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Abstract

Charged-particle trajectories are usually reconstructed with the LHCb detector using
combined information from the tracking devices placed upstream and downstream
of the 4 T'm dipole magnet. Trajectories reconstructed using only information from
the tracker downstream of the dipole magnet, which are referred to as T tracks, have
not been used for physics analysis to date due to their limited momentum resolution.
The challenges of the reconstruction of long-lived particles using T tracks for use
in physics analyses are discussed and solutions are proposed. The feasibility and
the tracking performance are studied using samples of long-lived A and Kg hadrons
decaying between 6.0 and 7.6 metres downstream of the proton-proton collision
point, thereby traversing most of the magnetic field region and providing maximal
sensitivity to magnetic and electric dipole moments. The reconstruction can be
expanded below this range for use in direct searches of exotic long-lived particles.
The data used in this analysis have been recorded between 2015 and 2018 and
correspond to an integrated luminosity of 6fb~!. The results obtained demonstrate
the possibility to further extend the fiducial volume and the physics reach of the
LHCb experiment.
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1 Introduction

After two successful data-taking campaigns from 2009 to 2013 (Run 1), and from 2015
to 2018 (Run 2), the LHC Run 3 started in 2022. Motivated by further exploration
and precision studies, the LHCb detector [1,2] has undergone upgrades to most of its
components in order to operate at an instantaneous luminosity of 2 x 10?3 cm=2s~! and
integrate an expected total luminosity of ~ 50fb~" by the end of LHC Run 4 [3[7]. A
triggerless readout followed by a fully software-based trigger will operate at an average
proton-proton (pp) bunch-crossing rate of 30 MHz [8,(9].

In this paper, the reconstruction of particles decaying between 6.0 and 7.6 metres
from the pp interaction point (IP) is described. Samples of long-lived A and K¢ hadrons
decaying into the pr~ and 77~ final states, respectively, are reconstructed and selected
from A) — JipA and B° — JAapKQ decays[] using data collected during Run 2 and
corresponding to an integrated luminosity of 6 fb™'. The reconstruction of this topology
of decays enables measurements of electromagnetic dipole moments of long-lived particles
(LLPs), e.g. the A baryon, and has the potential to be applied for direct searches of beyond
Standard Model (BSM) LLPs, thus extending the LHCb physics reach.

In Sec. [2 the physics motivations for this work are outlined. In Secs. [3] and [4] the
LHCDb detector and its upgrade, the charged-particle reconstruction, and the data and
simulation samples used are described. Sections [ and [6] contain the main elements of the
decay reconstruction algorithm, and how it has been adapted to enable the reconstruction
of particles decaying in the region of the LHCb dipole magnet, along with the performance
obtained. The summary and prospects are discussed in Sec. [7}

2 Physics motivation

Two examples of physics use cases that would benefit from the reconstruction of LLPs
decaying several metres away from the pp interaction point at LHCDb are considered. The
first is the measurement of electromagnetic dipole moments of the A baryon and the
second is the search for BSM LLPs.

Electromagnetic properties of fundamental particles are excellent probes for physics
within and beyond the Standard Model (SM). An electric dipole moment (EDM) term in the
SM Lagrangian violates both parity (P) and time-reversal (7") symmetries, and thus breaks
charge-conjugation and parity (CP) symmetry if CPT invariance is assumed. Sources of
CP violation within the SM, namely the Cabibbo-Kobayashi-Maskawa mechanism [104|11]
and the f-term of quantum chromodynamics [12,13], with § < 107! from neutron EDM
searches [14], predict minuscule EDMs. Thus, EDM searches are sensitive to new sources of
CP violation and BSM physics [15,16]. Furthermore, the measurement of the asymmetry
in the magnetic dipole moment (MDM) of the A baryon and the A antibaryon constitutes
a test of CPT symmetry. The latest measurements of the magnetic and electric dipole
moments of the /A baryon date back more than 40 years [17,/1§]. The recent observation by
the BESIII collaboration that the A and A decay parameters are higher by (174 3) % than
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the previous world average |19] reinforces the importance of revisiting these fundamental
measurements.

The MDM and EDM of long-lived particles can be measured by exploiting the spin
precession occurring while traversing the LHCb dipole magnet [20]. The requirements for
this measurement include a source of polarised A baryons not aligned with the magnetic
field (e.g. from weak decays of charm or beauty baryons) and the ability to reconstruct
the A decays after the magnetic field region with sufficient invariant-mass, vertex and
helicity-angle resolution. The LHCb collaboration has measured the polarisation of A
baryons originating from A) — J/ibA weak decays to be maximal along its direction of
motion [21,22], in agreement with other LHC measurements [23,24]. In that case, the A
decays occurred closer to the pp interaction region (within about 2m), upstream of the
LHCb magnet. With the procedure discussed here, the A reconstruction is extended to
decays taking place beyond the magnet region, offering the possibility to measure the
electromagnetic dipole moments of the A baryon.

Direct searches for new particles at accelerators are particularly valuable because they
provide among the most stringent tests of BSM theories. To date, these searches have
not been successful and the excluded mass limits have reached several hundred GeV/c? in
most channels. Similar to the SM, where particle lifetimes span an enormous range, BSM
theories predict new particles with a variety of lifetimes. Experiments at the LHC [25,26]
have focused their attention largely on prompt or very short-lived (7 < 1 ps) particles.
Searches performed by the ATLAS and CMS collaborations typically show the best
sensitivity for lifetimes ~ 1 ns and masses of a few hundred GeV /c?. Different proposals
for dedicated experiments sensitive to feebly interacting particles in the MeV/c* GeV/c?
mass range are under consideration [27], including some to be installed at existing LHC
interaction points.

The LHCb detector has the potential to contribute to these searches |28]. Thanks to
its forward pseudorapidity coverage and excellent performance in the reconstruction of
heavy hadron decays, it is especially well suited for searches in beauty hadron (Hj) decays,
such as H, — X x, with x — Ypips, where X and Y represent SM particle systems,
x the new particle, and p; and py stand for SM particles. The production and decay
channel limit the range of the x mass between mpy, — mx and my + m,, + m,,. Several
hidden-sector theories predict LLPs in this mass range, e.g., the inflaton model [29,30].
The LHCD collaboration has previously searched for LLPs in the modes BT — KT [31]
and BY — K*x [32], with x — p"u~. In these studies, the x particle must decay inside
the vertex detector (VELO, see Sec. , the tracking device closest to the interaction
region, with maximum flight distances of about 30 cm. These measurements have excluded
x particles in the mass range 200 < m, < 4700 MeV/c? with lifetimes of ~ 10 ps and
branching ratios ~ 1071 — 1079 at 95% confidence level (CL). By exploiting the tracking
stations upstream and downstream of the dipole magnet, the tracking volume can be
extended up to 7.6 m with sensitivity to lifetimes of several tens of nanoseconds [33].

3 LHCDb detector

The LHCb detector [1}2] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < n < 5, designed for the study of particles containing b or ¢ quarks. During LHC
Run 1 and Run 2, a silicon-strip detector (VErtex LOcator, VELO) surrounds the pp



interaction region [34] at a radius of 8 mm. It consists of 42 planar modules arranged along
the direction of the beam axis (z axis) covering a total length of about 1 m, each providing
a measurement of the r (R sensors) and ¢ (P sensors) coordinates. The Tracker Turicensis
(TT) is a planar silicon strip detector with a total active area of about 8 m?, located about
2m away from the IP, upstream of the dipole magnet with a bending power of about 4 T m.
Three hybrid planar tracking stations (T1-T3) are placed downstream of the magnet,
between about 7.5 and 10 m away from the IP; the inner detector modules (IT) closer
to the beam pipe are identical to those used in the TT stations and have a total active
area of 4m?, while the outer detector modules (OT) [35] are gas-tight straw tubes with a
total active area of about 360 m?. Both the TT and T1-T3 stations are composed of four
planes arranged in a xuvx geometry, where the x planes contain vertical strips, while the
u and v planes contain strips rotated with respect to the x planes by a stereo angle of +5°
and —5°, respectively. The tracking system provides a measurement of the momentum, p,
of charged particles with a relative uncertainty that varies from 0.5% at low momentum
to 1.0% at 200 GeV/c. The minimum distance of a track to a primary pp collision vertex
(PV), the impact parameter, is measured with a resolution of (15 4 29/pt) wm, where
pr is the component of the momentum transverse to the beam, in GeV/c [2]. Muons are
identified by a system composed of alternating layers of iron and multiwire proportional
chambers [36]. The online event selection is performed by a trigger [37], which consists of
a hardware stage, based on information from the muon system and calorimeters, followed
by a software stage, which applies a full event reconstruction. Particle identification (PID)
is performed using two RICH detector stations,RICH1 located between the VELO and
the TT and RICH2 located downstream of the last T stations.

