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INTRODUCTION

The idea of bunching, focusing and accelerating a continous beam of ions by a radio fre-
quency quadrupole was proposed in the late sixties by Kapchinskii {1] who called the device a
“spatially continous quadrupole focusing” machine. The first realization in the occidental world
of such a device was done in Los Alamos National Laboratory in 1980 [2]

At CERN an RFQ accelerator (RFQ1) is working remarkably well as a preinjector of the
LINACI for protons since march 1984 [4] having been before in test operation for nearly one
year. The substitution by another RFQ (RFQ2) of the Cockcroft Walton and low energy beam
transport of the LINAC?2 is foreseen in near future.

This report has been conceived in order to collect information concerning the design of an
RFQ from the point of view of beam optics, and although most of the topics have been treated
elsewhere they have been included here for the sake of completeness. The whole material has
been worked out in collaboration with M. Weiss, during the design study of the RFQ2.

A first chapter is dedicated to the detailed derivation of the clectric field to which particles
are submitted inside the accelerator. The description of different sections of the RFQ follows,
and here we have benefited from the Los Alamos methods. Another chapter treats the current
limits and the space charge forces. The computer programs used at CERN for the design of an
RFQ are described subsequently, and finally the clectric surface ficlds and the vane machining
are treated.
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1. ELECTRIC POTENTIAL AND FIELD

1.1 Electric potential

The bunching, acceleration and focusing of the beam inside the RFQ is performed by the
electric field generated by four electrodes (vanes) arranged in a quadrupolar symmetry around
the longitudinal axis, and excited by rf power.

The eclectrodes of the RFQ are designed according to specific requirements, the only fact
being fixed that they must combine the quadrupolar azimuthal symmetry which focuses the
beamn transversally with a longitudinal modulation which accelerates and/or bunches the parti-
cles.

The alternating focusing is obtained from the alternating electric gradient and, unlike the
magnetic focusing force, is constant for any velocity of the particles. The longitudinal compo-
nent of the electric ficld responsible for the acceleration, bunching, etc. is determined by the
shape of the unit cells of length BA/2, which compose the structure (see Figurel). B is the veloc-
ity of the synchronous particle in units of the velocity of light ¢, and A is the wavelength of the
rf.

yA q

Figure 1 Shape of two adjaccar vanes for a BA period
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The wave equation in the region near the axis can be approximated by the Laplace equa-
tion

viU = 0 (L.LLD
being U the electric ficld potential, from which the forces acting on the particles can be derived.
The solution of eq.(1.1.1) can be written in cylindrical coordinates as the product of three func-
tions, each of them depending only on one of the variables, r, & or z:

U(r,0,2) = R(r) (8) Z(2) (1.1.2)
This equation represents the spatial configuration of the electric potential. Its complete
specification is obtained multiplying it by the time varation of the rf: sin{wt+y/), being
w=2mc/A.

The functions R(r), ©(8), and Z(z) have to satisfy the symmetries of the structure.

1.2 Quadrupolar symmetry

The first condition is the quadrupolar symmetry, which is cxpressed in the polar coordi-
nates r and 0. The Laplace equation in polar ccordinates is:

8(8)3*R(r)/ar? + (1/0)B(B)dR(r)/dr + (1/r))R(r)a26(8)/ar* = 0 (1.2.1)

Let’s study first the dependence on the angular variable. ©(6) can be cxpressed generally as
a series in sine and cosine,

e) = Enancosn(} + prpsinp() (1.2.2)
and has to satisfy three conditions (see Figure 2):
i) 6@ = 6(—-9
This equation is equivalent to : b psinp() = -—bpsinpt?, which implies that bp = 0 Vp.
i) @) = B(r—90)
which means : cosnf = cosn(v—#) -+ cosnf = | and n must be even
iif) ©@O) = — 0(#/2 — 6)
that is, cos2]§ = — coslw cos2l0 - coslr = —1, so 1 must be odd.
The function ©(8) can then be written as
e = Znancos2(2n+ )¢ (1.2.3)
Substituting ©(6) in Eq.(1.2.1) we obtain the differential equation for R(r):
}Zn[x'zazR(r)/ar2 + raR(r)/or —4(Zn+ 1)*R(r)} = © (1.2.4)

The summation goes from n=0 to n=.
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Figure 2: Transverse sections of the cell

The corresponding solution is:
R(r) = £ a_r2(20t 1) (1.2.5)
The potential which represent the quadrupolar symmetry is then

U0 = 2 ¢ 2020+ 1) cos2(2n+ 1)0 (1.2.6)

1.3 Longitudinal modulation
We add now the variation along z.

Let’s express the potential function as U,(r,8,2) = R,(r)®,(0)Z,(z). To obtain the longitu-
dinal component of the electric ficld the clectrodes have to be longitudinally perturbed (quasi-
periodically) so that the perturbation of the vertical electrodes is shifted by a period of BA/2 with
respect to the horizontal ones.

Looking at Figure 2 it is clear that the angular function ©4(6) has to satisfy only conditions
1. and ii. of paragraph 1.2, and it can be written as:

©,(0) = 2 a cos2nd (1.3.1)

The function Z,(z) representing the quasiperiodic vanation along the z axis, can be written
as a cosine and sinus serics:

Z.(2) = Emcmcosmkz + Zpdpsinpkz (1.3.2)

where k= 2#/BX\. The first condition on 7, () is a zero slope at the beginning of the period (see
Figure 2):
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i) dZ,(z)/dz|,_.5 =0
which is true only ifdp =0 Vvp
We impose now the condition of the shifted longitudinal perturbation:
U,(r,8,2) = — Uy(r, 8+7/2, BA[2—2) (1.3.3)

Looking at the expressions of @,(8) and of Z,(z) we sec that Eq.(1.3.3) is satisfied when
cosnm cosmnm = — | that is, if the sum of n and m 1s an odd number.

