PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: December 8, 2022
REVISED: February 20, 2023
ACCEPTED: April 24, 2023
PUBLISHED: May 8, 2023

Freedom near lightcone and ANEC saturation

Kuo-Wei Huang,*’ Robin Karlsson,>® Andrei Parnachev®? and Samuel Valach®
@ Department of Physics, Boston University,
Boston, MA 02215, U.S.A.

bSchool of Mathematics and Hamilton Mathematics Institute, Trinity College,
Dublin 2, Ireland

¢CERN, Theoretical Physics Department,
CH-1211 Geneva 28, Switzerland

4 Kadanoff Center for Theoretical Physics and Enrico Fermi Institute,

University of Chicago,

Chicago IL 60637, U.S.A.

E-mail: huangku@tcd.ie, karlsson@maths.tcd.ie, parnachev@gmail. com,
valachs@tcd.ie

ABSTRACT: Averaged Null Energy Conditions (ANECs) hold in unitary quantum field
theories. In conformal field theories, ANECs in states created by the application of the stress
tensor to the vacuum lead to three constraints on the stress-tensor three-point couplings,
depending on the choice of polarization. The same constraints follow from considering
two-point functions of the stress tensor in a thermal state and focusing on the contribution
of the stress tensor in the operator product expansion (OPE). One can observe this in
holographic Gauss-Bonnet gravity, where ANEC saturation coincides with the appearance
of superluminal signal propagation in thermal states. We show that, when this happens, the
corresponding generalizations of ANECs for higher-spin multi-stress tensor operators with
minimal twist are saturated as well and all contributions from such operators to the thermal
two-point functions vanish in the lightcone limit. This leads to a special near-lightcone
behavior of the thermal stress-tensor correlators — they take the vacuum form, independent
of temperature.

KEYwoORrDS: AdS-CFT Correspondence, Conformal and W Symmetry, 1/N Expansion

ARX1v EPRINT: 2210.16274

OPEN AccCESS, © The Authors.

Article funded by SCOAP®. https://doi.org/10.1007 /JHEP05(2023)065


mailto:huangku@tcd.ie
mailto:karlsson@maths.tcd.ie
mailto:parnachev@gmail.com
mailto:valachs@tcd.ie
https://arxiv.org/abs/2210.16274
https://doi.org/10.1007/JHEP05(2023)065

Contents

1 Introduction 1
2 Thermal TT and Gauss-Bonnet gravity 4
2.1 A brief review on Gauss-Bonnet gravity 4
2.2 Black hole perturbations and ansatz 5)
2.3 Holographic thermal TT correlators 7
2.3.1 Scalar channel 7

2.3.2  Shear channel 8

2.3.3  Sound channel 9

3 Near-lightcone dynamics 10
3.1 Thermal TT correlators near the lightcone 10
3.2 Reduced equations of motion 10

4 Conformal block decomposition 12
4.1 Stress-tensor contribution 14
4.2 Double-stress tensor contributions 15

5 ANEC interference effects and spin-4 ANEC 17
5.1 Spin-0 double-stress tensor interference 18
5.2 Spin-2 double-stress tensor interference 18
5.3 Spin-4 double-stress tensor interference 19
5.4 Spin-4 ANEC in stress-tensor state 20

6 Discussion 20
A More shear-channel results 23
B Coefficients of the stress-tensor three-point function 24

1 Introduction

Exploring universal constraints and their consequences in quantum field theories (QFTSs)
is of great importance. The present paper considers questions related to Averaged Null
Energy Conditions (ANECs) which generally hold in unitary QFTs [1, 2]. More precisely,
we focus on conformal field theories (CFTs) where important examples of ANECs are
conformal collider bounds [3]. In this work, we shall pay special attention to the situation
where ANECs are saturated, and discuss the connection to stress-tensor correlators at
finite temperature.



In the setup of [3], localized states are created by the stress tensor with three independent
polarizations. The energy flux is determined by the three numbers specifying the stress-
tensor three-point functions and the positivity of the energy flux results in three constraints
on the combinations of these couplings. Recent advances in CFT techniques (see, e.g., [4—6]
for reviews) allowed proving conformal collider bounds in unitarity CFTs [7] (see also [8, 9]).
The bootstrap proof focuses on the lightcone limit of a four-point function with two scalars
and two stress-tensor insertions, which is dominated by the stress-tensor exchange. The
same techniques allow making statements about interference effects in conformal collider
bounds and higher-spin ANECs [10-12]. (See [13-26] for some examples of recent work
devoted to the study of ANECs.)

In [27], it was pointed out that one can observe conformal collider bounds by studying
two-point functions of the stress tensor (the T'T" correlators) at finite temperature, using
the operator product expansion (OPE) and focusing on the contribution of the stress tensor.
Symmetries imply that the stress-tensor two-point functions at finite temperature have
three independent polarizations. As explained in [27] (see also [28]) the coefficients of
the stress-tensor contributions in the lightcone limit for these polarizations are precisely
proportional to the corresponding ANECs. When one of these coefficients vanish, the
corresponding ANEC gets saturated. Here, we ask the following question: can this result
be generalized to include the contributions from multi-stress tensor exchanges?

In this paper, via holography [29-31], we adopt Gauss-Bonnet gravity to study ANEC
saturations using thermal T'T" correlators. Gauss-Bonnet gravity and more generally Lovelock
theories are useful theoretical laboratories for studying higher-derivative corrections because
their equations of motion are of second order. Our working hypothesis is that Gauss-Bonnet
gravity, despite being a special theory, might allow us to identify some universal features
of holographic CFTs regardless of what higher-derivative terms are included. Indeed,
ANECs manifest themselves via the superluminal propagation of signals in Gauss-Bonnet
gravity [32-36]. (For more recent developments in the holographic aspects of Gauss-Bonnet
gravity, see, e.g., [37—48].) While the holographic Gauss-Bonnet theory is not unitary [49],
the breakdown of unitarity for small values of the Gauss-Bonnet coupling happens in the
small impact parameter regime, as opposed to the large impact parameter (lightcone) limit
relevant for ANECs.! This is why holographic Gauss-Bonnet gravity allows one to observe
conformal collider bounds which have a much larger degree of universality and apply to all
unitary CFTs.?

The results of [32, 33] on superluminal propagation in Gauss-Bonnet gravity can be
directly connected to the OPE analysis of [27]. Consider the integrated T'T" correlators

!This can be seen by analyzing corresponding CFT four-point functions in the impact parameter space.
See, e.g., [49-56]. At finite values of the Gauss-Bonnet coupling, light higher-spin operators are needed to
restore unitarity. Since we do not have control over the full tower of such higher-spin operators, we do not
include them in our analysis.

2Note that to study the regime of ANEC saturation we need to consider large higher derivative terms in
the gravitational lagrangian. For generic such terms this would lead to equations of motions which will be
higher than second order and will result in a variety of complications. Gauss-Bonnet gravity is special in
this regard.
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where 3 = T~ is the inverse temperature. Choosing a particular polarization and expanding
the holographic correlator in powers of temperature one should be able to see that when the
corresponding ANEC is saturated, the leading near-lightcone O(8~*) term in the expansion
vanishes. We perform the finite-temperature expansion of (1.1) using the techniques
developed in [28] and confirm this expectation. We then consider the subsequent O(3~%)
terms in the expansion and extract the contribution of the spin-4 double-stress tensor
operator. We observe that when a spin-2 ANEC is saturated, for the same choice of
polarization the spin-4 ANEC is also saturated and the leading near-lightcone O(3~%) term
in the expansion vanishes as well.

