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INTRODUCTION

The idea of bunching, focusing and accelerating a continous beam of ions by a radio fre­quency quadrupole was proposed in the late sixties by Kapchinskii [l] who called the device a "spatially continous quadrupole focusing" machine. The first realization in the occidental world of such a device was done in Los Alamos National Laboratory in 1980 [2]At CERN an RFQ accelerator (RFQl) is working remarkably well as a preinjector of the LINACl for protons since march 1984 [4] having been before in test operation for nearly one year. The substitution by another RFQ (RFQ2) of the Cockcroft Walton and low energy beam transport of the LINΛC2 is foreseen in near future.This report has been conceived in order to collect information concerning the design of an RFQ from the point of view of beam optics, and although most of the topics have been treated elsewhere they have been included here for the sake of completeness. The whole material has been worked out in collaboration with Μ. Weiss, during the design study of the RFQ2.A first chapter is dedicated to the detailed derivation of the electric field to which particles are submitted inside the accelerator. The description of different sections of the RFQ follows, and here we have benefited from the los Alamos methods. Another chapter treats the current limits and the space charge forces. The computer programs used at CERN for the design of an RFQ are described subsequently, and finally the electric surface fields and the vane machining are treated.
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1. ELECTRIC POTENTIAL AND FIELD

1.1 Electric potentialThe bunching, acceleration and focusing of the beam inside the RFQ is performed by the electric field generated by four electrodes (vanes) arranged in a quadrupolar symmetry around the longitudinal axis, and excited by rf power.The electrodes of the RFQ are designed according to specific requirements, the only fact being fixed that they must combine the quadrupolar azimuthal symmetry which focuses the beam transversally with a longitudinal modulation which accelerates and/or bunches the parti­cles. The alternating focusing is obtained from the alternating electric gradient and, unlike the magnetic focusing force, is constant for any velocity of the particles. The longitudinal compo­nent of the electric field responsible for the acceleration, bunching, etc. is determined by the shape of the unit cells of length βλ ∕2, which compose the structure (see Figurel). β is the veloc­ity of the synchronous particle in units of the velocity of Iiglit c, and λ is the wavelength of the rf.

Figure 1 : Shape of two adjacent vanes for a βλ period
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The wave equation in the region near the axis can be approximated by the Laplace equa­tion ∇2U = 0 (1.1.1)being U the electric field potential, from which the forces acting on the particles can be derived. The solution of eq.(1.1.1) can be written in cylindrical coordinates as the product of three func­tions, each of them depending only on one of the variables, r, 0 or 7ΛU(r,0,z) ≡ R(r) Θ(0) Z(z) (1.1.2)This equation represents the spatial configuration of the electric potential. Its complete specification is obtained multiplying it by the time variation of the rf: sin(ωt + ψ), being ω = 2πc∕λ.The functions R(r), Θ(0), and Z(z) have to satisfy the symmetries of the structure.

1.2 Quadrupolar symmetryThe first condition is the quadrupolar symmetry, which is expressed in the polar coordi­nates r and θ. The Laplace equation in polar coordinates is:Θ(0)∂2R(r)∕∂r2 + (l∕r)Θ(0)∂R(r)∕δr ÷ (l∕r2)R(r)∂2Θ(0)∕∂r2 = 0 (1.2.1)Let's study first the dependence on the angular variable. Θ(0) can be expressed generally as a series in sine and cosine,Θ(0) = Σnanc°sn0 + ΣpbpSinp0 (1.2.2)and has to satisfy three conditions (see Figure 2):i) Θ(0) = Θ(-0)This equation is equivalent to : bpSinp0 = — bpSinp0, which implies that bp = 0 Vp.ii) Θ(0) = Θ(π r-0)which means : cosnO = cosn(π - 0) →∙ cosn0 = 1 and n must be eveniii) Θ(0) = - Θ(π∕2 - 0)that is, cos210 = - coslπ cos210 → cos1π  = - 1, so 1 must be odd.The function Θ(0) can then be written asΘ(0) = Σ a cos2(2n+l)0 (1.2.3)Substituting Θ(0) in Eq.(1.2.1) we obtain the differential equation for R(r):∑n[r2d2R(r)∕dr2 ÷ r∂R(r)∕∂r -4(2n+l)2R(r)] ≈ 0 (1.2.4)The summation goes from n = 0 to n = ∞.
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Figure 2: Transverse seclions of the cell

The corresponding solution is:r(γ) = 2namr^2n+ ŋThe potential wlιich represent the quadruρoiar symmetry is thenU(r,0) = ∑n eɪɪ r2<2n+ ɪ) cos2(2n + 1)0
(1∙2∙5)
(1.2.6)

1.3 Longitudinal modulationWe add now the variation along z.Let's express the potential function as U1(r,0,z) = R1(r)Θ 1(0)Z1(z). To obtain the longitu­dinal component of the electric field the electrodes have to be longitudinally perturbed (quasi- periodically) so that the perturbation of the vertical electrodes is shifted by a period of βλ∕2 with respect to the horizontal ones.Looking at Figure 2 it is clear that the angular function Θo(0) has to satisfy only conditions i. and ii. of paragraph 1.2, and it can be written as:Θ1(0) = Σ a cos2n0   n n (L3.1)The function Z1 (z) representing the quasiperiodic variation along the z axis, can be written as a cosine and sinus series:
/-ɪ(z) = 2mcmcosmkz + 2PdpsinPkz (1∙3∙2)where k=27τ∕βλ. Ibe first condition on Z1(z) is a zero slope at the beginning of the period (see Figure 2):
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i) dZ1(z)∕dz∣z = 0 = Owhich is true only if dp = 0 ∀pWe impose now the condition of the shifted longitudinal perturbation:U1(r,0,z) = - U1(r, 0±π∕2, βλ∕2~z) (1.3.3)Looking at the expressions of Θ1(0) and of Z1(z) we see that Eq.(1.3.3) is satisfied when cosnπ cosmπ = — 1 that is, if the sum of n and m is an odd number.The Laplace equation, written in cylindrical coordinates, is:Θ1(θ)Z1(z)d2R1(r)∕∂r2 + (l∕r)Θ1(0)Z1(z)dR1(r)∕dr+ (l∕r2)R1(r)Z1(z)∂2Θ1(0)∕∂02 + R1(r)Θ1(0)d2Z1(z)∕dz2 = 0 (1.3.4)Inserting now the functions Θ1(0) and Z1(z) and performing their respective derivatives in θ and z we obtain an expression for the function R(r):∑n∑m cos2(2n+ 1)0 cosmkz ∙∙[r2∂2R1(r)∕∂r2 + rdR1(r)∕dr - (m2k2r2 + 4n2)R1(r)] = 0 (1.3.5)Inside the square brackets we recognize the differential equation satisfied by the modified Bessel function of argument mkr and order 2n. The potential function U can be written finally as:U(r,o,z) = (V∕2)ΣpAo2p+,r2(⅛+1)∞s2(2p+l)0