During the LHC Run 3 (2022-2025) and the forthcoming Run 4 (starting in 2029) the
upgraded LHCb experiment [3] plans to collect a total integrated luminosity of ~ 50 fb™*
of pp collisions. In order to meet this goal, the detector aims to operate at an instantaneous
luminosity of 2 x 103 cm™2s™!, five times higher than during Run 2, and read out at
40 MHz with a flexible software-based trigger. The whole read-out electronics and most
of the detectors (with the exception of the RICH, calorimeters and muon chambers)
have been replaced, maintaining the overall geometry unchanged, while improving, where
possible, their acceptance and resolution [3,/5H9]. The upgraded VELO is made of new
state-of-the-art silicon pixel sensors [5]; the Upstream Tracker (UT) detector [6] is similar to
the original TT in shape, but with thinner sensors, finer segmentation and larger coverage;
the Scintillating Fiber (SciFi) Tracker [6] replaces the three hybrid tracking stations
downstream of the magnet by scintillating fibers with a diameter of 250 um, bonded in a
matrix structure with a total active area of about 30m?. At the same time, a new trigger
paradigm consisting of two stages of an entirely software-based trigger, the High Level
Trigger (HLT) 1 and 2 [8,9], is becoming operational. In order to cope with the 30 MHz
collision rate, the event reconstruction algorithms running on the HLT computing farms
must meet strict requirements in terms of computing efficiency. Ensuring excellent physics
performance while leaving the required throughput constitutes a significant challenge.

4 Track reconstruction and data samples

Reconstructed tracks of charged-particle trajectories are categorised according to the
contributions of hits from the various parts of the tracking system [2/|38], as illustrated in



Fig.

Long tracks traverse the full tracking system. They include hits in both the VELO and
the T1-T3 stations, and optionally in TT (UT in the upgraded detector).

Upstream tracks traverse only the VELO and the TT (UT) stations. They are typically
produced by low momentum particles, which are bent away by the magnetic field,
thus failing to reach the T1-T3 stations.

Downstream tracks traverse both the TT (UT) and T1-T3 stations, but do not leave
any hit in the VELO. They typically belong to decay products of long-lived particles
decaying beyond the VELO, such as A or K§ hadrons.

VELO tracks have hits only in the VELO. They include large-angle or backward tracks,
useful for the determination of the PV, as well as very low momentum tracks.

T tracks have hits only in the T1-T3 stations. Similarly to downstream tracks, they
include the decay products of long-lived particles decaying far away from the PV,
up to several metres. A significant fraction of tracks reconstructed in this category
comes from secondary interactions with the material of the mechanical structures
and back-scattering particles coming from the calorimeters and hadron shield behind
the muon chambers.
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Figure 1: Track-type definitions in the LHCD tracking system. The main B-field component,
along the y direction, is plotted above as a function of the z coordinate, along the beam axis.
Figure taken from Ref. [2].



The tracking algorithms used for the reconstruction of Run 1 and Run 2 data are
outlined in Refs. [1}2], and briefly summarised below. For Run 3, the tracking algorithms
have been updated to take full advantage of the upgraded tracker. However, the main
features and especially the track definitions given above remain unchanged.

The search for Long tracks starts with identifying VELO hits that form straight line
trajectories exploiting the negligibly small magnetic field in the VELO [39-41]. These
tracks are reconstructed with a minimum of three hits in the R sensors and three hits in
the ® sensors. There are two complementary algorithms to match VELO tracks with the
hits in the T'T and T1-T3 stations. In the first algorithm, called forward tracking [42],
VELO tracks are combined with hits in the individual T stations that form clusters along
the projected trajectory. In the second algorithm, a standalone track algorithm is used to
reconstruct tracks using only the T1-T3 stations [43,44] and assuming the tracks originate
at the IP, which induces a small variation of the reconstruction efficiency as a function of
the LLP decay position. Only track segments with at least one hit in the x layer and one
hit in the stereo layers (u or v) for each T station are considered. VELO tracks are then
combined with T track segments that provide the best possible match [45]46]. Finally,
TT hits that are compatible with track extrapolations are added for improved momentum
resolution.

Downstream tracks are reconstructed starting from T tracks, extrapolating them
through the magnetic field and matching with TT hits [43,/47,48]. Similarly, Upstream
tracks are reconstructed by matching VELO tracks with residual hits in the T'T stations.
In both cases, for Upstream and Downstream tracks, at least three hits in the TT stations
are required for the matching.

A fit based on the Kalman filter procedure [49-52] is used on all tracks, using a fifth-
order Runge-Kutta method [53}54] to describe the track transport through the magnetic
field, taking into account the material of the detector. After the fit, the reconstructed
track is represented by a list of state vectors giving the transverse position, slopes with
respect to the z axis, and the charge/momentum ratio, (z,y,dz/dz,dy/dz, q/p), specified
at given z positions in the experiment [55]. Duplicate tracks, known as clones, can occur
when two or more tracks are reconstructed with the same trajectory and share most of
their hits in the T and potentially TT stations. An algorithm, referred to as the clone
killer, removes these tracks by only keeping the best track based on the total number of
hits of the track and the goodness of the fit. Tracks involving more subdetectors are always
preferred to individual segments. Therefore, T tracks are those that do not correspond to
a Long or Downstream particle trajectory. No assumptions on the origin vertex of the
track are made at this stage.

Fake tracks are those that are not associated with a real charged-particle trajectory,
caused by random combinations of hits or mismatch of track segments upstream and
downstream of the magnet. The fraction of fake Long tracks was estimated using Run 1
data to range from typically around 6.5% in minimum bias events up to about 20% for
events with large track multiplicity [2]. This fake rate is significantly reduced in Run 2 by
about 60% with a small drop in efficiency through a neural-network algorithm that uses
information from the overall y? of the Kalman filter, the x? values of the track segments,
the number of hits in the different detectors, and the pr of the track [56,57]. Studies on
simulation estimate that around 5% of T tracks are fake due to detector hits caused by
noise [6).

The A) — JA and B® — JWKS, with Jip — ptp~, A — pr~ and K§ — 7nha~



decays are chosen as benchmark channels to study the capability and the performance of
the LHCb detector in reconstructing LLPs using T tracks. The A) and B° hadrons have a
characteristic flight length of around 10 mm, thus decay inside the VELO detector. Muons
are reconstructed as Long tracks, providing a precise determination of their momenta and
of the J/ip decay vertex, which coincides with the decay vertex of the A) or B® hadron, and
allowing for kinematic constraints to be applied on the remaining part of the decay chain.
The A and K¢ candidates are reconstructed as combinations of two T tracks with their
vertex position along the beam axis between 6.0 and 7.6 m from the nominal IP. Hadrons
decaying in this region have traversed most of the magnetic field, thereby experiencing
maximal spin precession, and their final-state particles reach the T1-T3 stations. The
reconstruction can be extended below 6.0 m for BSM LLP searches. The selection is
based on the inclusive detached J/i trigger, which is part of the LHCD trigger strategy
in the Run 1 and Run 2 data-taking campaigns [37]. The events used correspond to an
integrated luminosity of 6fb~! collected during Run 2.

Samples of simulated events are required to model the detector acceptance, detector
response, reconstruction efficiency, and the effect of imposed signal selection requirements.
Furthermore, the simulated events are used to train a classifier to discriminate between
signal and background. In the simulation, pp collisions are generated using PyTHIA [58]
with a specific LHCb configuration [59]. Decays of unstable particles are described
by EVTGEN [60], in which final-state radiation is generated using PHOTOS [61]. The
transport of the generated particles and the detector response are implemented using the
GEANT4 toolkit [62], as described in Ref. [63].