Does this pattern persist to all orders in the temperature expansion? Since multi-stress
tensor operators of highest spin (for a given conformal dimension) govern the near-lightcone
behavior, to answer this question we need to study the near-lightcone regime. We analyze the
near-lightcone thermal T'T" correlators to all orders® and observe that once a spin-2 ANEC
for a certain polarization is saturated, the leading-lightcone limit of the correlator for this
polarization takes the vacuum form and is completely independent of the temperature. Hence,
all spin-2k ANECs for multi-stress tensor operators [T},,]*¥ of maximal spin are saturated.

It has been observed that free theories saturate conformal collider bounds [3]. However
it is less obvious whether theories which saturate conformal collider bounds are necessarily
free, although some evidence in this direction was presented in [12, 58]. In this paper
we propose a scenario where the theory is “free” in a limited sense: correlators of the
stress-tensor take a vacuum form for one particular polarization. We call this behavior
“freedom near lightcone” and observe it in holographic Gauss-Bonnet gravity.

To make contact with the literature, we read off the double-stress tensor CFT data
to subleading order in the Cg ! expansion by comparing the bulk computations to the
OPE in the dual CFT. The leading order mean field theory (MFT) result needs to satisfy
consistency conditions. These are due to interference effects of the ANEC in states that are
superpositions of the stress tensor and double-stress tensors of spin 0, 2,4. For the spin-0
double-stress tensor this was shown to impose no constraint on the OPE coefficient [10], while
for spin-2 and spin-4 double-stress tensors interference effects impose non-trivial constraints
on the OPE coefficients [11, 12]. We verify that the MFT coefficients in holographic CFTs
are consistent with such interference effects. In addition, following [12], from the CFT point
of view we verify that, using the data obtained from holographic Gauss-Bonnet gravity, the
spin-4 ANEC is also saturated when the corresponding spin-2 ANEC is saturated.

Outline. In the next section, we write down the equations of motion in Gauss-Bonnet (GB)
gravity and analyze them using a near-boundary expansion. Our calculations are done for
the four-dimensional CFT case, but we expect to find similar results in other dimensions.
In section 3, we show that, when an ANEC is saturated all higher-spin ANECs for the same

3We do this by generalizing the approach of [57], where near-lightcone scalar correlators were studied, to
the stress-tensor case.



polarization are saturated as well and the corresponding TT" correlator near the lightcone
is reduced to the vacuum form. We read off CFT data for the double-stress tensors in
the context of GB gravity in section 4 by performing the conformal block decomposition.
Section 5 is devoted to a discussion of conformal collider bounds for states which are linear
combinations of stress tensors and double-stress tensors, as well as the study of the spin-4
ANEC. We conclude in section 6 with a list of future directions.

2 Thermal TT and Gauss-Bonnet gravity

In this section, after a brief review of Gauss-Bonnet gravity we study perturbations of the
planar black hole, setting up our notations and introducing the ansatz used to compute
the bulk-to-boundary propagators. We then discuss the thermal stress tensor two-point
functions for different polarizations and analyze the contributions of the identity, the stress
tensor and the double-stress tensors. The near-lightcone behavior of the stress-tensor
correlators, including an all order analysis, will be discussed in the next section.

2.1 A brief review on Gauss-Bonnet gravity

In the Euclidean signature, we write the five-dimensional Gauss-Bonnet action with a
negative cosmological constant as

12 L?, 5 9
§+R+AG37(RWP—4RW+R) (2.1)

1 5
S6B = 1654 /d ™9

where G is the gravitational constant and Agp is the (dimensionless) Gauss-Bonnet coupling.
Despite having higher curvature terms, the equations of motion resulting from (2.1) remain
second-order PDEs. For technical reasons we focus on the planar (large radius) AdS black

2 2 2
ds? = % (f]f;) dt? + de) + fQ%) (2.2)

hole solution:

where f(r) and fs are [59, 60]

£r) = 2A1GB l1 _ \/1 ~ s (1 - 7{1)] , (2.3)
foo = lim f(r) = 1-v1-4dies V1_4>‘GB_

(2.4)

This solution corresponds to a nonsingular black hole in a ghost-free vacuum. No AdS
vacuum exists if Agg > 1/4. The normalization of the metric is chosen such that the speed
of light is one in the dual CFT. The parameter ji and the Hawking temperature T are
related in the following way [60]:

T+ 4 _ -
T=——"_ = 2.5
wL2 /foo’ Ty K ( )

where 74 denotes the location of the black-hole horizon.



Taking fi — 0 in (2.2), one recovers the AdS vacuum in the Poincaré coordinates:

2 72
o ar b L7 = L
= rp0adetda’ + —dr®, L= N (2.6)

where a,b € {t, z, y, z} and L is the AdS curvature scale. The metric acquires a simpler

ds?

form

. 1
ds? =L (f25abdxadxb - ﬁdf2> =17 (2.7)

using the rescaled coordinate 7.
The central charge Cr of the CFT dual to Gauss-Bonnet gravity is [36]

513
Cr =

= W(l —2fsoAaB) - (2.8)

One can relate the parameter [i to the conformal dimension Ay of the heavy operator that
creates a heavy state [61]:

20 N
i=— (1-ap + VI- D) C—jfgoﬁ . (2.9)

3t

In the following we will often set L = 1, in which case L = /fno.

2.2 Black hole perturbations and ansatz

We shall consider a small perturbation h,, of the black-hole metric (2.2) and restrict
ourselves to the case where h,, does not depend on the coordinates x and y. According to
the representations under the rotations in the zy-plane, the fluctuations can be classified
into three channels:

Scalar channel (spin 2) : hag — 6ag(hae + hyy)/2 (2.10)
Shear channel (spin 1) : Pizy Piys hogy Pay, Prgy By (2.11)
Sound channel (spin 0) : Rty hizy Bazy By Biry Bapy By + hyy (2.12)

The linearized equations of motion then can be studied separately for each spin, as different
representations do not mix. For each channel, we adopt a quantity Z invariant under
diffeomorphisms [36]:

Zscalar = nya (2'13)
Zshear = athx - atHacz ; (214)
2
Zsound - iagHtt - 48tathz + 28752sz
o
r0,
(L5 ) o ap) s+ 1. (2.15)
S o
where
L? L? L? o
Hy = ﬂfé);)htta Hy = ﬁhti, Hij = ﬁhija i, j €{z,y,2}. (2.16)



The equations of motion for all three channels have the following form [36]:

27+cWo;z+0cVz =0, (2.17)
where C1) and C(© are differential operators. In the scalar channel, they are given by
4 21 2-1)+4)—16x*+24
C o = 3 5=10; + 6/ (D) —1) +4) 6’; i 02, (2.18)
f2(k 4+ 1)2F fr+1)r(f (k2 =1)+2)
C(O) _ f (f (“2 — 1) (5f (“2 — 1) + 16) + 4) + 16 (2‘19)
scalar ff (f (/'{2 o 1) + 2)2

where we introduce

which will help simplify various expressions. The shear channel has

O _UE=D) DG B (1) +16) +4) +16)

T2 = 1) +2)° (02 (F (52 - 1) +2) + 2f (s + 1)r20.%)
2f%(r+ DR* (3f (k2 =1) (f (2 = 1) +4) + 87 +12) (2.21)

S G2 = 1)+ 2 (0 (2 = 1) + 27 + 20 (o D0.?)

co 4 8 o2
T P DI S D (2 1) +2)T

The corresponding C™) and C© for the sound channel can be obtained by Fourier trans-

(2.22)

forming and Wick rotating the corresponding expressions in appendix D of [36]. Due to
their length, we will not present them here.