÷ (V∕2)∑1Σ Amn *2n(rn^r) cos^r1^ cosmkz (1.3.6)with n + m = 2p+ 1 (p = 0,1,2,...). V is the potential difference between two vanes; when the two horizontal electrodes are at potential V/2, the vertical ones are at — V/2 and viceversa.
1.4 First order potential function and fields.Usually only the first two terms of equation (1.3.6) arc considered as a good approximation to start with [3] and the potential function is:U(r,0,z) = V∕2∙( Λ01 r2 cos20 + A10 I0(kr) coskz ) (1.4.1)Eqs.(1.3.6) and (1.4.1) refer to one unit cell. The coefficients Aij change from cell to cell. Their variation determines the characteristics of the accelerator.It is usual to call 'a' the minimum distance of the vane to the axis in one cell, and 'ma' the maximum one, 'm' being the modulation factor (see Figure J).From equation (1.4.1), as U(a,0,0) = U(ma,0,βλ∕2) = V/2, it is easy to write the relation­ship between Aij and the geometrical parameters ('a','rn') of the cell:
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m2 — 1Λ10 = ----------------------------- ------  (1.4.2)m2I0(ka) + I0(mka)A01 = (l∕a2)[l - A10 I0(ka)] (1.4.3)The components of the electric field are derived from (1.4.1):Ef = -ðʊ/ðr = -V∕2∙[ 2A01 rcos20 + kA10 I1(kr) coskz ] (1.4.4)E0 = - 1/r ∂U∕∂Θ = VA01 rsin20 (1.4.5)Ez = — ∂U∕∂z = kV/2 A10 I0(kr) sιnkz (1.4.6)Other usual definition in the RFQ literature is the focusing force factor B:B = (q∕m0c2)λ2(xV∕a2) (1.4.7)where χ is I0(ka) + I0(mka)

X = --------------------------- -  (1.4.8)m2I0(ka) + I0(mka)A10 and χ are related by: A10I0(ka) + X = 1 (1.4.9)lite mean aperture of the vanes r0 is (see Figure 1):ro = 1∕√^71 = a√7* (1.4.10)
7.5 Multipolar expansion of the potential function and fields.'lire lowest terms potential of Eq.(1.4.1) specifics equipotential surfaces whose transverse sections are hiperbolae. '∏ιe real electrodes are .however, usually machined either along tran­sverse circular pathes or with a tool whose transverse section is a circle and then cuts elliptical sections (sec Chapter 4).A more exact representation of the real electrodes requires a potential Rmction with multi­pole terms, whose coefficients can be determined analitycally or numerically.A good approxirnaiion which permits to describe the transverse circular shape of the vanes in the region near the axis (see Appendix A) is a function where octupole and duodecapolc terns are added:U(r,θ,z) - (V∕2){(A01r2 cos20 + A03r0 cos60) + iA10ι0(kr) + Λ12cos40 I4(kr)l coskz}(1.5.1)Analytically the coefficients arc computed imposing boundary conditions (see Appendix A) for each cell of the RFQ.
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The components of the electric field are now:E = — (V∕2){2A01r [cos20 + 3α13r4 cos60] + A10 [kl1(kr) + β12 cos40 dl4(kr)∕∂r] coskz}(1.5.2)

Eq = V {Aolr[sin20 + 3α13r4 sin60] + 2A12sin40 I4(kr) coskz} (1.5.3)Ez = (V∕2)kΛ10 [I0(kr) ÷ 012cos44 I4(kr)] sinkz (1.5.4)whereα13 = A03∕Λ01 andβ12 = A12∕A10.
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2. SECTiONS OF THE RFQ

The beam inside the accelerator undergoes the transformation from continous to bunched, and the action of the RFQ on the beam must be adapted to the specific requirements of the particle dynamics during the transport along the structure. So the RFQ is usually divided into sections, distinguished one from the other by the different tasks they fulfill.In our design we follow the Los Alamos description [3] The sections are:. Radial Matching Section (RMS). Shaper. Gentle Buncher. Accelerating SectionWe dedicate now a paragraph to each section, marking out its main characteristics.
2.1 Radial Matching Section (RMS)

