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A superconducting magnet for particle accelerators is often modeled as an ideal inductor, as it indeed exhibits a completely
negligible resistance; this is fully satisfactory, as an example, for control purposes, as the time constant formed by the magnet
inductance and the resistance of normal conducting cables connecting it to the power converter accurately describe the
essentially dominant dynamics of the circuit. Such a model would however fail to correctly represent the noise attenuation
mechanism at play in practical superconducting magnets, which also include a vacuum pipe or a beam screen in the inner part
of the aperture, an iron yoke on the outer part, and, potentially, a stainless steel or aluminum collar in between. Even at
relatively low frequencies, a more accurate model is therefore needed. A sufficiently general one is proposed and illustrated.

1. Introduction

This work is aimed at improving the impedance modeling of
superconducting magnets for particle accelerators in the
low-frequency range (i.e., from DC to a fewkHz). Its scope
is also limited to individual magnet modelling; in practical
magnet circuits, several magnets might be connected in
series so the circuit can have significant physical length; its
impedance might then need to be modelled as a transmis-
sion line which outgoes the scope of this work.

Availability of a low-frequency model is relevant as it
allows for the proper specification of noise performances,
within the above-mentioned range of frequencies, in magnet
circuits of particle accelerators, as an example for the HL-
LHC (High-Luminosity Large Hadron Collider) project
[1–3]. Clearly, noise in higher frequency can also have a sig-
nificant impact on the beam, but such an analysis far outgoes
the scope of this contribution and would need to be carried
out decade by decade [3] as different phenomena come to
play in different frequency ranges and from different causes
(not necessarily related to the noise produced by the power
converters). The exact type of noise analysis carried out in
this work will be clarified in the following; its focus is, how-
ever, limited to the impact of voltage noise (inevitably pro-

duced by power converters) on the magnetic field to be
experienced by the beam. The proposed model should nev-
ertheless be considered instrumental to further analysis on
beam dynamics figures of merit which however outgoes the
scope of this work. It is fundamentally a generalization of
the content presented in the seminal paper [4] carried out
with a more rigorous and coherent notation. Indeed, in
[4], the frequency domain, Laplace domain, and time
domain notations are often used all at once, which does
not allow for a concise and rigorous analytical formulation
of the overall magnet impedance as seen by the circuit termi-
nals (i.e., by the power converter terminals). Such a draw-
back is overcome here, and several generalizations are also
presented and discussed together with an illustrative case
study.

The content is organized as follows: in Section 2, the
basic assumptions are presented together with the relevant
results and their complete derivation. In Section 3 the pre-
sented results are translated into a simple equivalent circuit,
generalizing the one presented in [4]. Particular emphasis is
given to the noise analysis which can be thought of as the
main goal of this work. A dominant effect is identified and
described in detail in Section 4.At the same time, an exact
formulation is presented for an ideal dipole magnet, and a
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simple case study, from the Large Hadron Collider, is dis-
cussed to better illustrate the soundness of the approxima-
tions introduced. With regard to important practical
features, only nominal operating conditions are considered,
as they are the only relevant ones for the quality of circulat-
ing beams. The impact of the different structural elements
(collars, yoke, etc.) on quench events or on faults (electrome-
chanical, thermal, etc.), although quite critical for practical
operation, is therefore not investigated herein. The presence
of an iron yoke and the impact of magnetoresistance,
together with a more accurate calculation of the inductance
(to the best of the author’s knowledge, such a formula has
not been presented elsewhere), are briefly addressed in the
Appendix to help readability. Summarizing remarks are
finally given in Section 5.

2. Low-Frequency Field Modeling

2.1. Quasistationary Magnetic Modelling. The fundamental
assumption herein is that the displacement current density
JD = ∂D/∂t is negligible with respect to the intensity of the
magnetic field internal stray capacitive effects (in the nF
range), such as, for example, the ones between coils and
stainless steel or aluminum collars, are herein neglected as
they normally kick in at higher frequencies (tens of kHz)
(D being the electric displacement field). Furthermore, the
physical dimensions of superconducting magnets are such
that no propagation phenomena need to be considered.
Maximum physical dimensions considered are indeed negli-
gibly small compared to the shortest reasonable wavelength;
as an example, one can consider a maximum frequency of 1
MHz (well beyond the range of frequencies of interest in this
work) for which the corresponding wavelength would be of
about 300m, so a 10m-long magnet would still be accurately
approximated.

With both these conditions, the modeling presented here
falls within the so-called Quasistationary Magnetics.

2.2. 2D Modelling. In addition to the above hypotheses, to
further simplify the modeling, the lengths of magnets (along
the conventional axis z) are considered large enough, so a
2D approximation is deemed satisfactory (edge effects are
neglected).

2.3. Absence of Nonlinear Materials. All materials considered
here are assumed to be linear. The more realistic case of
superconducting magnets with a concentric iron yoke is dis-
cussed in the Appendix although a full investigation of its
nonlinear and frequency-dependent impact on the presented
results is beyond the scope of this work. Furthermore, con-
ductive materials experience magnetoresistance; this is also
briefly addressed in the Appendix; although the impact of
this effect is likely to be smaller than the one caused by the
saturation of the iron yoke, its full investigation is beyond
the scope of the work presented.

2.4. Thin Layer Approximation. Following closely the analy-
sis conducted in [4], and using the same notation, it can be
shown that a current IðsÞ (with s being the variable of the
Laplace domain, the initial conditions are all assumed to

be zero) flowing perpendicularly through an annulus having
an average radius r = b and a thickness Δb, as shown in
Figure 1, produces, for a magnet of order n (n = 1 for a
dipole, n = 2 for a quadrupole, etc.), a magnetic vector
potential:

Az r, θ, sð Þ = r
b

� �n sgn b−rð Þ
Az b, θ, sð Þ,

Az b, θ, sð Þ = μ0
bΔb

2n Jz b, θ, sð Þ:
ð1Þ

The quasistatic current density is

Jz r, θ, sð Þ = Nt cos nθð Þ
2 I sð Þ 1

bΔb
δ

r − b
Δb

� �
, ð2Þ

where Nt is the number of turns, and therefore, IðsÞðNt/2Þ
cos ðnθÞ represents the azimuthal current density distribu-
tion within the annulus (it is assumed that Jzðb, θ, sÞ = ½Nt
cos ðnθÞ/2�IðsÞð1/bΔbÞ as equation (2) is to be correctly
interpreted as a generalized function).