The above equations of motion are difficult to analyze in general. However, using the
techniques developed in [28, 57|, we can solve these equations focusing on the regime

T — 00 with 7t, 7z fixed, (2.23)
which corresponds to the OPE limit on the boundary. Introducing new variables
p=rz, w? =14 722 + 7222 (2.24)

the limit (2.23) can be rephrased as ¥ — oo with p and w held fixed. We write the
bulk-to-boundary propagators Z as

Z(t, 2 1) = / ddLZ(t — ', 2 — 2, r) 2, ) (2.25)
where the invariant Z is (up to derivatives, as will be explained on separated channels

below) the boundary value of Z. In the near-boundary, OPE expansion, we can solve the
equations of motion by taking

1 5 1 5
Z = ZAdS (1 + (G*+G*2og7) + = (6% + G logF) + .. > : (2.26)
) 2 4-m ) )
GY = Z (ai’;’m + bﬁ’fm logw)w™p™ , (2.27)
m=0n=-2
. 6 8_m . .
G8I — Z Z (a%’ym +b§z’,jm log w)w™p™ . (2.28)

m=0n=—6



One can check* that the bulk-to-boundary propagators in pure AdS vacuum Z495 for

A

various choices of sources H,,, (which are the boundary values of H,,) are given by

27

Toy: Zitn = 5 (2:29)
Tt 2598 = —1;238” : (2.30)
ozt Zlhenr = f;z w? — p? -1, (2.31)
Tio: Ziyma = _3783;107’1? w?—p2—1, (2.32)
Ty ZAdS = —jﬁ)(w? —8p%), (2.33)
Hyp: Zigina = —:ﬁ) (3w? —4), (2.34)
Froo 2N 25+ ) (2.35)

where we have expressed these results in terms of variables p and w. Inserting (2.26) into

k

the equations of motion, we will obtain a,,

2. j k7 j 1
7, and by7, for different channels.

2.3 Holographic thermal TT correlators

Let us first recall the holographic dictionary before proceeding to the computation of the
stress-tensor correlators. The quadratic part of the on-shell action for a general perturbation
H,, in the AdS vacuum was calculated in [36]. By restricting H,, to be independent of x
and vy, one has®
w2Cr

320 Jom
The action for the perturbations H,, of the black-hole metric (2.2) has the form (2.36)
plus terms higher-order in 1/7 that vanish in the 7 — oo limit. Thus, using (2.36) and the
definitions (2.13)—(2.14), one finds the corresponding on-shell actions for invariants to be

I =

A* e P H,uy (t, 2, 7)0- H o (t, 2, 7) . (2.36)

©2Cr . N . _
Iscalar = 160T ~hm /d4xr5Zscalar(ta 2, T)astcalar(tv 2, T) ; (237)
7—00
2Cr . 70 _ .
Ishear = 160T Fhﬁr{olo / d4xmzshear(ta 2, T)asthear(ta 2, 7”) ; (238)
7T20T . 4 f5 - ~
Isound — —M fli)rglo / d xwzsound(t, z, T)afzsound(t, z, 'f') . (239)

2.3.1 Scalar channel

In the simplest case with only the source ﬁxy turned on, we have

scalar

Zrcatnn(t, 2, 7) = / AL ZE (4t 2 — 2 ) iy (t, 7). (2.40)

4See also [36, 62].
5Note the sign difference compared to eq. (3.11) in [36], which is related to the presence of a minus sign
in the stress-tensor two-point function defined later in (2.43).



where the superscript index of the bulk-to-boundary propagator Z @) ndicates the non-

scalar

Z€ro sources.
After inserting (2.26) into (2.17) for this channel, we determine af”, and b"” We

n,m
expand the solution near the boundary:

1
2t 2.7) = 60 (t,2) (L (1 2) + (241)
where the dots represent contributions analytic in ¢ and 2z of order O(#%) and subleading
contact terms ~ O(72) of the schematic form 075 /7. Plugging (2.40) and (2.41)
into (2.37) and taking the limit 7 — oo gives

7rC'T

/ Crd?' ¢ (@ — ') Hoy (@) Hay (') | (2.42)

I scalar —

where z = {t,z} and 2’ = {t/, 2’}. The CFT correlator can be obtained via

521 w2C
GPUY) — (4 2) Ty (0,0)) , = — — scalar = DTl oy, (243
() = (Ton0,)T0,0)y = = e = T (02, 249

where the superscript “bulk” indicates that these correlators are computed via holography.
Order-by-order in i, we obtain

wCr

Gl | 0= o ayE 2.44
S22
GPU | — (554 mCp(t” —27) . (2.45)
Y,ry il 501%2(,1_’_1)[/8 (t2+22)
~2
(bulk)|  _ mCrj 2 2 )
Gayy 72 1050K%(rk—+1)2L16 (12 + 22) {3 (t +2z ) ((x(89x —206)

+122)12 4 (k(309% — 1698) +890) 22) log (2 + 2?)
— 222 (15(k(89% — 206) + 122)1* + (5(197k — 506) + 1606)27 ) |

%W’CT ( 8,1(zy) ( 722) —622(12 (1](959)) 7 (2.46)

where, similar to the Einstein gravity case [28], the coefficients agjé(w),a%é(my) remain

undetermined. In the limit k — 1, i.e., Agqg — 0, these correlator results reduce to those in
the Einstein gravity case, as they must.

2.3.2 Shear channel

When the source Hy, is turned on, we have

Znear(t, 2, 7) = / AL ZE) (4t 2 — 2 D) H(t, ), (2.47)
" ~ 1 T
2o (t,2,7) = 0:30(2) + G, + - - (2.48)



After solving for the corresponding equation of motion, we insert the solution in (2.38) and
take the second variational derivative with respect to the source I:It;c. We have

buk) _ ©Cp 0,

Gtz,m = 20 8g+82§s(liif)ar (249)

The explicit results, order-by-order in fi, are given by

1 3nCr (12 —722)
Gukl 2.50
ko O +0% 5124 22)° (2:50)
u 1 3aCrp (t* — 61222 + 24
GEM| (g gy b MO 6P v ) (251)
ot Of + 07 100K2(k + 1) L8 (t2 + 22)
u 1 [i?
Gg; tl;{) =~ 3 mOT/ 3 ( — 6(k(105k
e Of + 02 | 2100K4(k + 1)2L16 (£2 + 22)
— 388) +60)t*22 — 24(k(33k — 160) + 60)t22*
3
+ 3(k(97% — 156) + 100) (£ + 2) "log (£ + 2?)
3 x
+ 2(k(55x + 212) + 4)2°) + 5%@235“ ) (2.52)

(tz)

The coefficient agj(l) is not determined by the near-boundary analysis. These results in

the limit k — 1 agree with the Einstein gravity case.

