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Abstract

Two-particle transverse momentum differential correlators, recently measured in Pb–Pb collisions
at energies available at the CERN Large Hadron Collider (LHC), provide an additional tool to gain
insights into particle production mechanisms and infer transport properties, such as the ratio of shear
viscosity to entropy density, of the medium created in Pb–Pb collisions. The longitudinal long-range
correlations and the large azimuthal anisotropy measured at low transverse momenta in small colli-
sion systems, namely pp and p–Pb, at LHC energies resemble manifestations of collective behaviour.
This suggests that locally equilibrated matter may be produced in these small collision systems, simi-
lar to what is observed in Pb–Pb collisions. In this work, the same two-particle transverse momentum
differential correlators are exploited in pp and p–Pb collisions at

√
s = 7 TeV and

√
sNN = 5.02 TeV,

respectively, to seek evidence for viscous effects. Specifically, the strength and shape of the correla-
tors are studied as a function of the produced particle multiplicity to identify evidence for longitudinal
broadening that might reveal the presence of viscous effects in these smaller systems. The measured
correlators and their evolution from pp and p–Pb to Pb–Pb collisions are additionally compared to
predictions from Monte Carlo event generators, and the potential presence of viscous effects is dis-
cussed.

*See Appendix A for the list of collaboration members
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1 Introduction

Studies at the Large Hadron Collider (LHC) and the Relativistic Heavy-Ion Collider (RHIC) have shown
that quark–gluon plasma (QGP) matter is produced in relativistic collisions of large nuclei [1–11], and
considerable efforts have been undertaken to measure some of the key properties of this phase of matter.
One such property, the shear viscosity per unit entropy density, η/s, has received much attention from
both the theoretical and experimental communities [12–17]. Measurements of anisotropic flow coef-
ficients as well as symmetric cumulants, which are correlations between flow coefficients of different
orders, in particular, have been successfully exploited to determine the extent to which the QGP is an
almost perfect fluid and many advances have been accomplished in improving estimates of the QGP η/s
based on such measurements [18–20].

A new line of investigation was recently undertaken to extract values of the QGP η/s. This approach
is based on measurements of the longitudinal broadening of a specific type of transverse momentum
differential two-particle correlation function known as G2 in the recent literature [21–23]. While the
technique is relatively new and still needs to be fully vetted by detailed (3+1)-dimensional hydrodynam-
ical calculations, a recent measurement of the longitudinal broadening of G2 in central Pb–Pb collisions,
by the ALICE Collaboration [24], is found to yield an η/s range compatible with estimations based
on anisotropic flow [25]. This agreement suggests that the new approach has merits and potential in
furthering the understanding of the properties of QGP matter produced in collisions of large nuclei.

In proton–proton (pp) and proton–lead (p–Pb) collisions, femtoscopy radii, related to the estimated size
of the system, and average transverse momentum, 〈pT〉, increase with the multiplicity of produced parti-
cles [26–30], which implies that the system lives longer as the multiplicity increases, i.e. as the system
size increases. In turn, this means that radial flow would have more time to develop. In these terms,
for a given system size, viscous effects, if present, will have a certain time to manifest themselves by
transferring momentum between neighbouring fluid cells. This transfer of momentum will make the
correlation function for that system size to acquire, at the end, a certain longitudinal width which reflects
the reach of the viscous effects. With larger multiplicity, the larger the system size is and the larger the
time the system lives, the reach of the viscous effects will also be larger, which causes the longitudinal
width of the correlation function to enlarge. Overall, the correlation function broadens longitudinally
with the system size, the system lifetime, and the system multiplicity. In contrast, as more radial flow
builds up with increasing multiplicity, system size, and lifetime, a narrower width is expected in the cor-
relator azimuthal dimension. The fact that viscous effects are, in principle, independent of the charge and
that radial flow has a strong charge dependent component [31, 32] implies that the charge independent
(CI) and charge dependent (CD) correlators play complementary roles in the evaluation of the interplay
between these effects.

It is thus natural to consider whether the above technique could also be exploited in the study of small
systems, such as proton–proton (pp) and proton–lead (p–Pb) collisions. Measurements of anisotropic
flow coefficients and multi-particle cumulants indicate that strong collective behaviour exists in high-
multiplicity pp and p–Pb collisions [33–35]. Several calculations based on hydrodynamics models [36,
37] suggest that the observed coefficients can in fact be interpreted as evidence of collective flow in high
multiplicity pp and p–Pb collisions. An important question is whether the apparent collectivity arises
from the production of a medium, albeit much smaller than that produced in Pb–Pb collisions, or is due
to other types of correlation sources.

In this context, it is of interest to examine whether measurements of G2 in small collision systems can
be exploited to identify the existence of a droplet sufficiently large and long lived such that viscous ef-
fects can yield a longitudinal broadening of the correlator. A particularly appealing aspect of the G2
correlator is that it can be studied for charge dependent and charge independent pairs of particles. The
charge independent G2 correlator, hereafter denoted GCI

2 , is by construction sensitive to momentum cur-
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rent correlations. It is thus expected to exhibit a progressive broadening from small to large multiplicity
collisions if these involve a long lived QGP matter undergoing both longitudinal and transverse expan-
sion. In this expansion, shear viscous effects can transform stochastic radial currents and produce a
longitudinal broadening of the correlator. However, the shape and evolution of GCI

2 may also be im-
pacted by the presence of hadronic decays and radial flow and by minijet correlations resulting from
parton shower evolution, string-breaking, and hadronisation effects. Measurements of the charge de-
pendent G2 correlator, hereafter noted GCD

2 , can be exploited to specifically study these contributions.
Indeed, GCD

2 and other two-particle differential correlation functions are found to be particularly sensi-
tive to the presence of hadronic resonance decays and radial flow, but somewhat less sensitive to shear
viscous effects [38, 39]. They can thus, in principle, be used to assess these effects and “calibrate them”
out of measurements of GCI

2 .