It must be noted that in equation (1), the factor bΔb
(proportional to the area of the annulus) is present both at
the numerator and at the denominator; therefore, the inten-
sity of the potential vector depends only on the intensity of
the current I and its azimuthal distribution. This expedient
allows factoring the expression of the potential vector, which
turns out to be useful in the following; furthermore, this for-
mulation does not have the drawback of the one proposed in
[4] where the current density was expressed in Am−1 instead
of the correct Am−2.

It is probably worth highlighting the notation introduced
in equation (1), and adopted throughout the work, which
exploits the signum function sgn as an exponent. This is
done to make the expression of the magnetic vector potential
more compact, although less conventional than in [4–6], by
avoiding the explicit description of two cases at each
occurrence.

It is fundamental to note that the complete mathematical
derivation has nevertheless been carried out assuming that
the thicknesses Δa, Δb, and Δc are (negligibly) small com-
pared to the respective radii a, b, and c such that all fields
in the annular sections can be considered radially uniform.
This clearly represents an idealization which might not
always accurately represent practical superconducting mag-
nets for particle accelerators; these aspects will be addressed,
when relevant, in the next sections and in the Appendix.

2.5. Inner Conductive Layer (Beam Screen). At r = a (a < b),
there is a thin sheet of conductor with thickness Δa repre-
senting a so-called beam screen (which could also represent
a simple vacuum pipe where an actual beam screen is
absent). A current is induced which can be written as

Jz a, θ, sð Þ = σiEz = −sσi Az a, θ, sð Þ + Ai
z a, θ, sð ÞÂ Ã

, ð3Þ

where σi is the conductivity of the layer and Az + Ai
z repre-

sents the total vector potential Atot
z .
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The dependence on θ and s will be omitted in the follow-
ing. Ai

zðrÞ can be expressed by considering the new source
JizðaÞ as

Ai
z rð Þ = μ0

aΔa

2n
r
a

� �n sgn a−rð Þ
J iz að Þ

= μ0
aΔa

2n
r
a

� �n sgn a−rð Þ
−sσiAtot

z að ÞÂ Ã
= −sσiμ0

aΔa

2n
r
a

� �n sgn a−rð Þ
Az að Þ + Ai

z að ÞÂ Ã
= −sτi

r
a

� �n sgn a−rð Þ
μ0

bΔb

2n
a
b

� �n sgn b−að Þ
Jz bð Þ + r

a

� �n sgn a−rð Þ
Ai
z að Þ

� �
,

ð4Þ

where

τi = σiμ0
aΔa

2n ð5Þ

has the dimensions of time.
Ai
zðrÞ can therefore be rewritten as follows:

Ai
z rð Þ = −sτi

a
b

� �n r
a

� �n sgn a−rð Þ b
r

� �n sgn b−rð Þ
μ0

bΔb

2n
r
b

� �n sgn b−rð Þ
Jz bð Þ + Ai

z rð Þ
" #

= −sτi ki rð ÞAz rð Þ + Ai
z rð Þ

h i
,

ð6Þ

where

ki rð Þ =

1, r ≤ a,
a
r

� �2n
, a < r < b,

a
b

� �2n
= ki, r ≥ b:

8>>>><
>>>>:

ð7Þ

Therefore,

Ai
z rð Þ = −

sτik
i rð Þ

1 + sτi
Az rð Þ: ð8Þ

The total vector potential in this case is Atot
z ðrÞ = Ai

zðrÞ
+ AzðrÞ which can be finally calculated as

Atot
z rð Þ =

1 + sτi 1 − ki rð Þ
h i
1 + sτi

Az rð Þ: ð9Þ

Therefore, the inner conductive layer introduces a ratio-
nal transfer function (between the source potential vector
and the total one) which has a pole with time constant τi
and a zero with time constant τi½1 − kiðrÞ�. The position of
the pole is determined only by the conductivity of the annu-
lus and its area (actually, by the product of the two) together
with the order of the magnet, while the position of the zero
also depends on the radial coordinate r. In particular, in the
interior of the conductive layer r ≤ a, kiðrÞ = 1, the zero dis-
appears. This implies that within the range of frequencies
considered herein, the field in the interior of the conductive
layer keeps being attenuated as the frequency increases.

2.6. Outer Conductive Layer (Stainless Steel or Al Collar). At
r = c (c > b), there is a thin sheet of conductor with thickness
Δc representing a stainless steel or Al collar often present in
the magnet design. A current is induced, which can be writ-
ten as

Jz c, θ, sð Þ = σoEz = −sσo Az c, θ, sð Þ + Ao
z c, θ, sð Þ½ �, ð10Þ

where σo is the conductivity of the sheet and Az + Ao
z repre-

sents the total vector potential Atot
z .