2.3.3 Sound channel

The sound-channel computation becomes rather cumbersome. We focus on the case with
the source Hy, turned on. An analogous analysis gives

2
(bulk) m“Cr  0;0, (tz)
= 60 (0F + 02)2 >somnd? (2:53)

where ( S(fnzl)n

propagator. Explicit results up to double-stress tensors exchanges are

q is the 1 /7 term in the near-boundary expansion of the bulk-to-boundary

4 2.2 4
Gglfzk) S 1 967 Cr (St 34t i + 3z ) 7 (2.54)
2o (07 + 02)2 5(t2 + 22)
" 1 8O (15 — 151422 + 15t22% — 26
G| = (3K —4) oy gy — it { > OlE *) (2.55)
ot (0F + 02) 15K2(k + 1)L8 (12 4 22)
1 8rCrji
€3Sl 9k(61k — 134
tz,tz 2 (8t2 + 33)2 1575&4(5 + 1)2L16 (t2 + z2)5 [( f‘i( R )
+ 790)t® — 4(9x(283k — 685) + 3970)t%2% 4 10(3x (185K
— 552) 4+ 1090)t*2* + 4(15k (59K — 139) + 1222)t22°
+ (3(98 — 25k)k — 154)2°] . (2.56)

Again, these results in the k — 1 limit are consistent with the Einstein gravity case.



3 Near-lightcone dynamics

In this section we take the near-lightcone limit of the expressions discussed in the previous
section. We observe that when the conformal collider bounds are saturated, the near-
lightcone behavior of O(3~4) terms (coming from the stress-tensor contribution to the 7T
OPE) and O(378) terms (coming from the spin-4 double-stress tensor contribution to
the TT OPE) vanishes. We subsequently provide an all-order analysis by taking the
lightcone limit in the bulk equations of motion.

3.1 Thermal TT correlators near the lightcone

We define the lightcone limit by going to the Lorenzian signature and defining (z*,z7) =
(it + z,it — z), and then we take = — 0.

First consider O(fi) contribution. When the conformal collider bounds are saturated,
the corresponding critical values of the GB coupling are

4 4
Racalar = = thear = 2 Ky, =. (3.1)

scalar 5’ Kshear sound — 3
We immediately observe that the expression (2.45) vanishes, while (2.51) and (2.55) vanish
in the lightcone limit.
Next, we turn to O(fi%) term. In a small 2~ expansion, we find the thermal correla-
tors (2.46), (2.52), and (2.56) have the following behaviour:
5k — 4)27Crp(zh)3 1% Cr(z™)?
S ok L Al AL LA (&2 (35(1974 — 506)
i2 2=—0  600k4(k + 1)2L16x 2100k%(k + 1)2L16

— 6((180% — 373) + 192) log(~2™2~ ) + 1606)

bulk -
G:Scy,xy) (x+7 z )

+ 105k (1 + 1)L (3agp ™ + dagy™) ) + O(z7) , (3.2)
1 (k —2)2177Cp(2+)3 2
72 0040 (33600/@4(/1 + 1)2L16(x—)3
7O ((204 — 73K)k — 76) (7)? i 1
11200k4(k + 1)2L16(z~)2 +O (x) > ’
1 /(4 —3r) 11nCp(x™)3 i
a0 0192 (6300/<;4(n +1)2L16(z—)5
47Cr (3K(52K — 125) + 236) (27)? i o < 1 > ) (3.4)
8400k4(k + 1)2L16(z—)4 (z=)3) )" )

We see that the leading lightcone contributions all vanish at the corresponding critical

G(bulk) (.29+, ZL‘_)

tx,tx

tz,tz

values of the GB coupling. In the expressions above, we keep the subleading lightcone limit
terms which remain non-zero.
3.2 Reduced equations of motion

To give an all-order proof, we derive the reduced equations of motion. This method was
developed in the study of the scalar correlator in d > 2 holographic CFTs [57], but the
method works also for the stress-tensor correlators. The basic idea is to identify a bulk limit

~10 -



which isolates the largest spin (or lowest-twist) contributions, corresponding to the largest
power of p in the ansatz (2.26), with w fixed. More precisely, starting with the equations of
motions written in variables (7, w, p), we perform a change of variables

(F,w,p) — (f,w,v = g) (3.5)
T
and write
Z(Fw.p) = ZM5(Qw,v) + Q(w,v) log(7)) = ZA%Que (3.6)
where, as before, Z495 is the pure AdS solution. In the new variables, the lightcone limit
corresponds to taking the large 7 limit with v fixed. Subleading terms are suppressed
at large 7. Functions Q and Q determine all the information about the near-lightcone

stress-tensor correlators.

Scalar channel. In this simplest case, we obtain the reduced equation of motion in the

form
4\ .
<’f - 5) [O1+ 60 =0 (3.7)
where
01 202
10’02 = (w E)w — 13w8w +48) Qtot 5 (38)
ngglg(m = ((1 —w?)w? 02 — w202 + 2(w* — 2)vwd, Oy + (24 — 5w? v,

+(3w? = 5)why ) Quot + (201~ wP)wdy + 2000, +4(w? ~3)) Q. (3.9)

Here, without solving the equation of motion, we observe that the i dependence disappears
if k= % and the solution takes the vacuum form. This phenomenon does not persist in the
subleading lightcone limit. Near the lightcone, one may define a parameter which vanishes
when the corresponding ANEC is saturated:

4\ -
Heff(scalar) = <H - 5) . (310)

Shear channel. There are two sources in the shear channel. In both cases, we find that
the reduced equations of motion can be written as

lu’sz(shear) 92(shear) + :U'eff(shear)(—)l(shear) + GO(shear) =0, Heff (shear) = (K - 2):“’ (311)
For instance, with the source H,, turned on, we obtain

@2(shear)

o= |w? (w20~ 38w +59102 ) — 4431wy +13440| Qior (3.12)
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M = [2u3((w?~1) w23} —vuP 0,02 + (27— 16w w2 +17vw?d, D
+ (80w2 —267) Bro —80vw81,) —160w? (w2 _ 12) ] Q
+ | (w'=1) w'ay, -2 (w?—3) 9,03 +v*w’B20% 2 (Tw' +6w? ~19) w?d}
— 17020020, +3 (11w? — 54) vw* 9,02 — (591 - 324uw* — 48w* ) w?0?2
+80w' 20243 (534~ 59w? ) vw?, 0, +3 (64w — 1068w +1477 ) wd,,
1240 (w2 f24) w?vd, — 240 <5w4—48w2+56) } Qtot (3.13)

@O(Shear) _
A (r+ 1)2 L1602

[2(w? = 1) 20?0} — 407 0° 0,02 +2(w? = 1)vw* 9,02
— (32w — 86wt +54w?) 02 4 32w V292 +2(17 — Tw? ) vw3 B, Dy,
+2(94w* — 347w? +267)wd,, — 160w vd, — 32(12w* — 65w? —1—60)} Q
+ | (W? = 12w 9 +20%w 0,03+ (T— 3w )o?w! 92 02 +4(w? ~ 1o 930,
—8 (2u* — 50 +3) w0} — 160° w93+ (7w —99uw? +108) vu?020,
+ <31w2 - 119) v?w30,02 + (106w4 —311w2+213) w?d2 —80v w? (w2 —7) 0>
—3 (27w 3050”4356 ) vwdy 0, — (320w ~ 967w +693)wd,
+16 (160" ~ 19502 +240) v, +80 (4w? =5 ) w?| Qo (3.14)

The i corrections are suppressed in the lightcone limit when k = 2. The expressions for
another shear-channel source are similar — see appendix A.