The RFQ receives normally a continous beam, which comes from a time independent fo­cusing channel. The fields in the RFQ are time dependent and so are the matching conditions. The task of the RMS is to match the beam, at all instants, to the time varying fields.Several RMS have been proposed [5] [6] [7] and we will describe the one we have included in the design of the RFQ2 and which was first introduced by Grandall [ 5] : the idea is to start with a very weak focusing at the beginning of the RMS and increase it progressively towards the end. If this is properly done, it is amazing how well the beam is matched at the end of the RMS. To achieve a gradual focusing, the vane aperture starts with a large value and becomes nominal only at the end of the RMS (see Figure 3) The potential function which describes the equipotential surfaces is obtained from the I ,aplace equation, as we have seen in the previous chapter. We will call now this function U2 = R2(r)Θ2(0)Z2(z) and apply to it the conditions ap- propiate to the RMS section.'Ilie exact quadrupolar symmetry is the only condition on the angular variable. So the function Θ2(0) is equal to Θ(0) given in Eq.(1.2.3).Ilie function Z2(z) can be written as before as a sine and cosine series:Z2(z) - Σ ɑ sinmKz + Σ ßcospKz z ' mm PPrwhere the constant K is related to the length ɪ-pʌ,ɪs of the RMS section : K = tt/2Lrm$ (2.L1)
The vanetip profile must have a zero slope at so θZ2(z)∕∂ z∣ £ = O,which is satisfied only if β = O ∀p and if m is odd. RMSTo obtain R2(r) we proceed as before. Substituting Θ2(0) and Z2(z) into the Laplace equa­tion, we are left with the following differential equation: ∑∏m{ r2dxR2(r)∕dr2 + r∂R2(r)∕∂r — [4(2n+I)2 + K2(2m+l)2r2]} = O (2.1.3)whose solution is the Bessel series
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r>W = 2mn‰t2(2n + l)i<2m+ 1>κr∣ (2∙1∙4)The potential in the RMS is then:U2(r,0,z) = (V∕2)∑mnAmnI2c2n+ 1)[(2m+ l)Kr] cos2(2n + 1)0 sin[(2m+ l)Kr] (2.1.5)From the infinite scries we take only the lowest order terms, and wc drop the subindex in U:U(r,0,z) = V/2 [ Q(r,z) cos20 + D(r,z) cos60 ] (2.1.6)being Q(r,z) the factor in r and z of the quadrupolar term:Q(r,z) = A00 I2(Kr) sinKz + A10 I2(3Kr) sin3Kz (2.1.7)and D(r,z) of the duodecapolar term:D(r,z) = A01 I6(Kr) cosKz + A11 I6(3Kr) sin3Kz (2.1.8)The coefficients arc determined from the following boundary conditions:i) The longitudinal field must be zero at the entrance of the RMS section.ii) The potential must be V/2 on the vane surface.iii) ITie transverse radius of curvature of the surface at the vane tip, p(r,0,z), is equal to a given value p0.ITie corresponding equations are:i) ðʊ/ðz = 0 at z = 0From ∂Q∕∂r= c3D∕∂r= 0 the relationships between A00 and A10 and between A01 and A11 follow: A10 = - Aoo∕33 (2.1.9)A11 = -A01∕37(we have used the approximation of the modified Bcssel functions for small arguments:I (x)≈xli∕(2nn!) and we have neglected the terms of higher order in r)ii) U(γo,0,Lrms) = V/2iɪɪ) p(ro,θ,^RMS^ = p°where r0 is the distance between the vane and the axis at z -- Lrm$-Solving the system defined by these two last equations (sec Appendix B), we can write the electric potential as follows:U(r,0,z) ≈ V/2 f Aq q(r,z) cos20 + Aj d(r,z) cos60 1 (2.1.10)where q(r,z) and d(r,z) are:q(r,z) = I2(Kr) sin Kz - 1∕33 I2(3Kr) sin3Kzd(r,z) = I6(Kr) sinKz - 1/37 I6(3Kr) sin3Kz (2.1.11)
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and the coefficients Λ and ʌð are determined by the aperture r0, the value of the transverse radius of curvature p0 and the total length (see Appendix B).The equipotential surface which defines the shape of the electrodes satisfies the equation:Aq q(r,z) cos20 + Aj d(r,z) cos60 = ±1 (2.1.12)The vane profile along z, obtained from (2.1.12) when 0 = 0 is represented in Figure 3 to­gether with the variation of p(r,0,z) (see Appendix B):r2p(r,0,z) - ---------------------- (2.1.13)r — ∂2r∕∂θ2

Figure 3: Radial Matching Section

'ITie transverse matching in the RMS requires the focusing force to pass slowly from zero to the final value of Bf at z = Lrm$, which is Bf= (32∕3)VK2Aq .The radial field near the axis is:Er = -ðʊ/ðr ≈ - V/8 K2Aqr (sinKz - 1/3 sin3Kz) (2.1.14)The focusing force constant isB(z) = OE /ðr ≈ V/8 K2A (sinKz - 1/3 sin3Kz.) 1 L|which gives B(Lrm$) — Bf . 'lhc smooth transition between the RMS and the next section is thus insured (sec Figure 4).
(2.1.15)
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Figure 4: Focusing force factor in the RMS

2.2 ShaperWhen Kapchinskii proposed the acceleration by an rf quadrupole [8] he emphasized the importance of keeping constant the shape of the longitudinal emittance, by imposing the con­stancy of the bunch length and of the frequency of the small oscillations. These conditions can be satisfied only when the longitudinal emittance is finite, i.c. when the beam is bunched. This is not the case of a beam coming from the source and having no longitudinal structure at all. Therefore a section is needed in the Rl7Q to change, in a smooth way, the longitudinal phase space, by rearranging the particles coordinates and starting to create the longitudinal emittance. This can be obtained by increasing slowly the accelerating factor A10 and the synchronous phase ≠s , which starts at —90°. Tlie beam will be accelerated by a small amount and will start to get bunched.We describe now the equations which characterize the Shaper.Tlie variation of the energy W of a particle of charge q and phase ≠ isdW/dz = qETcosψ = (qA10V∕∕3λ)(π∕2)cosψ (2.2.1)where ET is the mean longitudinal electric field on axis multiplied by the transit time factor (which, in the RFQ, is π∕4 [3] ). The variation of β in nonrelativistic approximation is then:dβ∕dz = (π∕2)(qV∕mc2λ)A10cosψ∕β2 (2.2.2)Wc consider now the synchronous particle (W = W , Ψ=Ψs), and we look at the laws of variation of A10 and ≠s . They can be chosen in several ways, providing that a smooth variation is kept. We describe the method, which is used at LANIz
Accelerating factor A10.It is varied linearly with z

A(z) = (Ash∕¼h)z (2.2.3)
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Lsh is the length of the Shaper and Λsh the value of Λ10 at the end of the section.

Synchronous phase.The synchronous phase and the separatrix length Φg arc related by (see Figure 5):sinΦ, — ΦnS Stg≠s = ------ -----------  (2.2.4)1 — cosΦ s

Figure 5: Separatrix length versus synchronous phase

Wc have considered two possibilities:a. Linear variation of ≠ from which the variation of Φ . follows according to eq.(2.2.4)Ψs = ≠si + Δ≠(z-z0)∕(Lsh-z0); (2.2.5)
ψ ∙ is the initial synchronous phase (normally equal to — vr/2). Δ≠ is the increase in synchronous phase along the Shaperδ≠ = ≠sh “ ≠i = ≠sh + 77/2 (2∙2∙6>and z0 is an initial fraction of the Shaper where is kept constant.b. I inear variation of Φ and related variation of ≠ s τsΦ = φ + ΔΦ (z-z0)∕(L h-z0) (2.2.7)where the parameters are the analogous of those of Equation (2.2.5) In this case the beam is more stable but the total length of the section increases. Tlie difference is anyhow7 very small.
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LengthThe length of the shaper, l,ɜɪɪ, can be obtained by integrating the equation (2.2.2); one can pro­ceed as follows:a. Substituting Eqs. (2.2.3) and (2.2.5) into (2.2.2) and rearranging the terms, we obtain:∫olj≡h (Ash∕Lsh) z sin[Δψ(z-z0)∕Lsh]dz = (2∕π)(mc2λ∕qV) ∫ ?Sh β2dβ (2.2.8) pifrom where Lh = 2mc2λ(∕Psh-∕Pi)F∕(31τqVAsh) (2.2.9)with F = (Δ≠)2∕(l-Λ)[ΛΔ≠-Δ≠cosΔ≠ + (l-Λ)sinΔ≠] (2.2.10)and Λ = zo∕Lshb. The length Lsh is obtained by the numerical integration of Eq.(2.2.2).
2.3 Gentle Buncher.After the Shaper, Kapchinskifs laws [1] can be applied to the already bunched beam. LANL calls this section the Gentle Buncher and it corresponds in fact to Kapchinskii'S original proposal.The longitudinal characteristics of the bunch are manteined by keeping constant:— frequency of the oscillations: A10sinψs/β2 = C1 (2.3.1)— bunch length : β φs = C2 (2.3.2)Given the values of A10, ψs and of the energy at the end of the section and one of them at the beginning, the whole set of parameters is completely determined in the Gentle Buncher.The length of the section is obtained analogously to the previous case: integrating