5 Reconstruction of A — J/p A decays

The reconstruction of the A decay vertex presents two main challenges when it is located
downstream of the TT (UT) stations. Firstly, the particle trajectories must often be
extrapolated over large distances through the strong and inhomogeneous magnetic field,
accounting for effects induced by the particle interactions with air and detector material,
using measurements only available downstream of the magnet (the T tracks). The
uncertainty on the extrapolation depends on the measurement precision of the track
slopes (dz/dz and dy/dz parameters introduced in Sec. , which itself depends on the hit
resolutions of the T1-T3 stations, and on the precision and granularity of the magnetic field
measurements. Therefore, the trajectories are influenced in a way that cannot be described
by an exact analytical solution. Secondly, the measurement of particle momentum (q/p
parameter) relies on the relatively low curvature of T tracks, as they are reconstructed
using only hits located in a region with a weak magnetic field. As a consequence, the
momentum resolution of T tracks is poor compared to Long or Downstream tracks, and
the charge can be assigned incorrectly. In simulation about 0.5% of all T tracks have a
wrong charge assignment.

The AY — JApA with A — pr~ signal candidates are first required to pass the online
event selection performed by the detached J/i) — ptp~ trigger [37]. Offline, a loose
selection is applied after the decay chain reconstruction, followed by a multivariate
classifier based on a Histogrammed Gradient Boosted Decision Tree (HBDT) available in
the scikit-learn package [64].



5.1 Signal candidate reconstruction and loose selection

Signal candidates are reconstructed following a two-stage procedure. First, decay vertices
are reconstructed from the final-state particles using an iterative algorithm based on a
Kalman filter [50L52], referred to in the following as vertex fitter. The original track-state
vectors are transformed, after transportation to the estimated vertex position of the
previous iteration, into a convenient representation (x,y, 2, ps, py, Pz, E), where E is the
particle energy corresponding to momentum vector (p,,py,p.) at position (z,y, z) for a
given mass hypothesis [55]. The prior (seeding) covariance matrix of the vertex position is
set to a large diagonal matrix, which removes any dependence on its prior knowledge. The
convergence criterion is that between two consecutive iterations either the vertex position
moves by less then 1 um or the y? changes by less than 0.01. The maximum number of
iterations is 10. In order to find a decay vertex position, tracks must be extrapolated
during the Kalman filtering iterative procedure to a common vertex location. This step
is particularly challenging for T tracks, as outlined above. For this task an approach
based on a fifth-order Runge-Kutta method [53}54] is employed instead of the default
cubic interpolation used for Long and Downstream tracks. Since the A) — J/pA with
Jp — putp~ and A — pr~ decay chain involves multiple decays in cascade, these are
reconstructed one-by-one using a bottom-up approach. In the second stage, the identified
cascade decays are fed into a separate fitter, referred to as Decay Tree Fitter (DTF) [65],
also based on a Kalman filter, where the whole decay chain is fitted simultaneously with
geometric and kinematic constraints imposed as appropriate. The constraints require the
b-hadron candidate to originate at the PV, the J/i) and A masses to be equal to their
known values [66], and the A momentum aligned with its flight direction, defined by the
J/i and A decay vertices.

The loose selection criteria to identify signal candidates are based on the following
variables: p of the proton and the pion, pr of the proton and A candidates; the invariant
masses of the u*u~, pr~ and J/A systems; the z component of the A candidate decay
vertex, 2yix; the cosine of the angle &, between the proton and the A momenta, and
between the proton and the A) momenta; the x7 and x?2, of the A and A candidates,
where x% is the difference in the vertex-fit x? of the PV candidate reconstructed with
and without the particle considered, and 2, is the decay vertex-fit x2. In Table [1| of
Appendix [A] the loose selection requirements applied on these variables are summarised.
All the subsequent analysis steps are performed using this selected sample.

The B® — JAKQ with K§ — 77~ decay constitutes a large source of background
since the topology of the decay is almost identical to the signal, with the substitution
of a proton by a pion in the final state. Due to the unavailability of PID information
for T tracks in the current analysis, this background cannot be easily distinguished. In
Fig. [2| (left), the invariant-mass distribution of K§ candidates from simulated B® — J/i K
decays is compared with the corresponding distribution of A candidates from A) decays
where the proton of the final state has been assigned the pion-mass hypothesis. Due to
the poor mass resolution, the two distributions are almost completely overlapping, and
a veto based on this variable does not help. Nevertheless, Fig. [2[ (right) shows that the
m(JAYKG) invariant mass discriminates between the two b-hadron decays. A veto on
candidates with m(J/KY) in the range +70 MeV/c? around the known B° mass [66] is
applied in the following, unless otherwise stated, retaining 87% of the A signal while
rejecting 65% of the BY decays. The PID information from the RICH2, calorimeter and
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BY — J/¢¥ K2 decays (orange points) compared with the mass distribution of A candidates
from /12 — J/1A decays, where the proton in the final state is assigned the pion-mass hypothesis
(blue points). (Right) invariant-mass distribution m(J/9K9) from simulated B® — J/¢¥K?2 de-
cays (orange points) compared with the corresponding distribution from Ag — J /1A simulation,
where the proton in the final state has assigned the pion-mass hypothesis and the intermediate
A has assigned the K3-mass hypothesis (blue points).

muon systems will be used for future physics analyses to improve the signal selection and
the background rejection.

5.2 Multivariate analysis for signal discrimination

A multivariate analysis is performed to enhance the signal purity. A Histogram-based
Gradient Boosted Decision Tree classifier is used [64]. The training sample consists
of about 43000 simulated AY signal decays with about 6 x 10° background candidates
reconstructed in data. The background candidates are selected from the lower and upper
sidebands of the m(J/iA) distribution, chosen as 150- and 300 MeV/c?-wide windows
below and above the signal region, respectively, itself defined by a J/i)/A invariant mass
within £600 MeV/c? of the known A) mass [66]. The training is performed using 90%
of the sample, while the remaining 10% is held out for the assessment of the classifier
performance. The classifier includes kinematic and topological variables: the longitudinal
and transverse momenta of the proton, pion and J/i) candidates; the coordinates of the A
decay vertex, (z,y, 2)vtx; the cosine of the A (AY) direction angle between its momentum
and the flight direction defined by the A (AY) and J/i decay vertices; the x2,., X% and X3,
of the A and A) candidates, where X3, is the squared distance between the PV and the
particle decay vertex normalised to its uncertainty; and the status flags (converged/failed)
of the decay chain vertex fit with and without the A mass constraint. The use of the A
decay position plays an important role in the rejection of background originating from
material interactions.

The following hyperparameters of the HBDT are optimised: the maximum number
of leaf nodes for the decision trees; the learning rate, i.e. the weight applied to each
successive decision tree of the boosting procedure; and the total number of iterations



(number of decision trees in the ensemble). The performance of the trained HBDT is
estimated calculating the Area-Under-Curve (AUC) of the curve representing the signal
purity versus the signal efficiency, with the threshold applied to the HBDT response
varying continuously from zero to one.

The requirement on the HBDT response is optimised by maximising the figure-of-merit
S/ S + B, where S and B are the signal and background yields in the signal region,
respectively. For this purpose, the figure-of-merit is estimated for each HBDT threshold
performing a binned fit to the A) — J/i) A invariant-mass distribution in data. The optimal
threshold results in a signal efficiency of 72% and a figure-of-merit value of 54. Training
the classifier with a similar size of the signal and background samples induces a shift of
the optimal threshold with no impact on the figure-of-merit.

5.3 Armenteros-Podolanski plot

The Armenteros-Podolanski (AP) plot [67] is used as a kinematics-based PID technique to
reject K background events from the A and A) — J/ibA samples. For two-body decays
of a particle of mass M into two particles of masses m; and ma, it is a representation
of the transverse momentum versus the asymmetry of the longitudinal momenta of the
final-state particles with respect to the parent flight direction. In this diagram, the decays
show as a semi-ellipse centred at ((m? — m3)/M?,0) and with radii (2pem/M, Pem), Where
Pem 18 the momentum of the decay products in the centre-of-mass frame of the decaying
particle.