Sound channel. The sound-channel reduced equations of motion are rather complicated
and we do not include them here. After a tedious computation, we are able to verify that,
when the corresponding ANEC is saturated, i.e., k = %, the pure AdS solutions for all
sources solve the sound-channel reduced equations of motion.

4 Conformal block decomposition

In this section, we decompose the stress-tensor two-point function using the stress-tensor
OPE. By matching against the bulk results in section 2, we extract the corresponding CFT
data of multi-stress tensors, including their OPE coeflicients. This section follows closely
section 4 and appendix C in [28]. In order to compare against the bulk results, we study
the T'T correlators on Sé x R3 integrated over the zy-plane, i.e., (1.1). We can use the
OPE to decompose the stress-tensor two-point function on Sé x R3:

G po = (T (2) Ty (0))5 = ‘1| > 004 98 spe @)y P0G = M0(O)s (A1)

A, Jyin,

where we sum over operators in the T' x T" OPE and i labels the different structures in the
OPE. For further details on the conformal blocks, see appendix B and also appendix C
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in [28]. Integrating over the xy-plane, we will compare the OPE (4.1) against the bulk
results in section 2.

We consider the OPE up to (9((%)8). The operators that contribute are the identity
operator, the stress-tensor operator, and the double-stress tensors [T2]; of the schematic
form : TQBTO‘B byt Tpa Ty oy and @ T, T)gy ¢, with spin J = 0, 2, 4, respectively. For the
double-stress tensors, we denote

Pi.J = P12, (4.2)

where i = {1} for J =0, i = {1,2} for J =2, and i = {1, 2,3} for J = 4. Perturbatively in
Cr ! the coefficients pi,; and the anomalous dimensions A; = 8 + ~; are given by

o
14 2= 4.
+CT+

(0)

Pid = Pi : AJ:8+%+..-. (4.3)

The leading terms p(oj) ~ C% are due to the disconnected contribution to (TT[T?] ;). This,

7:)
in turn, produces the factorized part of the stress-tensor two-point function. Namely, to
leading order in Crp, the correlator reads

<TMV(93)TPU(O)>6 = <T/W>/3<TPU>/3 +O(Cr). (4.4)

Imposing factorization (4.4) fixes 5 out of 6 coefficients pl(-f)} [28]:

The remaining coefficient pg?()) is fixed by the non-zero diagonal terms in (4.4).

The thermal one-point function of a symmetric traceless operator O on Sé x R3 is fixed
by symmetry up to a coefficient by (see, e.g., [63, 64])

b
(Oureons)s = Gagy € - ey = (traces)) (4.6)

where e, is a unit vector along the S};. In particular, by the thermalization of the stress
tensor in a heavy state with Ag ~ Cp we have

(Tyw)p ~ (Tyw)m (4.7)
from which we find ! A
Chy K (4.8)

B4 (d—1)S5y ’
d
where on the r.h.s. we have inserted the OPE coefficient and S; = %. The relation
between Ay and the parameter fi is given in (2.9) which leads to the relation:

bTW B _CTS4(1 + K)gﬂ

g 320k (4.9)
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Furthermore, plugging the MFT solution (4.5) into the conformal block decomposition (4.1)
together with factorization, one finds (to leading order in C H

(Tu)3 = 675p{') (4.10)
Inserting the stress-tensor one-point function in terms of i from (4.9) gives

(0) _ m™CH(1+ k)0
P10 = 73072000042

(4.11)

4.1 Stress-tensor contribution

We first consider the stress-tensor contribution in the 7' x T° OPE to the thermal two-point
function. The stress-tensor three-point function is fixed by conformal symmetry up to three
OPE coefficients (a, b, ¢) in d = 4 [65] and the contribution to the stress-tensor two-point
function at finite temperature was studied in, e.g., [27, 28].

Here, we are interested in the values for (a, 13, ¢) computed holographically in Gauss-
Bonnet gravity. It was found in [36] that

4fsAcB d(d—1)
1 —2feoAaB (d—2)(d—3)’

tQ’GB = t4,GB =0 (4.12)

with the remaining coefficient fixed by Ward identities. The relation to the (a, b, ¢) and
(t2,t4,Cr) bases can be found in (B.3). We will be interested in the conformal collider
bounds [3]:

t 2t t 2t 3 t 2t
(1—2—4>20, 2(1—2—4)+t220, 2<1—2—4>+t2+t4207

3 15 3 15 3 15
(4.13)
which for ¢35 =t g and ¢4 = 0 reduce to
4 4
(/i—5>20, (2—k)>0, (3—&)20, (4.14)

where x = v/T—4Agg. The bounds are saturated for k = {1,2, 3}.

In [27], the stress-tensor two-point function at finite temperature in the OPE expansion
was considered in momentum space. In particular, the leading term in the lightcone limit
due the stress-tensor contribution in the OPE was proportional to the conformal collider
bounds in the respective channel. We now study this in position space after integrating
over the zy-plane in the context of Gauss-Bonnet gravity.

SIn particular, the contribution to the stress-tensor two-point functions ny’xy, Gm,m and Gtz,tz can be
found in eq. (C.24) and (C.27) in [28] which, after integrating over the xy-plane, is given by eq. (C.25), (C.28)
and (C.30) in the same paper. We shall not repeat them here due to their lengthy and unilluminating form.
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Using (2.9) together with (@, b,é) (B.3) relevant for Gauss-Bonnet gravity, we find”

(55 —4)mOr(1+k)3a(t? —22)

Gyl = 800K (12 +22)2 ’

Gl — 7Or(1+k)3 (135 —4)t* +6(k—2)t2 22+ (8 — 15k) 2*)
rsali == 640052 (12+22)° ’

G 7Or(1+ k)31 (—21(3k+2)t0+3(94— 93k )t 22 + (39K +98)t2 2% + (111K — 34) 2°)
tztz |t — .

288002 (12 +22)*

(4.15)
The result for Gy »y in (4.15) is in agreement with the bulk computation in (2.45). To
compare the remaining two polarizations with the bulk results, we apply the differential
operators D?P = (97 + 02)P with p = 1 for Gty 4, and p = 2 for Gy, 4,. The results are

(k —2)3nCr(1 + k)3 (t1 — 6t22% + 24)
160052 (2 + 22)*

(3k — 4)mCr(1 + k)3f (t° — 15t422 + 15¢221 — 26)

30k2 (12 + 22)°

2
D Gt:v,tm|ﬁ = - )

(4.16)
D4Gtz,tz|/l —

9

which agree with the bulk results in (2.51) and (2.55). It follows that when x = {%, 2, %},
the stress-tensor contribution to Gy 4y, D2Gyy 12 and D4Gtzytz vanishes.

4.2 Double-stress tensor contributions

In the previous section, we saw that when a conformal collider bound is saturated, the
contribution due to the stress-tensor operator to the 17T correlators at finite temperature
vanishes for the corresponding polarization. In the lightcone limit at (’)((%)4’“), the only
operator that contributes is the multi-stress tensor operators on the leading Regge trajectory
[T*) 11 2. pios, (With spin J = 2k). The bulk computation shows that not only does the
stress-tensor contribution vanish when the conformal collider bounds are saturated, but
the full contribution from the leading Regge trajectory also vanishes for the same choice
of polarization.