Ao
zðrÞ can be expressed by considering the new source

JozðcÞ as

Ao
z rð Þ = μ0

cΔc

2n
r
c

� �n sgn c−rð Þ
Joz cð Þ

= μ0
cΔc

2n
r
c

� �n sgn c−rð Þ
−sσoAtot

z cð ÞÂ Ã
= −sσoμ0

cΔc

2n
r
c

� �n sgn c−rð Þ
Az cð Þ + Ao

z cð Þ½ �

= −sτo
r
c

� �n sgn c−rð Þ
μ0

bΔb

2n
c
b

� �n sgn b−cð Þ
Jz bð Þ + r

c

� �n sgn c−rð Þ
Ao
z cð Þ

� �
,

ð11Þ

r

a

b

c

𝜎i
𝛥a

𝛥b

𝛥c 

𝜃
z⌃

𝜎o

Figure 1: Simplified cross-section (not to scale) of an ideal
superconducting magnet with superimposed adopted cylindrical
coordinates): coils are located at r = b, an inner conductive shell
(beam screen or vacuum pipe for example) is located at r = a, and
an outer conductive shell (stainless steel or Al collar as an
example) is located at r = c.
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where

τo = σoμ0
cΔc

2n : ð12Þ

Ao
zðrÞ can therefore be rewritten as follows:

Ao
z rð Þ = −sτo

b
c

� �n r
c

� �n sgn c−rð Þ b
r

� �n sgn b−rð Þ
μ0

bΔb

2n
r
b

� �n sgn b−rð Þ
Jz bð Þ + Ao

z rð Þ
" #

= −sτo k
o rð ÞAz rð Þ + Ao

z rð Þ½ �,
ð13Þ

where

ko rð Þ =

b
c

� �2n
= ko, r ≤ b,

b
r

� �2n
, b < r < c,

1, r ≥ c:

8>>>>>><
>>>>>>:

ð14Þ

Hence,

Ao
z rð Þ = −

sτok
o rð Þ

1 + sτo
Az rð Þ, ð15Þ

from which the total vector potential can be calculated as

Atot
z rð Þ = 1 + sτo 1 − ko rð Þ½ �

1 + sτo
Az rð Þ: ð16Þ

The outer conductive layer also introduces a rational
transfer function which has a pole with time constant τo
and a zero with time constant τo½1 − koðrÞ�. The position of
the pole, as for the inner layer, is determined only by the
conductivity of the annulus and its area (actually by the
product of the two) together with the order of the magnet,
while the position of the zero also depends on the radial
coordinate r. In particular, in the interior of the coils r ≤ b,
koðrÞ = ko; hence, the zero is at constant position and its time
constant is smaller than the one of the pole (zero is at higher
frequency w.r.t. the pole); in this case, no further attenuation
of the source field is experienced beyond the frequency of
the zero.

2.7. Inner and Outer Conductive Layers. In this case, the total
potential vector must account for both contributions:

Atot
z = Az rð Þ + Ai

z rð Þ + Ao
z rð Þ, ð17Þ

which will be discussed first individually and then com-
bined in the following subsections.

2.7.1. Inner Layer Contribution.

Ai
z rð Þ = μ0

aΔa

2n
r
a

� �n sgn a−rð Þ
Jiz að Þ

= μ0
aΔa

2n
r
a

� �n sgn a−rð Þ
−sσiAtot

z að ÞÂ Ã
= −sσiμ0

aΔa

2n
r
a

� �n sgn a−rð Þ
Az að Þ + Ai

z að Þ + Ao
z að ÞÂ Ã

= −sτi
r
a

� �n sgn a−rð Þ
μ0

bΔb

2n
a
b

� �n sgn b−að Þ
Jz bð Þ+Ai

z að Þ + μ0
cΔc

2n
a
c

� �n sgn c−að Þ
Joz cð Þ

� �
:

ð18Þ

Rearranging and factoring terms, it yields

Ai
z rð Þ = −sτi k

i rð ÞAz rð Þ + Ai
z rð Þ + kio rð ÞAo

z rð Þ
h i

, ð19Þ

where

kio rð Þ = a
b

� �n r
a

� �n sgn a−rð Þ c
r

� �n sgn c−rð Þ

=

1, r ≤ a,
a
r

� �2n
, a < r < c,

a
c

� �2n
, r ≥ c:

8>>>>><
>>>>>:

ð20Þ

2.7.2. Outer Layer Contribution.

Ao
z rð Þ = μ0

cΔc

2n
r
c

� �n sgn c−rð Þ
Joz cð Þ

= μ0
cΔc

2n
r
c

� �n sgn c−rð Þ
−sσoAtot

z cð ÞÂ Ã
= −sτo

r
c

� �n sgn c−rð Þ
Az cð Þ + Ai

z cð Þ + Ao
z cð ÞÂ Ã

= −sτo
r
c

� �n sgn c−rð Þ
μ0

bΔb

2n
c
b

� �n sgn b−cð Þ
Jz bð Þ + μ0

aΔa

2n
c
a

� �n sgn a−cð Þ
Jiz að Þ + Ao

z cð Þ
� �

:

ð21Þ

Rearranging and factoring terms, it yields

Ao
z rð Þ = −sτo ko rð ÞAz rð Þ + koi rð ÞAi

z rð Þ + Ao
z rð ÞÂ Ã

, ð22Þ

where

koi rð Þ = a
c

� �n r
c

� �n sgn c−rð Þ a
r

� �n sgn a−rð Þ
=

a
c

� �2n
, r ≤ a,

r
c

� �2n
, a < r < c,

1, r ≥ c:

8>>>><
>>>>:

ð23Þ

2.7.3. Combining Contributions. In the following, the depen-
dence on r will be omitted unless expressly needed.

Ai
z = −sτi k

iAz + Ai
z + kioA

o
z

h i
,

Ao
z = −sτo koAz + koi A

i
z + Ao

z

Â Ã
,

ð24Þ
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Ai
z = −

sτi
1 + sτi

kiAz + kioA
o
z

h i
,

Ao
z = −

sτo
1 + sτo

koAz + koi A
i
z

Â Ã
:

ð25Þ

Two transfer functions are defined:

Hi sð Þ =
sτi

1 + sτi
, ð26Þ

Ho sð Þ = sτo
1 + sτo

, ð27Þ

so that the system can be rewritten as

Ai
z +Hi sð ÞkioAo

z = −Hi sð ÞkiAz ,
Ho sð Þkoi Ai

z + Ao
z = −Ho sð ÞkoAz:

ð28Þ

Its solution is as follows.