Prior measurements of two-particle azimuthal correlations in the p–Pb system [40] compared the strength
of azimuthal modulations in collisions producing the largest and lowest charged particle multiplicity.
They found evidence of sizable flow-like azimuthal correlation structures in high-multiplicity p–Pb col-
lisions but did not study their pseudorapidity dependence in detail. It is thus the primary goal of this
work to extend those correlation studies and measure the evolution of GCD

2 and GCI
2 as a function of the

produced charged particle multiplicity in both pp and p–Pb collisions. Then, this will allow seeking ev-
idence for longitudinal broadening of GCI

2 signaling viscous effects that should happen if relatively long
lived QGP matter is produced in these collisions.

This work is organised as follows. Section 2 defines the two-particle correlator G2 and presents the
measurement methodology, while Sec. 3 describes the experimental details and corrections applied to
the data. Section 4 presents the techniques used to determine statistical and systematic uncertainties on
the measured correlation function amplitudes and their characteristics, reported in Sec. 5. The method
used to characterise the shape of the correlation functions and its evolution with multiplicity is presented
in Sec. 6 . Measurements of the evolution of the longitudinal and azimuthal widths of the correlators are
compared to model calculations in Sec. 7. A discussion of the results and models is presented in Sec. 8
followed by a summary of the conclusions of this work in Sec. 9.

2 Analysis methodology

The G2 correlator is designed to be proportional to the magnitude of momentum currents, the transferring
of momentum fluctuations, and their correlations, from which viscous effects can be inferred [21, 22]. It
is defined as

G2 (η1,ϕ1,η2,ϕ2) =
1

〈pT,1〉〈pT,2〉

[∫
Ω

pT,1 pT,2 ρ2(~p1,~p2)d pT,1d pT,2∫
Ω

ρ1(~p1)d pT,1
∫

Ω
ρ1(~p2)d pT,2

−〈pT,1〉〈pT,2〉
]

, (1)

where ρ1(~pi) and ρ2(~p1,~p2) represent single-particle and pair densities computed as

ρ1(~pi) =
d3N

dpT,i dηi dϕi
, (2)

ρ2(~p1,~p2) =
d6N

dpT,1 dη1 dϕ1 dpT,2 dη2 dϕ2
, (3)

with particle three-momenta ~pi = (ηi,ϕi, pT,i) and components ηi,ϕi, pT,i corresponding to the pseudo-
rapidity, azimuthal angle, and transverse momentum of particles i = 1,2, composing pairs. Transverse
momentum averages 〈pT,i〉 are calculated according to

〈pT,i〉(ηi,ϕi) =

∫
Ω

ρ1(ηi,ϕi, pT,i)pT,idpT,i∫
Ω

ρ1(ηi,ϕi, pT,i)dpT,i
. (4)
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Integrals are computed in the measurement acceptance Ω. Measurements of G2(η1,ϕ1,η2,ϕ2) are aver-
aged across the longitudinal and azimuthal acceptances in which the measurement is performed to obtain
G2(∆η ,∆ϕ), where ∆η = η1−η2 and ∆ϕ = ϕ1−ϕ2, with a procedure similar to that used for the two-
particle number correlator R2 and the two-particle transverse momentum correlator P2 [32], as well as
for measurements of G2 in Pb–Pb collisions [24].

In order to account for distinct efficiency losses associated with positively (+) and negatively (−)
charged particles, G2 correlators are first measured for pairs of (++), (−−), (−+), and (+−) charged
hadrons. These measurements are combined to yield like-sign (LS) and unlike-sign (US) pairs corre-
lators GLS

2 = 1
2(G

++
2 +G−−2 ) and GUS

2 = 1
2(G

+−
2 +G−+2 ). In turn, these are further combined to ob-

tain the charge dependent and the charge independent correlators defined as GCD
2 = 1

2

(
GUS

2 −GLS
2

)
and

GCI
2 = 1

2

(
GUS

2 +GLS
2

)
, respectively [32].

The GCD
2 and GCI

2 correlators are measured in pp and p–Pb collisions using event classes based on the
average charged particle multiplicity detected at forward pseudorapidities. The multiplicity evolution of
the shape and strength of these correlators is then extracted and analysed as described in Sec. 6.

3 Datasets and experimental setup

The results presented in this article are based on 6.4×107 selected minimum bias (MB) pp collisions at
centre-of-mass energy

√
s = 7 TeV and 5.4×107 selected MB p–Pb collisions at centre-of-mass energy

per nucleon–nucleon collision
√

sNN = 5.02 TeV collected during the 2010 and 2013 LHC runs, respec-
tively, with the ALICE detector. Detailed descriptions of the ALICE subsystems and their respective
performance are given in Refs. [41, 42].

The MB trigger was configured to provide a high efficiency for hadronic events. It required coincident
signals in the V0A and V0C scintillator arrays [43], covering the pseudorapidity ranges 2.8 < η < 5.1
and −3.7 < η < −1.7, respectively. Calibrated SPD and V0 signal amplitudes were used to estimate
the charged particle multiplicity production in these pseudorapidity ranges. The resulting multiplicity
distribution was used to establish nine multiplicity classes corresponding to 0–5% (highest multiplicity),
5–10%, 10–20%, 20–30%, 30–40%, 40–50%, 50–60%, 60–70%, and 70–80% (lowest multiplicity) of
the inelastic cross section. The correlators GCI

2 and GCD
2 are extracted independently in each of these

multiplicity classes and the evolution of their widths is reported as a function of the average number of
charged particles [Nch] measured in the fiducial acceptance of the measurement.

The collision vertex position of each event, called primary vertex (PV), is determined from the charged
particle tracks reconstructed in the Inner Tracking System (ITS) and the Time Projection Chamber (TPC).
Only events with a reconstructed PV position within 7 cm from the nominal interaction point along the
beam direction were included in the analysis. Background events from beam interactions with residual
gas in the beam pipe are removed using the timing information in the V0. Pileup events having multiple
interaction vertices are discarded based on information from the Silicon Pixel Detector (SPD) constitut-
ing the two inner layers of the ITS. Extra activity in slow response detectors (e.g., TPC) relative to that
in fast detectors (e.g., V0A and V0C scintillators) resulting largely from out of bunch pileup events, is
additionally used to discard these events.