Below, we will read off the conformal data of double-stress tensors by comparison to
the bulk results in section 2, following closely [28]. With this, we will see how the leading
terms in the lightcone limit vanish when ANECs are saturated, which we further relate to
the saturation of higher-spin ANECs in the next section.

We now consider the contribution due to double-stress tensors [T?]; with J = 0,2,4 to
Gv,ps- We again use the OPE (4.1) and expand the dynamical data (4.3) to subleading
order in Cr. The disconnected contribution was discussed above which gave the MFT
coefficients pl(»?} in (4.5) and (4.11).% Note that we need to regulate the integrals over the
zy-plane which we do by inserting a factor of (£24 22 +y%+22)%. As in [28], we determine
the double-stress tensor CF'T data by imposing that the conformal block decomposition in

"The corresponding results in terms of (Ag, d,b, &) can be found in eq. (C.25), (C.28) and (C.30) in [28].
8The expression for the integrated conformal blocks expanded to subleading order in Cr ! can be found

in appendix C.5 in [28]. Only the overall normalization differs due to different values for pg%.
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terms of the CF'T data agrees with the bulk results obtained in section 2:

CFT bulk _
G»Svyﬂry) o Ga(vyljxy) 20 0,
CFT bulk
D? [ng,tx - Gw(ta::;x)} . =0, (4.17)
a2Cr
CFT bulk
DG - Gy ey =0

Using the bulk results (2.46), (2.52) and (2.56) together with the conformal block
expansion (4.1), we find

1) 80(2103k2 — 4464k + 2392)
Yo = — )

63m4K2
1 10(19563k% — 39996k + 20012
A = ( e ), (4.18)
18974k
(1) 2(24157x% — 51412k + 30228)
T 10574 K2 ’
and
(1) _ 5 (157699x2 — 323228k + 162636) (1)
P22 = 12067472 thi2
(1) _ 108521k% — 170036k + 65684 (1)
(1) —4053k% — 14652k + 21788 (1)
P34 = 12607452 RS

which reduce to the pure Einstein gravity results in [28] when x = 1. The remaining
coefficients (p%, pgg, pgli) are undetermined in the near-boundary analysis in the bulk, as
mentioned in section 2.

Consider now the lightcone limit (z,27) = (it + 2,it — z) with 2= — 0. Doing so,
we find
(4 —5K)*m(1 + K)SCrp® (x)?

GCET) (4 = = —
ay,oy (E7527) [2Cr z——0 153600x4 z=
_ —2)°17n(1 + k)°Cr® ()"
G(CFT)  + _ (s 4.20
tate (T7,27) G207 20 6881280044 (x7)%’ (4.20)
(CFT) (zt,27) _ (4 —3k)2117 (1 + K)°Cpfi® (a1)®
t2,tz 7 a2er 250 387072000%* (z7)37

where we note that this contribution comes solely from the spin-4 operator.® Moreover, the
near-lightcone behaviour is completely determined by the data in (4.18) and (4.19).

In the lightcone limit, when the conformal collider bounds are saturated, i.e., Kk =
5023
As we will see in the following section, this is related to the saturation of the spin-4 ANEC,

}, both the stress-tensor and the spin-4 double-stress tensor contributions vanish.

where the spin-4 operator is the double-stress tensor of the schematic form : T{,,, T,s) :.

9This property can be seen in eq. (3.33) in [28].
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5 ANEC interference effects and spin-4 ANEC

In this section, we study interference effects of the ANEC as well as the spin-4 ANEC.
Interference effects in large-C CF'Ts impose strong constraints on the MF'T OPE coefficients.
We will see explicitly that the MFT OPE coefficients for the double-stress tensors, (4.5), are
consistent with interference effects. In particular, we verify that when the spin-2 ANEC is
saturated the spin-4 ANEC, the null-integrated [1];—4 double-stress tensor in holographic
Gauss-Bonnet gravity, is also saturated in a stress-tensor state.

Assuming a holographic CFT with a large C'r and no light scalars, the leading Regge
trajectory of the d = 4 stress-tensor OPE takes the following schematic form:

T(z)T(0) = 28 [1 + 24T(0) + 28724 T2 4 (0) + .. } , (5.1)

where the ellipses denote higher-spin operators on the leading Regge trajectory, i.e., multi-
stress tensors [T*] j_oy as well as all other operators. When integrated over a light-ray, the
operators on the leading Regge trajectories O(/) are positive operators, see, e.g., (2,9, 11, 12]:

o
£ = / dr=OY)  (27,0), J=2,46,.... (5.2)
— 0o

In putative holographic CFTs dual to pure gravity in the bulk, the operators on the
leading Regge trajectory are the multi-stress tensors Q) = [T*]j—ok. These are the ones
that we will study. In particular, by studying matrix elements of £/) in states that are
superpositions of the stress tensor and multi-stress tensors, the positivity of the ANEC and
higher-spin ANECs impose constraints on the stress-tensor OPE.

To begin with, we consider the ANEC £®) > 0 following [10-12] and verify that it is
satisfied in states of the schematic form |1;) = v1|T) + ve|[T?];) with J = 0,2,4. This
leads to a positive definite matrix schematically given by

(TIED|TY  (TIED|[T?),) >(i)v>0 (5.3)
J) B

<wﬂ€@”¢J“”::”T<<uﬂLns@MT><uﬂLu6@HHﬂl

where the superscript (7) labels different structures. Note that the entries are in general
matrices. One then obtains bounds of the schematic form:

FOUEAYLITHUTTIT? )W) < (T2, T(T2))(TTT) (5:4)

where f@({A},{J}) is some function which depends on the scaling dimensions, spins, and
the kinematical structure independent of the details of a theory.
We expect that (5.3) in holographic CFTs has a Cp scaling like follows

u(q@w®f» <ﬂﬂ%ﬁ%ﬁ9mvzﬁ< mi - Cp*m
J

(@)
|
)y - v K >0, 5.5
T2),1€@)T) ([72],]€P)|[T?] oy my ) U7 (5:5)

for some O(1) matrices m;. Here T and T? denote unit-normalized operators/states. By
an appropriate choice of v, the above matrix requires positivity of any 2 x 2 submatrix. By
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a suitable choice of v, one can obtain terms of O(C’%/ 2) from the off-diagonal part and O(1)
terms from the diagonal part; this leads to potential positivity violations. Below, we will
explicitly examine the spin-2 ANEC in the states |1);) and show that the solution (4.5) is
consistent with positivity.

In what follows, we use the following three-point function basis [66, 67]:

<0A1,J10A27J20A3,J3>
VJl nig— n13VJ2 na3— n12VJ3 niz— nngnlanm n23

_ (123) 1 23
= C .
2 : Nn23,M13,112 :L"B123 xﬁ1321ﬁ231 ’ (5 6)
n12,113MN23 12 13 23

with Bk = Bi + B — Bk and 3; = A; + J;. This notation will be convenient to compare the
data in the differential basis used in this work with the results of [11, 12].