dβ = (σ∕2)(qV∕mc2λ)(A10sinψs∕∕i2) cotgψs dz (2.3.3)the length is
r ^gbL gb = (2mc2λ∕π qVC1) ∫ tgψs(β) dβ (2.3.4)

g βsh

2.4 Accelerating section.The values of 'a' and 'm' are kept constant. The beam is well bunched when it gets into the Accelerating Section, and normally the synchronous phase is not modified inside the section.The accelerating factor can be approximated by:
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m2 — 1A1 0 ≈ -------------------------- -----------: (2.4.1)m2 ÷ 1 + 2π2m2a2∕(βλ)2Integrating as usual between the beginning and the end of the section(∕l2∕Aι0) dβ = C cos≠s dz (2.4.2)where C = πqV∕(mc2λ), the length can be written as:

Las = a√caψ (2.4.3)withʌ/? = ^3f-^3gb^3 + (277∕λ)2m2a2(βf-∕lgb)∕(m2-l) (2.4.4)and *cos≠f if⅛"⅛∖ = ' fe (2.4.5)(sιnp≠f - sm≠gb)∕(≠f - ≠gb) it ≠gb ≠ ≠fIn the accelerating section we have a phase damping given with
≠2s∕≠1s = (ßi/^)1/2 (2.4.6)If the final ≠s is imposed, this damping has to be taken into account when specifying ≠ at the end of the Gentle Buncher.
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3. SPACE CHARGE AND BEAM CURRENT LiMiTS

The motion of the particles inside the accelerator can be dominated by the space charge forces, if the intensity of the beam is sufficiently high. .Although a correct presentation of the problem can be presently obtained only by numerical simulation of the particle dynamics, it is however possible to get an idea of the equilibrium between the external and the space charge forces by analytical methods. We use the linear approximation, which is a reasonably correct representation of the transverse plane, while for the longiiudinai plane it will give only an indi­cation on the real behaviour of particles, because of the neglection of the strong longitudinal non — linearities and asymmetries.
3.1 Forces acting on particles in the absence of space charge.We represent the bunch by a three dimensional ellipsoid with uniform charge distribution, whose dimensions are averaged over a focusing period [9]In the absence of space charge the dynamics of the particles is determmed only by the ex­ternal forces generated by the fields of the structure.Let's consider a bunch of particles (rest mass m0 and charge q) injected in an RFQ work­ing at frequency f (f=c∕λ) and intervane voltage V. In one cell of the structure, with minimum aperture 'a' and maximum aperture ma', the focusing forces acting on the particles are given, in the normalized system, by the square of the phase advances per period, σ0t and σ0∣ [13.] where the subindex stay for transverse and longitudinal, respectively:σ20t = B2∕(8π2) + ∆rf (3.1.1)σ201=-2Δrf (3.1.2)B is the focusing factor already introduced in the previous chapter, constant along the structure if the mean radius of aperture, r0, is constant. Δ rf is the rf factor, defocusing in both transverse planes and focusing in the longitudinal one:ʌɪʃ = (π2q∕2m0c2)(sin≠s∕∕i2)A10V (3.1.3)
3.2 Forces acting on particles with space charge.When the space charge forces are not negligible, the focusing strengths are diminished by a factor μt, 1 (transverse and longitudinal space charge factor, respectively):

°2t,l = ɑb,ɪ(ɪ - μt,l'where μt ɪ is given by: μt,l = ʌset,iʌʌt,l
(3.2.1)
(3.2.2)ʌset 1 is the space charge force (sec later). We assume that the mean radius of the bunch is the geometric mean of the maximum and minimum semiaxes over a focusing period [9] :
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r = √(λEn∕αt) = r°∕(l-μt)V4 (3.2.3)where E is the normalized transverse emittance and r0 is the mean radius of the bunch in ab­sence of space charge forces (r0 = √(λE ∕σθt)).Increasing the current the beam transverse dimensions increase and the maximum allowed r is limited by the value of the minimum aperture a:

rmax = a''√^ (32∙4)where Ψ is the average modulation factor 1 + B∕(4π2)Ψ = √0Γ√∕Γj ≈ ---------------------- (3.2.5)ɪ - B∕(4π2)in the reasonable hypothesis ʌɪʃ « B2; β + _ arc the maximum and minimum of the ampli­tude function respectively.Λs the beam current increases, 'a' must be kept always over the value
ath = r°√+(1-∕*t)^v4 (3.2.6)rFhe half longitudinal dimension of the bunch is f 101 :b = (3βλ∕4π)∣ψs∣(l —/μɪ) (3.2.7)

3.3 Equilibrium between external and space charge forces.In the RFQ the smallest effective value of the aperture 'a' occurs in the Accelerating Sec­tion. The most critical point in the transverse plane is then the end of the Gentle Buncher, be­cause there the defocusing force ∆rf is higher than in the following section (Δ rf ≈ β-2), while the aperture is the same. From now on we will refer the studies of this chapter to this point, and we suppose that, if the beam can be transported through it, it will also be stable along the whole accelerator. This assumption has proved to be valid by numerical simulation of particle behav­iour in the RFQ.We have seen that the current transported in the accelerator decreases the focusing efficien­cy of the system and the frequency of the particle oscillations. Appropiate values of σ0t and σ01 must be chosen in order to obtain the desired values of σt and σ1 in the presence of space charge.We inverte formally the problem: given σ0t and σot we calculate the corresponding param­eters of the RFQ (tension V, focusing force, accelerating factor) for a certain current.From equations (3.1.1) through (3.1.3) we can write:A10V = (m0c2∕π π 2q)(∕l2∕sin≠s)σ201 = A1 sσ  = (σ2ot + "2oi∕2)1'2χV∕a2 = 2χ∕2^(m0c2∕q)(l∕λ2) Sσ = At
(3.3.1)(3.3.2)(3.3.3)
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Ψ = (π√2 + Sσ)∕(τ√2 - Sσ) (3.3.4)The values of ʌɪ and Λ∣ depend only on σ0t and σ0∣ if the synchronous phase and energy are given. Multiplying Eq.(1.4.9) by V, we have:V = A10VI0(ka) + xV = Λ1I0(ka) + Aχa2The accelerating and the focusing factors are:ʌgb = ∙-∖''vB = 2√2S V σ

(3.3.5)
(3.3.6)(3.3.7)The 'a' appearing in Eq.(3.3.5) is the real aperture of the vanes, obtained from aʌ of Eq.(3.2.6) multiplied by a safety factor Sr which takes into account various tolerances (Sf ≈ 1-1.5).