Figure |3| shows the AP plot for A) — J/iA signal compared to B — J/ApKQ signal
from simulation, and A) — J/)A Run 2 data, from the decay chain vertex fit with the
J/p mass constraint and after the loose, HBDT and B° veto selection criteria applied.
The depleted central region of the K§ semi-ellipse in the data reveals that the HBDT
requirement, combined with the B? veto, is effectively removing K background events not
overlapping with the A and A semi-ellipses. This is due to the inclusion of the transverse
and longitudinal momenta of the proton and pion from the A decay in the classifier.
Requiring the magnitude of the longitudinal momentum asymmetry to exceed 0.5 rejects
17% of the remaining B° decays, with a signal efficiency of 99%, for candidates passing
all selection criteria including the B° veto. This requirement removes 7% of the selected
candidates in data.

5.4 Signal yields and invariant-mass resolution

Figures 4| and |5| show the invariant-mass distributions of the pr~ and J/iA systems,
m(pr~) and m(J/pA), of the selected AY — JApA candidates from simulation and Run 2
data, respectively, after all selection criteria. The J/i)A invariant mass is computed
applying the constraints outlined previously, whereas the pr~ invariant mass is evaluated
without the A mass constraint. Signal and background yields along with the invariant-mass
resolution are obtained by fitting these distributions independently. The m(p7~) and
m(J/A) signals are adequately described with asymmetric and symmetric double-tail
Crystal Ball functions [68], respectively, with tail parameters in data fixed to the values
obtained from simulation. In data, the background in the m(pm~) distribution, which is
dominated by K decays, is parameterised using a template determined from simulated
BY — JAKQ decays. Instead, the background contribution to the m(J/A) distribution
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final-state particle, i.e. the p and 7= (7~ and p) in the A and A decay, respectively, and pr
their transverse momentum, calculated with respect to the hyperon flight direction.

is largely dominated by random combinations of J/i) and A candidates, with a residual
contribution from B® — JAb K decays, and is modelled with an exponential function.

The reconstructed sample in simulation amounts to about 31 000 signal decays, from
which an invariant-mass resolution of 16.4 & 0.2 and 68.0 & 0.5 MeV/c? is obtained for
m(pr~) and m(J/iA), respectively. Here and in the following, resolutions are evaluated as
the central 68.3% CL region of the underlying distribution, with statistical uncertainties
based upon its fourth moment El In data, the fits yield about 43500 A — pr~ and
6140 AY — J/p A signal decays, with mass resolution of 17.8 + 0.3 and 74.4 4 0.6 MeV/c?,
respectively, about 10% worse than in simulation. These resolutions are determined
after statistical background subtraction using the sPlot technique , with m(pr~) and
m(J/pA) as discriminant variable, respectively. The K$ background is determined to
be about 15000 candidates in the full m(pn~) range shown in Fig. [5| (left), whereas the
background yield in the m(J/A) distribution, estimated in a region defined by three
times the invariant-mass resolution around the mean mass, amounts to 10 800.

The reconstruction and selection efficiency is estimated using the simulation, and is
defined here as the probability that a reconstructible AY — J/iA signal decay, with all
their final-state trajectories (i.e. four tracks) within the LHCb detector acceptance and
intersecting the minimum detector elements required for each track type , outlined in
Sec. [ is actually reconstructed and passes all the selection requirements. Signal decays
with a /A baryon decaying in the region between 6.0 and 7.6 m represent 4% of all generated
events and have a reconstructibility of 59% and a four-track reconstruction efficiency of
70%. Overall, this represents about 8% of all reconstructible and four-track reconstructed
decays (see Appendix [B| for further details). Figure |§| shows the reconstruction efficiency
and its breakdown for the different reconstruction and selection steps as a function of the
true A decay-vertex position along the beam axis. The efficiency is about 8% at 6.0m
from the IP; it rises to about 16% at 6.8 m; then it decreases slightly staying above 13%

2See Eq. (6h.3.1) in the reference.
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/18 — J/¢A signal decays. The black points with error bars represent the simulation, and
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Figure 5: Invariant-mass distribution (left) m(pr~) and (right) m(J/¢A) for A) — J/pA
candidates reconstructed using Run 2 data after all selection criteria. The results of the mass fits
are superimposed (blue curves) along with the background contribution (dotted orange curves).

between 7.0 and 7.6 m. The reconstruction of the A and A vertices has an efficiency of
about 40 — 50%, with a slightly larger success rate when the A baryon decays closer to
the T stations (see Fig. . This failure rate is mainly due to the poor track momentum
resolution and the presence of non-Gaussian effects not properly accounted for by the y?
ansatz of the vertex fitter. A test with a single stage reconstruction based on the decay
chain vertex fitter (DTF) provided higher vertex reconstruction efficiency, approximately
60%, and will be used for future physics analyses. The efficiency of the loose selection
is about 90%, mostly independent of the A decay location. The decay chain vertex fit
convergence depends on the A decay vertex position, going from about 50% for A baryons
decaying farthest from the T stations, to about 86% for those closest to them. This
highlights the impact of the propagation of T tracks through the magnetic field. The
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Figure 6: Reconstruction and selection efficiency as a function of the true A decay vertex position
along the beam axis for simulated A) — .J/1A signal events (grey) and its breakdown for different
reconstruction and selection steps: the reconstruction and quality selections of the four tracks
of the final state (blue); the reconstruction of the A and A decay vertices (orange); the initial
selections applied to the final-state and decaying particles as described in Table [1| (Appendix
green); the fraction of successful decay chain vertex fits (DTF, red); the B® mass veto (violet);
the selection efficiency of the HBDT (maroon); and the AP veto (pink). The four-track efficiency
contribution and the total efficiency (see text) are evaluated for reconstructible signal decays,
while all other contributions are relative to the previous reconstruction step.

HBDT and AP veto selection efficiencies are about 72% and 99%, largely independent of
the position of the A decay vertex.

5.5 Momentum, vertex and angular resolutions

The momentum resolution of T tracks suffers due to their relatively low curvature, as
they are reconstructed exclusively using hits located in a region with weak magnetic
field and relatively short lever arm. The relative momentum resolution as a function of
momentum has been measured in simulation and data using the data procedure described
in Appendix [C] and is shown in Fig. [} The results in simulation are compared to the
resolution determined from residuals, defined as the difference between reconstructed and
true momenta. Candidates satisfying all the selection criteria and requiring in addition
the fake-track probability to be below 0.5%, which has an efficiency of 70% per track,
have been considered. The relative resolution from the track fit is about 20%, improving
to 4-5% when the constraints of the A decay chain are imposed. Within uncertainties,
data and simulation are consistent, although the former tend to be 10-20% above the
latter. When the A parent particle is reconstructed using the vertex fitter, the procedure
relies on the measurement of the m(pm~) resolution, along with the resolution of the
opening angle between the proton and the pion at the vertex position, both determined
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Figure 7: Relative momentum resolution as a function of momentum for protons reconstructed
as final state of the A — J/1/A decay, obtained with the (left) vertex and (right) decay chain
fitters. The resolution obtained from residuals in simulation (blue triangles) is compared to that
obtained from the data procedure applied to both simulation (orange squares) and data (black
points).

as a function of the track momentum. The invariant-mass resolution is measured as
described previously, in regions (bins) of momentum, whereas the angular resolution is
determined from the distribution of per-event differences between the angle reconstructed
using the vertex fitter and DTF, since the resolution for the former is about a factor
of four worse. Figure |8 shows this distribution as obtained from simulation and data
signal candidates passing all selection criteria, compared to the distribution of residuals
in simulation, i.e. replacing the reconstructed angle with the decay chain fitter by its true
value, integrated over momenta. The average resolution on the cosine of this angle is 0.003
and 0.004, for simulation and data, respectively. In contrast, when the A parent particle
is reconstructed using the AY — J/A decay chain with all constraints, the momentum
resolution is mostly determined by the m(J/i)A) invariant mass, since other contributions,
including the opening angle between the J/i) and the A hadrons, are subdominant.

