij(k) = ǫP

ji(k), ǫP

ij(k)ǫP
′

ij (k) = δP P
′

and ǫP

ii(k) = kiǫij(k) = 0, showing that

Sk(η, η′) =
A

2
+ B (F.16)

is the function appearing in eq. (F.13). The required coefficients A and B can be computed
by inverting the following five expressions for rotation-invariant integrals:

δijδabC
iajb
k = 3A + 9B + k2C + 3k2D + k4E , (F.17)

δiaδjbC
iajb
k = Ck = 6A + 3B + 2k2C + k2D + k4E , (F.18)

kikjδabC
iajb
k = k2A + 3k2B + k4C + 2k4D + k6E , (F.19)

δiakjkbC
iajb
k = 2k2A + k2B +

3

2
k4C + k4D + k6E , (F.20)

and
kikakjkbC

iajb
k = k4A + k4B + k6C + k6D + k8E . (F.21)

Inverting these formulas gives the coefficients A through E in terms of integrals, and using
the result in eq. (F.16) yields

Sk(η, η′) =
δijδabC

iajb
k

4
− kikjδabC

iajb
k

2k2
+

kikakjkbC
iajb
k

4k4
(F.22)

=
2

(2π)9/2

∫

q,p>kUV

d3q d3p uq(η)up(η)u∗
q(η′)u∗

p(η′)

[
q2p2

4
− (k · p)2q2

2k2

+
(k · q)2(k · p)2

4k4

]
δ(q + p − k) (F.23)

=
2

(2π)9/2

∫

q,p>kUV

dq dp p4q4uq(η)up(η)u∗
q(η′)u∗

p(η′)
∫ 4π

0
d2Ωq d2Ωp

[
1

4

−(k · p)2

2k2p2
+

(k · q)2(k · p)2

4k4p2q2

]
δ(q + p − k) , (F.24)
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which writes the integrals in polar coordinates. The three terms mainly differ in their angular
integrations. Rotation invariance allows us to choose k (as in appendix B) to point along the
z axis: k = (0, 0, k). Using this choice, the angular integrals become

J (p, q, k) :=

∫ 4π

0
d2Ωq d2Ωp

[
1

4
− (k · p)2

2k2p2
+

(k · q)2(k · p)2

4k4p2q2

]
δ(q + p − k) (F.25)

=
1

q2

∫ 1

−1
d cos θq

∫ 2π

0
dϕq

∫ 1

−1
d cos θp

∫ 2π

0
dϕp

[
1

4
− cos2 θp

2
+

cos2 θq cos2 θp

4

]

× δ

(
q −

√
p2 + k2 − 2kp cos θp

)
δ


cos θq − k − p cos θp√

p2 + k2 − 2kp cos θp




× δ [ϕq − (ϕp + π)] . (F.26)

Integrating over ϕq, ϕp and then θq, and writing µ = cos θp yields

J (p, q, k) =
2π

pqk

∫ 1

−1
dµ

[
1

4
− µ2

2
+

(k − pµ)2µ2

4(p2 + k2 − 2kpµ)

]
δ

(
µ − p2 + k2 − q2

2pk

)
, (F.27)

which uses the identity δ
(
q −

√
p2 + k2 − 2kpµ

)
= q

kp δ
(
µ − p2+k2−q2

2pk

)
. The result vanishes

unless −2pk ≤ p2 + k2 − q2 ≤ 2pk, which requires the p and q integrals to run over the region
U depicted in figure 5. For p, q in this region the final angular integral gives

J (p, q, k) =
π

2pqk

{
1 − (p2 + k2 − q2)2

2p2k2
+

[k4 − (p2 − q2)2]2

16p2q2k4

}
, (F.28)

which when used in eq. (F.22) together with the Bunch-Davies mode functions (2.40) gives

Sk(η, η′) =
1

8(2π)7/2k

∫∫

U
dqdp

{
q2p2 − (k2 + p2 − q2)2q2

2k2
+

[
k4 − (p2 − q2)2

]2

16k4

}

×
(

1 − i

qη

)(
1 +

i

qη′

)(
1 − i

pη

)(
1 +

i

pη′

)
e−i(q+p)(η−η′) . (F.29)