3.4 Current limits.Given the values of σot and ɑɑɪ a current limit exists for each value of μt ɪ and the corre­sponding μ1  .According to the three dimensional ellipsoid model [9] the transverse space charge force isʌset = -[3Z0qItλ3(l — f(p))]∕(8πm0c2r2b) (3.4.1)where Z0 = l∕(ε0c) is the impedance of free space, p = b/r is the ellipsoid axis ratio and f(p) is the ellipsoid factor [9.1Substituting r and b with the expressions of Eqs. (3.3.3) and (3.2.7) and utilizing the defini­tion of ∏t , the transverse current limit lɪ may be written as:It = (2moc2∕Z0q)(β∣≠s∣En∕λ)[l∕(l-f(p))]σotμt(l-μ1)∕√^7φ (3.4.2)'Ilie longitudinal space charge force is, in the smooth approximation [9] :ʌsel = -i3zoq1ιλ3f(p)]∕(4ιτmoC2r2^) (3.4.3)from whereIi = (moc2∕Zoq)(∕l!≠s∣En∕λ)(l∕f(p))(σ2ol∕σop(l-μ1)μ1∕√U^) (3.4.4)Writing the space charge forces in function of the charge density (pɑ = 3Iλ∕(4ττr2bc)) instead of the current intensities, we can relate the longitudinal and the transverse space charge factors by pɪ = [2f(p)/(l ~f(p)](σ0t∕σ0ι)2 μt (3.4.5)A necessary condition for stability is that both and /iɪ arc less than unity.In the following figures 6,7, the relationship between the space charge factors, the current limits and the bunch dimensions are illustrated. In the transverse plane the behaviour is regular:



page 19
the current limit increases with and so does the bunch mean radius r (Figures 6,7). In the longitudinal plane there exists an optimum value of μ, (μ∣≈.42), which corresponds to the max­imum longitudinal current (Figures 6,7). ITiis μ∣ can oe αcduced also from Fq.(3.4.4), imposing dlɪ/d/iɪ= 0. The derivative can be done by numerical methods, because ɪhe dependence on μj of f(p) and of μ^ must be taken in into account. The longitudinal zone of stability b decreases as the space charge force increases (see Figure 7).

Figure 6: Current limits as Junctions of space charge factors μ^, μ^
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Figure 7: Bunch dimensions

4. DESIGN OF THE RFQ ACCELERATOR

ʌ group of computer codes is now available at CERN (PS division, LINAC group) to study and design an RFQ accelerator. We will give an overview of all of them, illustrating them with the example of the RFQ2 project.
4.1 Choice of σ0t, ɑθʃ (program INPAR).Our approach in the design of a high intensity RFQ starts with the choice of the phase ad­vances per period at the end of the Gentle Buncher, choice which, as seen in the preceeding chapter, gives the starting values for the tension and the accelerating and focusing factors at this critical point of the accelerator.
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The following considerations must be taken into account:. The current limits are proportional to σ0^ and σ0∣ (see Eqs.(3.4.2/3.4.4)), so high values are required for high intensity beams. The surface field on vanes must stay in reasonable limits, determined either by the very conservative Kilpatric law [11] or by the value of the product of field and potential, which some consider as the significant figure. This imposes an upper limit on the longitudinal phase advance σ0∣ to which V is strictly related (see Eq.(3.3.1) and (3.3.5)).. The energies of oscillation in the transverse and longitudinal plane should be similar, in or­der to avoid energy transfer between planes, so σ0. and σ0∣ must be of the same order of magni­tude.The program INPAR (INput PARamcters) which compares the bunch size with the aper­ture in the last cell of the Gentle Buncher and checks the beam stability as the current increases, is used to this purpose. An approximative value of the maximum surface field is also computed, in order to control the breakdown characteristics of the electrodes. An output from the program is given in Table 1 .
4.2 Sections of the accelerator (program RFQlMS).The following step is the choice of the initial energy W∣, the energy at the end of the Sha­per, Wgh, and that at the end of the Gentle Btmcher, W , . The following considerations are used as guidelines:
Choice of the initial energy W∣i. The space charge forces at lower energy increase considerably the transverse dimensions of the beam, which can be critical for the aperture of the LEBT (Low Energy Beam Transport). Normally LEBT contains solenoids to focusc the beam and the total flux of the magnetic field becomes prohibitive at larger aperture.ii. A lower initial energy is preferable from the point of view of high voltage problems in the preaccelerator.iii. The length of the REQ accelerator decreases when the initial energy is higher (see Fig­ure 8).
Choice of Wsh.'Γhe Shaper must be long enough to permit a slow bunching of the beam. The synchro­nous phase must be changed slowly. The value of W sh influences both the length of the accel­erator and the efficiency of the structure (see Figure 9 and formula (3.3.9)). The change in the efficiency can be explained with the process of bunching and gradual forming of the longitudinal emittance which is more critical if a higher current must be transported. A compromise between the two different tendencies has to be reached (see always Figure 9).
Choice of Wgb and WfA reasonable approach is to consider the total increase in energy (Wf-W∣); if it is of the order of ≈ 10W∣ it is not necessary to use an accelerating section and Wgb = Wf
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Table 1 : IN PAR output

RO(CM)= .7013

AV.IO(KA)= .81729E-01 ( X V / A . . 2 . ) . A . . 2 . = .52225E-01

B= 6.4047

PSI= 1.3873 A(CM)= .4379

V(MV)= .13395 AG= .5791

I(MA)= 71.881 AV(MV)= .07757 V.V/A= 4.098

MUT ! MUL ! SIGMAT ! SIGMAL I T ! I L 'RBAR ! 8 F P !
========== = =========================================================================== =========

. 650 ' .238 ! 20.706 ! 27.066 7 1 .88 1 ! 71.874 ! . 248 ! . 660 I .125 '

693 ' . 290 ! 19.385 ! 26.119 8 1 .88 1 ! 77.277 ! . 256 ! .615 I .14 2 '

.746 ' 434 ' 17.639 1 23.327 9 1 .88 1 ! 75.057 ! . 269 ' .490 ■ .19 1 '

82 1 ' . 399 I 14.815 24.027 i o i .88 1 ! 84.756 ! .293 ! .520 i 197 '