5.1 Spin-0 double-stress tensor interference

Interference effects between the stress-tensor state and a scalar was considered in [10] which
found that the function f(A) appearing in (5.4) has (double) zeroes at A = 2d + n, where
A refers to the dimension of the T2 operator in |t/g). Due to the double-zero, there’s no

violation of the ANEC when considering interference effects in the state |¢g) to leading
order in Cf, L

5.2 Spin-2 double-stress tensor interference

In [11], the positivity of the ANEC operator in a mixed state of a stress tensor and a spin-2
operator was studied. To this end, consider the state

[$2) = 01| T) + v2|[T7]2) . (5.7)

Due to the large-Cp expansion, there is again a potential issue with the ANEC for the
mixed stress tensor and spin-2 double-stress tensor state. It was explained in [11] that

if one parameterizes the three-point function (TT[T?]3) by c(%[?}ﬂ) and C(T[T 12T) in the
basis (5.6), and imposes conservation, the ANEC positivity implies that c( [:g 127) = 0 while
ATIT2T) o nconstrained.
1,0,1
Translating between the basis (c(() O[ZS%T) g 0[ 2 )) and the differential basis(pg?%, pg}%),

we find!'®

T[T2),T T(T2)oT 1

S5 = < (16p030) T = (210800 4 8950) . (59)

The superscript denotes the leading Cp expressions, corresponding to Apz = 8 in d = 4.
Inserting the MFT solution (4.5) in (5.8) gives

Cé 0[52]271) 0 , gTO[jlﬂ 12T) _ — 1200[0(0) (59)
We see that cé O[T 12T) _ (0 while C%[EZ]QT) is unconstrained, showing consistency with the

ANEC to leading order in C-" as discussed in [11].

0Note that coefficients p is a product of OPE coefficients and the thermal one-point function.
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5.3 Spin-4 double-stress tensor interference

Interference effects of both the ANEC and the spin-4 ANEC was studied in [12]. There is
again a potential issue with off-diagonal term that gives the leading large C'r contribution
when the minimal-twist spin-4 operator has dimension A = 8 + O(C;, 1) in holographic
CFTs. This potentially leads to violations of the ANEC, but we will show that this is not
the case based on the solution (4.5).

Below, we define © = [T]; and also denote the matrix elements of (O1|€®)|05)0) by

8((921’82. Based on the results obtained in [12], we obtain!!
£20) _ 10536550 4 748EY 1 128652
e 2419200 ’
£ _ 3196050 4 1284681 + 204652 (5.10)
e 3225600 ’
22 _ 2176480 4 8526l 4 1752642
e - 9676800

Due to the large-Cr scaling, we need to impose 5}2(;; ) = 0to leading order in C'-1; otherwise

we would find violations of the ANEC. However, each 5;4;‘) is non-negative which implies

that E%f) = 0 to leading order in Cr. In terms of (c((f()%T), cgﬁT), cf;ﬁT)), we find the only

solution is

(S (¢} o
Cé%,zT) =0, Cé,Tl,lT) =0, cﬁ%f) =0, (5.11)

which seems to imply that © = [T?];—4 cannot appear in the stress-tensor OPE. But this is

not the case due to the behavior of the OPE coefficients as we now explain. Solving conserva-

tion and the permutation symmetry in terms of the three coefficients (c(()%%T), c((]fq(?lT), cf;ﬁT)),

we find that all the coefficients are regular as A — 8 except for

(TOT) 1 ((T®T) (TOT) (T@T))

€2,0,2 NiA_S €0,0,2 »%,1,1 1€1,0,1

(5.12)
TeT) (TeT) (TeT

where p(C((),og )ac((),l,l )7057071 ))

(C(()?E)%T)7 C((),Tl(:)lT), CS%FO,QlT))- Requiring that the three-point function is regular as A = Ag — 8,

is a linear function of the OPE coeflicients

we write!? (o) (o)
iim 0,02  ~ (A - 8)50,0,2 )
—8
. TOT (TOT
ilglg C((),l,l )= (A - 8)08,1,1 )7 (5.13)
. TOT (TOT
A, 0570,1 = (a- 8)c§,071 g

with constants é’s that are finite as A — 8. This does not imply that the three-point
(TOT)

function is trivial due to the simple pole in ¢y 55 . In particular, the three-point function is

aH122H223
(P1- P)S(P3 - P2)8°

(T(P)[T?)4(Py)T(P3)) = (5.14)

"' More precisely, we take eq. (C.9) in [12] to obtain E(TQ(_’;) in terms of Sng’j) and then use eq. (C.2)-(C.4)

in [12] to express S;Qéi) in terms of the OPE coefficients (cé%%T)7 céﬁ(?lT), cfff)) for the basis (5.6). We refer
the reader to [12] for more details.

2Tncluding the anomalous dimensions would lead to the coefficients having different scaling with Cr.
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for some coefficient «. As the three coefficients (c(()%%T), cgl(?lT), cgﬁﬂ) all vanish as A — 8,

the solution is consistent with 5;29’1') = 0 to leading order in Crp.

Note that the leading Regge trajectory obey the inequalities
d—-2< TJmin < 2(d - 2) y (515)

in interacting CFTs. Therefore including anomalous dimensions of O(C;') such that 74 < 4,

. TOT) (TOT) (TOeT . .
the coefficients (067072 ),087171 ),037071 )) can become non-zero and not violate the spin-4

interference effects.
We find that the solution (5.14) agrees with that of MFT (4.5). This can be seen by
inserting (4.5) into the explicit expressions for the three-point function in the differential
(0)

5
basis, giving a = Qpé’o in the three-point function (5.14).!3 Therefore, we conclude that

the MFT coefficients (4.5) are consistent with positivity of the ANEC in the state which is
a superposition of the stress tensor and the spin-4 double-stress tensor [T2];—4.

5.4 Spin-4 ANEC in stress-tensor state

We have seen how the MFT solution is consistent with the ANEC in states [¢;) that are
superpositions of a stress-tensor and double-stress tensor state. We now move on to consider
the spin-4 ANEC and study it when the spin-4 operator is the double-stress tensor [T2%] ;4
with the OPE data obtained in holographic Gauss-Bonnet theory. We will show that the
saturation of the spin-4 ANEC happens precisely when the corresponding contribution to
the near-lightcone T'T correlators at finite temperature vanishes, generalizing the results
for the stress tensor in [27]. Note this analysis is sensitive to the subleading terms in the
Cr 1 expansion of the double-stress tensor data.

One can obtain the spin-4 ANEC in a stress-tensor state EC([,zl:’pj) using the results

rom . e change basis from (c¢ ,C ,C o the differential basis
from [12].%  We change basis f o2 ebhol ) to the differential basi
(p1,4,p2,4, p3.4) used in the present paper and perform the Cp. ! expansion.'? Using the

values in Gauss-Bonnet gravity given in (4.18) and (4.19), we obtain

(4,00 117T4CT(4 — 3/1)2(1% + 1)6ﬂ2

0< e =
=TT 22118400004 ’
4 2 6~2
(4,1) 177 CT(/{ — 2) (/{ —+ 1) [ 516
< = .
0<&rr 98304000x4 ’ (5.16)
0 < g2 _ TmCr(4 —5r)*(k + 1)°07
=TT 3072000x4 ’

which saturates when & = {3,2, 3}.

6 Discussion

In this paper, we study thermal TT" correlators and explore their connections to ANECs.
One can use the OPE between two stress tensors and expand the correlator in powers of

13Tt can also be seen by solving for cg?’ﬂ_g,nm = cgfﬂs,m (pf}l, pgz, pé?}l), from which one finds that
all coefficients vanish except for cgo(?zT) (to leading order in CL ).
1Gee eq. (4.4)-(4.6) in [12].