The reconstruction of the A decay vertex using T tracks is particularly challenging
as a consequence of three concurring effects: the aforementioned low curvature, the long
track-transportation over large distances with intense and inhomogeneous field, and the
presence of decays with a closing-track topology. These events, sketched in Fig. @ (left),
exhibit particle trajectories with two (consistent within track uncertainties) crossing
points, inducing the vertex fitter to converge frequently to the wrong vertex (denoted in
the following as Ghost). In contrast, opening-track decays, shown in Fig. [9] (right), do
not have a ghost vertex and converge to the correct position (denoted Good). Figure
illustrates the residual distributions of the reconstructed A vertex z position, zy, for
Good and Ghost signal events from simulation. Here, all selection criteria and additional
vertex quality requirements, in particular z, less than 7.6 m and its uncertainty, o,
estimated event-by-event by the vertexing algorithm, below 0.3 m are appliedﬁ Simulated

3These additional vertex quality requirements are applied in the following to all studies related to
vertex resolution.
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Figure 9: Event displays with (blue) proton and (red) pion trajectories together with the true
(black dot) and the reconstructed (green triangle) vertices from simulation. The reconstructed
vertex is wrongly assigned to the downstream (larger z) crossing point between particle trajectories
in most of the decays with closing-track topology (left), while it is found correctly in opening-
track topologies (right).

events are labelled in these categories by propagating through the detector volume the
true trajectories and searching for the z positions of closest approach between the two
tracks in the zz plane. When there exists a unique minimum, or with two minima and the
reconstructed z position closer to the true decay vertex, the event is tagged as Good, and
Ghost otherwise. Ghost events, amounting to about 30% of the reconstructed decays, show
a broad residual distribution, strongly biased towards larger z positions. Note that Ghost
events biased towards low z positions can also occur, but their contribution is largely
suppressed, as can be observed in Fig. [I0] Consequently, there is a significant vertex bias
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Figure 10: Residual distribution of the reconstructed A z position for Ag — J/9YA signal
candidates in simulation tagged as Good and Ghost, with true A vertex along the z axis above
6.0 m, before applying the BDT requirement.

and resolution degradation, as illustrated in Fig. Indeed, for Good events the A vertex
position resolution along the beam axis amounts to about 2.5% for vertices reconstructed
around 6.0 m from the nominal IP, and improves by about a factor of two for vertices
located closer to the T stations, around 7.5m. For Ghost events, the corresponding
resolutions at these positions are 3% and 10%. For each region in the reconstructed z
position, the resolution function for Good events has its most probable value near zero
although it has an asymmetric shape towards larger z values, as consequence of the large
and non-Gaussian momentum uncertainties and the track transport from higher to lower z
positions. These features are also observed when averaging over z, as illustrated in Fig. [10]
The resolution function can be well described by the sum of two Gaussian functions with
different means and widths, one centred at zero describing the core resolution, and the
other with an offset to account for the positive tail. For Ghost events it is well represented
by a single Gaussian function with an offset, neglecting the very small contribution of
Ghost events with negative residual.

Closing- and opening-track geometries can be identified through a Boosted Decision
Tree (BDT) classifier. Among the variables included in the classifier, the horizontality h
plays a preeminent role. This variable is defined as the y component of the unit vector
normal to the A decay plane multiplied by the dipole magnet polarity, sign(B,), and the

proton/antiproton charge, sign(A) = +1 (—1) for A (A) baryons, i.e.

(Pp X Pr-),

h = sign(A)sign(B,) Do xp |
p X Pr-

(1)
where p, and p,- are the three-momenta of the proton and pion. Decays with the extreme
values h = +£1 lie exactly in the zz bending plane, with h = —1 (h = +1) events having
a completely closing (opening)-track topology, whereas h = 0 events lie in the yz plane.
Although having h < 0 is necessary to identify Ghost events, this condition is not sufficient,
requiring additional information. Other features of the classifier include kinematic and
topological variables such as the z, coordinate, the vertex uncertainty along the y
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Figure 11: Relative precision on the reconstructed A decay vertex position along the beam
axis for /12 — J /1A signal candidates in simulation tagged as Good (blue triangles) and Ghost
(orange squares), as well as for events before (green stars) and after (red points) the BDT
selection. The resolution is evaluated as the central 68.3% CL region of the underlying residual
distribution, adding in quadrature the offset. The fraction of Ghost events before (light blue
shadow) and after (light orange shadow) the BDT selection criteria are also indicated. The
resolution achieved after the BDT selection approaches closely that obtained for Good events.

component and the 2 of the A candidate, the opening angle between the proton and
the pion, the coordinates of the point of closest approach between the proton and pion,
the m(pm~) invariant mass, the A direction angle, and the fake-track probabilities of the
proton and pion. The momentum of the final-state particles, the A decay length and the
AY decay vertex position as obtained from the decay chain fitter are also used. The BDT
is trained with Good and Ghost simulated signal events. The chosen threshold on the BDT
response has a signal efficiency of 75% and removes 75% of the Ghost events, reducing
from 30% to 6% the amount of Ghost events in the simulation sample, as illustrated in
Fig. [10] (right). As a result, the z vertex resolution becomes close to that of Good events,
as it is shown in Fig. [11}

The measurement of the A vertex resolution provided by the vertex fitter offers a data
procedure to estimate on a event-by-event basis the vertex resolution. Figure [12| (left)
illustrates the most probable values of these estimates along the z axis, o, , for both
simulation and data, and different regions (bins) of zy. Error bars are evaluated adding
in quadrature the 68.3% CL region of the per-event distribution divided by the root square
of the yields, and the half difference between the most probable and the median values.
Figure |12| (right) shows the distributions of the o, estimates for candidates falling in the
second bin of the (left), for simulation and data. The distributions can be described using
a Johnson Sy function [71]. There is a good agreement simulation and data. The global
offset with respect to the resolution in simulation estimated from residuals, also shown, is
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Figure 12: (Left) most probable event-by-event uncertainty divided by the mean value of the
reconstructed A vertex position along the z axis, for A) — J/1 A signal candidates in simulation
(orange squares) and data (black points), and in different zy regions. The resolutions in
simulation estimated from residuals for Good events are also shown (blue triangles). The
binning scheme is the same as in Fig. (Right) distributions of the o, uncertainties for
A9 — J/A simulation (histogram) and data (points) candidates falling into the second bin of
the reconstructed z position.

a consequence of the non-Gaussian effects in the reconstruction and the irreducible offset
of the resolution function. The o, distributions are unaffected by the presence of Ghost
events.

The polar and azimuthal angles, 6, and ¢,, of the proton direction in the /A rest frame,
reached from the AY rest frame and rotated by the spherical angles of the A momentum
in the AY frame, are essential ingredients of the A polarisation determination required for
the MDM and EDM measurements [20},22]. The resolution on these helicity angles as
obtained using the decay chain fitter and residuals in simulation is shown in Fig. It is
strongly affected by the presence of Ghost events. Candidates passing the BDT selection
have a resolution close to that of Good events.

6 Reconstruction of B — J/yK_ decays

A sample of long-lived K mesons from B® — J/i K decays is also reconstructed using a
similar procedure to that described in Sec. [5|for A — J/iA decays. The loose selection
criteria to identify B° candidates are summarised in Table [2| of Appendix .

Due to the similar topologies and the lack of PID information for T tracks in this
analysis, the A) — J/ibA decays represent a background source for the reconstruction
of B® — J/KQ candidates. A veto is applied to reject candidates with m(J/pA) in the
range +150 MeV/c? around the known AY mass [66], where the positive pion from the
K candidate is reconstructed with the proton mass hypothesis. This results in a 96%
selection efficiency for the BY signal and 37% for the A background. Similarly to the
reconstruction of A — JAA decays, an HBDT classifier is trained using about 22000
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Figure 14: The AP plot for B® — .J/ ng candidates after the loose, HBDT and Ag veto selection
criteria, for (left) simulated AY — J/¢A and B — J/1 K signal and (right) Run 2 data.

simulated BY signal decays and about 6 x 10° background candidates reconstructed in
data and selected from the lower and upper sidebands of the m(J/K2) distribution. The
optimal HBDT operating point results in a signal efficiency of 91% and a figure-of-merit
ratio of 89. Furthermore, by requiring the longitudinal momentum asymmetry in the
B — J/WKQ AP plot, shown in Fig. [14] for simulation and data, to be within the range
—0.5 to 0.5, 99% of the AY — JibA background is rejected while 66% of the signal is
retained.