The Laplace equation, written in cylindrical coordinates, is:
0,(0)Z,(2)8?R,(r)/or* + (1/1)0,(8)Z,(2)0R (r)/dr
+ (1/rH)R,(1)Z,(2)3?6,(8)/38% + R (r)0,(8)3*Z{2)/dz* = 0 (1.3.4)

Inserting now the functions ©,(0) and Z,(z) and performing their respective derivatives in 8
and z we obtain an expression for the function R(r):

220 cos2(2n+ 1)8 cosmkz -
{r2a?R,(r)/or? + raR,(r)/dr — (m?k?*r* + 4n¥)R (n)] = 0 (1.3.5)

Inside the squarc brackets we recognize the differential equation satisfied by the modified
Bessel function of argument mkr and order 2n. The potential function U can be written finally
as:

- 202p+1
Ur0.2) = (VIDZ, Agy, 4 T (2p+1) cos2(2p+ 1)8
+ (VIDZ 2 AL, Izn(mkr) cos2nf cosmkz (1.3.6)

withn+m = 2p+1 (p=0,1,2,...). V is the potential difference between two vanes; when the
two horizontal clectrodes are at potential V/2, the vertical ones are at —V/2 and viceversa.

1.4 First order potential function and fields.

Usually only the first two terms of equation (1.3.6) arc considered as a good approximation
to start with [3] and the potential function is:

U(r,0,2) = V/2«( Ag, 12 cos20 + Ay, I(kr) coskz ) (1.4.1)

Eqgs.{1.3.6) and (1.4.1) refer to one unit cell. The cocflicients Aij change from cell to cell.
Their variation determines the characteristics of the accelerator.

It is usual to call ‘a’ the minimum distance of the vanc to the axis m one cell, and ‘'ma’ the
maximum one, ‘m’ being the modulation factor (see Figure 1).

From equation (1.4.1), as U(a,0,0) = U(ma,0,81/2) = V/2, it 15 casy to writc the relation-
ship between Aij and the geometrical parameters (‘a’,’ra”) of the ccll:
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m? — 1
Ao =
m?l,(ka) + I,(mka)
Agy = (1/a®)[1 — Ao [(ka)]

The components of the ¢lectric field are derived from (1.4.1):

E = —dUjor = ~V/2{ 2A,, r cos28 + kA, I,(kr) coskz ]
Eg = — 1/raUjod = VA, rsin20
E, = —aU/az = kV/2 A, Io(kr) sinkz
Other usual definition in the RFQ literature is the focusing force factor B:
B = (q/mgc®)A*(xV/a?)
where x is

Io(ka) + Ij(mka)

m?I,(ka) + I,(mka)

A, and x are related by:

Ii
—

Ajolp(ka) + x
The mean aperture of the vanes r is (see Figure

o = IJ/Ao = a\/?

—
~—

1.5 Multipolar expansion of the potential function and fields.

(1.4.2)

(1.4.3)

(1.4.4)

(1.4.5)

(1.4.6)

(1.4.7)

(1.4.8)

(1.4.9)

(1.4.10)

The lowest terms potential of Eq.(1.4.1) specifics cquipotential surfaces whose transverse
sections are hiperbolae. The real electrodes are however, usually machined either along tran-
sverse circular pathes or with a tool whose transverse section is a circle and then cuts elliptical

sections (scc Chapter 4).

A more exact representation of the real electrodes requires a potential function with multi-

pole terms, whose cocfficients can be determined analitycally or numerically.

A good approximation which permits to describe the transverse circular shape of the vanes
in the regicn near the axis (sce Appendix A) is a function where octupole and duodecapole tems

are added:

U(r,0,2) = (V/2){(Agir? cos28 + Aysr® cos6d) -+ [Ala(kr) + Aj,cos4d I,(kr)] coskz}

(1.5.1)

Analytically the coefficients are computed imposing boundary conditions (see Appendix A)

for each cell of the RFQ.
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The components of the electric field are now:

E = —(VI){2Ar [cos20 + 3a,,r* cos68] + A, [kl (kr) + B,, cosdd 8l,(kr)/ar] coskz}
(1.5.2)

Eg = V {Ag,r [sin20 + 3a,;r* sin6d] + 2A,,sindd I,(kr) coskz} (1.5.3)

E, = (VI2)kA,, [Io(kr) + B,,c0s48 L4(kr)] sinkz (1.5.9)

where a;3 = Ay3/Ag; and By, = Aj,/A .
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2. SECTIONS OF THE RFQ

The beam inside the accelerator undergoes the transformation from continous to bunched,
and the action of the RFQ on the beam must be adapted to the specific requirements of the
particle dynamics during the transport along the structure. So the RFQ is usually divided into
sections, distinguished one from the other by the different tasks they fulfill.

In our design we follow the Los Alamos description [3] The sections are:

. Radial Matching Section (RMS)
. Shaper

. Gentle Buncher

. Accelerating Section

We dedicate now a paragraph to sach section, marking out its main characteristics.

2.1 Radial Matching Section (RMS)

The RFQ receives normally a continous beam, which comes from a time independent fo-
cusing channel. The fields in the RFQ are time dependent and so are the matching conditions.
The task of the RMS is to match the beam, at all instants, to the time varying fields.

Several RMS have been proposed [ 5] [6] [7] and we will describe the one we have included
in the design of the RFQ2 and which was first introduced by Crandall [5] : the idea is to start
with a very weak focusing at the beginning of the RMS and increase it progressively towards the
end. If this 1s properly done, it 1s amazing how well the beam is matched at the end of the
RMS. To achieve a gradual focusing, the vane aperture starts with a large value and becomes
nominal only at the end of the RMS (sce Figure 3). The potential function which describes the
equipotential surfaces is obtained from the Laplace equation, as we have seen in the previous
chapter. We will call now this function U, = R,(r)0,(6)Z,(z) and apply to it the conditions ap-
propiate to the RMS section.

The exact quadrupolar symmetry is the only condition on the angular variable. So the
function ©,(0) is equal to 8(6) given in Eq.(1.2.3).