'5The results are proportional to the leading lightcone expressions in eq. (3.33) in [28].
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the temperature. The contributions from a single-stress tensor in the lightcone limit are
proportional to the corresponding spin-2 ANECs. To go beyond it, we consider holographic
Gauss-Bonnet gravity, where the breakdown of spin-2 ANECs is related to superluminal
signal propagation. We analyze the multi-stress tensor contributions to the TT correlators
in the dual d = 4 CFT with a large central charge. Our chief finding in this paper is that,
when an ANEC is saturated in a state created by the stress tensor, all higher-spin ANECs
are saturated in this state as well — the corresponding near-lightcone thermal TT' correlator
takes the vacuum form.

Note that the statement about ANEC saturation is really a statement about the OPE
of the stress tensors, so instead of a thermal state one may consider any other suitable
state in the theory. One may ask how general our observation is — does it apply beyond
holographic models and beyond the large Cr limit? Below, we discuss related questions
and possible future directions.

e Scope of the result and possible proof

It was argued in [12, 58], that ANEC saturation implies that the theory is, in
some sense, free. In particular, by studying ANECs in the states created by linear
combinations of spin-2 and spin-4 operators, [12] argued that the spin-4 operator must
be a conserved current and hence the theory is free. However we found that things
can be more subtle when the spin-4 operator has dimension eight, which is the case
for the minimal-twist double-stress tensors in CF'Ts with a large Cp. In this case the
theory is not free, and only thermal correlators with certain polarization simplify in
the near-lightcone regime.

Are there examples of unitary interacting CFTs which are “free” near the lightcone,
like holographic GB gravity we studied here? That would be an interesting question
to investigate. Once the scope of this phenomenon becomes more clear, it would be
natural to search for a proof as well.

e Free theories and their large N limit

Free theories (bosons, fermions and gauge fields in four spacetime dimensions) saturate
conformal collider bounds, so it is natural to ask what happens with the higher-spin
ANEC:s in this case. Of course, the near-lightcone behavior in free theories is governed
by the conserved, higher-spin currents. Nevertheless, it would be interesting to see if
there are any patterns of the type we observed in this paper. It seems that studying
the large C7 (or large N) limit of free theories might be particularly interesting; we
leave this for future work.

e Relation to experiment and to lattice computations

One may wonder if there are CF'Ts which are interacting and at the same time saturate
ANECs, like the holographic model we considered in this paper. Presumably a spin-
four operator with conformal dimension close to eight might be necessary for this to
happen. It would be interesting to check, how far, e.g., QCD at finite temperature is
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from this regime and to compare our results with the lattice computations of the 17T
correlators (see, e.g., [68] for a review).

Anomalous dimensions of the spin-2 [TW]2 operator

We note that the anomalous dimension for the spin-2 double-stress tensor, given by
the second equation in (4.18), is negative for Agg = 0 (Einstein gravity) but changes
sign and becomes positive for values of Agp inside the conformal collider bounds. It
would be interesting to understand the meaning of these values of A\gg where this
happens.

Minimal-twist multi-stress tensors with derivatives and spherical black holes

For technical reasons, in this paper we restrict our discussion to a black hole with a
planar horizon. This corresponds to considering multi-stress tensor operators without
additional derivatives appearing in the OPE. It would be interesting to study the role
of operators with derivatives, although this would be technically more involved than
the analysis we did in this paper.

Near-lightcone TT' correlators and higher-derivative gravities

On a related note, one may ask if one can make progress in computing the near-
lightcone behavior of holographic correlators for generic holographic models.

Much recent progress has been made in understanding the multi-stress tensor
sector of the d = 4 thermal scalar two-point functions and related heavy-heavy-light-
light (HHLL) correlators [57, 61, 69-94]. As was observed in [86, 90], the structure
of the d = 4 thermal scalar two-point correlator in the lightcone limit has certain
similarity with the W5 vacuum blocks in d = 2 CFT [95]. While the reasons for this
remain unclear, one may wonder whether a similar story exists for the TT" correlators.

For example, is there a universality of the near-lightcone TT correlators similar to
the one exhibited by the near-lightcone HHLL holographic correlators? The addition
of higher-derivative terms to the bulk gravitational Lagrangian leads to the variation
of the TTT couplings, but is the near-lightcone behavior of the holographic TT
correlators fixed (and universal) in terms of these couplings? Can the bootstrap
techniques of [74] be applied to compute the full TT correlator? We leave these
questions for future investigation.

Note that the model we consider, Gauss-Bonnet gravity, can be regarded as the
simplest type of the Lovelock theories [96]. We expect that the techniques used in
our work can be used to deal with other higher-derivative corrections to the bulk
Lagrangian. Additional parameters present in such theories can also be useful for
studying possible universality of the holographic thermal T correlators.

Finite-gap corrections

In the case of the stress-tensor sector of holographic HHLL correlators, the finite-gap
corrections have been investigated in [81] and were shown to lead to the loss of
universality. It would be interesting to repeat this analysis for the TT correlators.
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e Higher-point correlators

Another natural extension of this work is to go further and investigate the thermal
properties of n-point (n > 2) stress-tensor correlators near the lightcone.

e Going beyond double-stress tensors

In this paper, as well as in [28], the conformal block decomposition of the holographic
thermal TT correlators has been performed up to the double-stress tensors. It would
be interesting to go beyond this and study the k-stress tensor contributions for generic
values of k.
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A More shear-channel results

When the source ﬁm is turned on, using the method discussed in 2.3.2, we find
1 3nCr (7t* — 2%)

G(bulk) _ Al

Tz,r2 10 atQ + 82 5 (t2 + 22)5 ( )

(bulk) 1 3naCr (t* — 6t%2% + 2) N
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3
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In the Einstein-gravity limit, x — 1, these results agree with [28]. The fi contribution
vanishes when x = 2, the critical value of the GB coupling for this channel.
Next consider the fi?> contribution. In the lightcone limit, we find
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The leading-lightcone contribution vanishes at the critical x = 2.
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X

~ 93 -



Reduced equation of motion. With H,, turned on, the corresponding reduced equation
of motion is

Mgﬂ(shear)GQ(shear) + :U’eﬁ(shear)gl(shear) + ®O(Shear) =0, Heff(shear) = (’{ - 2):& (A5)
where Og(ghear) is the same as the H,, result:

@2(shear)

= [w? (w20, — 38w} + 59102 ) — 4431wD,, + 13440| Quor . (A.6)

In this case, O1(gpear) and Op(ghear) are given by
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B Coefficients of the stress-tensor three-point function

The stress-tensor three-point function is parameterized by three coefficients (a, b, &) [65]. An
alternative basis uses (to,t4, C7), which can be related to the previous basis in the following
way [3]:

3013 + 4b — 3¢)
~ lda—2b-5¢

, — _15(81a 43820~ 208) (B.1)

to .
2(144 — 2b — 5¢)

)

and [65]
(d—2)(d+3)a—2b— (d+1)é
d(d + 2) '

In this paper, we focus on d = 4. The stress-tensor three-point function was studied in the

Cr =45,

(B.2)

context of holographic Gauss-Bonnet gravity in [36], which found (t2 gB, t4,gB, C1). Setting
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ty = ta gp given in (4.12) and t4 g = 0, one finds'6

8Cr (—6+2) : Cr(s3—%2) 20y (-84+9)
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(B.3)

a =
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