Charged particle tracks are reconstructed using the ITS and TPC detectors and required to have transverse
momenta and pseudorapidities within the ranges 0.2≤ pT ≤ 2.0 GeV/c and |η |< 0.8, respectively. Good
track quality is assured by retaining only tracks with more than 70 reconstructed TPC space points, out of
a maximum of 159, for the analysis. A criterion on the maximum distance of closest approach (DCA) to
the reconstructed PV of less than 2 cm in the longitudinal dimension and a pT-dependent maximum DCA
in the transverse direction, ranging from 0.20 cm at pT = 0.2 GeV/c down to 0.036 cm at pT = 2 GeV/c
for pp collisions and from 0.22 cm at pT = 0.2 GeV/c down to 0.031 cm at pT = 2 GeV/c for p–Pb
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collisions, is applied to minimise contamination by secondary tracks. Moreover, electrons (positrons),
which originate mainly from photon conversions into e+e− pairs, are suppressed by removing tracks with
a specific energy loss in the TPC gas, dE/dx, within three standard deviations, 3σdE/dx, of the expected
value for electrons and more than 5σdE/dx away from the π and K expectation values.

Corrections for single track losses due to detector non-uniformity are based on a weighting technique [44].
Weights are calculated separately for positive and negative tracks as a function of η , ϕ , and pT and aver-
aged across the measured ranges of multiplicity and primary vertex position. Weights are used to flatten
the track yield in both pseudorapidity and in azimuth for the symmetric collision system, pp, whereas
only azimuthal flattening is used for p–Pb collisions.

Corrections for tracking inefficiencies are obtained from Monte Carlo simulations with different event
generators and particle transport through the detector performed with GEANT3 [45] including a detailed
description of the detector conditions during the 2010 and 2013 data taking periods. Simulations with the
PYTHIA 6 event generator [46] (Perugia 2011 tune [47]) are used to determine the track reconstruction
efficiency for the data sample of pp collisions. For the p–Pb system, the DPMJET event generator [48]
is used. The pT and η dependence of the single particle detection efficiency is computed based on the
ratio of the number of reconstructed tracks from the simulation (known as detector level), corrected for
the non-uniformity of the detector (weights), to the number of generated particles (known as generator
level) as a function of those two variables. Reconstructed tracks from the data sample are corrected for
detector non-uniformity and for tracking inefficiencies for extracting the described corrected correlators.
The number of fully corrected measured charged tracks is averaged over the number of events to extract
the quoted [Nch] per multiplicity class.

4 Statistical and systematic uncertainties

The statistical uncertainties on the strengths of the G2 correlators are extracted with the sub-sampling
method using ten sub-samples for both systems, pp and p–Pb, whereas systematic uncertainties are as-
sessed by repeating the analysis with different event and track selection criteria. The significance of the
deviations with respect to the default analysis conditions is assessed according to a statistical test [49].
The total systematic uncertainties are computed as quadratic sums of the significant systematic devia-
tions. The contributions to the uncertainty due to the event selection and the kinematic acceptance are
estimated by narrowing to 3 cm and expanding to 10 cm the selected range for the distance of the PV
to the nominal interaction point along the beam direction. Possible biases associated with contamina-
tion by secondary particles are estimated by using track selection criteria that only require information
from the TPC and relaxing the accepted DCA range. The possible biases in the determination of the
track parameters for tracks crossing the TPC in the azimuthal regions close to the sector boundaries is
estimated by excluding tracks that lie within those sections from the analysis. This additional selection
criterion eliminates distortions possibly encountered near sector boundaries but produces a nominal 25%
reduction of the azimuthal acceptance. Track losses are however compensated for by the robust nature
of the G2 correlator definition as a ratio of two-particle density to the product of single-particle densities.
The overall accuracy of the analysis procedure is additionally estimated by means of a MC closure test.
Deviations from perfect closure are conservatively added to systematic uncertainties when significant.
The same criteria are followed to extract the statistical and systematic uncertainties on [Nch].

As in the study of G2 in Pb–Pb collisions reported in Ref. [24], measurements of the G2 longitudinal and
azimuthal projections in pp and p–Pb collisions feature an overall amplitude uncertainty. This uncertainty
includes correlated (i.e. common to all bins) and uncorrelated bin-by-bin contributions. The correlated
contribution is the average deviation along all bins while the uncorrelated contribution is what remains
after subtracting such average from the actual deviation on a per bin basis. The largest contribution
to the correlated systematic uncertainties arises from the variation of the track selection criteria with an
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average value in the different multiplicity classes of 10% (4%) for both the longitudinal and the azimuthal
projections of the GCD

2 (GCI
2 ) correlator in the pp system, and about 12% (1.5%) for both the longitudinal

and the azimuthal projections in p–Pb collisions, while the other checks have negligible contributions.
The largest systematic contribution to the uncorrelated uncertainty also stems from track selection criteria
tests with average values of 6% (1.5%) for both the longitudinal and the azimuthal projections of the GCD

2
(GCI

2 ) correlator in the pp system, and less than 9% (1%) in the p–Pb system. Total average uncorrelated
systematic uncertainties values are approximately the same for the azimuthal and longitudinal projections
except for the azimuthal projections of the GCD

2 correlator in the p–Pb system which reach a 12% due to
the impact of the TPC sector boundaries.

5 Results

The GCD
2 and GCI

2 correlators measured in pp collisions at
√

s = 7 TeV and p–Pb collisions at
√

sNN =
5.02 TeV are shown in Figs. 1 and 2, respectively, for three selected multiplicity classes, as functions
of the pair separation in pseudorapidity ∆η and azimuth ∆ϕ . The GCD

2 and GCI
2 correlators exhibit

common features in both pp and p–Pb collisions. Such features include a prominent peak centered
at ∆η = 0, ∆ϕ = 0, hereafter referred to as the near-side peak, and a relatively flat plateau shaped
distribution surrounding ∆ϕ = π , known as the away side, and extending across the ∆η acceptance of the
measurement. The near-side peak of both GCD

2 and GCI
2 exhibits a monotonically decreasing amplitude

from the lowest to the highest multiplicity classes, in both collision systems, while the peak shapes are
approximately independent of the collision multiplicity. It is also observed that the away-side amplitude
of the GCD

2 correlator measured in pp collisions decreases somewhat faster than that of the near-side
peak, whereas the shape of the away side of the GCI

2 correlators exhibits only modest variations with
multiplicity.
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Figure 1: Two-particle transverse momentum correlations GCD
2 (top) and GCI

2 (bottom) for the largest (left),
medium (centre) and lowest (right) charged particle multiplicity classes in pp collisions at

√
s = 7 TeV. The

correlator values are not shown in the intervals |∆η | < 0.1 and |∆ϕ| < 0.09, which are affected by track merging
effects (see text for details).