The function Z,(z) can be wntten as before as a sine and cosine series:

Z,(z) = sinmKz -+ }lpﬂpcospKZ (2.1.1)

S _a
m m
where the constant K 1s related to the length LRMS of the RMS section : K= '"/ZI’RMS

The vanetip profile must have a zcro slope at z=Lpyqgi 50 0Z,(2)/92] 0,

=1, =
which 1s satisfied only ipr= 0 Vp and if m 1s odd. 2= “RMS

To obtain R,{r) we procced as before. Substituting 8,(9) and Z,(z) into the Laplace equa-
tion, we are left with the following difierential equation:

Zomt r?a2R,(r)/or? + rdR,(r)/dr —[42n+ 1)* + K*(2m+ 1)?r?]} = 0 (2.1.3)

whose solution 1s the Bessel series
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R,(r) = Zmn7m12(2n+ l)[(2m+ K] (2.1.9)
The potential in the RMS is then:

U,(r,0,2z) = (V/Z)EmnA I2(2n+ 1)[(2m+ 1)Kr] cos2(2n+ 1)8 sin[(2m + 1)Kr] (2.1.5)

mn

From the infinite series we take only the lowest order terms, and we drop the subindex in
U:

U(r,8,z) = V/2[ Q(r,2) cos28 + D(r,z) cos6d ] (2.1.6)
being Q(r,z) the factor in r and z of the quadrupolar term:
Q(r,z) = Agg I,(Kr) sinKz + A, I,(3Kr) sin3Kz (2.1.7)
and D(r,z) of the duodecapolar term:
D(r,z) = Ay, I(Kr) cosKz + A, I,(3Kr) sin3Kz (2.1.8)
The coefficients are determined from the following boundary conditions:
i) The longitudinal field must be zero at the entrance of the RMS section.
i1) The potential must be V/2 on the vane surface.
iii) The transverse radius of curvature of the surface at the vane tip, p(r,0,2), is cqual to a given
value p,.
The corresponding equations are:

i) dU/jaz =0 at z=0

From 0Q/dr=81)/or=0 the rclationships between Ay, and A, and between Ay, and A},
follow:

Ao = = Ago/3
(2.1.9)
A= —AG/Y

(we have used the approximation of the modified Bessel functions for small arguments:
I n(x)zxn/(?.“n!) and we have neglected the terms of higher order in r)

ii) U(ro,0,Lgngg) = V/2
1ii) P(ro,O.LRMs) = Po
where 1, is the distance between the vane and the axis at 2= Ly ysq-

Solving the system defined by these two last equations (se¢ Appendix B), we can write the
electric potential as follows:

U(r,8,2) = V/2[ Aq q(r,z) cos28 + Ad d(r,z) cos68 | (2.1.10)
where q(r,z) and d(r,z) are:
q(r,z) = I(Kr) sin Kz — 1/3° I,(3Kr) sin3Kz

(2.1.11)
d(r,z2) = I(Kr) sinKz — 1737 [,(3Kr) sin3Kz
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and the coefficients Aq and A, are dctermined by the aperture 1y, the value of the transverse
radius of curvature p, and the total length Lp Mg (see Appendix B).

The equipotential surface which defines the shape of the electrodes satisfies the equation:
Aq q(r,z) cos26 + Ad d(r,z) cos6d = +1 (2.1.12)

The vane profile along z, obtained from (2.1.12) when 8 =0 1s represented in Figure 3 to-
gether with the varation of p(r,0,z) (see Appendix B):

2

r
p(r,0z) = ——m (2.1.13)
r — 0%r/08?

4 CELLS IN THE R.M,S.

2.5 r‘
50 1 ~=- LONGITUDINAL VANE PROFILE OF THE R.M.S.
. »xx TRANS. RADIUS OF CURVATURE AT VANE TI1P
—~ 1.5 }—
>
O -
o 1o |—
W5 =
0.0 | [ 1 _1 1 1
0.0 5 1.0 1.5

Figure 3: Radial Maiching Section

The transverse matching in the RMS requires the focusing force to pass slowly from zero
to the final value of Bpat 2= Lp ¢, which is Be= (32/3)VKZAq .

The radial field near the axis is:

Er = —gUj/or= —V/8 Kzl\qr (sinKz -- 1/3 s5in3Kz) (2.1.14)

The focusing force constant is
B(z) = 8L jor ~ V/8 K"'Aq (sinKz — 1/3 sin3Kz) (2.1.15)

= Bf . 'The smooth transition botween the RMS and the next section is

which gives B( LPIMS) N
‘1gure 4).

thus insured (see
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FOCUSING FRACTOR B

LRMS

Figure 4: Focusing force factor in the RMS

2.2 Shaper

When Kapchinskii proposed the acceleration by an rf quadrupole [8] he emphasized the
importance of keeping constant the shape of the longitudinal emittance, by imposing the con-
stancy of the bunch length and of the frequency of the small oscillations. These conditions can
be satisfied only when the longitudinal emittance is finite, i.c. when the beam is bunched. This is
not the case of a beam coming from the source and having no longitudinal structure at all.
Therefore a section is needed in the RFQ to change, in a smooth way, the longitudinal phase
space, by rearranging the particles coordinates and starting to create the longitudinal emittance.
This can be obtained by increasing slowly the accclerating factor A, and the synchronous phase
Yo which starts at —90° The bcam will be accelerated by a small amount and will start to get
bunched.

We describe now the equations which characterize the Shaper.
The vanation of the encrgy W of a particle of charge q and phase  is
dW/dz = gETcosy = (qi,oV/SA)(m/2)cosy (2.2.1)

where ET is the mean longitudinal clectric field on axis multiplied by the transit time factor
(which, in the RFQ, is #/4 [3] ). The variation of 8 in nonrelativistic approximation is then:

dB/dz = (w/2)(qV/mc?A)A, gcosy/B? (2.22)
We consider now the synchronous particle (W=WS, \//‘—'\lzs), and we look at the laws of
variation of A,, and ¢_. They can be chosen in several ways, providing that a smooth varation
is kept. We describe the method, which is used at LANI.:
Accelerating factor A, .

It is varied linearly with z

AR) = (Ag /L) (2.2.3)
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Ly is the length of the Shaper and A, the value of A, at the end of the section.