The integral over the region U is performed using the coordinate change p = 1
2(P + Q) and

q = 1
2(P − Q), leading to

Sk(η, η′) =
1

32(2π)7/2k

∫ k

−k
dQ

∫ ∞

|Q|+2kUV

dP

[
(P 2 − Q2)2

8
− (k2 + PQ)2(P − Q)2

4k2

+
(k4 − P 2Q2)2

8k4

] [
1 − 2i

(P − Q)η

] [
1 +

2i

(P − Q)η′

]

×
[
1 − 2i

(P + Q)η

] [
1 +

2i

(P + Q)η′

]
e−i(η−η′)P . (F.30)

Note that this integrand is not symmetric under Q → −Q. By splitting up the Q-integral to
be over [−k, 0] and [0, k] and then taking Q → −Q in the first piece the above simplifies to

Sk(η, η′) =
1

128(2π)7/2k5

∫ k

0
dQ (k2 − Q2)2

∫ ∞

Q+2kUV

dP (k2 − P 2)2
[
1 − 2i

(P − Q)η

]

×
[
1 +

2i

(P − Q)η′

] [
1 − 2i

(P + Q)η

] [
1 +

2i

(P + Q)η′

]
e−i(η−η′)P . (F.31)
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Our interest is in the leading behaviour as for small −kη and so we focus on the k → 0
(and so also Q → 0) limit of eq. (F.31), which is

Sk(η, η′) ≃ 1

128(2π)7/2k5

∫ k

0
dQ (k2 − Q2)2

∫ ∞

2kUV

dP P 4
(

1 − 2i

Pη

)2 (
1 +

2i

Pη′

)2

e−i(η−η′)P

(F.32)

≃ 1

240(2π)7/2

∫ ∞

2kUV

dP P 4
(

1 − 2i

Pη

)2 (
1 +

2i

Pη′

)2

e−i(η−η′)P , (F.33)

where the last expression is valid in the limit k → 0. This is to be compared with the same
limit for the scalar contribution (B.31), which is

Ck(η, η′) =
1

32(2π)7/2

∫ k

0
dQ

∫ ∞

Q+2kUV

dP
(P 2 + Q2 − 2k2)2

k

[
1 − 2i

(P − Q)η

] [
1 +

2i

(P − Q)η′

]

×
[
1 − 2i

(P + Q)η

] [
1 +

2i

(P + Q)η′

]
e−i(η−η′)P (F.34)

≃ 1

32(2π)7/2

∫ ∞

2kUV

dP P 4
(

1 − 2i

Pη

)2 (
1 +

2i

Pη′

)2

e−i(η−η′)P , (F.35)

where, again, the last expression is valid for k → 0. Therefore, we see that for small k

Sk(η, η′) ≃ 2

15
Ck(η, η′) . (F.36)

This can also be derived directly by taking the k → 0 limit of eq. (F.25), which becomes

J (p, q, k → 0) :=
1

q2
δ(p − q)

∫ 4π

0
d2Ωq d2Ωp

[
1

4
− (k · p)2

2k2p2
+

(k · q)2(k · p)2

4k4p2q2

]
δ

(
q

q
+

p

p

)

(F.37)

=
2π

q2
δ(p − q)

∫ 1

−1
dµ

(
1

4
− µ2

2
+

µ4

4

)
=

4

15

(
2π

q2

)
δ(p − q) , (F.38)

which is 2
15 times the result obtained when the square bracket is 1.

F.3 Lindblad coefficient

Beginning with the Nakajima-Zwanzig equation (F.39), and applying the Markovian approx-
imation in the same spirit as earlier gives

V
(2π)3/2

∂̺P

k

∂η
= −Tk(η, ηin)

[
ṽP

k (η), ṽP

k (η′)̺P

k (η′)
]

− T∗
k(η, ηin)

[
̺P

k (η′)ṽP

k (η′), ṽP

k (η)
]
, (F.39)

where we define
Tk(η, ηin) = (2π)3/2

∫ η

ηin

dη′ G̃(η) G̃(η′) Sk(η, η′) (F.40)

and we note that again Re [Tk(η, ηin)] drives the decoherence. Using G̃(η) = Hη/Mp as well
as eq. (F.31) means that eq. (F.40) can be written as the triple integral