Additionally, the GCI
2 correlators measured in p–Pb collisions feature a modest azimuthal modulation ap-

proximately uniform in magnitude across the ∆η range of the measurement. The modulation is expected
from prior ALICE azimuthal correlation measurements [40] but observed in greater detail in Fig. 2. Re-

6



G2 in small systems ALICE Collaboration

markably, also the near-side peak of the CD correlator in p–Pb collisions does not appear to narrow
significantly with increasing multiplicity in contrast with the behaviour observed in the pp system.

Further examination of the evolution of the correlators as a function of the produced particle multiplicity
is done by studying their longitudinal and azimuthal projections. The longitudinal projections, shown
in the left panels of Figs. 3 and 4 for the pp and p–Pb systems, respectively, display the average of
the G2 correlators as a function of ∆η for the near-side azimuthal interval |∆ϕ| < π/2 whereas the
azimuthal projections (right panels) are obtained by averaging the correlators over the full ∆η range of
the measurements. The ranges |∆η |< 0.1 and |∆ϕ|< 0.09 are subject to track merging effects difficult
to properly correct for and are thus omitted in the projection plots. The longitudinal projections of the CI
correlators (bottom panels) obtained in both pp and p–Pb collisions feature broad Gaussian-like peaks
versus ∆η whose magnitude decreases with increasing multiplicity. The azimuthal CI projections, by
contrast, feature a modulation yielding two maxima: the first, centered at ∆ϕ = 0, corresponds to the
near-side peak of the correlation functions displayed in Figs. 1 and 2, whereas the second maximum
reflects the broad away-side peak of these functions.

The projections of the CD correlators, presented in Figs. 3 and 4 (top panels), feature a somewhat more
complex dependence on ∆η and ∆ϕ than those of the CI correlators. In particular, in contrast to the
Gaussian-like peaks seen in the CI projections, the CD longitudinal projections exhibit small and narrow
dips atop the peak, which is broader than that of the CI projections. The dip is most prominent in the
azimuthal projections of the GCD

2 correlator and largest in the 70–80% multiplicity class of pp collisions.
The width and depth of the dip are manifestly functions of the multiplicity of the collisions and thus
appear to feature a system size dependence.

This system size dependence is qualitatively understood as arising, in part, from femtoscopic (HBT)
correlations. The CD correlators are computed as the difference between US and LS correlators. The
GLS

2 correlators, much like the femtoscopic (number) correlation functions measured as a function of the
invariant momentum difference of particle pairs, are sensitive to the presence of bosonic interference,
and it is well established that the widths of these correlation functions are inversely proportional to the
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Figure 2: Two-particle transverse momentum correlations GCD
2 (top) and GCI

2 (bottom) for the largest (left),
medium (centre), and lowest (right) charged particle multiplicity classes in p–Pb collisions at

√
sNN = 5.02 TeV.

The correlator values are not shown in the intervals |∆η | < 0.1 and |∆ϕ| < 0.09, which are affected by track
merging effects (see text for details).
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Figure 3: Longitudinal (left) and azimuthal (right) projections of the two-particle transverse momentum correla-
tions GCD

2 (top) and GCI
2 (bottom) for selected charged particle multiplicity classes in pp collisions at

√
s = 7 TeV.

The correlator values are not shown in the intervals |∆η | < 0.1 and |∆ϕ| < 0.09, which are affected by track
merging effects (see text for details). Vertical bars (mostly smaller than the marker size) and shaded bands rep-
resent statistical and uncorrelated systematic uncertainties, respectively. Correlated systematic uncertainties are
represented as small boxes at the sides of the panels.

size of the measured system [50]. It is thus expected that GLS
2 , measured as function of ∆η or ∆ϕ , should

also exhibit such a dependence on the system size. This dependence is seen as dips because the LS
correlators are subtracted from the US correlators. Additionally, note that the effect is smaller in p–Pb
collisions, most likely because of the larger size of the systems formed in these collisions.

6 Shape evolution with multiplicity

The multiplicity evolution of the shape and strength of the GCD
2 and GCI

2 correlators measured in pp and
p–Pb collisions is analysed using a multicomponent model already utilised in Pb–Pb collisions [24] and
defined as

F(∆η ,∆ϕ) = B+
6

∑
n=2

an× cos(n∆ϕ)+A×
γ∆η

2ω∆η Γ

(
1

γ∆η

) e
−
∣∣∣∣ ∆η

ω∆η

∣∣∣∣γ∆η

×
γ∆ϕ

2ω∆ϕ Γ

(
1

γ∆ϕ

) e
−
∣∣∣∣ ∆ϕ

ω∆ϕ

∣∣∣∣γ∆ϕ

, (5)

where B and an are intended to describe the long-range mean correlation strength and the possible az-
imuthal anisotropies, while the bidimensional generalised Gaussian, defined by the parameters A, ω∆η ,
ω∆ϕ , γ∆η , and γ∆ϕ , is intended to model the near-side peak.