Ai
z = −

ki − kioHo sð Þko
1 −HiHok

o
i k

i
o

Hi sð ÞAz ,

Ao
z = −

ko − kiHi sð Þkoi
1 −HiHok

o
i k

i
o

Ho sð ÞAz ,
ð29Þ

which can be expanded as follows:

Ai
z = −

sτi
1 + sτi

ki − sτo/ 1 + sτoð Þ
h i

kiok
o

1 − sτi/ 1 + sτið Þ½ � sτo/ 1 + sτoð Þ½ �kiokoi
Az ,

Ao
z = −

sτo
1 + sτo

ko − sτi/ 1 + sτið Þ½ �kikoi
1 − sτi/ 1 + sτið Þ½ � sτo/ 1 + sτoð Þ½ �kiokoi

Az:

ð30Þ

The final expression, in canonical form, is

Ai
z = −sτi

ki − sτo kiok
o − ki

� �
1 + s τi + τoð Þ + s2 1 − kiok

o
i

� �Az ,

Ao
z = −sτo

ko − sτi kikoi − ko
� �

1 + s τi + τoð Þ + s2 1 − kiok
o
i

� �Az:

ð31Þ

It is now possible to write the total potential vector Atot
z

ðrÞ = AzðrÞ + Ai
zðrÞ + Ao

zðrÞ as a function of AzðrÞ, produced
by the source current, as follows:

Atot
z rð Þ = Az rð Þ

1 + s τi 1 − ki
� �

+ τo 1 − koð Þ
h i

+ s2τiτoγ rð Þ
1 + s τi + τoð Þ + s2τiτo 1 − kiok

o
i

h i ,

ð32Þ

where γðrÞ = 1 − ki − ko + kikoi + kokio − kiok
o
i .

As ki, ko, kio, koi all depend on r, the above expression is
fully general and allows for the calculation of the total poten-
tial vector anywhere. From this general expression, it is easy
to highlight the presence of a rational transfer function
between AzðrÞ and Atot

z ðrÞ that has two poles and two zeros.
Only the position of the two zeros depends on r as

kio rð Þkoi rð Þ = a
c

� �2n
= kiko ≤ 1, ð33Þ

therefore, the coefficients of the denominator are fixed,
hence the position of the poles. It is also straightforward to
verify that such a transfer function is a minimum phase:
the real part of both poles and zeros is negative (second-
order polynomials with all positive coefficients; it can also
be easily shown that the two poles are both real).

3. Circuital Model

3.1. Inductance. Equation (32) allows the calculation of the
total magnetic potential vector everywhere; in particular, it
allows to calculate it in the coils (r = b), and this is enough
to calculate the inductance of the magnet (electrical termi-
nals of the magnet are indeed located at r = b).

3.1.1. Potential Vector in the Coils. Note that

ki bð Þ = ki,
ko bð Þ = ko,

kio bð Þ = ki,
koi bð Þ = ko,

ð34Þ

and introducing the following

k′i = 1 − ki,
k′o = 1 − ko,

ð35Þ

the expression of the potential vector in the coils can be sim-
plified as follows

Atot
z bð Þ = Az bð Þ

1 + s τiki′+ τoko′
� �

+ s2τiτo 1 − ki − ko + kikoð Þ
1 + s τi + τoð Þ + s2τiτo 1 − kikoð Þ ,

ð36Þ

which can be rewritten to highlight its dynamics by means of
the factor ΛðsÞ as

Atot
z b, θ, sð Þ = Az b, θ, sð ÞΛ sð Þ: ð37Þ

3.1.2. From Potential Vector to Inductance. In the quasista-
tionary magnetic conditions assumed throughout this work,
the stored magnetic energy can be calculated as

U = 1
2∭V

J ·Adv: ð38Þ

5Modelling and Simulation in Engineering



For the 2D approximation used herein, the stored energy
per unit length is therefore

u = dU
dz = 1

2∬S
J ·A ds, ð39Þ

where the surface S is the cross-section of the magnet; how-
ever, J is nonzero only for r = b.

Since the total potential vector at r = b is simply the source
potential vector times ΛðsÞ (the transfer function in equation
(37)), the energy per unit length can be easily calculated.

u = 1
2∬S

Jz r, θ, sð ÞΛ sð ÞAz r, θ, sð Þrdrdθ

= 1
2Λ sð ÞI2 sð Þ μ0N

2
t

8n
1

bΔb
bΔb

ð2π
0

cos2 nθð Þdθ

=Λ sð Þμ0
N2

t I
2 sð Þπ
16n ,

ð40Þ

where δ½ðr − bÞ/Δb�r dr has been integrated over all possible
values of the radius whose result is equal to bΔb.

The inductance per unit length ℓ can be derived from the
energy per unit length as follows:

ℓ = dL
dz = 1

I
∂u
∂I

, ð41Þ

which gives

ℓ =Λ sð Þμ0
N2

tπ

8n =Λ sð ÞℓDC: ð42Þ

The static or DC inductance can be written as

LDC = ℓDCl = μ0
πN2

t

8n l, ð43Þ

where l is the magnet length over the z axis (this expression
coincides with the one reported in [4]).