Figure [15 shows the m(7n*7~) and m(JAKY) distributions of the reconstructed and
selected B — JA K candidates from simulation, about 13000 in total, along with the
mass fits. Figure[L6|shows the corresponding distributions for B° candidates reconstructed
in data after selection requirements. The signal shapes are modelled using an asym-
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Figure 15: Invariant-mass distribution (left) m(r™7~) and (right) m(J/¥K2) for simulated
BY — J/ ng signal decays. The mass fit results are overlaid.
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Figure 16: Invariant-mass distribution (left) m(7*n~) and (right) m(J/¥K2) for B® — J/¢ K2
candidates using Run 2 data after all selection criteria. The mass fit results are overlaid.

metric double-tail Crystal Ball function [68], while the background contribution to the
m(ntr~) and m(JApKQ) distributions, of combinatorial nature, are described using an
exponential function. A total of 120 000 K and 13300 B — J/iK? signal candidates are
reconstructed in data, with mass resolutions of 51.0 & 0.3 MeV/c? and 47.1 4 0.5 MeV/c?,
respectively, which can be compared to 51.0 4= 0.5 MeV/c? and 48.5 + 0.5 MeV/c? in sim-
ulation. The background yield in the m(J/)KY) region, defined by three times the
invariant-mass resolution, amounts to 13 200.

The total reconstruction and selection efficiency, defined previously in Sec. [5.4] ranges
from about 10% for K3 decays taking place at 6.0 m from the nominal IP to about 16%
when they occur closest to the T station, as illustrated in Fig.[17] along with the breakdown
of the steps in the reconstruction and selection sequence. We observe that the tracking
and vertexing efficiencies are very similar to those obtained for the A case (Fig. @, while
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Figure 17: Reconstruction and selection efficiency as a function of the true Kg decay vertex
position along the beam axis for simulated B — J/ ng signal events (grey) and its breakdown
for different reconstruction and selection steps: the reconstruction and quality selections of the
four tracks of the final state (blue); the reconstruction of the K3 and B° decay vertices (orange);
the initial selection applied to the final-state and decaying particles as described in Table 2]
(Appendix [A] green); the fraction of successful decay chain vertex fits (DTF, red); the A9 mass
veto (violet); the selection efficiency of the HBDT (maroon); and the AP veto (pink).

the decay chain vertex fit performance is slightly better. The lower efficiency of the loose
selection is partially compensated by the higher efficiency of the HBDT selection. The
total efficiency is lower than for A decays due to the lower efficiency of the AP veto.
All the momentum, vertex and angular resolution studies and comparisons between
simulation and data, and between data procedures and residuals in simulation developed for
AY — JhbA decays can directly be applied to B — J/KQ decays. The track momentum
resolution, shown in Fig. [L§] lies in the range 15-20%, and improves to about 4% when
the decay chain constraints are applied. Error bars are now smaller since the per-event
distributions of the relative momentum uncertainty are more symmetric than for A decays,
as it can be observed in Fig. 27 of Appendix[C| The resolution on the cosine of the opening
angle between the two pions is illustrated in Fig. reaching in simulation 0.002 with
the vertex fitter, and about a factor of five smaller with the decay tree fitter. The former
in data is about 40% larger. Compared to A decays, the better angular resolution of K
decays is due to the larger opening angle of its decay products, itself a consequence of
the larger ) value of the decay, determined by the mass difference between the initial
and final-state particles. The relative precision of the K vertex position along the z axis,
illustrated in Fig. 20 shows similar features to that of A decays. A relevant difference is
the smaller fraction of Ghost vertices present in the sample after all selection criteria, as
illustrated in Fig. now less than 6%. In this case, the larger @) value, together with
the equal masses of the final-state particles results in the majority of the decays having an
opening-track topology, similar to that sketched in Fig. |§| (right). Therefore, for K3 decays
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fitters. The resolution from residuals in simulation (blue triangles) is compared to that obtained
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Figure 19: Distributions of the event-by-event differences between the cosine of the two-pion
opening angle at the vertex position reconstructed using the vertex and the decay chain fitters,
for BY — J/¢KY signal candidates in simulation (orange histogram) and data (black points).
For simulation, the residual distribution using the vertex fitter is overlaid (blue histogram).

the benefits of a dedicated BDT to remove Ghost events is largely reduced in comparison
to A decays. The K§ vertex resolution along the z axis provided event-by-event by the
vertex fitter, shown in Fig. behaves almost identically as for A decays.

The resolution on the cosf,+ and ¢,+ helicity angles for all candidates, as obtained
using the decay chain fitter and residuals in simulation, is illustrated in Fig. 23] The
resolution is slightly better than for AY — J/pA decays, again due to the larger @ value.
The K§ — ntm~ decay offers a data procedure to estimate the cosf,+ resolution, as
follows. Candidates with the two pions having a longitudinal momentum along the K
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Figure 20: Relative precision on the Kg decay vertex position along the beam axis for
BY — J/¢¥ K} signal candidates in simulation tagged as Good (blue triangles) and Ghost (orange
squares), as well as for all events (green stars). The fraction of Ghost events is also indicated (light
orange shadow). The resolution is evaluated as the central 68.3% CL region of the underlying
residual distribution, adding in quadrature the offset, and approaches that obtained for Good
events due to the small fraction of Ghost events.

line-of-flight in the laboratory frame differing by less than 5 GeV/c are selected. This
requirement collects K decays with the pions being preferentially aligned in the K rest
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Figure 21: Residual distribution of the reconstructed Kg vertex z position for B — .J/ ¢Kg
signal candidates in simulation tagged as Good and Ghost, with true Kg vertex along the z axis
above 6.0 m.
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Figure 22: (Left) most probable event-by-event uncertainty divided by the mean value of
the reconstructed Kg vertex position along the z axis, for B® — .J/ ng signal candidates in
simulation (orange squares) and data (black points), and in different zy¢y regions. The resolutions
estimated from residuals for Good events in simulation are also shown (blue triangles). The
binning scheme is the same as in Fig. (Right) distributions of the o, uncertainties for
BY — J/¥K) signal candidates in simulation (histogram) and data (points) falling into the
second bin of the reconstructed z position.

frame at +7/2 rad with respect to the K¢ direction, thus satisfying cosf,+ ~ 0. The
cos 0.+ distribution for candidates passing this selection is adequately described by a
Gaussian function. The width of this distribution accounts for momentum and angular
resolutions in the evaluation of the helicity angle, as well as the variation of the true
cos 0.+ value due to the finite range and resolution of the longitudinal momentum selection
criteria. The latter can be estimated from the truth cos,+ distribution in simulation,
itself described correctly by a Gaussian function as well. The quadratic difference between
the two widths represents the cosf,+ resolution measured as root-mean-square (rms).
Similarly, candidates with cos 6.+ & 0.5 (—0.5) can be isolated by selecting K§ candidates
with momentum ranging between 30 and 70 GeV/c and a cosine of the angle between the
K¢ and the 7= (77) in the laboratory frame less than 0.005. The rms values obtained
with this procedure in simulation and data are shown in Fig. (left), and are compared
to the corresponding values obtained directly from residuals in simulation. Note that the
differences between the rms and the 68.3% CL resolutions are due to the non-Gaussian
behaviour of the residual distributions in simulation.

7 Conclusions and prospects

The feasibility of the reconstruction of long-lived particles decaying inside the LHCb dipole
magnet region is demonstrated and the performance is evaluated in both simulation and
data. Samples of A and K§ hadrons, with the vertex position between 6.0 and 7.6 m away
from the IP, have been reconstructed inclusively and exclusively from A) — J/bA and
B° — JhpKQ decays, using data recorded by LHCb during the LHC Run 2, corresponding
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Figure 23: Resolution on the (left) cosf,+ and (right) ¢+ helicity angles for B — J/¢y K2
signal candidates in simulation (red points) and those tagged as Good (green triangles), evaluated
as the central 68.3% CL region of the residuals. The rms resolution in three different regions
of the cosf, .+ distribution is also evaluated using a data procedure (see text) applied to the
simulation (orange squares) and the data (black points), and is compared to that obtained from
residuals in simulation (blue triangles).

to an integrated luminosity of 6fb~!. Strange hadrons decaying in this region have
traversed most of the magnetic field and experience maximal spin precession, thereby
providing maximal sensitivity for measurements of magnetic and electric dipole moments.
The reconstruction can be extended down to about two meters for use in direct searches
of BSM LLPs. Due to the long extrapolation distances across the magnet region, the
vertex reconstruction using tracks with hits only in the tracking stations downstream
of the dipole magnet requires an accurate track transporter based on the Runge-Kutta
method instead of the usual polynomial approximation. The experimental resolution
largely benefits from the geometric and kinematic constraints of the decay chain when the
long-lived particles are produced from exclusive b-hadron decays. The combined use of a
multivariate classifier with the Armenteros-Podolanski technique maximises the selection
performance and mitigates cross-feed from other long-lived decays. In addition, a second
multivariate classifier specifically designed to remove wrongly reconstructed Ghost decays
with closing-track topology, occurring especially in A — pr~ decays, has significantly
improved the vertex and helicity angle resolutions.