Tk(η, ηin) =
H2

512π2M2
pk5

∫ η

ηin

dη′
∫ k

0
dQ

∫ ∞

Q+2kUV

dP ηη′ (k2 − P 2)2(k2 − Q2)2
[
1 − 2i

(P − Q)η

]

×
[
1 +

2i

(P − Q)η′

] [
1 − 2i

(P + Q)η

] [
1 +

2i

(P + Q)η′

]
e−i(η−η′)P . (F.41)
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We first evaluate the η′-integral using the formula (C.3), giving

Tk(η, ηin) =
H2

512π2M2
pk5

∫ k

0
dQ

∫ ∞

Q+2kUV

dP η (k2 − P 2)2(k2 − Q2)2
[
1 − 2i

(P − Q)η

]

×
[
1 − 2i

(P + Q)η

]{
1

P 2
− iη

P
+

4

P 2 − Q2
− 4e−iP η [Ei(iPη) + iπ]

P 2 − Q2

−e−iP (η−ηin)
(

1

P 2
− iηin

P
+

4

P 2 − Q2

)
+

4e−iP η [Ei(iPηin) + iπ]

P 2 − Q2

}
. (F.42)

The terms involving ηin can be handled in precisely the same way as in the discussion around
eq. (E.56), showing that they contribute only subdominantly for small (−kη), and so for our
purposes can be neglected. This leaves

Tk(η, ηin) ≃ H2

512π2M2
pk5

∫ k

0
dQ

∫ ∞

Q+2kUV

dP η (k2 − P 2)2(k2 − Q2)2
[
1 − 2i

(P − Q)η

]

×
[
1 − 2i

(P + Q)η

]{
1

P 2
− iη

P
+

4

P 2 − Q2
− 4e−iP η [Ei(iPη) + iπ]

P 2 − Q2

}
, (F.43)

which can be rewritten using the change of variables already used before, reproduced here
for convenience, z = −kη, κ = kUV/k, x = −Qη and y = −Pη as

Tk ≃ H2k2

512π2M2
pz3

∫ z

0
dx

(
x2

z2
− 1

)2

h(x, z) (F.44)

with

h(x, z) :=

∫ ∞

x+2κz
dy (y2 − z2)2

(
1 − 2i

x − y

)(
1 +

2i

x + y

){
− 1

y2
− i

y
+

4 − 4eiy [Ei(−iy) + iπ]

x2 − y2

}
.

(F.45)
This integral diverges (as did the previous examples), since the integrand approaches −y2

for large y. We handle this divergence the same way as before by subtracting the divergent
large-y form, leaving a convergent result (see the discussion around eq. (E.53)).

Taking the z → 0 limit (which also implies x → 0) then gives the leading contribution

Tk ≃ H2k2

512π2M2
pz3

hreg(0, 0)

∫ z

0
dx

(
x2

z2
− 1

)2

=
H2k2

512π2M2
pz2

[
8hreg(0, 0)

15

]
(F.46)

where (compare to eqs. (E.46) and (E.54))

hreg(0, 0) =

∫ ∞

0
dy

(
y4
(

1 +
2i

y

)2
{

− 1

y2
− i

y
− 4 − 4eiy [Ei(−iy) + iπ]

y2

}
+ y2

)
(F.47)

=
f reg(0, 0)

3
= 20π . (F.48)

This leads to the following ηin-independent leading behaviour

Re [Tk(η, ηin)] ≃ H2k2

48πM2
pz2

=
H2k2

1024π2M2
p

[
64π

3z2
+ O(z−1)

]
(F.49)
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and so comparing with eq. (3.38) we see that

Re [Tk(η, ηin)] ≃ 16

15 ε1
Re [Fk(η, ηin)] (F.50)

in the super-Hubble limit, as claimed in the main text. The factor 16/(15ε1) has two sources:
the factor of 2

15 seen in eq. (F.36) together with the factor of 8/ε1 coming from the change
in effective coupling noted in eq. (5.9).
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