.828 ! . 39 1 I 14.532 ! 24 . 197 1 1 1 .88 1 ! 86.157! . 296 ! .528 l, 196

.845 ! . 385 > 13.793 ! 24.320 1 2 1 .88 1 ! 88.769 ! .304 ! .533 I . 199 '

859 ! .37 1 I 13.148 ! 24.588 1 3 1 .88 1 ! 91.621 ! .311 ! .545 I . 200

.869 1 . 365 * 12.650 ! 24.707 1 4 1 .88 1 ! 93.635 ! .317 ! .550 » .202 '

880 ! .354 ' 12.112 ! 24.920 1 5 1 .88 1 ! 96.042 ! .324 ! .560 • . 203

889 ’ .355 ■ 11.683 ! 24.905 1 6 1 .88 1 ! 97.729 ! .330 ' . 559 I . 207

.898 ∙ .35 7 1 1 . 1 6.6 ! 2 4 .85 7 1 7 1 . 88 1 ! 99.871 ! .338 ’ . 557 » .212 '

.907 ! .337 ! 10.686 ' 25.242 1 8 1 .88 1 ! 102.462 1 .345 ' .574 .210 '

9 11 ∙ . 347 ɪ 10.465 1 25 049 1 9 1 .88 1 ! 103.412 ! . 349 ! .5 66 Í .216 ∙

S 1 9 ! . 346 ! 9.956 ! 25 077 20 1 .88 1 ! 106.064 ’ . 357 ! . 567 I 22 1 '

.924 ■ .336 I 9.623 ! 25 . 253 2 1 1 .88 1 ! 107.993 ! .364 ∙ 5 75 I .22 1 '

928 ∙ 336 • 9.367 ! 25.262 2 2 1 .88 1 ! 109.482 ! 369 ! . 575 1 224 '

.933 ' .311 ' 9.048 ! 25.724 23 1 .88 1 ! 110.999 ! .3 75 1 .596 I 220 '

934 ∙ . 329 » 8.959 ! 2 5. .392 24 1 .88 1 ! 111.964 ! .37 7 ! .58 1 I .227 '

it is also important to consider the intensity of the current: for a very intense bunch the variation of the synchrotron phase must be slow in order to keep the beam stable. So it can be more convenient to lengthen the Gentle Buncher until the end of the accelerator.
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Figure 8: Variation of RFQ length with initial energy (wc = 750keV)

Figure 9: Variation of RFQ length with W f = 750kev)

If the intensity is not high, the use of the Accelerating Section is preferable because it de­creases the length of the accelerator, which means decreasing the costs.
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A computer code, RFQIMS, based on the LANL programs RFQLtICK and IMS [12] is used to specify the above items. An output of this code is given in Table 2.

Table 2: RFQlMS output

LR.LS.LG.LA,LT=
DSC . DRFNL . 2 I 1 /KA . S I GMA =
PCU1PB1PT(KW)=

4 . 102. 73 . 0 . 1 79
-.18 -.21 1.31 20.7

436.5 132.0 568.5

«»»»♦»»»»»♦»«♦»»»»»»»»»♦♦»»«»»»»♦♦♦«»♦♦♦♦♦»♦»«♦»♦♦♦»♦★♦♦i^∣****Φ∣***∣r***m**Φ*

Z BB PU I M V W AA A PSI
-4 . 100 . 200 -90.000 1.000 .170 ’ . 090 .000 4.455 360.000

. 000 6.400 -90.000 1.000 .170 . 090 . 000 .787 360.000
1.015 6.400 -90.000 1.002 .170 . 090 . 00 1 .787 359.969

26. 148 6.400 -83.703 1.058 .170 . 09 2 .019 .766 289.762
5 1 .280 6.400 -77.407 1.103 .170 . 107 . 037 .75 1 257.238
76.413 6.400 -71.110 1.126 .170 .142 . 055 .743 230.304

10 1 .545 6.400 -64.813 1.139 .170 . 200 .073 .7 38 206.077
1 13.908 6.400 -59.920 1.16 1 .170 .239 . 092 .730 188.402
123.416 6.400 -55.956 1.186 .170 .279 .112 .7 22 174.613
131.140 6.400 -52.672 1.214 .170 .318 .133 .713 163.466
137.644 6.400 -49.896 1.244 .170 .357 .155 .7 03 154.214
143.261 6.400 -47.513 1.276 .170 . 396 .178 . 692 146.373
148.205 6.400 -45.439 1.311 .170 .436 . 203 . 68 1 139.619
152.619 6.400 -43.612 1.349 .170 .475 . 229 .67 0 133.720
156.607 6.400 -4 1 .988 1.390 .170 .514 . 255 . 65 8 128.512
160.243 6.400 -40.533 1.434 .170 .554 . 283 . 645 123.868
163.585 6.400 -39.218 1.482 . 1 7 0 . 593 .311 . 63 1 1 19.693
166.677 6.400 -38.023 1.534 .170 . 632 . 34 1 .617 115.914
169.553 6.400 -36.930 1.591 ,.170 .67 1 .37 1 . 60 3 112.472
172.241 6.400 -35.926 1.653 .170 .711 1 402 .587 109.319
174.766 6.400 -35.000 •1.721 .170 .750 .434 .57 1 106.418
174.766 6.400 -35.000 1.721 .170 .750 . 434 .57 1 106.418

4.3 Multipolar potential function (program GENRFQM).For intense beams, the multipolar components of the electric held in the proximity of the axis can influence sensitively the particle dynamics, and their inclusion in the design of the ac­celerator is therefore necessary.Their numerical computation is done by optimization programs which try to fit the equi­potential function to the real electrodes. For example the program GENRFQM, which com­putes the values of the coefficients A0 ɪ, A03, A01 and A12 tries to find the best fit at points along RFQ vanes specified by the program RFQIMS.
4.4 Generation of the complete structure. Beam dynamics in the accelerator(programs PARMTEQ, PARMULT and OUTTEST ).
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The program PARMTEQ or its derivated version wich icludes the multipole components of the potential function, PARMULT, is used for the generation of the structure cell by cell and for the study of the beam dynamics. For each cell are specified:— the synchronous energy at the center and at the end of the cell— the velocity of the synchronous particle— the mean longitudinal electric field on the axis— the accelerating factor— the synchronous phase— the smallest aperture 'a'— the modulation factor 'm'— the rf component of the focusing force— the cell length— the ratio A03/A01 (if multipoles are included)— the ratio A12/A10 (as before)An example of the output from PARMULT is given in Table 3rΓhe beam is represented with a distribution of N points in the three phase planes. The co­ordinates of these points are randomly generated or uniformly positioned in the phase plane el­lipses, and followed along the whole structure.The space charge effects are treated in a special subroutine, SCHEFF. ITic space charge impulse is imparted to the particles once in each cell, at the position where the beam is roughly circular. The beam is divided in a cylindrical mesh, each point of which is considered as a ring of charge. The field created by the complete mesh on each of its point is computed. The im­pulse on each particle is obtained computing the field in the position of the particle by interpo­lation between mesh points, considering the center of the bunch (given by the r.m.s coordinates) as a point charge. The impulse is averaged over βλ∕2.PARMTEQ and PARMULT are completed by another program, OUTTEST, which gives the graphic outputs, all along the RFQ, or in determinates cells. Some examples are given in Figures 10.
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Table 3: PARMULT output

DESIGN .1FREQ=202. 56 MHZ . Q=1.O ,WI= . 090,WF= .75 I = 250 . OMA ,

TANK 1 LENGTH= 180 .00 CM, 1 27 CELLS , CHARGE STATE 1 .