Several improvements to the reconstruction and selection of LLPs using T tracks are
in progress. These include the use of PID information based on measurements from the
RICH2, calorimeter and muon systems located downstream of the T stations, and the
adaptation of the vertexing algorithms to enhance the reconstruction efficiency and further
extend the fiducial volume inside the magnet region. Furthermore, the implementation of
dedicated trigger lines are in progress for Run 3 data and beyond, taking advantage of
the flexible software-based trigger of the LHCb upgraded detector. Dedicated vertexing
algorithms for T tracks are also being explored. The trigger, reconstruction and selection
of LLPs using T tracks will offer new opportunities to extend the physics reach of the
LHCDb experiment through measurements of the magnetic and electric dipole moments of
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the A baryon and searches for LLPs predicted by various BSM theories.
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A Loose selection criteria

Tables |1| and |2 report the loose selection requirements applied to the A) — J/ibA and
BY — JWKQ with Jip — ptpu~, A — pr~ and KQ — 777~ candidates passing the online
event selection.

Table 1: Loose selection requirements applied to Ag — J/i A candidates passing the online event
selection. The invariant masses m(pr~—) and m(J/ipA) are obtained from the vertex fitter.

Variable Units Minimum Maximum
p(m) MeV/c 2000 500000
p(p) MeV/c 10 000 500000
pr (p) MeV/c 400 -
m(pr™) MeV/c? 600 1500
A m 5.5 8.5
cos§, (A) 0.9999 -
Vi () - 200
X (4) - 750
Mt ) —m(I)| Mev/e - 0
pr(A) MeV/e 450 —
m(J/pA) MeV/c? 4700 8500
cos &, (AY) 0.99 -
Xip (45) - 1750
o (AD) - 150

B Four-track reconstruction efficiency

Figure [24] compares, for different track categories of the A final-state particles, the fraction
of AY — J/hbA signal decays that are reconstructibldﬂ and the four-track reconstruction
efficiency as a function of the A decay vertex position along the z axis. Integrating over z
in the different track-type regions, the reconstructible fractions (four-track reconstruction
efficiencies) amount to about 11%, 34% and 55% (72%, 55% and 60%) in the Long, Down-
stream and T regionsE] respectively. Figure |25(compares the product of the reconstructible
fraction and the four-track reconstruction efficiency as a function of the A decay vertex z
position to the generated distribution. The different regions account for about 17%, 40%
and 43% of all the reconstructible and reconstructed events, to be compared to 40%, 37%
and 23% of the generated events.

4The reconstructible efficiency is defined here as the ratio between the number of signal events with
all their final-state trajectories (i.e. four tracks) within the LHCb detector acceptance and intersecting
the minimum detector elements required for each track, and all the generated signal events with their
final-state particles emitted with polar angle between 0.01 and 0.4 rad.

5These regions are defined with the z position of the A decay vertex in the ranges 0-0.6 m, 0.6-2.4m
and 2.4-7.6m (see Fig. .
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Table 2: Loose selection requirements applied to B? — J/@ZJKg candidates passing the online
event selection. The invariant masses m (77 ™) and m(J/ng) are obtained from the vertex
fitter.

Variable Units Minimum Maximum
p(rt, 7)) MeV/c 2500 500000
m(ntnT) MeV/c? 100 1300
8 m 5.0 9.5
cos &,(KYQ) 0.9995 —
Xip(K3) - 200
Im(ut ) —m(Jfp)| MeV/c? - 90
pr(KQ) MeV/c 600 —
p(J)) MeV/c 18000 -
pr(J/)) MeV/c 250 -
m(JKS) MeV/c? 4700 6 500
cos &,(BY) 0.995 —
XI2P (B 0) - 60
thx(BO) - 35
20.8
s LHCb
'S 0.7 Simulation
=
&5 ;
0.6
0.51
0.4/ A — LL Reconstructible
A — LL Reconstructed
0.31 —— A — DD Reconstructible
N A — DD Reconstructed
' —— A — TT Reconstructible
011 N e A — TT Reconstructed
0 1 2 3 4 5 6 7

A z vertex position [m)]

Figure 24: Fraction of /12 — J/9 A signal decays that are reconstructible and four-track recon-
struction efficiency as a function of the A decay vertex position along the z axis for the different
track categories of the final-state particles (Long, Downstream and T).

27



—
[en}
L

LHCb —— Generated events

Simulation A — LL Reconstructible and Reconstructed
******* A — DD Reconstructible and Reconstructed
------- A — TT Reconstructible and Reconstructed

Normalised distribution
=
|

1073 |

A z vertex position [m)]

Figure 25: Fraction of Ag — J/1A signal decays that are reconstructible times the four-track
reconstruction efficiency as a function of the A decay vertex position along the z axis for the
different track categories of the final-state particles. The generated distribution is shown as a
solid black line. The two distributions are normalised to the total number of generated events.

The generated A lifetime is 0.263 ns.

C Data-based momentum resolution procedure

Let us consider a particle decaying into two particles with masses m; and msy and four-
momenta (F;,p;) and (Es, py). The invariant mass of the decaying particle follows

as
m® = mi+m3+2(EEy — pipacosbhy) (2)

where 65 is the angle between p; and ps2, p1 and py are their magnitudes, and

E; = +/p? +m? and Ey = \/p3 + m3 the energies. Error propagation on Eq. and

approximating sin 6,5 & 6,5 lead to

@ -G

where
<m>4
9m = g\ — )
p
9o = g&%01,, (4)
with
1 2 fE ? 2 £2 f ?
- = 5 (__6089912) +£f (p7£77]17772) (__COSGIQ) . (‘5)
g § §E
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Here, we have introduced the kinematic ratios & = py/ps and {g = E;/E,, and the ratio
of relative momentum uncertainties

10-17(5])7 7]1) (6)

f(pa£>7717772) - fUp(P,ﬁz) )

where 0,(p,n)/p stands for the relative momentum uncertainty of the daughter particle
1 (2) evaluated as a function of its momentum &p (p) and pseudorapidity 7; (72). The
mass and angular factors, g,, and gy, respectively, encapsulate the kinematic dependence
when propagating the relative mass and angle uncertainties to the relative momentum
uncertainty.

In the relativistic limit, Fy ~ p; and Ey ~ p, and small angle approximation,
1 —cosfyp ~ 0%,/2, Eq. holds whereas and reduce to

Q

4 1 (m>4
gm - )
L4 f2(p, &, mi,m) €205, \ p
4

1 + fQ(p7§7n17772> .

Further assuming m > mq, mo, it follows that

l
~—~
~J
~—

9o

4
Im = Ggp = 5 8
1+f2<p7§7n1)772) ( )
since in this case m? ~ £p*6%,. For m; ~ my and assuming candidates satisfying & ~ 1
and 7, & 179, leads to f(p,&,m,m2) = 1 and g, = gg =~ 2. Equation (3|) can then be

written as
<gp)2 T\ ? 0015 ?
)~ 2(-) —2<—) : 9)
p m 012
in agreement with Eq. (1) of Ref. [2][f] where this approximate expression has been been
applied to J/i — p™p~ decays to measure the momentum resolution of Long tracks.

