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A B S T R A C T 

In modern linear accelerators it is often convenient to use multicell cavities which are designed 
for a constant particle velocity. These cavities are then employed over a certain velocity 
range until the next cavity type, designed for a higher ß , further accelerates the beam. For 
superconducting cavities this approach has become mandatory due to the high R&D costs 
of such devices. Using multicell cavities at velocities different from their design value yields 
phase slippage in the single cells, thereby reducing energy gain and longitudinal focusing. In 
this paper we derive some simple analytical formulas in order to demonstrate the implications 
of phase slippage on longitudinal dynamics. It is shown that for large phase slip values 
the longitudinal focusing is not only reduced by lower transit time factors but also by an 
additional "slip factor", that can drive particles into unstable regions of parameter space. 
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1 Introduct ion 
Multicell cavities with constant cell length are designed for a specific particle velocity ßd. In 
order to accelerate the beam, each cell has a length of ßλ/2, so that a bunch traversing the 
cavity always sees the accelerating half wave of the electric field. Figure 1 shows an example 
where the bunch velocity is smaller than the design velocity of the cavity (ß < ßd). In the first 
two cells the bunch is too early with respect to the synchronous phase, and it arrives too late 
in the subsequent cells. Only in the geometric center of the structure, the bunch is exactly "on 
phase". For this reason the designation "synchronous phase" ϕs no longer applies and is usually 
replaced by the mean phase of the reference particle ϕr. 

Figure 1: Phase slip in a 4cell cavity 

In the following we study a simplified case, assuming constant electric fields on axis, and neglect
ing the effects of acceleration. With this model one can understand the implications of phase 
slippage and derive simple rules for linac designs with multicell cavities. A second purpose of 
this study is to show that phase slippage has to be taken into account properly when setting up 
beam dynamics calculations with multiparticle codes. 

2 Energy gain 
The reduction in energy gain for ß ≠ ßd due to phase slippage is given by evaluating the transit 
time factor integral for the appropriate velocity: 

where the cos refers to a structure with even electric field distribution (odd number of cells) and 
the sin belongs to a structure with odd field distribution (even number of cells). The fields are 
usually calculated with SUPERFISH [1] or can be approximated by trigonometric expressions. 
In order to quantify the effect of phase slippage on energy gain, we calculate the transit time 
factor in multicell πmode cavities for the simplified case of constant EZ between cell irises. For 
the single cells we obtain: 

[N - total number of cells, n - cell number, counting from the center of a multicell cavity to the 
outside (if ritotai is odd the center cell has the number n=0 ) , ßd - geometrical design beta of the 
multicell structure, ß - actual particle beta.] 
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The transit time factor for the whole cavity can now be computed by averaging the single cell 
numbers. The result for cavities with 2 to 6 cells at different velocities is shown in Figure 2. 

Figure 2: Transit t ime factor for multicell cavities as a function of normalised ß 

For ß = ßd all multicell cavities have the same transit t ime factor T = 2 / Π . The well known 
phenomena that l o w  β multicell cavities reach their maximum performance at ß > ßd can 
be explained by two competing effects: looking at a single cell the transit t ime factor rises with 
higher velocity, however, this rise is limited by the rising phase slip which reduces the accelerating 
field seen by the reference particle. For realistic field distributions the maximum values for T 
as well as the optimum ratio of ß/ßd can change but the general tendency will be the same. 
In particular the large bore radii of the cutoff tubes in superconducting cavities change the 
field pat tern in the outer cells, where the higher effective cell lengths increase furthermore the 
optimum beta. The following table compares the maxima for the simplified constant field cavities 
with the results from the reduced ß cavities of the SPL project. 

Table 1: Optimum ratio of ß/ßd for multicell cavities 
cavity type No. cells (ß/ßd)opt 
Ez = const. 2 1.35 
Ez — const. 3 1.14 
Ez = const. 4 1.08 

ß = 0.52 (SPL) 4 1.12 
ß = 0.7 (SPL) 4 1.14 
Ez = const. 5 1.05 

ß = 0.8 (SPL) 5 1.08 

Although Eq.( l ) correctly describes the lowering of EQT for growing phase slippage it does not 
fully cover the reduction in longitudinal focusing. For this it is necessary to follow the bunches 
through every single cell and to extend the standard formulae of longitudinal dynamics. 

3 Longi tudinal Focusing 
In the following it is assumed that : all cavities have either odd or even field symmetry, the 
electrical center of each cell is identical with the geometrical center, and the phase change by 
acceleration is negligible. Then the phase slip angles in a multicell cavity are symmetric with 
respect to the cavity center and are given by: 
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[The sign is negative for cells which are on the downstream side and positive for cells on the 
upstream side, n - cell number, counting from the center of a multicell cavity to the outside (if 
ntotai is odd the center cell has the number n=0) . ] 

Assuming continuous acceleration which corresponds to the idea of an average accelerating force, 
the "single cell" theory (without phase slip and with ßs, γs = const., i.e. Refs. [2],[3],[4]) yields 
the following equation for particle trajectories in the longitudinal phase space: 

where each Hamiltonian defines a different trajectory. 
The potential well U, which is normalised to U(ϕs) = 0: 

provides the focusing force that keeps particles inside of the stable region, the so called RF 
bucket 1 ) . The limiting trajectory, dividing the stable from the unstable region is called separatrix. 
Evaluating Eq. (6) at the stationary but unstable point: [ϕ = — ϕs, ΔW = 0] (=> potential 
maximum, see Fig. 4), determines the constant: H(ϕ:max and yields the separatrix equation: 

In the multicell case one can estimate the resulting potential well by extending the idea of 
averaged forces over all cells of a cavity. This simplification is valid as long as the change of ßs 

is small along the multicell cavity, an assumption tha t is usually fulfilled for proton linacs above 
a certain energy. Looking for instance at a four cell structure with ß ≠ ßd one simply computes 
the mean potential by: 

The expression can be simplified to: 

[ ϕ r is the reference phase (average phase of the synchronous particle), (ϕs1 and ϕS2 are the slip 
angles as defined in (4) and (5), T1,2 are the transit t ime factors in the inner and outer cells, and 
Tav is the average transit t ime factor for the whole cavity.] 