NC V WS BETA EZ CAPA PH I A M B CL TL
O .178 .0900 .0138 . OOO . OOOOO -90.0 1.876 1 .000 .000
5 .178 . 0900 .0139 .013 . 00073 -90.0 .787 1 . 003 6.687 1 .025 5.12

1 O .178 . 090 1 .0139 .077 .00444 -88.7 .78 2 1 .019 6.687 1 .026 10.26
1 5 .178 .0904 .0139 .14 1 .008 1 5 -87.4 .778 1 .035 6.687 1.027 15.39
20 .178 .0908 .0139 . 205 .01 187 -86.1 .774 1 .05 1 6.687 1 .029 20.53
25 .178 .0917 .0140 . 268 .01560 -84.8 .7 70 1 .067 6.687 1.033 25.69
30 . 178 .0930 .0141 .330 .01934 -83.5 .765 1 . 082 6.687 1.043 30.88
35 .178 .0949 .0142 . 39 1 .02312 -82.2 .762 1 . 095 6.687 1.053 36.11
40 .178 .0976 .0144 .450 .02694 -80.9 .759 1 .107 6.687 1.064 4 1.40
45 .178 .10 11 .0147 .506 .03082 -79.6 .756 1 .120 6.687 1.082 46.77
50 .178 .1057 .0150 . 559 .03478 -78.2 .753 1 .133 6.687 1.106 52.25
55 .178 .1114 .0154 . 608 . 03883 -76.8 .750 1 .14 2 6.687 1.13 4 57.86
60 .178 .1164 .0159 . 653 .04301 -75.3 .748 1 .147 6.687 1.169 63.64
65 . 1 78 .1270 .0165 . 695 .04732 -73.8 .74 6 1 .152 6.687 1.210 69.60
70 .178 .1372 .0171 .732 .05179 -72.3 .744 1 .157 6.687 1.253 75.79
75 .178 .1495 .0178 . 764 .05645 -70.7 .742 1 .16 1 6.687 1.312 82.24
80 .178 .1639 .0187 .793 .06132 -69 . O .74 1 1 .163 6.687 1.373 88.98
85 . 178 .1807 .0196 .818 .06643 -67.2 .740 1 . 1 64 6.687 1.442 96.05
90 .178 . 2004 .0207 .840 .07180 -65.4 .738 1 . 1 66 6.687 1.519 103.49
95 .178 .224 1 .0218 . 905 .08185 -62.6 .734 1 .176 6.687 1.607 111.34

IOO .178 .2545 .0233 .988 .09527 -59.2 .729 1 .19 1 6.687 1.712 119.69
105 . 1 78 .2945 .0250 1.106 .11460 -55.5 .720 1 .216 6.687 1.841 128.62
1 1 O .178 .3486 .027 3 1.271 . 14 3 14 -51.4 .708 1 .253 6.687 2.001 138.29
1 1 5 .178 .4243 .030 1 1.498 . 18599 -46.9 .689 1 .313 6.687 2.205 148.89
1 20 . 1 78 .5348 .0337 1.833 .25496 -42.0 .658 1 .417 6.687 2.471 160.68
1 25 . 1 78 .7049 . 0387 2.358 .37576 -36.8 .600 1 . 629 6.687 2.831 174.07
127 . 1 78 .7993 .0412 2.621 .44442 -34.6 .566 1 . 763 6.687 3.012 180.00

NCELL = O , NGOOD = 180
NCELL = 1 OO , NGOOD = 167
NCELL = 10 1, NGOOD = 167
NCELL = 102, NGOOD = 1 67
NCELL = 103, NGOOD = 167
NCELL = 1 04 . NGOOD = 167
NCELL = 1 05 , NGOOD = 1 67
NCELL = 106, NGOOD = 1 6 7
NCELL = 1 07 , NGOOD = 167
NCELL = 108 . NGOOD = I 67
NCELL = 1 09 , NGOOO = 1 67
NCELL = 110, NGOOD = 167
NCELL = 111. NGOOD = 167
NCELL = 112, NGOOD = 1 66
NCELL = 113, NGOOD = 1 66
NCELL = 114, NGOOD = 1 65
NCELL = 115, NGOOD = 1 65
NCELL = 116, NGOOD = 165
NCELL = 117. NGOOD = 1 64
NCELL = 118, NGOOO = 1 64
NCELL = 119. NGOOO = 1 64
NCELL = 120, NGOOD = 1 64
NCELL = 12 1. NGOOD = 1 64
NCELL = 122, NGOOD = 1 64
NCELL = 123. NGOOO = 1 64
NCELL = 124. NGOOD = 164
NCELL = 1 25 . NGOOD = 163
NCELL = 126, NGOOD = 1 60
NCELL = 127. NGOOD = 1 60
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DESIGN .FREQ=202.56 MHZ, Q=1.0,WI= .090,WF= .75 I= 225.OMA

X-PROFIle VS cell no

O. 10. 20. 30. ¼0. 50. 60. 70. ΘO. 90. 100. HO. 120. 130.

Figure 10: Beam characteristics inside the RFQ2

5. OTHER TOPiCS

5.1 Surface fields.The electric field on the electrode surface is determined by the geometry of the vanes and by the tension applied to them.
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A computer program, EFIELD [14] is utilized to check the value reached by the surface electric field, and its distribution along the structure. The region with maximum surface fields is thus found.The program assumes circular transverse sectioned vanes; the maximum value of the elec­tric field in z = z0 occurs on the axis joining the two centers of curvature of two adjacent vanes. The maximum value in all the RFQ is normally in some point in the Shaper, where the cell length is not high and the modulation factor has already reached values between 1.2— 1.3, and it corresponds to the position of the minimum value of the longitudinal radius of curvature.In Figure 11 the maximum field along the vanes is plotted for the nominal values of the RFQ2.