Equations (3)) to (5]) can be exploited to measure the relative track momentum resolution
in regions (bins) of momentum for T tracks from A — pr~ and K — 7t7~ decays.
It should be noted that the approximate Egs. (7)) to @ do not hold in either of these
cases. After applying all selection criteria, signal candidates in data are binned according
to the reconstructed momentum of the proton and the two pions, for A — pr~ and
KQ — mtm~ decays, respectively. The sPlot technique [70] with m(pm~) and m(7t7~) as
the discriminating variable is adopted to statistically subtract the background contribution.
In order to assess its validity, the procedure is also applied to simulation, in addition to
the evaluation of the resolution from the distributions of differences between reconstructed
and true quantities (residuals). In the following, we identify particle 2 with the positively
charged decay product, i.e. the proton (7 %) for A (KJ) decays.

For each momentum bin, the mass resolution o,, is determined from the 68.3% CL
region of the m(pm~) and m(7*7~) invariant-mass distributions. The world-average A
and K¢ masses [66] are used for m, although there is no sizeable impact on the resolution
when the mean or most probable values of the distributions are used instead. The angular

6There is a misprint in the factor p/mc of the angular term, which should not be present.
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resolution oy, per bin is determined analogously from the distribution of differences
between the reconstructed #,, angle and the same angle reconstructed with the decay
chain constraints, since the latter has an uncertainty ranging between a factor of four
and five times smaller. Figures [§ and [19] compare the distributions of these residuals
for signal events in simulation and data, integrated over momenta, for A and K decays,
respectively.

The kinematic factor £, along with £g, can be determined directly on an event-by-event
basis. Its average, (£), amounts to ~ 6 for A decays, ranging from about 4.7 to 6.8
with increasing momentum bin, whereas for K2 decays it is close to unity with marginal
variation across the bins, for both simulation and data. Approximate average values can
also be estimated analytically, given the momentum of particle 1 along the (longitudinal)
direction of motion of the decaying particle,

[ 2
m
pro(cost*) = ~p* | cos* + 3 1+pT§ , (10)

(and analogously for particle 2, reversing the sign of cos 8* and replacing m; by ms), where
p* and #* are the momentum and angle of particle 1 (and 2) in the centre-of-mass frame
of the decaying particle, and v > 1 its Lorentz boost. The average value is obtained
integrating over cos 6%,

f Py (cos 0%)['(cos 6*)d cos 0

(€ =~
f 3.1, (cos 0*)I'(cos 6*)d cos 6

: (11)

where I'(cos6*) represents the angular distribution of the m — m; my decay. For
A — pr~ decays, taking I'(cos 6*) = $(1 + acos6*) with a ~ 0.75 [66], yields (£) ~ 6.5.
For K2 — nt7r~ decays, with I'(cos §*) = 1/2 and m; = msy, one obtains (§) ~ 1.

The f(p,&,m,n2) factor is estimated from the ratio of relative momentum uncertainties
of the two daughter particles evaluated at ({p,n;) and (p,n.), following Eq. @ The
dependence of the relative momentum uncertainty is itself obtained from simulation,
binning in momentum and pseudorapidity. Since the relative momentum resolution does
not depend on the particle mass, protons and pions from both A and K§ decays are
combined. The two-dimensional binning along with the 68.3% CL region of the residual
distribution in each bin are illustrated in Fig. [26] (left). For K2 — 777~ decays, where the
two pions are selected in the same momentum bin, i.e. £ ~ 1, it follows f(p, &, n1,1m0) =~ 1
when n; & 1.

The relative resolution o,/p can then be evaluated on an event-by-event basis using
the per-bin mass and angular resolutions, the angle 6,5, the momentum p, the kinematic
factors ¢ and &g, the pseudorapidities n; and 7y, and the f(p, &, n,m2) ratio evaluated
using Eq. @ and Fig. [26 (right). Figure 27| (left) illustrates the o, /p distributions for the
central bins [see Figs.[7]and [18| (left)]. The wider shape and positive tail of the distribution
for A decays reflects the larger event-by-event variation of its kinematics with respect to
K@ decays. An average relative momentum resolution per bin is evaluated using the most
probable value of the distribution, with uncertainty determined from the central 68.3%
CL region divided by the square root of the bin yields, added in quadrature to the half
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Figure 26: (Left) Relative momentum resolution for protons and pions from A and K9 decays
(left) in bins of momentum and pseudorapidity, evaluated with residual distributions (68.3%
CL region) from simulated signal events passing all selection criteria, and (right) after spline
interpolation. The statistical uncertainties are stable across the bins and amount to about 0.003.

Z n 5‘ 1
2 . LHCb <3001 LHCb
g i Simulation < I Simulation
0 101 1 0 I
3 o 3 |
= i l 1A = 200+ 1 1 A)
E o KD £ ¥ T B
© 1 9] 1
O b oY O :u}
o 100+ I
(A I
00'01 0.2 - 04 06 08 1.0 00'02 " 004 006 008 0.1
O'p/p Up/p

Figure 27: Distributions of the relative momentum resolution for T tracks from A — pr~ and
K9 — mtm~ decays for the central momentum bin, (left) from track reconstruction and (right)
after decay chain fitting.

difference between the most probable value and the mean of the distribution. The broader
and more asymmetric distribution for A decays result in larger uncertainties as compared
to K§ decays. Other sources of uncertainty originated by the propagation of uncertainties
on 0, and oy,,, estimated through the method of moments , and the f(p,&,m,n2)
statistical uncertainties, are also taken into account and found to be subdominant. The
final results of the procedure are shown in Figs. [7] and [L§] (left).

The method can be elaborated further to consider a decay chain m — mg my,
my4 — my ms. The invariant mass of the first decaying particle reads now

m2 = m§ + mi + 2E3(E1 + EQ) — 2p3\/(E1 + E2)2 — mi COS 034 s (12)
where p3 and FE3 = \/p3 + m3 are the momentum and energy of particle 3, and 634 is the
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angle between the three-momenta of particles 3 and 4. Error propagation assuming that
my is kinematically (mass) constrained, i.e. its value is well defined and has no associated
uncertainty, yields

Op ? Om 2 0034 2 Ops ? 1
(z) = () o (9) 9 (p—> ' (13)

The factors encapsulating the kinematic dependence now read

4
m
9m = g<_) )
p

4
D4
9o = 9(;) /‘629§4,

4 2
P4 K
gp3 = g (E) KJ2 <E — COS 934) s (].4)

54
f2(p75777177]2>] ) (15>

2
E

with

Z o= K2 <H—E — COS@34>2 (1 + £E)2 |:1 +
g K
where k and kg are the corresponding kinematic factors for particles 3 and 4, i.e. Kk = p3/pa,
kg = F3/E4, with py and E; = \/p? + m3 being the momentum and energy of particle 4.

In the relativistic limit, E; ~ p; with ¢ = 1 to 4, and small angle approximation,
1 — cos 034 & 02,/2, the factors g,, and g simplify to

4
g (P4
Gps R Z(;) K03, . (16)

and

é = il{20§4 (1_{_6)2 [1+€2f2(p7£77717772)] : (17)

Equations to can be used to measure the relative track momentum resolu-
tion for T tracks from A — pr~ and K — 77~ decays when the whole decay chains
AY — JpA[— pr~] and BY — JAYK3[— | are reconstructed and fitted simultane-
ously with geometric and kinematic constraints (see Sec. for details). The procedure
follows as previously, with four main differences. First, the 034 (i.e. the angle between
the J/ip and the A or K hadrons) resolution is evaluated from the difference between
the true and reconstructed angles in simulation, and then is used in the procedure with
simulation and data. In contrast to the previous case, this angular resolution term is
now largely subdominant with respect to the mass contribution. Second, the simulation
shows that the relative momentum uncertainty is largely independent of momentum and
pseudorapidity, as a consequence of the constraints applied to the decay chains, resulting
in a ratio f(p, &, m1,m2) ~ 1. Third, the last term in Eq. can be neglected since the
J/{p momentum resolution, o, /ps, is about 0.5% [2], an order of magnitude less than the
other two contributing terms. Last, the m(J/pA) and m(J/)KQ) invariant masses are
used as discriminating variables to statistically subtract the background contribution in
the data. The average relative momentum resolution per bin along with its uncertainty
are shown in Figs. 7| and |18 (right). Figure [27 (right) illustrates the o,/p distributions for

the central momentum bin.
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