Synchronous phase.
The synchronous phase and the separatrix length ®_ arc related by (see Figure 5):
sind § O

gy = ———— (2.2.4)

1--<:os<IJS

90

45— \

(DEGREES)

SYNCHRONOUS PHASE

0 90 180 270 360

SEPARATARIX LENGTH (DEGREES)

Figure 5: Separatrix length versus synchronous phase

We have considered two possibilities:

a. Linear variation of . from which the variation of b follows according to €q.(2.2.4)
Vg = Vgt AE 2Ly~ 20 (223)
v is the initial synchronous phase (normally equal to —/2). Ay is the increase in synchronous
p}smsc along the Shaper
M= gy 7Yy g, a2 (2.2.6)
and 7, is an initial fraction of ihe Shaper where ¢ is kept constant.
b. Linear vanation of d)q and related vanation of v
D= O+ A® (2= 2)/(Ly, ~7) (2.2.7)

where the parameters arc the analogous of those of Equation (2.2.5) In this case the beam is
more stable but the total length of the section increases. The difference is anyhow very small.



page 14

Length

The length of the shaper, L sh' €an be obtained by integrating the equation (2.2.2); one can pro-
ceed as follows:

a. Substituting Eqgs. (2.2.3) and (2.2.5) into (2.2.2) and rearranging the terms, we obtain:

Lsh (a 11 , _ ) Bsh ,
[, (Ag/Lgy) 2 sinldy(z=70)/Lp1dz = (2/m)(mc’A/qV) | B2dB (2.2.8)
from where '
Ly, = 2mcAA(B® 4 —B*)F/(3mqVA ) (2.2.9)
with
F = (A¢) /(1 = A)JAAY —AygcosAy + (1= A)sindy] (2.2.10)
and A = ZO/Lsh

b. The length Lsh is obtained by the numencal integration of £q.(2.2.2).

2.3 Gentle Buncher.

After the Shaper, Kapchinskii’s laws [1] can be applied to the already bunched beam.
LLANL calls this section the Gentle Buncher and it corresponds in fact to Kapchinskii’s original
proposal.

The longitudinal characteristics of the bunch arc manteined by keeping constant:
— frequency of the oscillations: A, gsiny /B =y (23.D)
— bunch length DoBog = C, (2.3.2)

Given the values of A, ¥ and of the energy at the end of the section and one of them at
the beginning, the whole sct of paramctcrs is completely determined in the Gentle Buncher.

The length of the section is obtained analogously to the previous casc: integrating

dB = (#/2)(QV/meA) (A, gsiny /B?) cotgy, dz (2.3.3)
the length is
= 2 Bﬂb . .
]"gb = (2mc?AjmqVC,) | tgy (B) dB (2349
Fsh

2.4 Accelerating section.

The values of ‘a’ and ‘m’” are kept constant. The beam is well bunched when it gets into the
Accelerating Section, and normally the synchronous phase is not modificd inside the section.

The accelerating factor can be approximated by:
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m? — |

Ao =
m? + 1 + 2x2m?a?/(BA)?

Integrating as usual between the beginning and the end of the section
(B*/A0) dB = C COS\PS dz
where C=nmqV/(mc?A), the length can be written as:
Las = AB/CAV'/
with
Ap = (B= B g)/3 + Qu/AYmiad(B=Pyp)/(m? - 1)
and
AL = COS\{/f if ‘l’gb = \,l/f
(sinpyy — Sm‘pgb)/("{’f - ‘pgb) it \'{/gb # Vg
In the accelerating scction we have a phase damping given with

Vagvig = (BiiB)L2

(2.4.1)

(2.4.2)

(2.4.3)

(2.4.4)

(2.4.5)

(2.4.6)

If the final ¥ 1s imposcd, this damping has to be taken into account when specifying ¥ at

the end of the Gentle Buncher.
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3. SPACE CHARGE AND BEAM CURRENT LIMITS

The motion of the particles inside the accelerator can be dominated by the space charge
forces, if the intensity of the beam is sufficiently high. Although a correct presentation of the
problem can be presently obtained only by numerical simulation of the particle dynamics, it is
however possible to get an idea of the equilibrium between the external and the space charge
forces by analytical methods. We use the linear approximation, which is a reasonably correct
representation of the transverse plane, while for the longitudinal plane it will give only an indi-
cation on the real behaviour of particles, because of the neglection of the strong longitudinal
non — linearities and asymmetrics.

3.1 Forces acting on particles in the absence of space charge.

We represent the bunch by a three dimensional ellipsoid with uniform charge distribution,
whose dimensions are averaged over a focusing period [9]

In the absence of space charge the dynamics of the particles is determined only by the ex-
ternal forces generated by the fields of the structure.

Let’s consider a bunch of particles (rest mass m, and charge q) injected in an RFQ work-
ing at frequency f (f=c/A) and intervane voltage V. In one cell of the structure, with minimum
aperture ‘a’ and maximum aperture ‘'ma’, the focusing forces acting on the particles are given, in
the normalized system, by the square of the phase advances per peniod, o4 and o {13.] where
the subindcx stay for transverse and longitudinal, respectively:

i

0%, = B?/(87%) + A (3.1.1)

0201 = -2 (3.1.2)
B is the focusing factor alrcady introduced in the previous chapter, constant along the structure

if the mean radius of aperture, r,, is constant. A o 1s the 1f factor, defocusing in both transverse
planes and focusing in the longitudinal one:

Ap = (n2q/2moe®)(sing/B)A YV (3.1.3)

3.2 Forces acting on particles with space charge.

When the space charge forces are not negligible, the focusing strengths are diminished by a
factor By | (transverse and longitudinal space charge factor, respectively):

ozt,l = azﬁt,l(l - “t.l) (3.2.1)
where g, | is given by:

Bl = Asilor (3.2.2)

A is the space charge force (sce later). We assume that the mean radius of the bunch is the
geometric mean of the maximum and minimum semiaxes over a focusing period [9] :
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r = JAE jo,) = °(1—p)l4 (3.2.3)

where E_ is the normalized transverse emittance and r° is the mean radius of the bunch in ab-
sence of space charge forces (r° = / (AE_/05,)).

Increasing the current the beam transverse dimensions increase and the maximum allowed r
is limited by the value of the minimum aperture a:

fax = &Y (3.2.4)
where ¥ is the average modulation factor
1+ B/(4n?)
v=JB, B )8y ——— (3.2.5)
1—B/(47?)
in the reasonable hypothesis A ¢ << B%; B, _ are the maximum and minimum of the ampli-
f +,

tude function respectively.
As the beam current increases, ‘a” must be kept always over the value
ay = ©SF(—p) T4 (3.2.6)
The half longitudinal dimension of the bunch is [10] :

b= (3BA/AIY (1~ pp) (3.2.7)

3.3 Equilibrium between external and space charge forces.

In the RFQ the smallest effective value of the aperture ‘a” occurs in the Accelerating Sec-
tion. The most critical point in the transverse plane is then the end of the Gentle Buncher, be-
causc there the defocusing force A of is higher than in the following section (A £= B~ %), while
the aperture is the same. From now on we will refer the studies of this chapter to this point, and
we suppose that, if the beam can be transported through it, it will also be stable along the whole
accelerator. This assumption has proved to be valid by numerical simulation of particle behav-
iour in the RFQ.