The main focus of this paper is specifically on measuring the evolution of the azimuthal and longitudinal
widths of the prominent near-side peak of the GCD

2 and GCI
2 correlators, which is quantified in terms of
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Figure 4: Longitudinal (left) and azimuthal (right) projections of the two-particle transverse momentum cor-
relations GCD

2 (top) and GCI
2 (bottom) for selected charged particle multiplicity classes in p–Pb collisions at

√
sNN = 5.02 TeV. The correlator values are not shown in the intervals |∆η | < 0.1 and |∆ϕ| < 0.09, which are

affected by track merging effects (see text for details). Vertical bars (mostly smaller than the marker size) and
shaded bands represent statistical and uncorrelated systematic uncertainties, respectively. Correlated systematic
uncertainties are represented as small boxes at the sides of the panels.

width parameters σ∆η and σ∆ϕ computed according to

σ∆η(∆ϕ) =

√√√√ω2
∆η(∆ϕ)Γ(3/γ∆η(∆ϕ))

Γ(1/γ∆η(∆ϕ))
. (6)

Bidimensional fits to the measured GCD
2 and GCI

2 correlators were carried out with the least-squares
method, considering only the statistical uncertainties. The central region around |∆η |= 0 and |∆ϕ|= 0
was excluded from the fit to avoid biases associated with track merging. The excluded region was en-
larged, when appropriate, to cover the narrow dip found in the CD correlation functions. The differences
between data points and fit functions were examined in detail and found to be negligible relative to the
amplitude of the correlation functions except in some areas of the near-side peak tails and close to the
excluded patch around ∆η ,∆ϕ = (0,0), thereby yielding a full fit χ2/dof in the range 2 to 9. Fits were
repeated using systematic uncertainties of the correlation functions to examine the possibility of biases.
Widths obtained with these larger uncertainties were within the systematic uncertainties of the nominal
values, reported for fits performed with statistical uncertainties, and the χ2/dof values dropped below
unity.

Systematic uncertainties on the extracted widths were assessed using the procedure described in Sec. 4.
The largest contributor to these uncertainties is the track selection criteria with values of 4% (2%) and
2% (2%) for the longitudinal and azimuthal widths, respectively, of the GCD

2 (GCI
2 ) correlator in the pp

system, and 4% (2%) for both widths in the p–Pb system. Total systematic uncertainties on the widths
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amount to 5% (2%) and 3% (2%) for the longitudinal and azimuthal widths, respectively, of the GCD
2

(GCI
2 ) correlator in the pp system, and 5% (3%) and 4% (2%) in the p–Pb system.

Figure 5 shows the evolution of the longitudinal and azimuthal widths σ of the GCD
2 (top panels) and

GCI
2 (bottom panels) correlators as a function of the average charged particle multiplicity [Nch]. The GCD

2
and GCI

2 correlators widths measured in Pb–Pb collisions at
√

sNN = 2.76 TeV by the ALICE Collabora-
tion [24] are also displayed.
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Figure 5: Evolution with the average charged particle multiplicity of the longitudinal (left) and azimuthal (right)
widths of the two-particle transverse momentum differential correlation GCD

2 (top row) and GCI
2 (bottom row) in

pp, p–Pb, and Pb–Pb collisions at
√

s = 7 TeV,
√

sNN = 5.02 TeV, and
√

sNN = 2.76 TeV, respectively. Verti-
cal bars (mostly smaller than the marker size) and filled boxes represent statistical and systematic uncertainties,
respectively.

First focusing on the evolution of the azimuthal and longitudinal widths of the GCD
2 correlator with

charged particle multiplicity shown in the top panels of Fig. 5, it is observed that this correlator exhibits
a strong azimuthal narrowing with increasing [Nch] in both pp and p–Pb collisions and a somewhat
weaker narrowing trend in the longitudinal direction. A qualitatively similar narrowing, first reported in
Ref. [24], is also observed in Pb–Pb interactions across a broad range of collision multiplicities in both
the longitudinal and azimuthal directions. Overall, both the longitudinal and azimuthal widths of the
near-side peak in the GCD

2 correlator show a smooth narrowing trend with increasing multiplicity across
the three different collision systems here considered.

Shifting the focus to the bottom panels of Fig. 5, it is readily noticed that the GCI
2 correlator features

different evolutions with [Nch] in the azimuthal and the longitudinal directions. A strong narrowing with
increasing [Nch] is observed for the azimuthal width, σ∆ϕ , in pp and p–Pb collisions, as well as in Pb–Pb
collisions [24]. The magnitude and the evolution with [Nch] of the azimuthal widths measured in pp and
p–Pb collisions are consistent between each other. In contrast, the width measured in the lowest Pb–Pb
multiplicity class (most peripheral collisions), exceeds the widths observed at similar multiplicity in p–
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Pb collisions by ≈ 8% thereby indicating a difference between the correlations established in p–Pb and
Pb–Pb collisions with similar charged particle multiplicity.

The [Nch] evolution of the longitudinal width of the GCI
2 correlator is different for the three collision

systems and contrasts markedly from the trend measured for the azimuthal width σ∆ϕ . In pp collisions,
the width exhibits a trend consistent with a very modest narrowing with increasing [Nch] whereas, in
p–Pb collisions, the data suggests a weak increase with [Nch]. It is also found that at equal values of [Nch]
the longitudinal widths measured in p–Pb are also somewhat larger than those observed in pp collisions
even though they are compatible within uncertainties. The increasing trend seen in p–Pb is difficult to
precisely assess given the size of the systematic uncertainties relative to the very modest increase of the
width. It is rather clear, nonetheless, that it does not match the rapid and large increase observed in Pb–Pb
collisions. Indeed, at [Nch]≈ 50, the longitudinal width observed in Pb–Pb exceeds that measured in p–Pb
collisions by≈ 13%. The slope of the increasing trend of σ∆η in Pb–Pb collisions far exceeds that seen in
p–Pb. By extrapolating the trend observed in Pb–Pb to small [Nch], the obtained σ∆η values match those
measured in pp collisions but it is rather clear that the broadening observed in Pb–Pb collisions stands
in stark contrast to the evolution observed in the smaller systems. Overall, the current measurements
indicate that, while the azimuthal widths of the CD and CI correlators in pp and p–Pb collisions show
a trend with multiplicity compatible with that found in the larger Pb–Pb system, the evolution of the
longitudinal width of the GCI

2 correlator is rather different in small and large systems.

It is of interest to contrast the results of the bidimensional fit procedure used in this work with those
obtained with the zero yield at minimum (ZYAM) method [51] widely used in the analysis of azimuthal
correlation functions. The difficulty with ZYAM is that if the peaks are wide in ∆ϕ , the gap between
the near-side and away-side peaks gets “filled up” in the projection. In particular, if the ZYAM method
is indiscriminately applied to correlation functions with a strong dependence on the longitudinal particle
pair separation, ∆η , significant biases may occur in the evaluation of the amplitudes and widths of such
correlations and their dependence on the global event observables.