Finally, the sought dynamic inductance can be
expressed as

L sð Þ = LDCΛ sð Þ: ð44Þ

3.2. Equivalent Circuit. It can be verified that

Λ sð Þ = 1 + sτi 1 − kið Þ½ � 1 + sτo 1 − koð Þ½ �
1 + s τi + τoð Þ + s2τiτo 1 − kikoð Þ , ð45Þ

to which corresponds the equivalent circuit in Figure 2.
The proposed equivalent circuit represents a generaliza-

tion of the one presented in [4]. It allows several consider-
ations to be made:

(i) Not all the current supplied by the power converter
icircuit is producing magnetic field in the theoretical
aperture of the magnet (r ≤ b); indeed, a fraction io
is shunted by the outer conductive layer

(ii) The magnetic field within the magnet’s aperture can
be thought as produced by the current iBm

(iii) Not all of the field produced by iBm
is actually seen

by the beam in the interior of the inner conductive
shell (such as the interior of a beam screen, r ≤ a)

(iv) There is indeed a shielding effect, and the difference
between the field outside the inner layer (a < r < b)
and the field inside the inner layer, (r ≤ a) can be
thought as being produced by the difference current
ii = iBm

− iBb

(v) In other terms, only the current iBb
is producing the

magnetic field seen by the beam

The equivalent circuit allows for an easy calculation of
many interesting features. In particular, it allows studying
the effect of power converter noise (both voltage and cur-
rent) on the magnetic field seen by the beam inside the beam
screen or vacuum pipe.

As an example, from equation (32), the TF (transfer
function) between the vector potential in the region r ≤ a
with and without the inner and outer layers is the following:

Atot
z r ≤ að Þ
Az r ≤ að Þ = 1 + sτo 1 − koð Þ

1 + s τi + τoð Þ + s2τiτo 1 − kikoð Þ : ð46Þ

This TF can be deduced from the equivalent circuit, as in
Figure 2, as

iBb

icircuit
=

iBb

iBm

iBm
icircuit

= 1
1 + sτi

1 + sτið Þ 1 + sτo 1 − koð Þ½ �
1 + s τi + τoð Þ + s2τiτo 1 − kikoð Þ :

ð47Þ

The analogy between the equivalent circuit and the
dynamics of the magnetic vector potential cannot be further
generalized though as, for example, current io would be

Figure 2: Full circuit model for a lossy superconducting magnet:
inner and outer conducting shells.
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flowing at r = c whereas the proposed circuit is limited to the
electrical terminals of the magnet, i.e., r = b. Nevertheless,
the equivalent circuit represents still a very useful model,
and indeed, one can derive many other figures of interest;
as an example, the losses during the energy ramp up and
ramp down phases can be calculated by the knowledge of ii
and io along with their respective resistances (easily derived
by inspection of the equivalent circuit).

3.3. Noise Analysis. Equation (47) answers fully the question
of howmuch noise passes from the icircuit to the magnetic field
experienced by the beam (r ≤ a). The overall effect is an atten-
uation that at high frequency (higher than the frequencies of
all poles and zeros) gets stronger by 20 per frequency decade.
It is nevertheless clear from the equivalent circuit that the
overall magnet impedance is smaller than that of a supercon-
ducting magnet that has no inner or outer layer because of the
parallel branches (circuit admittance is larger). As such, for a
given voltage noise contribution, the overall circuit current
noise is larger for a magnet with inner/outer conductive layers
with respect to an ideal one. Therefore, the relevant question is
how a realmagnet compares to an ideal one in terms of noise
transfer from the power converter voltage to the magnetic
induction field experienced by the beam.

The admittance of the circuit shown in Figure 3 is
expressed by the following equation:

Acircuit =
icircuit
vcircuit

= 1
Rc

1 + s τi + τoð Þ + s2τiτo 1 − kikoð Þ
1 + s τΣ + s2 τc τi′+ τo′

� �
+ τiτoγio

h i
+ s3τcτi′τo′

, ð48Þ

where

τc =
LDC
Rc

,

τΣ = τc + τi + τo,

τi′= 1 − kið Þτi, τo′ = 1 − koð Þτo,
γio = 1 − kiko:

ð49Þ

The TF of interest is the one from vcircuit to iBb
which is

expressed in the following equation.

iBb

vcircuit
=

iBb

icircuit

icircuit
vcircuit

= 1
Rc

1 + sτo 1 − koð Þ
1 + s τΣ + s2 τc τi′+ τo′

� �
+ τiτoγio

h i
+ s3τcτi′τo′

:

ð50Þ

Equation (50) shows that there are one zero and three
poles, indicating a stronger attenuation of noise (in high fre-
quency) w.r.t. the no layers case as expressed in the following
equation

iBb

vcircuit

� �no layers

= 1
Rc

1
1 + sτc

: ð51Þ

However, in such a form, i.e., equation (50), there is not
much insight about the extra filtering; such expression can
be considerably simplified noticing that τc > >τi, τo, τi′, τo′;
hence, the following approximations hold:

τΣ = τc + τi + τo ≈ τc + τi′+ τΣ′ = τi′,

τc τi′+ τo′
� �

+ τiτoγio ≈ τc τi′+ τo′
� �

+ τi′τo′:
ð52Þ

Combining equation (50) and the approximations in
equation (52) gives

iBb
vcircuit

≈
1
Rc

1 + sτo 1 − koð Þ
1 + s τΣ′ + s2 τc τi′+ τo′

� �
+ τi′τo′

h i
+ s3τcτi′τo′

= 1
Rc

1 + sτo′
1 + sτcð Þ 1 + sτi′

� �
1 + sτo′

� �

= 1
Rc

1
1 + sτcð Þ

1
1 + sτi′

� � :

ð53Þ

Figure 3: Full circuit model as seen from a power converter of a
lossy superconducting magnet: inner and outer conducting shells.
Rc represents the resistance of the normal conducting cables
connecting the power converter to the superconducting magnet.