5.2 Vane machiningIlie vanes of the RFQ2 will be machined by a wheel, illustrated in Figure 12, which moves in the longitudinal direction following the vane tip profile. Its transverse section is a circle of ra­dius R = 77e. It cuts on the plane normal to the vane tip profile and to the plane y =O in the point of contact.The transverse sections of the machined electrodes follow approximately the shape of an ellipse (it would be an exact ellipse if the slope of the electrodes were constant), and they can be computed by the following geometrical considerations.Let f(x,z) — 0 be the equation of the vane tip profile.f(x,z) = A01x2 + Λ10I0(kx) coskz (6.2.1)Let's consider the situation in the instant when the cutter is touching the surface at the point S = (xs,0,zs) (see Figure 13), and check in which point y it cuts the transverse plane z = z0.
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The point P, intersection of the normal to the surface at S with the vertical at z = z0, has coordinates (Xp,0,zo), beingxp = *s - dz∕dx∣s(z0 - zs) (6.2.2)dz/dx is obtained from Eq.(6.2.1):dz/dx = [2A01x + kΛ10I0(kx) coskz]∕kA10I0(kx) sinkz (6.2.3)The distance s between the points P and S is:s = √fcs-z0)2 + (xs-xp)2 (6.2.4)and the y —coordinate of the point Q, contact between the cutter and the surface at z = z0 isyq = √s(2R-s) (6.2.5)The transverse section of the vane at z = z0 is determined by the consecutive positions of the cutter at A,S,S,,...Sn . Figure 14 illustrates the section in the RFQ where the maximum de­viation from a circle occurs. The * correspond to the real machined surface, and the Continous line represents a circle. When the slope of the vane tip profile is small, the transverse section is very close to a circle. rIhis is not the case of the Radial Matching Section (see Figure 15). The transverse radius of curvature at the pole tip increases from the value zero corresponding to the beginning of the vane, to the final value p0. We see that the agreement between the machined surface and the theoretical one (continous lines in the figure 15) is better in the first cells of the section. At the end, the machined transverse sections approach a circle, which corresponds to the theoretical circular vane form in the shaper. We should note that, as computed, there is a slight discontinuity between the potential functions at the end of RMS and beginning of shaper; this discontinuity, of course, does not exist on machined vanes.
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Figure / 2: Machining of a vane
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Figure 13: Cutter position

Figure 14: Machined transverse section in a cell of the RFQ2
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∙**→ ANALYTICAL PROFILE ♦ ♦♦ REAL SURFACE----.CIRCULAR SURFACE

Figure 15: Machined transverse section in RMS
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APPENDIX A

MULTIPOLES COEFFICIENTS OF THE POTENTIAL FUNCTION IN 
THE RFQ.

An analytical computation of the multipole coefficients of the potential function is only an indication on the effects that the finite shape of the electrodes causes on the beam dynamics, if the series of Eq.(1.3.6) is cut at a given term. An exact computation would require a system of infinite equations, where the dimensions and characteristics of the tank which contains the vanes were also included.The values of Aij are obtained from boundary conditions imposed to the potential function and to the geometry of the electrodes.We have begun from a simple case: we cut the series at the duodecapolar term (as in Eq.(4.2.1)) and we impose the following three conditions on the potential:i. U(a,0,0) = V/2ii. U(ma,0,βλ∕2) = V/2iii. U(ro,0,βλ∕2) = V/2and the fourth condition is on the value of the transverse radius of curvature at the vane tip in the middle of the cell:iv. p(ro,0,βλ∕4) = P0 = r2Ur∕(rUr+ U00) = αr0Sparing the time and patience of the reader, we give directly the solution of the system de­fined by these four equations:A01 = 3(1 + 5α)∕[2r0z(l + 7α)] (A.l)A03 = - (l + α)∕[2r06(l + 7α)] (A.2)A10 = [X I4(mka) - Y I4(ka)]∕D (A.3)A12 = [Y I0(ka) - X I0(mka)J∕D (A.4)withD = I0(ka) I4(mka) - l0(mka) I4(ka) (A.5)X=I- A01A2 - A03A6 (A.6)Y = - (1 - A01M2A2 - A03M6A6) (A.7)
Obseivingthe shape of the vanes defined by the above coefficients (Figure 16), we see that they agree reasonably well with real vanes which are circular around the tip.
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Figure 16: Transverse sections of the vane in the 12 — polar approximation

To improve the approximation, we can add the 20 —polar term (A05r1° cos 100), and use a fifth condition:V. p(a,0,0) = p0ITie results are illustrated in Figure 17
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Figure 17: Transverse sections of the vane in the 20—polar approximation
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APPENDIX B

COEFFICIENTS OF THE POTENTIAL FUNCTION IN THE RMS

The potential function in the RMS is (see Eq.(2.1.10)):U(r,0,z) = V/2 [ Aq q(r,z) cos20 + Aj d(r,z) cos60 ] (B.l) q(r,z) and d(r,z) are given in Eqs.(2.1.11). We define
d0 - d(r0,LRMS)From the boundary conditionU(ro,0,LRMS) = V/2 (B.3)we obtain the relationship between the coefficients Aq and Aj:Ad = (ɪ - Aqq0)∕d0 (B.4)The transverse section of the equipotential surface at a given z = zn is represented by the equationS(r,0) = Λqq(r,z0) cos20 + Ajd(r,z0) cos 60 (B.5)The transverse radius of curvature is:P = [r2 + (dr∕d0)2]3∕2 / [r2 + 2(dr/d0)2 — rd2r∕d02] (B.6)At the vane tip (0 = 0, dr∕d0 = 0) it can be then written asp = r2 / (r - d2r∕d02) (B.7)Differentiating Eq.(B.5) twice with respect to 0, we obtain:d2r∕dβ2 = (2SrβSeSr - SflβSr2 - SrτS02) / S/ (B.8)where the subscripts x∣ stay for ∂∕∂x∣Substituting in (B.7) and rearranging the terms we have:P = r2 Sr / (rSr + Sββ) (B.9)We impose now the condition on p at z = LRm$: 

p(γo,0,Lr^^) = P0 — «r0
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where

Aq
36αd0 - r0d0r(α - 1)

(a ɪ)ɪofaoɪ-ʤ ɑloʤɪɔ ^*^ 32aq0d0
(B. 10)

Qor = θQ∕θr∣r = r z=τ ,o r r r0,z lrms (B-Il)and analogously d0 . If p0 is equal to the distance between the axis and the vane, r0, at z= lRMS- Aq and ⅞areι Aq = 9∕(8q0)Ad = - l∕(8d0) (B. 12)