1) particles in the bucket can be "lifted" to higher energies 
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Comparing Equations (7) and (10), one can see that the phase slip terms are completely decou
pled from the phase description, which means tha t the phase limits for stable particle motion 
remain the same, while the amplitude of the potential well is now scaled by a slip factor: 

Using the same principle one can easily derive slip factors for 5 and 6 cell structures: 

We note tha t the slip factors yield an additional degradation of the potential well tha t is not 
contained in the (E0T)av integral for the whole cavity. Figure 3 shows the evolution of the slip 
factor and the total degradation of the potential well (given by Tav • f3(n)) for 26 cell cavities 
at different velocities. 

Figure 3: Slip factor and total degradation of the potential well for 26 cell cavities at different 
velocities 

The separatrix for the multicell case is obtained by combining Eq. (10) and Eq. (6) and setting 
Hϕ = Hϕ,max i.e. (ϕ = — ϕ r ) : 

The phase slip terms remain decoupled from the phase description, resulting in a bucket tha t is 
reduced in energy width but with the same phase width as a "single cell bucket" (= —ϕ r → 2ϕr). 
The relative reduction of the maximum energy acceptance is then given by: 

and can be computed by taking the square root of the values in Fig. 3. The absolute value of 
the maximum energy width is defined by: 

We note tha t even for ß/ßd » 1 the energy acceptance is only reduced down to a certain 
threshold (= 70% of ∆W at the design velocity ßo), while for ß/ßd < 1 the stability limit is 
reached very quickly (Fig.3). 
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As an example we show the degrading effect on longitudinal focusing for a multicell cavity with 
a geometrical ß of ß — 0.52. Figure 4 shows the potential well and the separatrix for a 4 and 6 
cell structure compared to the single cell case at a kinetic energy of 100 MeV = 0.82). 

Figure 4: Potential well and separatrix for a 1/4/6 cell ß = 0.52 cavity at 100 MeV, ϕr =  2 5 ° 

For the 6 cell case the amplitude of the potential well is « 60% lower than for the single cell 
case, meaning that also the average longitudinal focusing force is reduced by the same factor. 

4 Phase advance 
Due to the smaller longitudinal focusing force also the phase advance must change with large 
slip angles. The smooth phase advance (zero current) per focusing period in the 'single cell' 
description is defined as [2]: 

Using again the multicell formalism yields: 
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for the longitudinal phase advance, which is now scaled by √Tav • fs(n). From Fig. 3 one can see 
tha t this factor can easily yield a substantial reduction of longitudinal phase advance. At the 
same time the transverse phase advance is increased. This contradictory variation of transverse 
and longitudinal phase advance can drive the outer particles into unstable regions of the param

eter space and thus produce halo particles. Since the transverse optics can easily compensate 
for the transverse phase advance variation, the only real limitation comes from the reduction of 
longitudinal phase advance. 
For the above mentioned example of a ß = 0.52 multicell cavity at 100 MeV (ß/ßd = 0.82) 
we calculate the reduction in longitudinal zero current phase advance compared to the design 
velocity: the energy acceptance as well as the longitudinal zero current phase advance are reduced 
by = 35% for a four cell cavity and by = 45% for a six cell cavity. These values are confirmed by 
simulations with the 3D envelope code TRACE3D [5] (within 2% accuracy). Simulations with 
acceleration still show a good agreement with the predicted reduction of phase advance. 

5 Conclus ions 
A simplified model (no acceleration, constant cavity fields) was employed to derive some basic 
formulae, describing the effect of phase slippage on longitudinal dynamics. We have seen tha t 
phase slippage reduces the transit t ime factor, the longitudinal focusing force and thus the energy 
width of the RF bucket. The total reduction in energy width is given by the transit time factor 
times an additional slip factor which accounts for the nonlinear dependence of the focusing force 
on the slip angle. The maximum phase width, however, is not affected by phase slippage. For 
velocities below the design velocity ßd the energy acceptance is soon reduced to zero, while 
for ß > ßd the maximum energy width always stays above a certain threshold (= 70% of the 
energy width at the design velocity ßd). This indicates that high gradient multicell cavities can 
be operated well above their design velocity without affecting the stability of the beam. Since 
the transverse phase advance is also affected by large slip angles, the optics of the machine have 
to be modified accordingly. 
Special care has to be taken, when simulating a multicell structure. It is important tha t the 
matching code (usually an r.m.s. envelope code) and the multiparticle code use the same RF gap 
model and treat the phase slip correctly. Many models use for instance a gap tha t is represented 
by a zero length gap and two adjacent drift lengths. Some codes calculate the transit time factors 
for each cell of a cavity correctly but then use the average phase to calculate the focusing forces 
in each cell. This simplification works fine as long as the slip angles do not exceed the linear 
region of the cos curve but becomes increasingly wrong for larger slip angles. If now the matching 
code and the simulation code use different RF gap models, then every multiparticle simulation 
starts with an intrinsic mismatch. 
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