Figure 4: Circuit model seen from a power converter of a lossy
superconducting magnet: most general inner conducting shell.
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From equation (53), it is straightforward to deduce that

iBb

vcircuit
≈

iBb
vcircuit

� �no layers 1
1 + sτi′

=
iBb

vcircuit

� �no layers 1
1 + sτi 1 − kið Þ :

ð54Þ

Equation (54) shows that

(i) there is a first-order additional filtering effect

(ii) only the internal conductive layer (such as a beam
screen) contributes to this additional filtering from
voltage noise (to the magnetic field experienced by
the beam) (in this respect, the usefulness of the pro-
posed modelling holds even for practical magnets
when the assumption of a thin layer for the stainless
steel or Al collars does not)

(iii) the filtering occurs at higher frequencies compared
to the filtering effect of the currents (or equivalently
of the fields themselves)

(iv) the ratio iBb /iBm
indeed depends on the time con-

stant τi, whereas the ratio iBb
/ðiBb

Þno layers depends

on τi′ and τi is larger than τi′= τið1 − kiÞ as 0 < ki < 1

4. General Model for Inner Layer

In the previous section, it was concluded that the dominant
effect is the one due to the inner layer; in the Appendix, it
will be shown that, considering only the inner layer, the pro-
posed equivalent circuit is well defined even in the presence
of an outer iron yoke. A generalization is now presented by
means of the symbolic equivalent circuit shown in Figure 4.
For such a circuit, where

H sð Þ = Atot
z sð Þ
Az sð Þ , ð55Þ

the TF of interest (i.e., between the power converter volt-
age and the current iBb

) can be written as

iBb

vcircuit
=

iBb
vinner

· vinner
vmagnet

·
vmagnet

vcircuit

= 1
skHi LDC

· skHi LDCH sð Þ
sLDC 1 − kHi

� �
+ kHi H sð Þ

h i

·
sLDC 1 − kHi

� �
+ kHi H sð Þ

h i
Rc + sLDC 1 − kHi

� �
+ kHi H sð Þ

h i
= 1
Rc

H sð Þ
1 + sτc 1 − kHi

� �
+ kHi H sð Þ

h i ,

ð56Þ

where an equivalent geometrical factor kHi is replacing
the one introduced in equation (7).

Equation (56) simplifies into equation (53) in the thin
layer approximation whereby, from equation (9),

H sð Þ = Atot
z sð Þ
Az sð Þ = 1

1 + sτi
: ð57Þ

All conclusions drawn from equation (54) concerning
the noise attenuation are hence valid irrespective to the
validity of the thin layer approximation; in particular, the
relevant fact that the additional noise attenuation (from
voltage-to-current or voltage-to-field) becomes dominant
at higher frequencies w.r.t. the current-to-current (or field-
to-field) attenuation as kHi ≤ 1.

4.1. Full Analytical Formulation for a Dipole. For a dipole
magnet, i.e., n = 1, an exact expression is available for the
case of the inner conductive layer in the region r < a.

In [7], a general formula, equation (58), is reported
where the thickness of the layer is not bounded to be much
smaller than the radius a ; such a formula is also a generali-
zation of the one presented in [8] (both of them only apply
to dipole magnets, i.e., n = 1),

The quantities involved are as follows:

γ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2πf μ0μrσi

q
= 1 + j

δ
,

γa− = γ · a −
Δ

2

� �
,

γa+ = γ · a + Δ

2

� �
:

ð59Þ

where δ is the penetration depth of the conductive layer hav-
ing an electrical conductivity σi. The functions involved are
the first-order modified Bessel functions of first I1 and sec-
ond kind K1 and their first derivatives (w.r.t. their argu-
ment). Assuming that μr = 1 (which is an excellent
approximation) and noting that

z K1′ zð Þ = −zK0 zð Þ − K1 zð Þ,
z I1′ zð Þ = zI0 zð Þ − I1 zð Þ,

ð60Þ

Atot
z rð Þ
Az rð Þ = 2μr a − Δ/2ð Þ/ a + Δ/2ð Þ½ �

μrK1 γa−ð Þ − γa−K1′ γa−ð Þ
h i

μrI1 γa+ð Þ + γa+ I1′ γa+ð Þ
h i

− μrI1 γa−ð Þ − γa− I1′ γa−ð Þ
h i

μrK1 γa+ð Þ + γa+K1′ γa+ð Þ
h i , ð58Þ
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Equation (58) can be considerably simplified to become
equation (61),

4.1.1. Case of LHC Dipole. A numerical example is illustrated
considering the case of the LHC dipoles. The cross-section of
the LHC dipole beam screen is not perfectly circular; an
equivalent first-order approximated TF is presented in [9];

however, such a cross-section can be assumed to be circular
for comparison between the exact analytical model and the
first-order one considered within the scope of this work.
The whole beam screen is further approximated only with
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Figure 5: Bode plot comparison: equation (61) in blue vs. equation (57) in red. Top: amplitude; bottom: phase.
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Figure 6: Impulse (top) and step (bottom) response comparison: equation (61) in blue vs. equation (57) in red.

Atot
z rð Þ
Az rð Þ = 2 a − Δ/2ð Þ/ a + Δ/2ð Þ½ �

2K1 γa−ð Þ + γa−K0 γa−ð Þ½ �γa+ I0 γa+ð Þ + 2 I1 γa−ð Þ − γa−I0 γa−ð Þ½ �γa+K0 γa+ð Þ : ð61Þ
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the thin layer of copper, for which, however, the magnetore-
sistance effect (briefly discussed in the Appendix) is taken
into account. The parameters used for the beam screen are
the following: a− = ða − Δa/2Þ = 18:45mm, Δa = 75μm, and
σi = 2:09 × 109Sm−1 (at 20K and 8T). The comparison
between the exact expression in equation (61) and the
first-order approximation, equation (57), is illustrated in
Figure 5 in the frequency domain and Figure 6 in the time
domain. It can be observed that the impulse response
(impulse response hδðtÞ =F−1½Hðs = j2πf Þ�) of the exact
TF is zero at t = 0 (Figure 6, top) which is a consequence
of the fact that the TF is of an order larger than 1; indeed,
its phase response (Figure 5, bottom) goes beyond the
asymptote of -90° of the 1st order, thin layer, approximation.
The overall agreement is excellent up to about 10 kHz
whereas, looking only at the amplitude (which is the relevant
one for noise considerations), a very good agreement is
maintained even beyond about 20 kHz when the penetration
depth δ becomes equal to the shell thickness; this is an
important result which confirms the validity of the thin layer
approximation presented and its relevance for existing and
next-to-come particle accelerators.