As an illustration, the right panel of Fig. 6 shows the azimuthal projections of the GCI
2 correlator for three

selected multiplicity classes, after applying the ZYAM procedure to remove “uncorrelated backgrounds”,
i.e. by uniformly subtracting a constant value corresponding to the minimum yield value, hereafter called
ZYAM base level. The widths extracted based on these projections are approximately the same for
the different multiplicity classes considered, thereby leading to the conclusion that the width of these
correlation functions is independent of the multiplicity class. In the left panel of Fig. 6, the near-side
longitudinal projections of the GCI

2 correlator are shown after subtraction of the ZYAM base level. Parts
of the longitudinal projections lie significantly below zero, with values that depend on the multiplicity
class. The notion of zero yield at minimum is thus rather poorly defined in this context given that the
minimum of the longitudinal correlations (within the measurement acceptance) significantly deviates
from the ZYAM base level and is a monotonic function of the multiplicity class. The application of the
ZYAM method consequently does not enable a simultaneous consistent extraction of the azimuthal and
longitudinal widths of the GCI

2 correlators measured in this work.

By contrast, the fit method used in this work parameterises the correlation functions with a bidimen-
sional generalised Gaussian model, Eq. 5, with independent parameters along the ∆η and ∆ϕ directions,
thereby enabling a more accurate description of the shape of the GCI

2 correlator and its dependence on the
multiplicity [Nch]. For illustrative purposes, Fig. 7 compares several projections of the two-dimensional
fit functions (red lines) and the data (solid diamonds) for the CI correlators in the 0–5% and 70–80%
multiplicity classes of pp collisions. Projections onto ∆η (left panels) are shown for selected ranges of
∆ϕ pair separation, and conversely, projections onto ∆ϕ (right panels) are displayed for selected ranges
of ∆η pair separation. The cyan lines represent the baseline B plus the anisotropic modulations given by
the coefficients an in the fit function, extended to the whole azimuthal range in the case of the azimuthal
projections, in which the thicker line section represents the azimuthal portion considered for the bidimen-
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Figure 6: Longitudinal (left) and azimuthal (right) projections of the two-particle transverse momentum corre-
lation GCI

2 for selected charged particle multiplicity classes in pp collisions at
√

s = 7 TeV after subtracting the
azimuthal ZYAM base level (see text for details) for each multiplicity class. Vertical bars (mostly smaller than the
marker size) and shaded bands represent statistical and uncorrelated systematic uncertainties, respectively.

sional fit. The two-dimensional fits provide good descriptions of most of the azimuthal slices, shown in
the left panels, (i.e. irrespective of the multiplicity class and ∆ϕ range) as well as good match on most of
the longitudinal slices, shown in the right panels. Deviations of the model from data are observed at large
longitudinal relative separation, visible for slices at large ∆η , and in the proximity of ∆η ,∆ϕ = (0,0).
The two-dimensional generalised Gaussian model used in this work thus provides a reliable, robust, and
self-consistent description of the GCI

2 correlator measurements. The azimuthal and longitudinal widths
extracted from this model thus do not suffer from the biased and inconsistent behaviour obtained with
the ZYAM method. The right panels of Fig. 7, displaying the ∆ϕ projections of GCI

2 , provide a simple
explanation of the bias encountered with the basic ZYAM method. The shape and strength of the away
side, π/2 ≤ ∆ϕ < 3π/2, are essentially independent of the ∆η range considered whereas the near side,
|∆ϕ| < π/2, is strongly dependent on ∆η . The ZYAM values of these ∆ϕ projections therefore depend
on ∆η and the multiplicity classes. This thus results in inconsistent extractions of the longitudinal and
azimuthal widths of the correlator if the basic ZYAM method is used. Such issues are clearly avoided
with the two-dimensional generalised Gaussian fit method utilised in this work.

7 Comparison with results from event generators

A number of event generators have had great successes in quantitatively reproducing the many features
and properties of particle production in pp, p–Pb, and Pb–Pb collisions [52–58]. It is thus legitimate to
consider whether such production models can also match the magnitude and the evolution with [Nch] of
the near-side peak widths reported in Fig. 5. Comparisons of calculations of the two-particle number
correlator R2(∆η ,∆ϕ) and the two-particle transverse momentum correlator P2(∆η ,∆ϕ) performed with
the AMPT, EPOS, and UrQMD models [59] with data reported by the ALICE Collaboration [32] show
these three event generators are considerably challenged by the measurements. In particular, since these
models do not fully implement charge and baryon number conservation, they cannot reproduce the salient
features of the measured RCD

2 and PCD
2 correlators, while they qualitatively reproduce some but not all

facets of the measured RCI
2 and PCI

2 correlation functions.

The discussion in this section is limited to four well established models: PYTHIA 6 [46] (Perugia default
tune [47]) and PYTHIA 8 [60] (Monash tune, with colour reconnection [61]) for comparison with pp
data, DPMJET [48] for comparison with p–Pb data, and HIJING [62] for comparison with both p–Pb
and Pb–Pb data. PYTHIA and DPMJET are known to well reproduce measurements of differential cross
section in pp collisions and, although HIJING does not include a modelling of the collective behaviour
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Figure 7: Longitudinal projections of slices of one azimuthal bin (left) and azimuthal projections of slices of
one longitudinal bin (right), for selected bins of the two-particle transverse momentum correlation GCI

2 and its
bidimensional fit using Eq. (5) for the 0–5% (top) and 70–80% (bottom) charged particle multiplicity classes in pp
collisions at

√
s = 7 TeV. Vertical bars (mostly smaller than the marker size) and shaded bands represent statistical

and uncorrelated systematic uncertainties, respectively.

observed in Pb–Pb, it is here used as a baseline reference for the discussion of trends as a function of
multiplicity in that system. Simulated data sets produced with these four event generators are analysed,
at generator level, with identical event and charged particle selection criteria and multiplicity classes
as the data. This allows to obtain the GCD

2 (∆η ,∆ϕ) and GCI
2 (∆η ,∆ϕ) correlation functions, which are

then fitted with Eq. (5). The width parameters obtained from the fits to the simulated correlators are
compared to the measured ones in Fig. 8. The data from Pb–Pb collisions and the results of simulations
with HIJING are taken from Ref. [24].