We have seen that the current transported in the accelerator decreases the focusing efficien-
cy of the system and the frequency of the particle oscillations. Appropiate vaiues of o0y and ag)
must be chosen in order to obtain the desired values of o, and o) in the presence of space
charge.

We inverte formally the problem: given o, and . we calculate the corresponding param-
eters of the RFQ (tension V, focusing force, accelerating factor) for a certain current.

From equations (3.1.1) through {3.1.3) we can write:
ALY = (moc"'/m-Zq)(ﬁz/simps)az(,1 = A (3.3.1)
S, = (0%, + o712 (33.2)

xVia? = 2. /2n(myc*/a)(1A%) S = A, (3.3.3)



page 18

= (n/Z + S )/(n /T~ S ) (3.3.4)

The values of and A, depend only on 0g, and o] if the synchronous phase and energy
are given. Multxplymg Eq.(1. 4} 9) by V, we have:

V = A Vlg(ka) + xV = Ajlg(ka) + Aa? (3.3.5)
The accelerating and the focusing factors are:
Ay = AV (3.3.6)

B = 2,/2S_ (3.3.7)

The ‘a’ appearing in Eq.(3.3.5) is the real aperturc of the vanes, obtained from of
Eq.(3.2.6) multiplied by a safety factor S¢ which takes into account various tolerances (S; =
1-1.5).

3.4 Current limits.

Given the values of o, and 0g) @ current limit exists for each value of #, and the corre-
sponding R

According to the three dimensional cllipsoid model [9] the transverse space charge force is

By = —[3ZeqlA*(1 = f(p)))/(8minge?r?b) (3.4.1)

where Z, = 1/(e,c) is the impedance of free space, p=b/r is the cllipsoid axis ratio and f(p) 1s the
ellipsoid factor [9.]

Substituting r and b with the expressions of Eqgs. (3.3.3) and (3.2.7) and utilizing the defini-
tion of o, , the transverse current limit I, may be written as:

I = (2moc?/Zoq)(BIIE /ML1/(1 —f(pDlog, (1 —;Ll)/m (3.4.2)
The longitudinal space charge force is, in the smooth approximation [9] :
Bl = ~[3ZoalN*f(p)l/(4mmyc?rib) (3.4.3)
from where
I = (Moc?/Zoq)(BW([E M) (o%ap/oog) (1 =y (T 1) (3.4.4)

Writing the space charge forces in function of the charge density (p = 3IA/(4wr?be)) instead
of the current intensities, we can relate the longitudinal and the transverse space charge factors
by

= [26(p)/(1 = () oay/o0)? iy (3.4.5)
A necessary condition for stability is that both By and By are less than unity.

In the following figures 6,7, the relationship between the space charge factors, the current
limits and the bunch dimensions are illustrated. In the transverse plane the behaviour is regular:
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the current limit increases with py and so docs the bunch mean radius r (Figures 6,7). In the
longitudinal plane there exists an optimum value of g, (p,~.42), which corresponds to the max-
imum longitudinal current (Figures 6,7). This py can be deduced also from Eq.(3.4.4), imposing
dI;/du, =0. The derivative can be done by numerical methods, because the dependence on K of
f(p) and of p, must be taken in into account. The longitudinal zone of stability b decreases as
the space charge force increases (see Figure 7).
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Figrre 6: Current linuts as functions of space churge factors p .y
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Figure 7: Bunch dimensions

4. DESIGN OF THE RFQ ACCELERATOR

A group of computer codes is now available at CERN {PS division, LINAC group) to
study and design an RFQ accelerator. We will give an overview of all of them, illustrating them
with the example of the RFQ2 project.

4.1 Choice ofoOt, 9o; (program INPAR).

Qur approach in the design of a high intensity RFQ starts with the choice of the phase ad-
vances per period at the end of the Gentle Buncher, choice which, as seen in the preceeding
chapter, gives the starting values for the tension and the accelerating and focusing factors at this

critical point of the accclerator.
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The following considerations must be taken into account:

. The current limits are proportional to T4 and ooy (see Eqs.(3.4.2/3.4.4)), so high values are
required for high intensity beams

. The surface field on vanes must stay in reasonable limits, determined either by the very
conservative Kilpatric law [11] or by the value of the product of field and potential, which some
consider as the significant figure. This imposes an upper limit on the longitudinal phase advance
o) to which V is strictly related (see Eq.(3.3.1) and (3.3.5)).

. The energies of oscillation in the transverse and longitudinal plane should be similar, in or-
der to avoid energy transfer between planes, so o4, and o) must be of the same order of magni-
tude.

The program INPAR (INput PARameters) which compares the bunch size with the aper-
ture in the last cell of the Gentle Buncher and checks the beam stability as the current increases,
is used to this purpose. An approximative value of the maximum surface field is also computed,
in order to control the breakdown characteristics of the electrodes. An output from the program
is given in Table 1 .

4.2 Sections of the accelerator (program RFQIMS).

The following step is the choice of the initial energy W;, the energy at the end of the Sha-
per, wsh’ and that at the end of the Gentle Buncher, ng . The following considerations are
used as guidelines:

Choice of the initial energy Wi

i. The space charge forces at lower energy increase considerably the transverse dimensions
of the beam, which can be critical for the aperture of the LEBT (Low Energy Beamn Transport).
Normally LEBT contains solenoids to focuse the beam and the total flux of the magnetic ficld
becomes prohibitive at larger aperture.

il. A lower initial energy is preferable from the point of view of high voltage problems in
the preaccelerator.

ili. The length of the RFQ accelerator decreases when the initial energy is higher (see Fig-
ure 8).