5. Conclusion

A quasistationary magnetic model of an ideal superconduct-
ing magnet has been presented. Although idealized, the
model includes all the important constituents of practical
particle accelerators magnets: the beam screen, the iron yoke
(addressed in the Appendix), and the collar. The model has
been translated into an equivalent circuit generalizing the
one presented in [4]. Such an equivalent circuit has been
exploited to carry out a noise analysis focusing on the final
impact of power converter voltage noise on the magnetic
field to be experienced by the beam. A quantitative, although
approximated, estimation of additional noise attenuation
(w.r.t. a pure inductance model of the magnet) has also been
presented and represents the main result of this work. Non-
thin inner and outer layers have been briefly addressed in
this context, whereas the coils’ layer is discussed with more
details in the Appendix where the validity of the presented
model is shown to hold.

Appendix

A. Iron Yoke

The presence of a thick concentric iron yoke, with relative
permeability μr and inner radius d (outer radius is assumed
large enough not to be considered), as shown in Figure 7 can
be accounted for, following [5], by means of the equivalence
with an image current I ′ located at radius b′ such that

b′ = d2

b
, ðA:1Þ

I ′ = μr − 1
μr + 1 I: ðA:2Þ

This equivalence is valid for r ≤ d; the resulting potential
vector At

zðrÞ would be

At
z rð Þ = μ0

bΔb

2n
r
b

� �n sgn b−rð Þ
Jz bð Þ+μ0

b′Δb′
2n

r

b′

� �n sgn b′−rð Þ
Jz′ b′
� �

:

ðA:3Þ

Following again [5], it can be observed that

Jz′ b′
� �

Δb′ =
μr − 1
μr + 1

b
d

� �2
J bð ÞΔb: ðA:4Þ

d

c
𝛥c 

z⌃ a

b

𝜎i
𝛥a

𝛥b

𝜎o

Figure 7: Simplified cross-section (not to scale) of an ideal
superconducting magnet with an iron yoke with inner radius d.
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Figure 8: Approximate circuit model for a lossy superconducting
magnet: inner and outer conducting shells with an iron yoke.
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From equations (A.1), (A.2), and (A.4), it is easy to see
that

Jz′ b′
� �

b′Δb′ =
μr − 1
μr + 1 J bð ÞbΔb: ðA:5Þ

So, equation (A.3) can be finally rewritten as

At
z rð Þ = μ0

bΔb

2n
r
b

� �n sgn b−rð Þ
Jz bð Þ 1 + μr − 1

μr + 1
r
b

� �n sgn r−bð Þ r

b′

� �n sgn b′−rð Þ" #
:

ðA:6Þ

In the region r ≤ d, equation (A.6) can be further simpli-
fied in

At
z rð Þ = Az rð Þ 1 + β rð Þ½ �, ðA:7Þ

where

β rð Þ = μr − 1
μr + 1

b
d

� �2n r
b

� �n 1−sgn b−rð Þ½ �
: ðA:8Þ

The mathematical derivation of the general case of both
inner and outer conductive layers without iron yoke has
been carried out in Section 2, in particular, equations (18)
and (19) for the inner layer and equations (21) and (22)
for the outer.

Analogously to what is done in equation (18), the contri-
bution to the inner layer with the iron yoke present can be
written as

Ai
z rð Þ = μ0

aΔa

2n
r
a

� �n sgn a−rð Þ
Jiz að Þ = μ0

aΔa

2n
r
a

� �n sgn a−rð Þ
−sσiAtot

z að ÞÂ Ã
= −sτi

r
a

� �n sgn a−rð Þ
At
z að Þ + Ai

z að Þ + Ao
z að ÞÂ Ã

= −sτi
r
a

� �n sgn a−rð Þ
1 + β að Þ½ �Az að Þ+Ai

z að Þ + Ao
z að ÞÈ É

:

ðA:9Þ

Analogously to what is done in equation (19), equation
(A.9) can be factorized as

Ai
z rð Þ = −sτi k

i
Ir rð ÞAz rð Þ + Ai

z rð Þ + kio rð ÞAo
z rð Þ

h i
, ðA:10Þ

where a new positional function is introduced:

kiIr rð Þ = ki rð Þ 1 + β að Þ
1 + β rð Þ : ðA:11Þ

For the outer layer, equation (21) would now read as

Ao
z rð Þ = μ0

cΔc

2n
r
c

� �n sgn c−rð Þ
Joz cð Þ = μ0

cΔc

2n
r
c

� �n sgn c−rð Þ
−sσoAtot

z cð ÞÂ Ã
= −sτo

r
c

� �n sgn c−rð Þ
At
z cð Þ + Ai

z cð Þ + Ao
z cð ÞÂ Ã

= −sτo
r
c

� �n sgn c−rð Þ
1 + β cð Þ½ �Az cð Þ+Ai

z cð Þ + Ao
z cð ÞÈ É

,

ðA:12Þ

whereas equation (22) would read as

Ao
z rð Þ = −sτo koIr rð ÞAz rð Þ + koi rð ÞAi

z rð Þ + Ao
z rð ÞÂ Ã

, ðA:13Þ

where

koIr rð Þ = ko rð Þ 1 + β cð Þ
1 + β rð Þ : ðA:14Þ

By means of the kiIr and koIr functions, the total magnetic
potential including the effect of the iron core can be written
in a form completely analogous to equation (32):

Atot
z = Az 1 + β rð Þ½ �

1 + s τi 1 − kiIr
� �h i

+τo 1 − koIrð Þ� + s2τiτoγIr rð Þ
1 + s τi + τoð Þ + s2τiτo 1 − kiok

o
i

� � ,

ðA:15Þ

where γIrðrÞ = 1 − kiIr − koIr + kiIrk
o
i + koIrk

i
o − kiok

o
i .