In the case of the charge-dependent correlator GCD
2 shown in the top panels of Fig. 8, the measured mag-

nitude and multiplicity dependence of the longitudinal width of the near-side peak, σCD
∆η

, are described
within uncertainties by both PYTHIA 6 and PYTHIA 8 simulations. The two PYTHIA tunes also qual-
itatively reproduce the observed narrowing trend of the azimuthal width of GCD

2 as a function of [Nch]
even though they overestimate the magnitude of σ∆ϕ . By contrast, although DPMJET and HIJING qual-
itatively reproduce the magnitudes of the longitudinal and azimuthal widths of the GCD

2 correlator, they
have rather limited success in describing the evolution with multiplicity of the azimuthal widths observed
in p–Pb and Pb–Pb collisions.

In the bottom panels of Fig. 8, the measured evolution of the GCI
2 correlator widths, σCI

∆η
and σCI

∆ϕ
, with

multiplicity is compared to model predictions. PYTHIA 8 describes well the measured azimuthal widths
σ∆ϕ for large multiplicities, but it underestimates them for low multiplicity pp collisions ([Nch] < 10).
Instead PYTHIA 6 grossly overestimates the width and misses the observed trend as a function of
[Nch]. Neither of the two PYTHIA versions successfully reproduces the [Nch] evolution of σCI

∆η
, although

PYTHIA 6 quantitatively matches the width observed in the highest pp multiplicity class. Similarly,

13



G2 in small systems ALICE Collaboration

predictions by both DPMJET and HIJING clearly overestimate the longitudinal and azimuthal widths
measured in p–Pb collisions. Although HIJING manages to approximately match the longitudinal width
observed at lowest multiplicity in Pb–Pb collisions, it systematically underpredicts the σ∆η values mea-
sured in higher Pb–Pb multiplicity classes and thus fails to match the broadening trend of σCI

∆η
vs. [Nch].

Overall, the models considered for the comparison match the evolution of the longitudinal and azimuthal
widths of GCD

2 the closest while doing rather poorly for the evolution of the widths of GCI
2 . This suggests

that their ability to describe charge conserving processes is decent but that, globally, some new features
are needed to properly match the evolution of the widths of GCI

2 .

8 Discussion

The inspection of the evolution of the GCD
2 and GCI

2 correlators with the multiplicity of charged particles
produced in the collision suggests that two or more competing mechanisms may be at play in pp, p–Pb,
and Pb–Pb collisions: while the near side peak of GCD

2 shows narrowing trends with increasing [Nch] in
these systems, GCI

2 exhibits mixed trends in the longitudinal dimension, a strong broadening in Pb–Pb,
minor broadening in p–Pb, and modest narrowing in pp collisions.

A narrowing of the near-side peak of two-particle correlators has been observed for RCD
2 and PCD

2 differ-
ential correlators of low-pT particles measured in Pb–Pb collisions at

√
sNN = 2.76 TeV [32], for balance

functions of charged particles and identified hadrons in pp, p–Pb, and Pb–Pb collisions at 7, 5.02, and
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widths of the two-particle transverse momentum correlations GCD
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and Pb–Pb collisions at
√
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√
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√
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the models. The data points and the results of HIJING simulations for Pb–Pb collisions are taken from Ref. [24].
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2.76 TeV, respectively [31, 63, 64], as well as in Au–Au collisions at RHIC energies [65–67]. Mea-
surements in large collision systems show that the average transverse momentum of produced particles,
〈pT〉, rises monotonically with increasing multiplicity in Au–Au and Pb–Pb collisions and saturates in
most central collisions. Similarly, blast-wave model fits of pT spectra measured as a function of increas-
ing collision centrality in these systems indicate that the radial flow velocity increases with increasing
multiplicity of produced particles [68, 69]. Moreover, theoretical studies of the evolution of the nar-
rowing of charge balance functions, Bch, in Au–Au collisions based on the blast-wave model are found
to require strong radial flow to match the progressive narrowing of the near-side peak of these corre-
lation functions [70]. Similar narrowing effects and large radial flow are also seen in hydrodynamics
calculations [71].

Given that G2 shares the same correlation kernel as the R2, P2, and Bch correlators, the progressive
narrowing of its near-side peak with increasing values of [Nch] in Pb–Pb collisions can be interpreted as
resulting from the increasing radial flow velocity. An increase of 〈pT〉 with increasing multiplicity is also
observed in pp and p–Pb collisions [26]. However, it is still an open question whether this increase results
from the production of a radially flowing medium also in these small collision systems. In any case, it
is expected that an increase in 〈pT〉 should also produce a kinematic focusing of correlated particles,
resulting in a narrowing of the correlation peaks. A modest narrowing of the RCD

2 and PCD
2 correlation

functions has already been reported in p–Pb collisions [32] and is, with this work, also established for the
azimuthal widths of GCD

2 and GCI
2 correlators observed in the pp and p–Pb systems. It is then plausible

to postulate that the azimuthal narrowing of the correlators results from collective radial flow in these
smaller systems.