Choice of Wsh'

The Shaper must be long enough to permit a slow bunching of the beam. The synchro-
nous phase must be changed slowly. The value of W h influences both the length of the accel-
erator and the efficiency of the structure (see Figure §'and formula (3.3.9)). The change in the
efficiency can be explained with the process of bunching and gradual forming of the longitudinal
emittance which is more critical if a higher current must be transported. A compromise between
the two different tendencies has to be reached (sce always Figure 9).

Choice of ng and Wf

A reasonable approach is to consider the total increase in encrgy (We— W), if it is of the
order of = IOWi it is not necessary to usc an accelerating section and W gb™ Wf\
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Table |: INPAR output

RO(CM )= .7013

AV _10(KA)= .81729E-01 (XV/A..2.).A..2.= .52225E-01

B= 6.404a7

PSI= 1.3873 A(CM) = .4379

v(mv)= . 13395 AG= .5791

1(Ma)= 71.881 AV (MV) = .07757 V.V/A= 4,098

MUT ! MUL ' SIGMAT '  SIGMAL ! 1T ! IL 'RBAR ! 8 ! Fp

650 238 ! 20.706 ! 27.066 ! 71.881 71.874 248 ! 660 ! 125
693 .290 ! 19.385 ! 26.119 ! 81.881 ! 77.2717 ! .256 ! .615 .42
.746 ! .434 ! 17.639 ! 23.327 ! 91.881 ! 75.057 ! .269 ! .490 ! 191 ¢
.821 ¢ .399 ! 14.815 ! 24.027 ' 101.881 ! B4 .756 ! .293 ! .520 197 ¢
.828 ! .391 ! 14.532 ! 24,197 ' 111.881 ¢ 86.157 ! .296 ! .528 . 196
.845 ! .385 ! 13.793 ! 24.320 ! 121.881 ! 88.769 ! .304 ! .533 ! .189
.859 ! .371 ¢ 13.148 ' 24.588 ! 131.88B1 ' 91.621 ! 311 ! .545 .200
.869 ! .365 ! 12.650 24.707 ' 141.881 ! 93.635 ! .317 ! .550 .202
880 ! .354 ¢ 12.112 24.920 ' 151.881 ! 96.042 ! .324 ! .560 ! .203
889 ¢ .355 11.683 ! 24 .905 ' 161.881t ! 97.729 ! .330 ! .559 ! .207
.898 .357 ¢ 11,166 ! 24 857 ! 171.881%v ! 99.871 ! .338 ! .557 ! .212 ¢
.S07 ! .337 10.686 ! 25.242 ' 181.88' ! 102.462 ! .345 ! .574 ! .210
91y .347 10.465 ! 25 .049 ' 191,881 ! 103.412 ! .349 ! .566 .216
919 ! .346 9.956 ' 2% Q77 ! 201.881 ' 106.064 ! .357 ! .567 ! .221
.924a .336 9.623 ! 25,253 ' 211,881 ! 107.993 ! .364 ! 575 ! L2271
928 336 9.367 ' 25,262 ! 221.8B1 ' 109.482 ! .369 ! .575 ! .224
.933 L3101 9.048 ¢ 25.724 ' 23!.881 ! 110.999 ! .375 ! .596 ¢ .220
.934 ¢ .329 8.959 ! 2%,.392 ' 241.881 ' 111.964 ! .377 1! .581 ! .2271 ¢

It is also important to consider the intensity of the current: for a very intense bunch the
variation of the synchrotron phase must be slow in order to keep the beam stable. So it can be
more convenient to lengthen the Cientle Buncher until the end of the accelerator.
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If the intensity is not high, the use of the Accelerating Section is preferable because it de-
creases the length of the accelerator, which means decreasing the costs.
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A computer code, RFQIMS, based on the LANL programs RFQUICK and IMS [12] is

used to specify the above items. An output of this code is given in Table 2.

Table 2: RFQIMS output

B8 2 5555588385888 284553 3535583338355 8K885 K235 8585F255FFK8 55555 X3X55255%X385%353082

LR, LS,LG,LA, LT=
DSC,DRFNL,211/KA,SIGMA

PCU,PB,PT(KW)=

B 43 5SSV EE L LTSS TR S EERNEEEXEETEREN

z
-4.100
.000
1.015
26.148
51.280
76.413
101.545
113.908
123.416
131.140
137.644
143.261
148,205
152.619
156.607
160.243
163.585
166.677
169.553
172.241
174.766
174.766

4.3 Multipolar potential function (program GENRFQM).

[RoNoN R NoRo R No NN N N Ne Ne NN Ne e le Ne

BB

.200
.400
.400
.400
.400
.400
.400
.400
.400
.400
.400
.400
.400
.400
.400
.400
.400
.400
.400
.400
.400
.400

PHI

-90.
-90.
-90.
-83.
.407
-71.
-64.
-59.
-55.
-52.
~-49.
-47.
-45 .
-43.
.988
-40.
-39.
-38.
-36.
-35.
-35.
-35.

-77

-4

000
000
000
703

110
813
920
956
672
896
513
439
612

533
218
023
930
926
000
000

e e b b e b h b ek et ad b b b b b et —h d s b

4.
-.18
436.5

102.

132.0

568.5

179.

IR E R R EEEREEEEEEESE R RS R EE R EREEREEEE R R AR REEEREE RN SRS

M

.000
.000
.002
.0s58
.103
. 126
.139
.161
.186
.214
.244
.276
L3111
.349
.390
.434
.482
.534
.591
.653
L7721
721

Vv

.170
.170
.170
170
.170
.170
.170
.170
. 170
. 170
.170
.170
.170

170

. 170
.170
. 170

170

. 170
.170
.170
.170

w

©.090

.090
.090
.092

107

.142
.200
.239

279

.318
.357

396

.436
.475
.514
.554
.593

632

.671
.71
.750
.750

AA

.000
.000
.00
.019
.037
.0sSs
.073

092

L1112
. 133
. 155
.178

203

. 229
. 255

283
311

.341
.37
.402
.434
.434

4.

A
455

.787

787

.766
.751

743
738
730
722
713

PSI

360.
360.
359.
289.
257.
230.
206.
188 .
174.
163.
154.
146.
139.
133.
128.
123.
119,
115,
112.
109.
106.

106

For intense beams, the multipolar components of the electric ficld in the proximity of the
axis can influence sensitively the particle dynamics, and their inclusion in the design of the ac-
celerator is therefore necessary.