All the considerations made about the position of the
zeros and the poles remain valid in the presence of an iron
yoke. In particular, in order to determine what is seen at
the circuit terminals, i.e., r = b, the following constants are
needed:

kiIr bð Þ = ki bð Þ 1 + β að Þ
1 + β bð Þ = ki bð Þ = ki,

koIr bð Þ = ko bð Þ 1 + β cð Þ
1 + β bð Þ = ko

1 + β cð Þ
1 + β bð Þ = kIro ,

γIr bð Þ = 1 − ki − kIro + kiko + kIro ki − kiko = 1 − kið Þ 1 − kIro
� �

:

ðA:16Þ

B. Inductance and Approximated
Equivalent Circuit

For what the inductance is concerned about, its DC value
depends only on the total vector potential at r = b; it is there-
fore pretty straightforward to deduce that

LIrDC = LDC 1 + β bð Þ½ � = LDC 1 + μr − 1
μr + 1

b
d

� �2n
" #

: ðB:1Þ

As for equation (44), the dynamic inductance can be
written as

LIr sð Þ = LIrDCΛIr sð Þ, ðB:2Þ
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where

ΛIr sð Þ =
1 + s τi 1 − kið Þ + τo 1 − kIro

� �h i
+ s2τiτoγIr bð Þ

1 + s τi + τoð Þ + s2τiτo 1 − kikoð Þ

=
1 + sτi 1 − kið Þ½ � 1 + sτo 1 − kIro

� �h i
1 + s τi + τoð Þ + s2τiτo 1 − kikoð Þ :

ðB:3Þ

Unfortunately, there is no equivalent circuit to equation
(B.3) as it exists for equation (45).

However, an approximate equivalent circuit as the one
depicted in Figure 8 can still be devised; its impedance would
be

ZIr sð Þ =
1 + sτi 1 − kið Þ½ � 1 + sτo 1 − kIro

� �h i
1 + s τi + τoð Þ + s2τiτo 1 − kik

Ir
o

� � : ðB:4Þ

The position of the zeros of the equivalent circuit is
identical, whereas the position of the poles is slightly off.
It should also be noted that for reasonable magnet geom-
etries, the factor koIr would not be significantly different
from ko, so finally the equivalent circuit is still a rather
accurate approximation. Furthermore, since the factors
kiIr and ki are exactly the same and that the inner layer
is the dominant one for the noise analysis (as already
shown), it can be safely stated that the presence of the
iron yoke does not affect at all the conclusions drawn so
far. It is important to note that even if the presented
dynamic inductance could have a more general validity
by assuming μr = μrðI, sÞ (i.e., μr being a function of both
the current intensity I and its frequency), it should be
considered hereby as a valid model only for small current
variations around a given steady current level; as such, it is
perfectly suited for noise analysis purposes.

C. Finite Coil Thickness

In the case of finite thickness of the coils, i.e., when Δb is not
negligibly small compared to b, the quasistatic current den-
sity is assumed to be constant between the inner and outer
radii b± = b ± Δb/2 and zero elsewhere
(Π½ðr − bÞ/Δb� = u½r − ðb − Δb/2Þ� − u½r − ðb + Δb/2Þ� where
uð:Þ is the Heaviside function):

Jz r, θ, sð Þ = Nt cos nθð Þ
2 I sð Þ 1

bΔb
Π

r − b
Δb

� �
: ðC:1Þ

The magnetic vector potential produced by this new cur-

rent density can be calculated as follows [6]:

Az r, θ, sð Þ = μ0
2n

NtI sð Þ
2 cos nθð Þ 1

bΔb

·

rn
ðb+
b−
λ1−ndλ, r < b−,

rn
ðr
b−
λ1−ndλ + r−n

ðb+
r
λ1+ndλ, b− < r < b+,

r−n
ðb+
b−
λ1+ndλ, r > b+,

8>>>>>>>>>><
>>>>>>>>>>:

ðC:2Þ

where the integration variable λ spans the radius of the coils.
In this case, the different transfer functions that have been
calculated so far would need to be modified accordingly.
However, by means of Taylor expansion in terms of the rel-
ative thickness Δb/b, it can be shown that

Az r, θ, sð Þ = μ0
2n

NtI sð Þ
2 cos nθð Þ

·

r
b

� �n
1 + n n − 1ð Þ

24
Δb

b

� �2
+⋯

" #
, r < b−,

b
r

� �n

1 + n n + 1ð Þ
24

Δb

b

� �2
+⋯

" #
, r > b+,

8>>>>>><
>>>>>>:

ðC:3Þ

where only powers greater or equal to 2 appear. Neglecting
those terms will result in an expression identical to the
(ideal) one in equation (1). Calculating now the vector
potential in the coil region (b− < r < b+) and then the energy
and again expanding in Taylor series, it can be shown that
the inductance has the following expression:

LDC = μ0
πN2

t

8n l 1 + n
3

Δb

b

� �
+ n2

12
Δb

b

� �2
+⋯

" #
, ðC:4Þ

where the dominant contribution is given by the first power
of the relative thickness. Therefore, the proposed analytical
model, derived with the assumption of (infinitely) thin coils
layer, still holds when it is possible to neglect powers greater
than 1 of the relative thickness of the coils by simply correct-
ing the inductance with the factor: 1 + ðn/3ÞðΔb/bÞ.

D. Magnetoresistance

The electrical conductivity of copper and other metals is
affected by the intensity of the magnetic field they are
exposed to, and such intensity depends finally on the circuit
current. As such, the electrical conductivities considered so
far are σi and σo, and therefore, also the time constants τi
and τo would depend on the intensity of the circuit current,
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so the equivalent circuit proposed in the Circuital Model
would be slightly nonlinear.

However, as for the effect of the iron yoke, the noise
analysis could still be carried out accurately for any opera-
tional steady current level (flat-top, injection, etc.).
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