The details of the evolution of the widths σCD
∆ϕ

and σCI
∆ϕ

with [Nch] are consequently of particular interest.
As already suggested, both these widths exhibit a monotonic narrowing with increasing [Nch] in all three
systems studied. However, their evolution is not continuous between systems. Indeed, at equal particle
production [Nch], the width of these correlators in p–Pb collisions is similar, within uncertainties, to that
observed in pp collisions. Additionally, although measurements in p–Pb and Pb–Pb collisions have a
limited overlap in [Nch], the σCI

∆ϕ
widths measured in Pb–Pb are approximately 8% larger than those

observed in p–Pb. These differences can qualitatively be interpreted as resulting from the size of the
systems considered. The lowest multiplicity measurement of G2 in Pb–Pb collisions shown in Fig. 5
corresponds to the 70–80% collision centrality class. In this range, the average number of nucleons
participating in the Pb–Pb collision amounts to approximately 15 [72] and should far exceed the number
of participants involved in a typical p–Pb collision. Although estimates of the number of participant
nucleons in p–Pb collisions are less precise than in the Pb–Pb case, it can be reasonably expected that
at a given value of [Nch] p–Pb collisions involve on average more participants than pp collisions. At a
given value of [Nch], p–Pb collisions (Pb–Pb collisions) are thus expected to consist of a lower number
of contributors from hard scatterings than those produced in pp (p–Pb) collisions. It is then reasonable
to expect that these correlators in different collision systems have slightly different widths at equal [Nch]
value. In any case, comprehensive models of particle production in small and large systems should
account for these small differences, and the evolution of the azimuthal width of GCD

2 thus constitutes a
stringent test of such models.

The three systems exhibit a rather different evolution of the longitudinal width σCI
∆η

with increasing
[Nch]. Whereas σCI

∆η
increases from 0.59 to a maximum value of 0.73 (24%) with increasing [Nch] in

Pb–Pb collisions, it decreases by about 5% in pp while rising by approximately the same amount in
p–Pb collisions. A broadening of the longitudinal width of the near-side peak in the GCI

2 correlator was
also observed in Au–Au collisions at RHIC [73] and was predicted to occur as a result of viscous forces
in collision systems producing a long lived QGP phase [21]. In this context, the medium formed in
the collision is modeled as a fluid in quasi-equilibrium. Fluid cells are accelerated by local pressure
gradients and do not, ab initio, have equal transverse velocities. Viscous interactions between cells are
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then expected to slow down fast moving cells and accelerate cells with smaller transverse velocity. The
resulting momentum transfers are then expected to induce “long range” longitudinal correlations between
cells and the particles they emit, thereby producing broadened two-particle correlation functions relative
to systems that do not undergo viscous forces.

The Pb–Pb system clearly manifests the behaviour expected from a long lived viscous fluid: the average
transverse momentum monotonically increases with increasing multiplicity of produced particles, the
width σCD

∆ϕ
monotonically decreases, whereas the width σCI

∆η
increases with increasing multiplicity and

is consistent with a fluid characterised by a small value of η/s [24, 25].

The behaviour and nature of the pp and p–Pb systems are much less clear. While both collisions sys-
tems exhibit the σCD

∆ϕ
narrowing expected from a fluid undergoing radial flow and anisotropic particle

emission in the transverse plane, the width σCI
∆η

decreases with increasing multiplicity in pp collisions
while exhibiting a very modest increase in p–Pb collisions. No conclusion can therefore be drawn on the
possible establishment of a collective behaviour in pp collisions, while the results from p–Pb collisions
provide only a suggestive indication, limited by the magnitude of systematic uncertainties, for the pres-
ence of viscous effects. The interpretation of trends observed in these two collision systems is further
complicated by the presence of competing effects resulting from radial flow. The longitudinal widths
σCD

∆η
in pp and p–Pb collisions exhibit a narrowing trend with increasing [Nch] that should be matched,

in the absence of viscous effects, by a similar behaviour for σCI
∆η

. Such small narrowing effect may then
compete with and partly mask the viscous broadening that would otherwise occur in such small systems.
It should also be considered that possible viscous forces would need time to propagate correlations in
the longitudinal direction. Thus, the longitudinal broadening of G2 shall depend both on the magnitude
of the shear viscosity (per unit entropy) and the lifetime of the fluid. If the fluid-like system produced is
too small or too short lived, there may not be enough time for viscous forces to equalise the transverse
velocity differences between cells and, even though a fluid-like system may be produced in pp or p–Pb
collisions, it may not live long enough to yield a significant broadening of the GCI

2 correlator. Competing
effects associated with kinematic focusing may then hinder observations of viscous broadening.

Alternatively, it is also possible that a quasi-equilibrated fluid description does not hold for the system
produced in pp and p–Pb collisions. Appealing to more traditional models to interpret the data is then
needed. However, as already noted, while PYTHIA 6 manages to qualitatively reproduce the narrowing
of the CD correlator, it poorly describes the measurements for the CI correlator. Similarly, PYTHIA 8
(Monash tune, with colour reconnection) qualitatively reproduces the azimuthal widths but introduces
too much narrowing in the longitudinal dimension of the CI correlator.

9 Conclusions

The two-particle transverse momentum differential correlators GCI
2 and GCD

2 were measured in pp col-
lisions at

√
s = 7 TeV and in p–Pb collisions at

√
sNN = 5.02 TeV as a function of the charged hadron

multiplicity measured in the selected acceptance, [Nch]. Both correlators feature prominent near-side
peaks. The amplitude of these peaks decreases monotonically with increasing charged hadron multiplic-
ity, Nch, in both collision systems, but their widths exhibit mixed behaviours.

The near-side peak of the GCI
2 and GCD

2 correlators exhibits strong azimuthal narrowing trends with
increasing Nch, in pp and p–Pb collisions, that qualitatively match the width evolution with collision
centrality formerly observed in the Pb–Pb system. The GCD

2 near-side peak also features a longitudinal
narrowing albeit weaker than that observed in the azimuthal direction. The narrowing trends observed
in pp collisions are qualitatively reproduced by PYTHIA, even with PYTHIA 6 Perugia tune, thereby
indicating that the evolution of the two correlators is well accounted for by this model, i.e. without the
need to invoke a collective behaviour. However, the multiplicity dependence measured in p–Pb collisions
is not described by DPMJET.
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The longitudinal width, σCI
∆η

, of the GCI
2 correlator in pp and p–Pb collisions is not varying with multiplic-

ity, within uncertainties, at variance with the case of Pb–Pb collisions. The lack of a clear dependence
on multiplicity of the widths in pp and p–Pb collisions provides no evidence of an increase of σCI

∆η
within

uncertainties. It is possible that, if fluid-like systems are produced in p–Pb collisions, they are too short
lived for viscous forces to have a sizable impact on the width of the correlator. Further studies of the
p–Pb system are thus required to fully elucidate its behaviour.
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