Their numerical computation is done by optimization programs which try to fit the equi-
potential function to the real electrodes. For example the program GENRFQM, which com-
putes the values of the coefficients Ay, Ag;, A,y and Ay, tres to find the best fit at points
along RFQ vanes specified by the program RFQIMS.

4.4 Generation of the complete structure. Beam dynamics in the accelerator

(programs PARMTEQ, PARMULT and OUTTEST).
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The program PARMTEQ or its derivated version wich icludes the multipole components
of the potential function, PARMULT, is used for the generation of the structure cell by cell and
for the study of the beam dynamics. For each cell are specified:

~ the synchronous energy at the center and at the end of the cell
— the velocity of the synchronous particle

— the mean longitudinal electric field on the axis
— the accelerating factor

— the synchronous phase

— the smallest aperture ‘a’

— the modulation factor ‘'m’

— the f component of the focusing force

— the cell length

— the ratio Ay3/A,; (if multipoles are included)
— the ratio A,,/A,, (as before)

An example of the output from PARMULT is given in Table 3

The beam is represented with a distribution of N points in the three phase planes. The co-
ordinates of these points are randomly generated or uniformly positioned in the phase plane el-
lipses, and followed along the whole structure.

The space charge effects are treated in a special subroutine, SCHEFF. The space charge
impulse is imparted to the particles once in each cell, at the position where the beam is roughly
circular. The beam is divided in a cylindrical mesh, each point of which is considered as a ring
of charge. The field created by the complete mesh on each of its point is computed. The im-
pulse on each particle is obtained computing the ficld in the position of the particle by interpo-
lation between mesh points, considering the center of the bunch (given by the r.m.s coordinates)
as a point charge. The impulse is averaged over A /2.

PARMTEQ and PARMULT are completed by another program, QU TTEST, which gives
the graphic outputs, all along the RFQ, or in determinates cells. Some examples are given in
Figures 10.
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DESIGN

TANK

NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL
NCELL

1

.178
.178
.1178
.178
.178
.178
.178
.178
.178
.178
.178
.178
.178
.178
.178
.178
.178
.178
.178
.178
.178
. 178
.178
.178
.178
. 178
.178

L O T O TN N { N T I O T2 L O N [N A T (L O { O S (IO L I 1)

Table 3: PARMULT output

,FREQ=202.56 MHZ, Q=1.0,Wl= .090,wFs=
LENGTH= 180.00 CM, 127 CELLS,
WS BETA (¥4 CAPA PHI
0900 .0138 .000 .00000 -90.0
.0900 .0139 .013 .00073 -90.0
.0901 .0139 .077 .00444 -88.7
.0904 .0139 .141 .00815 -87.4
.0908 .0139 .205 .01187 -86.1
L0917 .0140 .268 .01560 -84.8
.0930 .0141 .330 .01934 -83.5
.0949 .0142 .391 .02312 -82.2
.0976 .0144 .450 .02694 -80.9
1011 .0147 .S06 .03082 -79.6
L1057 .0150 .559 .03478 ~78.2
.1114 .01'54 .608 .03883 -76.8
.1184 .0159 .653 .04301 -75.3
L1270 .0165 .695 .04732 -73.8
L1372 .0171  .732 .05179 -72.3
.1495 .,0178 .764 .05645 -70.7
L1639 .0187 .793 .06132 -89.0
.1807 .0196 .818 .06643 -867.2
.2004 .0207 .840 .07180 -65.4
.2241 .0218 .905 .0B185 -62.6
.2545 .0233 .988 .09527 -59.2
.2945 .0250 1.106 .11460 -55.5
.3486 .0273 1.271 .14314 -51._4
.4243 .0301 1.498 .18599 -46.9
.5348 .0337 1.833 .25496 -42.0
.7049 .0387 2.358 .37576 -36.8
.7993 .0412 2.621 ,44442 -34.6
0. NGOOD = 180
100, NGOOD = 167
101, NGOOD = 167
102, NGOODO = 167
103, NGOOD = 167
104, NGOOD = 167
105, NGOOD = 167
106, NGOOD = 167
107, NGOOD = 167
108, NGOOD = 167
109, NGOOD = 167
110, NGOOD = 167
111, NGOOD = 167
112, NGOOD = 166
113, NGOOD = 166
114, NGOOD = 165
115, NGOOD = 165
116, NGOOD = 165
117, NGOOD = 164
118, NGOOD = 164
119, NGOOD = 164
120, NGOOD = 164
121, NGOOD = 164
122, NGOOD = 164
123, NGOOD = 164
124, NGOOD = 164
125, NGOOD = 163
126, NGOOD = 160
127, NGOOD = 160

.75 1=

CHARGE STATE

A
1.876
.787
.782
.778
.774
.770
. 765

e e b s b h wd md e b b ok d ek b s ok ad b —b 4 b ed

250.0MA,

M

.000
.003
.019
.035
.05
.067
.082
.095
107
.120
. 133
.142
. 147
. 152
. 157
. 161
. 163
. 164
. 166
. 176
.19
.216

253

.313
L4117
.62¢
.763

[LEoNoRoNoNoR NN NoNoNoNoNoNe NoRoNaoNoRoNo e RN R e Nel

1.

[ATENIE N RN J'N S D U D D D (U P D D e

.025

.023

012
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A computer program, EFIELD [14] is utilized to check the value reached by the surface
electric field, and its distribution along the structure. The region with maximum surface fields is
thus found.

The program assumes circular transverse sectioned vanes; the maximum value of the elec-
tric field in z=2z, occurs on the axis joining the two centers of curvature of two adjacent vanes.
The maximum value in all the RFQ is normally in some point in the Shaper, where the cell
length is not high and the modulation factor has already reached values between 1.2— 1.3, and it
corresponds to the position of the minimum value of the longitudinal radius of curvature.

In Figure 11 the maximum field along the vanes is plotted for the nominal values of the
RFQ2.

A Erax [mV/cm)

401
) /—\‘
30T
2571
Z [cm)]
20 } | f F ; + : i F—

Figure 11: Maximum surface eletric field

5.2 Vane machining

The vanes of the RFQ2 will be machined by « wheel, illustrated in Figure 12, which moves
in the longitudinal direction following the vane tip profile. Its transverse section is a circle of ra-
dius R =%,. It cuts on the plane normal to the vane tip profile and to the plane y=0 in the
point of contact.

The transverse sections of the machined electrodes follow approximately the shape of an
ellipse (it would be an exact ellipse if the slope of the electrodes were constant), and they can be
computed by the following geometrical considerations.

Let f(x,z) = 0 be the equation of the vane tip profile.

f(x,2) = Ag,x2 + Ajolo(kx) coskz (6.2.1)

Let’s consider the situation in the instant when the cutter is touching the surface at the
point §=(x,0,z) (see Figure 13), and check in which point y it cuts the transverse plane z=z,.
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The point P, intersection of the normal to the surface at S with the vertical at z=z,, has
coordinates ()H),O,Zo), being

Xy = Xg = dz/dx|s(zo—zs) (6.2.2)
dz/dx is obtained from Eq.(6.2.1):
dz/dx = [2A,,x + kA, I (kx) coskz]/kA, I (kx) sinkz (6.2.3)

The distance s between the points P and § is:

s = Jzg—20)* + (x— :&))2 (6.2.4)
and the y —coordinate of the point Q, contact between the cutter and the surface at z=1z, is
Yq = NEPIED) (6.2.5)

The transverse section of the vane at z=z, is deterrnined by the consecutive positions of
the cutter at A,S,S’,...S™ . Figure 14 illustrates the section in the RFQ where the maximum de-
viation from a circle occurs. The * correspond to the real machined surface, and the continous
line represents a circle. When the slope of the vane tip profile is small, the transverse section is
very close to a circle. This is not the case of the Radial Matching Section (see Figure 15). The
transverse radius of curvature at the pole tip increases from the value zero corresponding to the
beginning of the vane, to the final value p,. We see that the agreement between the machined
surface and the theoretical one (continous lines in the figure 15) is better in the first cells of the
section. At the end, the machined transverse sections approach a circle, which corresponds to
the theoretical circular vane form in the shaper. We should note that, as computed, there is a
slight discontinuity between the potential functions at the end of RMS and beginning of shaper;
this discontinuity, of course, does not exist on machined vanes.
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Figure 12: Machining of a vane
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APPENDIX A

MULTIPOLES COEFFICIENTS OF THE POTENTIAL FUNCTION IN
THE RFQ.

An analytical computation of the multipole coefficients of the potential function is only an
indication on the effects that the finite shape of the electrodes causes on the beam dynamics, if
the series of Eq.(1.3.6) is cut at a given term. An exact computation would require a system of
infinite equations, where the dimensions and characteristics of the tank which contains the vanes
were also included.

The values of A;; are obtained from boundary conditions imposed to the potential function
and to the geometry Jf the electrodes.

We have begun from a simple case: we cut the series at the duodecapolar term (as in
Eq.(4.2.1)) and we impose the following three conditions on the potential:

i U@0,0) = V)2
i. U(ma,0,8A/2) = V/2
. U(r,0,8A/2) = V)2

and the fourth condition is on the value of the transverse radius of curvature at the vane tip in
the middle of the cell:

iv. p(ro,0.8M/4) = po = rPU J(rU_+ Uyp) = arg

Sparing the time and patience of the reader, we give directly the solution of the system de-
fined by these four equations:

Aoy = 3(1+ Sa)/[2r%(1+ 7a)] (A1)
Aoy = — (1+a)/[2r,%(1+ 7a)] (A.2)
Ay = [X I(mka) — Y L(ka)l/D (A.3)
A, = [Y Io(ka) — X Iy(mka)l/D (A.4)
with

D = Iy(ka) I (mka) — Iy(mka) I,(ka) (A.5)
X = 1 = Ay A? — Ag,A® (A.6)
Y = = (1 = AgM2A? — Ay, MPA®) (A.7)

Observingthe shape of the vanes defined by the above coefficients (Figure 16), we see that
they agree reasonably well with real vanes which are circular around the tip.
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Figure 16: Transverse sections of the vane in the 12— polar approximation

To improve the approximation, we can add the 20— polar term (A,sr!? cos 108), and use a
fifth condition:

v. p(a,0,0) = pg

The results are illustrated in Figure 17
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Transverse sections of the vane in the 20— polar approximation
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APPENDIX B
COEFFICIENTS OF THE POTENTIAL FUNCTION IN THE RMS

The potential function in the RMS is (see Eq.(2.1.10)):
U(r8,2) = V/2[ Aq q(r,z) cos20 + Ay d(r,z) coséd ] (B.1)

q(r,z) and d(r,z) are given in Eqs.(2.1.11). We define

Qo = Q(ro’LRMs) (B2)
dy = d(ro,.Lgpms)
From the boundary condition
U(ro,0.Lpps) = V/2 (B.3)
we obtain the relationship between the coefficients A q and A j:
Ay = ~- Aqu) / dgo (B.4)

The transverse section of the equipotential surface at a given z=z, is represented by the
equation

S$(r,0) = Aqq(r,zo) cos28 + Add(r,zo) cos 64 (B.S)
The transverse radius of curvature is:
p = [r? + (dr/d0)?13/2 / [r? + 2(dr/d)? — rd?r/d6?] (B.6)
At the vane tip (6 =0, dr/d8 =0) it can be then written as
p = 2 [ (r — d*r/d6?) (B.7)
Differentiating Eq.(B.5) twice with respect to 8, we obtain:
d?r/d8* = (2S_pS,S, — SG()SrZ - SnSOZ) / Sr3 (B.8)
where the subscripts x; stay for /9%,
Substituting in (B.7) and rearranging the terms we have:
p =128,/ (S, + Spy) (B.9)
We impose now the condition on p at z= L\ 4¢°
plro0.Lg ) = Po = aTo

and we obtain the value of A q:
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36ady — rodo (a—1)
A = (B.10)
(a— l)ro(QOrdo - %dor) + 32aq4d,

where

Qo, = 9q/or]| (B.11)

r=r0,Z=LRMS
and analogously duﬁ\‘ If p, is equal to the distance between the axis and the vane, r,, at
z= LRMS’ Aq aﬂd d are:
Aq = 9/(8qq)

Ag = —1/(8d)

(B.12)



